]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/swapfile.c
mm/swapfile.c: tmp is always smaller than max
[thirdparty/linux.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/pgtable.h>
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52
53 DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57 * Some modules use swappable objects and may try to swap them out under
58 * memory pressure (via the shrinker). Before doing so, they may wish to
59 * check to see if any swap space is available.
60 */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70
71 /*
72 * all active swap_info_structs
73 * protected with swap_lock, and ordered by priority.
74 */
75 PLIST_HEAD(swap_active_head);
76
77 /*
78 * all available (active, not full) swap_info_structs
79 * protected with swap_avail_lock, ordered by priority.
80 * This is used by get_swap_page() instead of swap_active_head
81 * because swap_active_head includes all swap_info_structs,
82 * but get_swap_page() doesn't need to look at full ones.
83 * This uses its own lock instead of swap_lock because when a
84 * swap_info_struct changes between not-full/full, it needs to
85 * add/remove itself to/from this list, but the swap_info_struct->lock
86 * is held and the locking order requires swap_lock to be taken
87 * before any swap_info_struct->lock.
88 */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93
94 static DEFINE_MUTEX(swapon_mutex);
95
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
102 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104 if (type >= READ_ONCE(nr_swapfiles))
105 return NULL;
106
107 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
108 return READ_ONCE(swap_info[type]);
109 }
110
111 static inline unsigned char swap_count(unsigned char ent)
112 {
113 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
114 }
115
116 /* Reclaim the swap entry anyway if possible */
117 #define TTRS_ANYWAY 0x1
118 /*
119 * Reclaim the swap entry if there are no more mappings of the
120 * corresponding page
121 */
122 #define TTRS_UNMAPPED 0x2
123 /* Reclaim the swap entry if swap is getting full*/
124 #define TTRS_FULL 0x4
125
126 /* returns 1 if swap entry is freed */
127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
128 unsigned long offset, unsigned long flags)
129 {
130 swp_entry_t entry = swp_entry(si->type, offset);
131 struct page *page;
132 int ret = 0;
133
134 page = find_get_page(swap_address_space(entry), offset);
135 if (!page)
136 return 0;
137 /*
138 * When this function is called from scan_swap_map_slots() and it's
139 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140 * here. We have to use trylock for avoiding deadlock. This is a special
141 * case and you should use try_to_free_swap() with explicit lock_page()
142 * in usual operations.
143 */
144 if (trylock_page(page)) {
145 if ((flags & TTRS_ANYWAY) ||
146 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148 ret = try_to_free_swap(page);
149 unlock_page(page);
150 }
151 put_page(page);
152 return ret;
153 }
154
155 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156 {
157 struct rb_node *rb = rb_first(&sis->swap_extent_root);
158 return rb_entry(rb, struct swap_extent, rb_node);
159 }
160
161 static inline struct swap_extent *next_se(struct swap_extent *se)
162 {
163 struct rb_node *rb = rb_next(&se->rb_node);
164 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165 }
166
167 /*
168 * swapon tell device that all the old swap contents can be discarded,
169 * to allow the swap device to optimize its wear-levelling.
170 */
171 static int discard_swap(struct swap_info_struct *si)
172 {
173 struct swap_extent *se;
174 sector_t start_block;
175 sector_t nr_blocks;
176 int err = 0;
177
178 /* Do not discard the swap header page! */
179 se = first_se(si);
180 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182 if (nr_blocks) {
183 err = blkdev_issue_discard(si->bdev, start_block,
184 nr_blocks, GFP_KERNEL, 0);
185 if (err)
186 return err;
187 cond_resched();
188 }
189
190 for (se = next_se(se); se; se = next_se(se)) {
191 start_block = se->start_block << (PAGE_SHIFT - 9);
192 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
193
194 err = blkdev_issue_discard(si->bdev, start_block,
195 nr_blocks, GFP_KERNEL, 0);
196 if (err)
197 break;
198
199 cond_resched();
200 }
201 return err; /* That will often be -EOPNOTSUPP */
202 }
203
204 static struct swap_extent *
205 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206 {
207 struct swap_extent *se;
208 struct rb_node *rb;
209
210 rb = sis->swap_extent_root.rb_node;
211 while (rb) {
212 se = rb_entry(rb, struct swap_extent, rb_node);
213 if (offset < se->start_page)
214 rb = rb->rb_left;
215 else if (offset >= se->start_page + se->nr_pages)
216 rb = rb->rb_right;
217 else
218 return se;
219 }
220 /* It *must* be present */
221 BUG();
222 }
223
224 /*
225 * swap allocation tell device that a cluster of swap can now be discarded,
226 * to allow the swap device to optimize its wear-levelling.
