]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/swap_state.c
mm: Convert add_to_swap_cache to XArray
[thirdparty/linux.git] / mm / swap_state.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/swap_state.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 *
8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
9 */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24
25 #include <asm/pgtable.h>
26
27 /*
28 * swapper_space is a fiction, retained to simplify the path through
29 * vmscan's shrink_page_list.
30 */
31 static const struct address_space_operations swap_aops = {
32 .writepage = swap_writepage,
33 .set_page_dirty = swap_set_page_dirty,
34 #ifdef CONFIG_MIGRATION
35 .migratepage = migrate_page,
36 #endif
37 };
38
39 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
40 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 static bool enable_vma_readahead __read_mostly = true;
42
43 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
44 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
45 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
46 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
47
48 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
49 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
50 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
51
52 #define SWAP_RA_VAL(addr, win, hits) \
53 (((addr) & PAGE_MASK) | \
54 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
55 ((hits) & SWAP_RA_HITS_MASK))
56
57 /* Initial readahead hits is 4 to start up with a small window */
58 #define GET_SWAP_RA_VAL(vma) \
59 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
60
61 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
62 #define ADD_CACHE_INFO(x, nr) do { swap_cache_info.x += (nr); } while (0)
63
64 static struct {
65 unsigned long add_total;
66 unsigned long del_total;
67 unsigned long find_success;
68 unsigned long find_total;
69 } swap_cache_info;
70
71 unsigned long total_swapcache_pages(void)
72 {
73 unsigned int i, j, nr;
74 unsigned long ret = 0;
75 struct address_space *spaces;
76
77 rcu_read_lock();
78 for (i = 0; i < MAX_SWAPFILES; i++) {
79 /*
80 * The corresponding entries in nr_swapper_spaces and
81 * swapper_spaces will be reused only after at least
82 * one grace period. So it is impossible for them
83 * belongs to different usage.
84 */
85 nr = nr_swapper_spaces[i];
86 spaces = rcu_dereference(swapper_spaces[i]);
87 if (!nr || !spaces)
88 continue;
89 for (j = 0; j < nr; j++)
90 ret += spaces[j].nrpages;
91 }
92 rcu_read_unlock();
93 return ret;
94 }
95
96 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
97
98 void show_swap_cache_info(void)
99 {
100 printk("%lu pages in swap cache\n", total_swapcache_pages());
101 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
102 swap_cache_info.add_total, swap_cache_info.del_total,
103 swap_cache_info.find_success, swap_cache_info.find_total);
104 printk("Free swap = %ldkB\n",
105 get_nr_swap_pages() << (PAGE_SHIFT - 10));
106 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
107 }
108
109 /*
110 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
111 * but sets SwapCache flag and private instead of mapping and index.
112 */
113 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp)
114 {
115 struct address_space *address_space = swap_address_space(entry);
116 pgoff_t idx = swp_offset(entry);
117 XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
118 unsigned long i, nr = 1UL << compound_order(page);
119
120 VM_BUG_ON_PAGE(!PageLocked(page), page);
121 VM_BUG_ON_PAGE(PageSwapCache(page), page);
122 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
123
124 page_ref_add(page, nr);
125 SetPageSwapCache(page);
126
127 do {
128 xas_lock_irq(&xas);
129 xas_create_range(&xas);
130 if (xas_error(&xas))
131 goto unlock;
132 for (i = 0; i < nr; i++) {
133 VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
134 set_page_private(page + i, entry.val + i);
135 xas_store(&xas, page + i);
136 xas_next(&xas);
137 }
138 address_space->nrpages += nr;
139 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
140 ADD_CACHE_INFO(add_total, nr);
141 unlock:
142 xas_unlock_irq(&xas);
143 } while (xas_nomem(&xas, gfp));
144
145 if (!xas_error(&xas))
146 return 0;
147
148 ClearPageSwapCache(page);
149 page_ref_sub(page, nr);
150 return xas_error(&xas);
151 }
152
153 /*
154 * This must be called only on pages that have
155 * been verified to be in the swap cache.
156 */
157 void __delete_from_swap_cache(struct page *page)
158 {
159 struct address_space *address_space;
160 int i, nr = hpage_nr_pages(page);
161 swp_entry_t entry;
162 pgoff_t idx;
163
164 VM_BUG_ON_PAGE(!PageLocked(page), page);
165 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
166 VM_BUG_ON_PAGE(PageWriteback(page), page);
167
168 entry.val = page_private(page);
169 address_space = swap_address_space(entry);
170 idx = swp_offset(entry);
171 for (i = 0; i < nr; i++) {
172 radix_tree_delete(&address_space->i_pages, idx + i);
173 set_page_private(page + i, 0);
174 }
175 ClearPageSwapCache(page);
176 address_space->nrpages -= nr;
177 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
178 ADD_CACHE_INFO(del_total, nr);
179 }
180
181 /**
182 * add_to_swap - allocate swap space for a page
183 * @page: page we want to move to swap
184 *
185 * Allocate swap space for the page and add the page to the
186 * swap cache. Caller needs to hold the page lock.
187 */
188 int add_to_swap(struct page *page)
189 {
190 swp_entry_t entry;
191 int err;
192
193 VM_BUG_ON_PAGE(!PageLocked(page), page);
194 VM_BUG_ON_PAGE(!PageUptodate(page), page);
195
196 entry = get_swap_page(page);
197 if (!entry.val)
198 return 0;
199
200 /*
201 * XArray node allocations from PF_MEMALLOC contexts could
202 * completely exhaust the page allocator. __GFP_NOMEMALLOC
203 * stops emergency reserves from being allocated.
204 *
205 * TODO: this could cause a theoretical memory reclaim
206 * deadlock in the swap out path.
207 */
208 /*
209 * Add it to the swap cache.
210 */
211 err = add_to_swap_cache(page, entry,
212 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
213 if (err)
214 /*
215 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
216 * clear SWAP_HAS_CACHE flag.
217 */
218 goto fail;
219 /*
220 * Normally the page will be dirtied in unmap because its pte should be
221 * dirty. A special case is MADV_FREE page. The page'e pte could have
222 * dirty bit cleared but the page's SwapBacked bit is still set because
223 * clearing the dirty bit and SwapBacked bit has no lock protected. For
224 * such page, unmap will not set dirty bit for it, so page reclaim will
225 * not write the page out. This can cause data corruption when the page
226 * is swap in later. Always setting the dirty bit for the page solves
227 * the problem.
228 */
229 set_page_dirty(page);
230
231 return 1;
232
233 fail:
234 put_swap_page(page, entry);
235 return 0;
236 }
237
238 /*
239 * This must be called only on pages that have
240 * been verified to be in the swap cache and locked.
241 * It will never put the page into the free list,
242 * the caller has a reference on the page.
243 */
244 void delete_from_swap_cache(struct page *page)
245 {
246 swp_entry_t entry;
247 struct address_space *address_space;
248
249 entry.val = page_private(page);
250
251 address_space = swap_address_space(entry);
252 xa_lock_irq(&address_space->i_pages);
253 __delete_from_swap_cache(page);
254 xa_unlock_irq(&address_space->i_pages);
255
256 put_swap_page(page, entry);
257 page_ref_sub(page, hpage_nr_pages(page));
258 }
259
260 /*
261 * If we are the only user, then try to free up the swap cache.
262 *
263 * Its ok to check for PageSwapCache without the page lock
264 * here because we are going to recheck again inside
265 * try_to_free_swap() _with_ the lock.
266 * - Marcelo
267 */
268 static inline void free_swap_cache(struct page *page)
269 {
270 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
271 try_to_free_swap(page);
272 unlock_page(page);
273 }
274 }
275
276 /*
277 * Perform a free_page(), also freeing any swap cache associated with
278 * this page if it is the last user of the page.
279 */
280 void free_page_and_swap_cache(struct page *page)
281 {
282 free_swap_cache(page);
283 if (!is_huge_zero_page(page))
284 put_page(page);
285 }
286
287 /*
288 * Passed an array of pages, drop them all from swapcache and then release
289 * them. They are removed from the LRU and freed if this is their last use.