227 */
228 static void discard_swap_cluster(struct swap_info_struct *si,
229 pgoff_t start_page, pgoff_t nr_pages)
230 {
231 struct swap_extent *se = offset_to_swap_extent(si, start_page);
232
233 while (nr_pages) {
234 pgoff_t offset = start_page - se->start_page;
235 sector_t start_block = se->start_block + offset;
236 sector_t nr_blocks = se->nr_pages - offset;
237
238 if (nr_blocks > nr_pages)
239 nr_blocks = nr_pages;
240 start_page += nr_blocks;
241 nr_pages -= nr_blocks;
242
243 start_block <<= PAGE_SHIFT - 9;
244 nr_blocks <<= PAGE_SHIFT - 9;
245 if (blkdev_issue_discard(si->bdev, start_block,
246 nr_blocks, GFP_NOIO, 0))
247 break;
248
249 se = next_se(se);
250 }
251 }
252
253 #ifdef CONFIG_THP_SWAP
254 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
255
256 #define swap_entry_size(size) (size)
257 #else
258 #define SWAPFILE_CLUSTER 256
259
260 /*
261 * Define swap_entry_size() as constant to let compiler to optimize
262 * out some code if !CONFIG_THP_SWAP
263 */
264 #define swap_entry_size(size) 1
265 #endif
266 #define LATENCY_LIMIT 256
267
268 static inline void cluster_set_flag(struct swap_cluster_info *info,
269 unsigned int flag)
270 {
271 info->flags = flag;
272 }
273
274 static inline unsigned int cluster_count(struct swap_cluster_info *info)
275 {
276 return info->data;
277 }
278
279 static inline void cluster_set_count(struct swap_cluster_info *info,
280 unsigned int c)
281 {
282 info->data = c;
283 }
284
285 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
286 unsigned int c, unsigned int f)
287 {
288 info->flags = f;
289 info->data = c;
290 }
291
292 static inline unsigned int cluster_next(struct swap_cluster_info *info)
293 {
294 return info->data;
295 }
296
297 static inline void cluster_set_next(struct swap_cluster_info *info,
298 unsigned int n)
299 {
300 info->data = n;
301 }
302
303 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
304 unsigned int n, unsigned int f)
305 {
306 info->flags = f;
307 info->data = n;
308 }
309
310 static inline bool cluster_is_free(struct swap_cluster_info *info)
311 {
312 return info->flags & CLUSTER_FLAG_FREE;
313 }
314
315 static inline bool cluster_is_null(struct swap_cluster_info *info)
316 {
317 return info->flags & CLUSTER_FLAG_NEXT_NULL;
318 }
319
320 static inline void cluster_set_null(struct swap_cluster_info *info)
321 {
322 info->flags = CLUSTER_FLAG_NEXT_NULL;
323 info->data = 0;
324 }
325
326 static inline bool cluster_is_huge(struct swap_cluster_info *info)
327 {
328 if (IS_ENABLED(CONFIG_THP_SWAP))
329 return info->flags & CLUSTER_FLAG_HUGE;
330 return false;
331 }
332
333 static inline void cluster_clear_huge(struct swap_cluster_info *info)
334 {
335 info->flags &= ~CLUSTER_FLAG_HUGE;
336 }
337
338 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
339 unsigned long offset)
340 {
341 struct swap_cluster_info *ci;
342
343 ci = si->cluster_info;
344 if (ci) {
345 ci += offset / SWAPFILE_CLUSTER;
346 spin_lock(&ci->lock);
347 }
348 return ci;
349 }
350
351 static inline void unlock_cluster(struct swap_cluster_info *ci)
352 {
353 if (ci)
354 spin_unlock(&ci->lock);
355 }
356
357 /*
358 * Determine the locking method in use for this device. Return
359 * swap_cluster_info if SSD-style cluster-based locking is in place.
360 */
361 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
362 struct swap_info_struct *si, unsigned long offset)
363 {
364 struct swap_cluster_info *ci;
365
366 /* Try to use fine-grained SSD-style locking if available: */
367 ci = lock_cluster(si, offset);
368 /* Otherwise, fall back to traditional, coarse locking: */
369 if (!ci)
370 spin_lock(&si->lock);
371
372 return ci;
373 }
374
375 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
376 struct swap_cluster_info *ci)
377 {
378 if (ci)
379 unlock_cluster(ci);
380 else
381 spin_unlock(&si->lock);
382 }
383
384 static inline bool cluster_list_empty(struct swap_cluster_list *list)
385 {
386 return cluster_is_null(&list->head);
387 }
388
389 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
390 {
391 return cluster_next(&list->head);
392 }
393
394 static void cluster_list_init(struct swap_cluster_list *list)
395 {
396 cluster_set_null(&list->head);
397 cluster_set_null(&list->tail);
398 }
399
400 static void cluster_list_add_tail(struct swap_cluster_list *list,
401 struct swap_cluster_info *ci,
402 unsigned int idx)
403 {
404 if (cluster_list_empty(list)) {
405 cluster_set_next_flag(&list->head, idx, 0);
406 cluster_set_next_flag(&list->tail, idx, 0);
407 } else {
408 struct swap_cluster_info *ci_tail;
409 unsigned int tail = cluster_next(&list->tail);
410
411 /*
412 * Nested cluster lock, but both cluster locks are
413 * only acquired when we held swap_info_struct->lock
414 */
415 ci_tail = ci + tail;
416 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
417 cluster_set_next(ci_tail, idx);
418 spin_unlock(&ci_tail->lock);
419 cluster_set_next_flag(&list->tail, idx, 0);
420 }
421 }
422
423 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
424 struct swap_cluster_info *ci)
425 {
426 unsigned int idx;
427
428 idx = cluster_next(&list->head);
429 if (cluster_next(&list->tail) == idx) {
430 cluster_set_null(&list->head);
431 cluster_set_null(&list->tail);
432 } else
433 cluster_set_next_flag(&list->head,
434 cluster_next(&ci[idx]), 0);
435
436 return idx;
437 }
438
439 /* Add a cluster to discard list and schedule it to do discard */
440 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
441 unsigned int idx)
442 {
443 /*
444 * If scan_swap_map() can't find a free cluster, it will check
445 * si->swap_map directly. To make sure the discarding cluster isn't
446 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
447 * will be cleared after discard
448 */
449 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
450 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
451
452 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
453
454 schedule_work(&si->discard_work);
455 }
456
457 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
458 {
459 struct swap_cluster_info *ci = si->cluster_info;
460
461 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
462 cluster_list_add_tail(&si->free_clusters, ci, idx);
463 }
464
465 /*
466 * Doing discard actually. After a cluster discard is finished, the cluster
467 * will be added to free cluster list. caller should hold si->lock.
468 */
469 static void swap_do_scheduled_discard(struct swap_info_struct *si)
470 {
471 struct swap_cluster_info *info, *ci;
472 unsigned int idx;
473
474 info = si->cluster_info;
475
476 while (!cluster_list_empty(&si->discard_clusters)) {
477 idx = cluster_list_del_first(&si->discard_clusters, info);
478 spin_unlock(&si->lock);
479
480 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
481 SWAPFILE_CLUSTER);
482
483 spin_lock(&si->lock);
484 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
485 __free_cluster(si, idx);
486 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
487 0, SWAPFILE_CLUSTER);
488 unlock_cluster(ci);
489 }
490 }
491
492 static void swap_discard_work(struct work_struct *work)
493 {
494 struct swap_info_struct *si;
495
496 si = container_of(work, struct swap_info_struct, discard_work);
497
498 spin_lock(&si->lock);
499 swap_do_scheduled_discard(si);
500 spin_unlock(&si->lock);
501 }
502
503 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
504 {
505 struct swap_cluster_info *ci = si->cluster_info;
506
507 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
508 cluster_list_del_first(&si->free_clusters, ci);
509 cluster_set_count_flag(ci + idx, 0, 0);
510 }
511
512 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
513 {
514 struct swap_cluster_info *ci = si->cluster_info + idx;
515
516 VM_BUG_ON(cluster_count(ci) != 0);
517 /*
518 * If the swap is discardable, prepare discard the cluster
519 * instead of free it immediately. The cluster will be freed
520 * after discard.
521 */
522 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
523 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
524 swap_cluster_schedule_discard(si, idx);
525 return;
526 }
527
528 __free_cluster(si, idx);
529 }
530
531 /*
532 * The cluster corresponding to page_nr will be used. The cluster will be
533 * removed from free cluster list and its usage counter will be increased.
534 */
535 static void inc_cluster_info_page(struct swap_info_struct *p,
536 struct swap_cluster_info *cluster_info, unsigned long page_nr)
537 {
538 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
539
540 if (!cluster_info)
541 return;
542 if (cluster_is_free(&cluster_info[idx]))
543 alloc_cluster(p, idx);
544
545 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
546 cluster_set_count(&cluster_info[idx],
547 cluster_count(&cluster_info[idx]) + 1);
548 }
549
550 /*
551 * The cluster corresponding to page_nr decreases one usage. If the usage
552 * counter becomes 0, which means no page in the cluster is in using, we can
553 * optionally discard the cluster and add it to free cluster list.
554 */
555 static void dec_cluster_info_page(struct swap_info_struct *p,
556 struct swap_cluster_info *cluster_info, unsigned long page_nr)
557 {
558 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559
560 if (!cluster_info)
561 return;
562
563 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
564 cluster_set_count(&cluster_info[idx],
565 cluster_count(&cluster_info[idx]) - 1);
566
567 if (cluster_count(&cluster_info[idx]) == 0)
568 free_cluster(p, idx);
569 }
570
571 /*
572 * It's possible scan_swap_map() uses a free cluster in the middle of free
573 * cluster list. Avoiding such abuse to avoid list corruption.
574 */
575 static bool
576 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
577 unsigned long offset)
578 {
579 struct percpu_cluster *percpu_cluster;
580 bool conflict;
581
582 offset /= SWAPFILE_CLUSTER;
583 conflict = !cluster_list_empty(&si->free_clusters) &&
584 offset != cluster_list_first(&si->free_clusters) &&
585 cluster_is_free(&si->cluster_info[offset]);
586
587 if (!conflict)
588 return false;
589
590 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
591 cluster_set_null(&percpu_cluster->index);
592 return true;
593 }
594
595 /*
596 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
597 * might involve allocating a new cluster for current CPU too.
598 */
599 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
600 unsigned long *offset, unsigned long *scan_base)
601 {
602 struct percpu_cluster *cluster;
603 struct swap_cluster_info *ci;
604 unsigned long tmp, max;
605
606 new_cluster:
607 cluster = this_cpu_ptr(si->percpu_cluster);
608 if (cluster_is_null(&cluster->index)) {
609 if (!cluster_list_empty(&si->free_clusters)) {
610 cluster->index = si->free_clusters.head;
611 cluster->next = cluster_next(&cluster->index) *
612 SWAPFILE_CLUSTER;
613 } else if (!cluster_list_empty(&si->discard_clusters)) {
614 /*
615 * we don't have free cluster but have some clusters in
616 * discarding, do discard now and reclaim them
617 */
618 swap_do_scheduled_discard(si);
619 *scan_base = *offset = si->cluster_next;
620 goto new_cluster;
621 } else
622 return false;
623 }
624
625 /*
626 * Other CPUs can use our cluster if they can't find a free cluster,
627 * check if there is still free entry in the cluster
628 */
629 tmp = cluster->next;
630 max = min_t(unsigned long, si->max,
631 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
632 if (tmp >= max) {
633 cluster_set_null(&cluster->index);
634 goto new_cluster;
635 }
636 ci = lock_cluster(si, tmp);
637 while (tmp < max) {
638 if (!si->swap_map[tmp])
639 break;
640 tmp++;
641 }
642 unlock_cluster(ci);
643 if (tmp >= max) {
644 cluster_set_null(&cluster->index);
645 goto new_cluster;
646 }
647 cluster->next = tmp + 1;
648 *offset = tmp;
649 *scan_base = tmp;
650 return true;
651 }
652
653 static void __del_from_avail_list(struct swap_info_struct *p)
654 {
655 int nid;
656
657 for_each_node(nid)
658 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
659 }
660
661 static void del_from_avail_list(struct swap_info_struct *p)
662 {
663 spin_lock(&swap_avail_lock);
664 __del_from_avail_list(p);
665 spin_unlock(&swap_avail_lock);
666 }
667
668 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
669 unsigned int nr_entries)
670 {
671 unsigned int end = offset + nr_entries - 1;
672
673 if (offset == si->lowest_bit)
674 si->lowest_bit += nr_entries;
675 if (end == si->highest_bit)
676 si->highest_bit -= nr_entries;
677 si->inuse_pages += nr_entries;
678 if (si->inuse_pages == si->pages) {
679 si->lowest_bit = si->max;
680 si->highest_bit = 0;
681 del_from_avail_list(si);
682 }
683 }
684
685 static void add_to_avail_list(struct swap_info_struct *p)
686 {
687 int nid;
688
689 spin_lock(&swap_avail_lock);
690 for_each_node(nid) {