290 */
291 void free_pages_and_swap_cache(struct page **pages, int nr)
292 {
293 struct page **pagep = pages;
294 int i;
295
296 lru_add_drain();
297 for (i = 0; i < nr; i++)
298 free_swap_cache(pagep[i]);
299 release_pages(pagep, nr);
300 }
301
302 static inline bool swap_use_vma_readahead(void)
303 {
304 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
305 }
306
307 /*
308 * Lookup a swap entry in the swap cache. A found page will be returned
309 * unlocked and with its refcount incremented - we rely on the kernel
310 * lock getting page table operations atomic even if we drop the page
311 * lock before returning.
312 */
313 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
314 unsigned long addr)
315 {
316 struct page *page;
317
318 page = find_get_page(swap_address_space(entry), swp_offset(entry));
319
320 INC_CACHE_INFO(find_total);
321 if (page) {
322 bool vma_ra = swap_use_vma_readahead();
323 bool readahead;
324
325 INC_CACHE_INFO(find_success);
326 /*
327 * At the moment, we don't support PG_readahead for anon THP
328 * so let's bail out rather than confusing the readahead stat.
329 */
330 if (unlikely(PageTransCompound(page)))
331 return page;
332
333 readahead = TestClearPageReadahead(page);
334 if (vma && vma_ra) {
335 unsigned long ra_val;
336 int win, hits;
337
338 ra_val = GET_SWAP_RA_VAL(vma);
339 win = SWAP_RA_WIN(ra_val);
340 hits = SWAP_RA_HITS(ra_val);
341 if (readahead)
342 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
343 atomic_long_set(&vma->swap_readahead_info,
344 SWAP_RA_VAL(addr, win, hits));
345 }
346
347 if (readahead) {
348 count_vm_event(SWAP_RA_HIT);
349 if (!vma || !vma_ra)
350 atomic_inc(&swapin_readahead_hits);
351 }
352 }
353
354 return page;
355 }
356
357 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
358 struct vm_area_struct *vma, unsigned long addr,
359 bool *new_page_allocated)
360 {
361 struct page *found_page, *new_page = NULL;
362 struct address_space *swapper_space = swap_address_space(entry);
363 int err;
364 *new_page_allocated = false;
365
366 do {
367 /*
368 * First check the swap cache. Since this is normally
369 * called after lookup_swap_cache() failed, re-calling
370 * that would confuse statistics.
371 */
372 found_page = find_get_page(swapper_space, swp_offset(entry));
373 if (found_page)
374 break;
375
376 /*
377 * Just skip read ahead for unused swap slot.
378 * During swap_off when swap_slot_cache is disabled,
379 * we have to handle the race between putting
380 * swap entry in swap cache and marking swap slot
381 * as SWAP_HAS_CACHE. That's done in later part of code or
382 * else swap_off will be aborted if we return NULL.
383 */
384 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
385 break;
386
387 /*
388 * Get a new page to read into from swap.
389 */
390 if (!new_page) {
391 new_page = alloc_page_vma(gfp_mask, vma, addr);
392 if (!new_page)
393 break; /* Out of memory */
394 }
395
396 /*
397 * Swap entry may have been freed since our caller observed it.
398 */
399 err = swapcache_prepare(entry);
400 if (err == -EEXIST) {
401 /*
402 * We might race against get_swap_page() and stumble
403 * across a SWAP_HAS_CACHE swap_map entry whose page
404 * has not been brought into the swapcache yet.
405 */
406 cond_resched();
407 continue;
408 } else if (err) /* swp entry is obsolete ? */
409 break;
410
411 /* May fail (-ENOMEM) if XArray node allocation failed. */
412 __SetPageLocked(new_page);
413 __SetPageSwapBacked(new_page);
414 err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL);
415 if (likely(!err)) {
416 /* Initiate read into locked page */
417 lru_cache_add_anon(new_page);
418 *new_page_allocated = true;
419 return new_page;
420 }
421 __ClearPageLocked(new_page);
422 /*
423 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
424 * clear SWAP_HAS_CACHE flag.