691 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
692 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
693 }
694 spin_unlock(&swap_avail_lock);
695 }
696
697 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
698 unsigned int nr_entries)
699 {
700 unsigned long end = offset + nr_entries - 1;
701 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
702
703 if (offset < si->lowest_bit)
704 si->lowest_bit = offset;
705 if (end > si->highest_bit) {
706 bool was_full = !si->highest_bit;
707
708 si->highest_bit = end;
709 if (was_full && (si->flags & SWP_WRITEOK))
710 add_to_avail_list(si);
711 }
712 atomic_long_add(nr_entries, &nr_swap_pages);
713 si->inuse_pages -= nr_entries;
714 if (si->flags & SWP_BLKDEV)
715 swap_slot_free_notify =
716 si->bdev->bd_disk->fops->swap_slot_free_notify;
717 else
718 swap_slot_free_notify = NULL;
719 while (offset <= end) {
720 frontswap_invalidate_page(si->type, offset);
721 if (swap_slot_free_notify)
722 swap_slot_free_notify(si->bdev, offset);
723 offset++;
724 }
725 }
726
727 static int scan_swap_map_slots(struct swap_info_struct *si,
728 unsigned char usage, int nr,
729 swp_entry_t slots[])
730 {
731 struct swap_cluster_info *ci;
732 unsigned long offset;
733 unsigned long scan_base;
734 unsigned long last_in_cluster = 0;
735 int latency_ration = LATENCY_LIMIT;
736 int n_ret = 0;
737
738 /*
739 * We try to cluster swap pages by allocating them sequentially
740 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
741 * way, however, we resort to first-free allocation, starting
742 * a new cluster. This prevents us from scattering swap pages
743 * all over the entire swap partition, so that we reduce
744 * overall disk seek times between swap pages. -- sct
745 * But we do now try to find an empty cluster. -Andrea
746 * And we let swap pages go all over an SSD partition. Hugh
747 */
748
749 si->flags += SWP_SCANNING;
750 scan_base = offset = si->cluster_next;
751
752 /* SSD algorithm */
753 if (si->cluster_info) {
754 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
755 goto scan;
756 } else if (unlikely(!si->cluster_nr--)) {
757 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
758 si->cluster_nr = SWAPFILE_CLUSTER - 1;
759 goto checks;
760 }
761
762 spin_unlock(&si->lock);
763
764 /*
765 * If seek is expensive, start searching for new cluster from
766 * start of partition, to minimize the span of allocated swap.
767 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
768 * case, just handled by scan_swap_map_try_ssd_cluster() above.
769 */
770 scan_base = offset = si->lowest_bit;
771 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
772
773 /* Locate the first empty (unaligned) cluster */
774 for (; last_in_cluster <= si->highest_bit; offset++) {
775 if (si->swap_map[offset])
776 last_in_cluster = offset + SWAPFILE_CLUSTER;
777 else if (offset == last_in_cluster) {
778 spin_lock(&si->lock);
779 offset -= SWAPFILE_CLUSTER - 1;
780 si->cluster_next = offset;
781 si->cluster_nr = SWAPFILE_CLUSTER - 1;
782 goto checks;
783 }
784 if (unlikely(--latency_ration < 0)) {
785 cond_resched();
786 latency_ration = LATENCY_LIMIT;
787 }
788 }
789
790 offset = scan_base;
791 spin_lock(&si->lock);
792 si->cluster_nr = SWAPFILE_CLUSTER - 1;
793 }
794
795 checks:
796 if (si->cluster_info) {
797 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
798 /* take a break if we already got some slots */
799 if (n_ret)
800 goto done;
801 if (!scan_swap_map_try_ssd_cluster(si, &offset,
802 &scan_base))
803 goto scan;
804 }
805 }
806 if (!(si->flags & SWP_WRITEOK))
807 goto no_page;
808 if (!si->highest_bit)
809 goto no_page;
810 if (offset > si->highest_bit)
811 scan_base = offset = si->lowest_bit;
812
813 ci = lock_cluster(si, offset);
814 /* reuse swap entry of cache-only swap if not busy. */
815 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
816 int swap_was_freed;
817 unlock_cluster(ci);
818 spin_unlock(&si->lock);
819 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
820 spin_lock(&si->lock);
821 /* entry was freed successfully, try to use this again */
822 if (swap_was_freed)
823 goto checks;
824 goto scan; /* check next one */
825 }
826
827 if (si->swap_map[offset]) {
828 unlock_cluster(ci);
829 if (!n_ret)
830 goto scan;
831 else
832 goto done;
833 }
834 si->swap_map[offset] = usage;
835 inc_cluster_info_page(si, si->cluster_info, offset);
836 unlock_cluster(ci);
837
838 swap_range_alloc(si, offset, 1);
839 si->cluster_next = offset + 1;
840 slots[n_ret++] = swp_entry(si->type, offset);
841
842 /* got enough slots or reach max slots? */
843 if ((n_ret == nr) || (offset >= si->highest_bit))
844 goto done;
845
846 /* search for next available slot */
847
848 /* time to take a break? */
849 if (unlikely(--latency_ration < 0)) {
850 if (n_ret)
851 goto done;
852 spin_unlock(&si->lock);
853 cond_resched();
854 spin_lock(&si->lock);
855 latency_ration = LATENCY_LIMIT;
856 }
857
858 /* try to get more slots in cluster */
859 if (si->cluster_info) {
860 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
861 goto checks;
862 } else if (si->cluster_nr && !si->swap_map[++offset]) {
863 /* non-ssd case, still more slots in cluster? */
864 --si->cluster_nr;
865 goto checks;
866 }
867
868 done:
869 si->flags -= SWP_SCANNING;
870 return n_ret;
871
872 scan:
873 spin_unlock(&si->lock);
874 while (++offset <= si->highest_bit) {
875 if (!si->swap_map[offset]) {
876 spin_lock(&si->lock);
877 goto checks;
878 }
879 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
880 spin_lock(&si->lock);
881 goto checks;
882 }
883 if (unlikely(--latency_ration < 0)) {
884 cond_resched();
885 latency_ration = LATENCY_LIMIT;
886 }
887 }
888 offset = si->lowest_bit;
889 while (offset < scan_base) {
890 if (!si->swap_map[offset]) {
891 spin_lock(&si->lock);
892 goto checks;
893 }
894 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
895 spin_lock(&si->lock);
896 goto checks;
897 }
898 if (unlikely(--latency_ration < 0)) {
899 cond_resched();
900 latency_ration = LATENCY_LIMIT;
901 }
902 offset++;
903 }
904 spin_lock(&si->lock);
905
906 no_page:
907 si->flags -= SWP_SCANNING;
908 return n_ret;
909 }
910
911 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
912 {
913 unsigned long idx;
914 struct swap_cluster_info *ci;
915 unsigned long offset, i;
916 unsigned char *map;
917
918 /*
919 * Should not even be attempting cluster allocations when huge
920 * page swap is disabled. Warn and fail the allocation.
921 */
922 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
923 VM_WARN_ON_ONCE(1);
924 return 0;
925 }
926
927 if (cluster_list_empty(&si->free_clusters))
928 return 0;
929
930 idx = cluster_list_first(&si->free_clusters);
931 offset = idx * SWAPFILE_CLUSTER;
932 ci = lock_cluster(si, offset);
933 alloc_cluster(si, idx);
934 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
935
936 map = si->swap_map + offset;
937 for (i = 0; i < SWAPFILE_CLUSTER; i++)
938 map[i] = SWAP_HAS_CACHE;
939 unlock_cluster(ci);
940 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
941 *slot = swp_entry(si->type, offset);
942
943 return 1;
944 }
945
946 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
947 {
948 unsigned long offset = idx * SWAPFILE_CLUSTER;
949 struct swap_cluster_info *ci;
950
951 ci = lock_cluster(si, offset);
952 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
953 cluster_set_count_flag(ci, 0, 0);
954 free_cluster(si, idx);
955 unlock_cluster(ci);
956 swap_range_free(si, offset, SWAPFILE_CLUSTER);
957 }
958
959 static unsigned long scan_swap_map(struct swap_info_struct *si,
960 unsigned char usage)
961 {
962 swp_entry_t entry;
963 int n_ret;
964
965 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
966
967 if (n_ret)
968 return swp_offset(entry);
969 else
970 return 0;
971
972 }
973
974 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
975 {
976 unsigned long size = swap_entry_size(entry_size);
977 struct swap_info_struct *si, *next;
978 long avail_pgs;
979 int n_ret = 0;
980 int node;
981
982 /* Only single cluster request supported */
983 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
984
985 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
986 if (avail_pgs <= 0)
987 goto noswap;
988
989 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
990
991 atomic_long_sub(n_goal * size, &nr_swap_pages);
992
993 spin_lock(&swap_avail_lock);
994
995 start_over:
996 node = numa_node_id();
997 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
998 /* requeue si to after same-priority siblings */
999 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1000 spin_unlock(&swap_avail_lock);
1001 spin_lock(&si->lock);
1002 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1003 spin_lock(&swap_avail_lock);
1004 if (plist_node_empty(&si->avail_lists[node])) {
1005 spin_unlock(&si->lock);
1006 goto nextsi;
1007 }
1008 WARN(!si->highest_bit,
1009 "swap_info %d in list but !highest_bit\n",
1010 si->type);
1011 WARN(!(si->flags & SWP_WRITEOK),
1012 "swap_info %d in list but !SWP_WRITEOK\n",
1013 si->type);
1014 __del_from_avail_list(si);
1015 spin_unlock(&si->lock);
1016 goto nextsi;
1017 }
1018 if (size == SWAPFILE_CLUSTER) {
1019 if (!(si->flags & SWP_FS))
1020 n_ret = swap_alloc_cluster(si, swp_entries);
1021 } else
1022 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1023 n_goal, swp_entries);
1024 spin_unlock(&si->lock);
1025 if (n_ret || size == SWAPFILE_CLUSTER)
1026 goto check_out;
1027 pr_debug("scan_swap_map of si %d failed to find offset\n",
1028 si->type);
1029
1030 spin_lock(&swap_avail_lock);
1031 nextsi:
1032 /*
1033 * if we got here, it's likely that si was almost full before,
1034 * and since scan_swap_map() can drop the si->lock, multiple
1035 * callers probably all tried to get a page from the same si
1036 * and it filled up before we could get one; or, the si filled
1037 * up between us dropping swap_avail_lock and taking si->lock.
1038 * Since we dropped the swap_avail_lock, the swap_avail_head
1039 * list may have been modified; so if next is still in the
1040 * swap_avail_head list then try it, otherwise start over
1041 * if we have not gotten any slots.