425 */
426 put_swap_page(new_page, entry);
427 } while (err != -ENOMEM);
428
429 if (new_page)
430 put_page(new_page);
431 return found_page;
432 }
433
434 /*
435 * Locate a page of swap in physical memory, reserving swap cache space
436 * and reading the disk if it is not already cached.
437 * A failure return means that either the page allocation failed or that
438 * the swap entry is no longer in use.
439 */
440 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
441 struct vm_area_struct *vma, unsigned long addr, bool do_poll)
442 {
443 bool page_was_allocated;
444 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
445 vma, addr, &page_was_allocated);
446
447 if (page_was_allocated)
448 swap_readpage(retpage, do_poll);
449
450 return retpage;
451 }
452
453 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
454 unsigned long offset,
455 int hits,
456 int max_pages,
457 int prev_win)
458 {
459 unsigned int pages, last_ra;
460
461 /*
462 * This heuristic has been found to work well on both sequential and
463 * random loads, swapping to hard disk or to SSD: please don't ask
464 * what the "+ 2" means, it just happens to work well, that's all.
465 */
466 pages = hits + 2;
467 if (pages == 2) {
468 /*
469 * We can have no readahead hits to judge by: but must not get
470 * stuck here forever, so check for an adjacent offset instead
471 * (and don't even bother to check whether swap type is same).
472 */
473 if (offset != prev_offset + 1 && offset != prev_offset - 1)
474 pages = 1;
475 } else {
476 unsigned int roundup = 4;
477 while (roundup < pages)
478 roundup <<= 1;
479 pages = roundup;
480 }
481
482 if (pages > max_pages)
483 pages = max_pages;
484
485 /* Don't shrink readahead too fast */
486 last_ra = prev_win / 2;
487 if (pages < last_ra)
488 pages = last_ra;
489
490 return pages;
491 }
492
493 static unsigned long swapin_nr_pages(unsigned long offset)
494 {
495 static unsigned long prev_offset;
496 unsigned int hits, pages, max_pages;
497 static atomic_t last_readahead_pages;
498
499 max_pages = 1 << READ_ONCE(page_cluster);
500 if (max_pages <= 1)
501 return 1;
502
503 hits = atomic_xchg(&swapin_readahead_hits, 0);
504 pages = __swapin_nr_pages(prev_offset, offset, hits, max_pages,
505 atomic_read(&last_readahead_pages));
506 if (!hits)
507 prev_offset = offset;
508 atomic_set(&last_readahead_pages, pages);
509
510 return pages;
511 }
512
513 /**
514 * swap_cluster_readahead - swap in pages in hope we need them soon
515 * @entry: swap entry of this memory
516 * @gfp_mask: memory allocation flags
517 * @vmf: fault information
518 *
519 * Returns the struct page for entry and addr, after queueing swapin.
520 *
521 * Primitive swap readahead code. We simply read an aligned block of
522 * (1 << page_cluster) entries in the swap area. This method is chosen
523 * because it doesn't cost us any seek time. We also make sure to queue
524 * the 'original' request together with the readahead ones...
525 *
526 * This has been extended to use the NUMA policies from the mm triggering
527 * the readahead.
528 *
529 * Caller must hold down_read on the vma->vm_mm if vmf->vma is not NULL.