1042 */
1043 if (plist_node_empty(&next->avail_lists[node]))
1044 goto start_over;
1045 }
1046
1047 spin_unlock(&swap_avail_lock);
1048
1049 check_out:
1050 if (n_ret < n_goal)
1051 atomic_long_add((long)(n_goal - n_ret) * size,
1052 &nr_swap_pages);
1053 noswap:
1054 return n_ret;
1055 }
1056
1057 /* The only caller of this function is now suspend routine */
1058 swp_entry_t get_swap_page_of_type(int type)
1059 {
1060 struct swap_info_struct *si = swap_type_to_swap_info(type);
1061 pgoff_t offset;
1062
1063 if (!si)
1064 goto fail;
1065
1066 spin_lock(&si->lock);
1067 if (si->flags & SWP_WRITEOK) {
1068 atomic_long_dec(&nr_swap_pages);
1069 /* This is called for allocating swap entry, not cache */
1070 offset = scan_swap_map(si, 1);
1071 if (offset) {
1072 spin_unlock(&si->lock);
1073 return swp_entry(type, offset);
1074 }
1075 atomic_long_inc(&nr_swap_pages);
1076 }
1077 spin_unlock(&si->lock);
1078 fail:
1079 return (swp_entry_t) {0};
1080 }
1081
1082 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1083 {
1084 struct swap_info_struct *p;
1085 unsigned long offset;
1086
1087 if (!entry.val)
1088 goto out;
1089 p = swp_swap_info(entry);
1090 if (!p)
1091 goto bad_nofile;
1092 if (!(p->flags & SWP_USED))
1093 goto bad_device;
1094 offset = swp_offset(entry);
1095 if (offset >= p->max)
1096 goto bad_offset;
1097 return p;
1098
1099 bad_offset:
1100 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1101 goto out;
1102 bad_device:
1103 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1104 goto out;
1105 bad_nofile:
1106 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1107 out:
1108 return NULL;
1109 }
1110
1111 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1112 {
1113 struct swap_info_struct *p;
1114
1115 p = __swap_info_get(entry);
1116 if (!p)
1117 goto out;
1118 if (!p->swap_map[swp_offset(entry)])
1119 goto bad_free;
1120 return p;
1121
1122 bad_free:
1123 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1124 goto out;
1125 out:
1126 return NULL;
1127 }
1128
1129 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1130 {
1131 struct swap_info_struct *p;
1132
1133 p = _swap_info_get(entry);
1134 if (p)
1135 spin_lock(&p->lock);
1136 return p;
1137 }
1138
1139 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1140 struct swap_info_struct *q)
1141 {
1142 struct swap_info_struct *p;
1143
1144 p = _swap_info_get(entry);
1145
1146 if (p != q) {
1147 if (q != NULL)
1148 spin_unlock(&q->lock);
1149 if (p != NULL)
1150 spin_lock(&p->lock);
1151 }
1152 return p;
1153 }
1154
1155 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1156 unsigned long offset,
1157 unsigned char usage)
1158 {
1159 unsigned char count;
1160 unsigned char has_cache;
1161
1162 count = p->swap_map[offset];
1163
1164 has_cache = count & SWAP_HAS_CACHE;
1165 count &= ~SWAP_HAS_CACHE;
1166
1167 if (usage == SWAP_HAS_CACHE) {
1168 VM_BUG_ON(!has_cache);
1169 has_cache = 0;
1170 } else if (count == SWAP_MAP_SHMEM) {
1171 /*
1172 * Or we could insist on shmem.c using a special
1173 * swap_shmem_free() and free_shmem_swap_and_cache()...
1174 */
1175 count = 0;
1176 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1177 if (count == COUNT_CONTINUED) {
1178 if (swap_count_continued(p, offset, count))
1179 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1180 else
1181 count = SWAP_MAP_MAX;
1182 } else
1183 count--;
1184 }
1185
1186 usage = count | has_cache;
1187 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1188
1189 return usage;
1190 }
1191
1192 /*
1193 * Check whether swap entry is valid in the swap device. If so,
1194 * return pointer to swap_info_struct, and keep the swap entry valid
1195 * via preventing the swap device from being swapoff, until
1196 * put_swap_device() is called. Otherwise return NULL.
1197 *
1198 * The entirety of the RCU read critical section must come before the
1199 * return from or after the call to synchronize_rcu() in
1200 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1201 * true, the si->map, si->cluster_info, etc. must be valid in the
1202 * critical section.
1203 *
1204 * Notice that swapoff or swapoff+swapon can still happen before the
1205 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1206 * in put_swap_device() if there isn't any other way to prevent
1207 * swapoff, such as page lock, page table lock, etc. The caller must
1208 * be prepared for that. For example, the following situation is
1209 * possible.
1210 *
1211 * CPU1 CPU2
1212 * do_swap_page()
1213 * ... swapoff+swapon
1214 * __read_swap_cache_async()
1215 * swapcache_prepare()
1216 * __swap_duplicate()
1217 * // check swap_map
1218 * // verify PTE not changed
1219 *
1220 * In __swap_duplicate(), the swap_map need to be checked before
1221 * changing partly because the specified swap entry may be for another
1222 * swap device which has been swapoff. And in do_swap_page(), after
1223 * the page is read from the swap device, the PTE is verified not
1224 * changed with the page table locked to check whether the swap device
1225 * has been swapoff or swapoff+swapon.
1226 */
1227 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1228 {
1229 struct swap_info_struct *si;
1230 unsigned long offset;
1231
1232 if (!entry.val)
1233 goto out;
1234 si = swp_swap_info(entry);
1235 if (!si)
1236 goto bad_nofile;
1237
1238 rcu_read_lock();
1239 if (!(si->flags & SWP_VALID))
1240 goto unlock_out;
1241 offset = swp_offset(entry);
1242 if (offset >= si->max)
1243 goto unlock_out;
1244
1245 return si;
1246 bad_nofile:
1247 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1248 out:
1249 return NULL;
1250 unlock_out:
1251 rcu_read_unlock();
1252 return NULL;
1253 }
1254
1255 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1256 swp_entry_t entry, unsigned char usage)
1257 {
1258 struct swap_cluster_info *ci;
1259 unsigned long offset = swp_offset(entry);
1260
1261 ci = lock_cluster_or_swap_info(p, offset);
1262 usage = __swap_entry_free_locked(p, offset, usage);
1263 unlock_cluster_or_swap_info(p, ci);
1264 if (!usage)
1265 free_swap_slot(entry);
1266
1267 return usage;
1268 }
1269
1270 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1271 {
1272 struct swap_cluster_info *ci;
1273 unsigned long offset = swp_offset(entry);
1274 unsigned char count;
1275
1276 ci = lock_cluster(p, offset);
1277 count = p->swap_map[offset];
1278 VM_BUG_ON(count != SWAP_HAS_CACHE);
1279 p->swap_map[offset] = 0;
1280 dec_cluster_info_page(p, p->cluster_info, offset);
1281 unlock_cluster(ci);
1282
1283 mem_cgroup_uncharge_swap(entry, 1);
1284 swap_range_free(p, offset, 1);
1285 }
1286
1287 /*
1288 * Caller has made sure that the swap device corresponding to entry
1289 * is still around or has not been recycled.
1290 */
1291 void swap_free(swp_entry_t entry)
1292 {
1293 struct swap_info_struct *p;
1294
1295 p = _swap_info_get(entry);
1296 if (p)
1297 __swap_entry_free(p, entry, 1);
1298 }
1299
1300 /*
1301 * Called after dropping swapcache to decrease refcnt to swap entries.
1302 */
1303 void put_swap_page(struct page *page, swp_entry_t entry)
1304 {
1305 unsigned long offset = swp_offset(entry);
1306 unsigned long idx = offset / SWAPFILE_CLUSTER;
1307 struct swap_cluster_info *ci;
1308 struct swap_info_struct *si;
1309 unsigned char *map;
1310 unsigned int i, free_entries = 0;
1311 unsigned char val;
1312 int size = swap_entry_size(hpage_nr_pages(page));
1313
1314 si = _swap_info_get(entry);
1315 if (!si)
1316 return;
1317
1318 ci = lock_cluster_or_swap_info(si, offset);
1319 if (size == SWAPFILE_CLUSTER) {
1320 VM_BUG_ON(!cluster_is_huge(ci));
1321 map = si->swap_map + offset;
1322 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1323 val = map[i];
1324 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1325 if (val == SWAP_HAS_CACHE)
1326 free_entries++;
1327 }
1328 cluster_clear_huge(ci);
1329 if (free_entries == SWAPFILE_CLUSTER) {
1330 unlock_cluster_or_swap_info(si, ci);
1331 spin_lock(&si->lock);
1332 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1333 swap_free_cluster(si, idx);
1334 spin_unlock(&si->lock);
1335 return;
1336 }
1337 }
1338 for (i = 0; i < size; i++, entry.val++) {
1339 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1340 unlock_cluster_or_swap_info(si, ci);
1341 free_swap_slot(entry);
1342 if (i == size - 1)
1343 return;
1344 lock_cluster_or_swap_info(si, offset);
1345 }
1346 }
1347 unlock_cluster_or_swap_info(si, ci);
1348 }
1349
1350 #ifdef CONFIG_THP_SWAP
1351 int split_swap_cluster(swp_entry_t entry)
1352 {
1353 struct swap_info_struct *si;
1354 struct swap_cluster_info *ci;
1355 unsigned long offset = swp_offset(entry);
1356
1357 si = _swap_info_get(entry);
1358 if (!si)
1359 return -EBUSY;
1360 ci = lock_cluster(si, offset);
1361 cluster_clear_huge(ci);
1362 unlock_cluster(ci);
1363 return 0;
1364 }
1365 #endif
1366
1367 static int swp_entry_cmp(const void *ent1, const void *ent2)
1368 {
1369 const swp_entry_t *e1 = ent1, *e2 = ent2;
1370
1371 return (int)swp_type(*e1) - (int)swp_type(*e2);
1372 }
1373
1374 void swapcache_free_entries(swp_entry_t *entries, int n)
1375 {
1376 struct swap_info_struct *p, *prev;
1377 int i;
1378
1379 if (n <= 0)
1380 return;
1381
1382 prev = NULL;
1383 p = NULL;
1384
1385 /*
1386 * Sort swap entries by swap device, so each lock is only taken once.
1387 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1388 * so low that it isn't necessary to optimize further.
1389 */
1390 if (nr_swapfiles > 1)
1391 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1392 for (i = 0; i < n; ++i) {
1393 p = swap_info_get_cont(entries[i], prev);
1394 if (p)
1395 swap_entry_free(p, entries[i]);
1396 prev = p;
1397 }
1398 if (p)
1399 spin_unlock(&p->lock);
1400 }
1401
1402 /*
1403 * How many references to page are currently swapped out?
1404 * This does not give an exact answer when swap count is continued,
1405 * but does include the high COUNT_CONTINUED flag to allow for that.
1406 */
1407 int page_swapcount(struct page *page)
1408 {
1409 int count = 0;
1410 struct swap_info_struct *p;
1411 struct swap_cluster_info *ci;
1412 swp_entry_t entry;
1413 unsigned long offset;
1414
1415 entry.val = page_private(page);
1416 p = _swap_info_get(entry);
1417 if (p) {
1418 offset = swp_offset(entry);
1419 ci = lock_cluster_or_swap_info(p, offset);
1420 count = swap_count(p->swap_map[offset]);
1421 unlock_cluster_or_swap_info(p, ci);
1422 }
1423 return count;
1424 }
1425
1426 int __swap_count(swp_entry_t entry)
1427 {
1428 struct swap_info_struct *si;
1429 pgoff_t offset = swp_offset(entry);
1430 int count = 0;
1431
1432 si = get_swap_device(entry);
1433 if (si) {
1434 count = swap_count(si->swap_map[offset]);
1435 put_swap_device(si);
1436 }
1437 return count;
1438 }
1439
1440 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1441 {
1442 int count = 0;
1443 pgoff_t offset = swp_offset(entry);
1444 struct swap_cluster_info *ci;
1445
1446 ci = lock_cluster_or_swap_info(si, offset);
1447 count = swap_count(si->swap_map[offset]);
1448 unlock_cluster_or_swap_info(si, ci);
1449 return count;
1450 }
1451
1452 /*
1453 * How many references to @entry are currently swapped out?