530 */
531 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
532 struct vm_fault *vmf)
533 {
534 struct page *page;
535 unsigned long entry_offset = swp_offset(entry);
536 unsigned long offset = entry_offset;
537 unsigned long start_offset, end_offset;
538 unsigned long mask;
539 struct swap_info_struct *si = swp_swap_info(entry);
540 struct blk_plug plug;
541 bool do_poll = true, page_allocated;
542 struct vm_area_struct *vma = vmf->vma;
543 unsigned long addr = vmf->address;
544
545 mask = swapin_nr_pages(offset) - 1;
546 if (!mask)
547 goto skip;
548
549 do_poll = false;
550 /* Read a page_cluster sized and aligned cluster around offset. */
551 start_offset = offset & ~mask;
552 end_offset = offset | mask;
553 if (!start_offset) /* First page is swap header. */
554 start_offset++;
555 if (end_offset >= si->max)
556 end_offset = si->max - 1;
557
558 blk_start_plug(&plug);
559 for (offset = start_offset; offset <= end_offset ; offset++) {
560 /* Ok, do the async read-ahead now */
561 page = __read_swap_cache_async(
562 swp_entry(swp_type(entry), offset),
563 gfp_mask, vma, addr, &page_allocated);
564 if (!page)
565 continue;
566 if (page_allocated) {
567 swap_readpage(page, false);
568 if (offset != entry_offset) {
569 SetPageReadahead(page);
570 count_vm_event(SWAP_RA);
571 }
572 }
573 put_page(page);
574 }
575 blk_finish_plug(&plug);
576
577 lru_add_drain(); /* Push any new pages onto the LRU now */
578 skip:
579 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
580 }
581
582 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
583 {
584 struct address_space *spaces, *space;
585 unsigned int i, nr;
586
587 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
588 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
589 if (!spaces)
590 return -ENOMEM;
591 for (i = 0; i < nr; i++) {
592 space = spaces + i;
593 INIT_RADIX_TREE(&space->i_pages, GFP_ATOMIC|__GFP_NOWARN);
594 atomic_set(&space->i_mmap_writable, 0);
595 space->a_ops = &swap_aops;
596 /* swap cache doesn't use writeback related tags */
597 mapping_set_no_writeback_tags(space);
598 }
599 nr_swapper_spaces[type] = nr;
600 rcu_assign_pointer(swapper_spaces[type], spaces);
601
602 return 0;
603 }
604
605 void exit_swap_address_space(unsigned int type)
606 {
607 struct address_space *spaces;
608
609 spaces = swapper_spaces[type];
610 nr_swapper_spaces[type] = 0;
611 rcu_assign_pointer(swapper_spaces[type], NULL);
612 synchronize_rcu();
613 kvfree(spaces);
614 }
615
616 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
617 unsigned long faddr,
618 unsigned long lpfn,
619 unsigned long rpfn,
620 unsigned long *start,
621 unsigned long *end)
622 {
623 *start = max3(lpfn, PFN_DOWN(vma->vm_start),
624 PFN_DOWN(faddr & PMD_MASK));
625 *end = min3(rpfn, PFN_DOWN(vma->vm_end),
626 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
627 }
628
629 static void swap_ra_info(struct vm_fault *vmf,
630 struct vma_swap_readahead *ra_info)
631 {
632 struct vm_area_struct *vma = vmf->vma;
633 unsigned long ra_val;
634 swp_entry_t entry;
635 unsigned long faddr, pfn, fpfn;
636 unsigned long start, end;
637 pte_t *pte, *orig_pte;
638 unsigned int max_win, hits, prev_win, win, left;
639 #ifndef CONFIG_64BIT
640 pte_t *tpte;
641 #endif
642
643 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
644 SWAP_RA_ORDER_CEILING);
645 if (max_win == 1) {
646 ra_info->win = 1;
647 return;
648 }
649
650 faddr = vmf->address;
651 orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
652 entry = pte_to_swp_entry(*pte);
653 if ((unlikely(non_swap_entry(entry)))) {
654 pte_unmap(orig_pte);
655 return;
656 }
657
658 fpfn = PFN_DOWN(faddr);
659 ra_val = GET_SWAP_RA_VAL(vma);
660 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
661 prev_win = SWAP_RA_WIN(ra_val);
662 hits = SWAP_RA_HITS(ra_val);
663 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
664 max_win, prev_win);
665 atomic_long_set(&vma->swap_readahead_info,
666 SWAP_RA_VAL(faddr, win, 0));
667
668 if (win == 1) {
669 pte_unmap(orig_pte);
670 return;
671 }
672
673 /* Copy the PTEs because the page table may be unmapped */
674 if (fpfn == pfn + 1)
675 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
676 else if (pfn == fpfn + 1)
677 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
678 &start, &end);
679 else {
680 left = (win - 1) / 2;
681 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
682 &start, &end);
683 }
684 ra_info->nr_pte = end - start;
685 ra_info->offset = fpfn - start;
686 pte -= ra_info->offset;
687 #ifdef CONFIG_64BIT
688 ra_info->ptes = pte;
689 #else
690 tpte = ra_info->ptes;
691 for (pfn = start; pfn != end; pfn++)
692 *tpte++ = *pte++;
693 #endif
694 pte_unmap(orig_pte);
695 }
696
697 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
698 struct vm_fault *vmf)
699 {
700 struct blk_plug plug;
701 struct vm_area_struct *vma = vmf->vma;
702 struct page *page;
703 pte_t *pte, pentry;
704 swp_entry_t entry;
705 unsigned int i;
706 bool page_allocated;
707 struct vma_swap_readahead ra_info = {0,};
708
709 swap_ra_info(vmf, &ra_info);
710 if (ra_info.win == 1)
711 goto skip;
712
713 blk_start_plug(&plug);
714 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
715 i++, pte++) {
716 pentry = *pte;
717 if (pte_none(pentry))
718 continue;
719 if (pte_present(pentry))
720 continue;
721 entry = pte_to_swp_entry(pentry);
722 if (unlikely(non_swap_entry(entry)))
723 continue;
724 page = __read_swap_cache_async(entry, gfp_mask, vma,
725 vmf->address, &page_allocated);
726 if (!page)
727 continue;
728 if (page_allocated) {
729 swap_readpage(page, false);
730 if (i != ra_info.offset) {
731 SetPageReadahead(page);
732 count_vm_event(SWAP_RA);
733 }
734 }
735 put_page(page);
736 }
737 blk_finish_plug(&plug);
738 lru_add_drain();
739 skip:
740 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
741 ra_info.win == 1);
742 }
743
744 /**
745 * swapin_readahead - swap in pages in hope we need them soon
746 * @entry: swap entry of this memory
747 * @gfp_mask: memory allocation flags
748 * @vmf: fault information
749 *
750 * Returns the struct page for entry and addr, after queueing swapin.
751 *
752 * It's a main entry function for swap readahead. By the configuration,
753 * it will read ahead blocks by cluster-based(ie, physical disk based)
754 * or vma-based(ie, virtual address based on faulty address) readahead.
755 */
756 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
757 struct vm_fault *vmf)
758 {
759 return swap_use_vma_readahead() ?
760 swap_vma_readahead(entry, gfp_mask, vmf) :
761 swap_cluster_readahead(entry, gfp_mask, vmf);
762 }
763
764 #ifdef CONFIG_SYSFS
765 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
766 struct kobj_attribute *attr, char *buf)
767 {
768 return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false");
769 }
770 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
771 struct kobj_attribute *attr,
772 const char *buf, size_t count)
773 {
774 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
775 enable_vma_readahead = true;
776 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
777 enable_vma_readahead = false;
778 else
779 return -EINVAL;
780
781 return count;
782 }
783 static struct kobj_attribute vma_ra_enabled_attr =
784 __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
785 vma_ra_enabled_store);
786
787 static struct attribute *swap_attrs[] = {
788 &vma_ra_enabled_attr.attr,
789 NULL,
790 };
791
792 static struct attribute_group swap_attr_group = {
793 .attrs = swap_attrs,
794 };
795
796 static int __init swap_init_sysfs(void)
797 {
798 int err;
799 struct kobject *swap_kobj;
800
801 swap_kobj = kobject_create_and_add("swap", mm_kobj);
802 if (!swap_kobj) {
803 pr_err("failed to create swap kobject\n");
804 return -ENOMEM;
805 }
806 err = sysfs_create_group(swap_kobj, &swap_attr_group);
807 if (err) {
808 pr_err("failed to register swap group\n");
809 goto delete_obj;
810 }
811 return 0;
812
813 delete_obj:
814 kobject_put(swap_kobj);
815 return err;
816 }
817 subsys_initcall(swap_init_sysfs);
818 #endif