1454 * This does not give an exact answer when swap count is continued,
1455 * but does include the high COUNT_CONTINUED flag to allow for that.
1456 */
1457 int __swp_swapcount(swp_entry_t entry)
1458 {
1459 int count = 0;
1460 struct swap_info_struct *si;
1461
1462 si = get_swap_device(entry);
1463 if (si) {
1464 count = swap_swapcount(si, entry);
1465 put_swap_device(si);
1466 }
1467 return count;
1468 }
1469
1470 /*
1471 * How many references to @entry are currently swapped out?
1472 * This considers COUNT_CONTINUED so it returns exact answer.
1473 */
1474 int swp_swapcount(swp_entry_t entry)
1475 {
1476 int count, tmp_count, n;
1477 struct swap_info_struct *p;
1478 struct swap_cluster_info *ci;
1479 struct page *page;
1480 pgoff_t offset;
1481 unsigned char *map;
1482
1483 p = _swap_info_get(entry);
1484 if (!p)
1485 return 0;
1486
1487 offset = swp_offset(entry);
1488
1489 ci = lock_cluster_or_swap_info(p, offset);
1490
1491 count = swap_count(p->swap_map[offset]);
1492 if (!(count & COUNT_CONTINUED))
1493 goto out;
1494
1495 count &= ~COUNT_CONTINUED;
1496 n = SWAP_MAP_MAX + 1;
1497
1498 page = vmalloc_to_page(p->swap_map + offset);
1499 offset &= ~PAGE_MASK;
1500 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1501
1502 do {
1503 page = list_next_entry(page, lru);
1504 map = kmap_atomic(page);
1505 tmp_count = map[offset];
1506 kunmap_atomic(map);
1507
1508 count += (tmp_count & ~COUNT_CONTINUED) * n;
1509 n *= (SWAP_CONT_MAX + 1);
1510 } while (tmp_count & COUNT_CONTINUED);
1511 out:
1512 unlock_cluster_or_swap_info(p, ci);
1513 return count;
1514 }
1515
1516 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1517 swp_entry_t entry)
1518 {
1519 struct swap_cluster_info *ci;
1520 unsigned char *map = si->swap_map;
1521 unsigned long roffset = swp_offset(entry);
1522 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1523 int i;
1524 bool ret = false;
1525
1526 ci = lock_cluster_or_swap_info(si, offset);
1527 if (!ci || !cluster_is_huge(ci)) {
1528 if (swap_count(map[roffset]))
1529 ret = true;
1530 goto unlock_out;
1531 }
1532 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1533 if (swap_count(map[offset + i])) {
1534 ret = true;
1535 break;
1536 }
1537 }
1538 unlock_out:
1539 unlock_cluster_or_swap_info(si, ci);
1540 return ret;
1541 }
1542
1543 static bool page_swapped(struct page *page)
1544 {
1545 swp_entry_t entry;
1546 struct swap_info_struct *si;
1547
1548 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1549 return page_swapcount(page) != 0;
1550
1551 page = compound_head(page);
1552 entry.val = page_private(page);
1553 si = _swap_info_get(entry);
1554 if (si)
1555 return swap_page_trans_huge_swapped(si, entry);
1556 return false;
1557 }
1558
1559 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1560 int *total_swapcount)
1561 {
1562 int i, map_swapcount, _total_mapcount, _total_swapcount;
1563 unsigned long offset = 0;
1564 struct swap_info_struct *si;
1565 struct swap_cluster_info *ci = NULL;
1566 unsigned char *map = NULL;
1567 int mapcount, swapcount = 0;
1568
1569 /* hugetlbfs shouldn't call it */
1570 VM_BUG_ON_PAGE(PageHuge(page), page);
1571
1572 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1573 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1574 if (PageSwapCache(page))
1575 swapcount = page_swapcount(page);
1576 if (total_swapcount)
1577 *total_swapcount = swapcount;
1578 return mapcount + swapcount;
1579 }
1580
1581 page = compound_head(page);
1582
1583 _total_mapcount = _total_swapcount = map_swapcount = 0;
1584 if (PageSwapCache(page)) {
1585 swp_entry_t entry;
1586
1587 entry.val = page_private(page);
1588 si = _swap_info_get(entry);
1589 if (si) {
1590 map = si->swap_map;
1591 offset = swp_offset(entry);
1592 }
1593 }
1594 if (map)
1595 ci = lock_cluster(si, offset);
1596 for (i = 0; i < HPAGE_PMD_NR; i++) {
1597 mapcount = atomic_read(&page[i]._mapcount) + 1;
1598 _total_mapcount += mapcount;
1599 if (map) {
1600 swapcount = swap_count(map[offset + i]);
1601 _total_swapcount += swapcount;
1602 }
1603 map_swapcount = max(map_swapcount, mapcount + swapcount);
1604 }
1605 unlock_cluster(ci);
1606 if (PageDoubleMap(page)) {
1607 map_swapcount -= 1;
1608 _total_mapcount -= HPAGE_PMD_NR;
1609 }
1610 mapcount = compound_mapcount(page);
1611 map_swapcount += mapcount;
1612 _total_mapcount += mapcount;
1613 if (total_mapcount)
1614 *total_mapcount = _total_mapcount;
1615 if (total_swapcount)
1616 *total_swapcount = _total_swapcount;
1617
1618 return map_swapcount;
1619 }
1620
1621 /*
1622 * We can write to an anon page without COW if there are no other references
1623 * to it. And as a side-effect, free up its swap: because the old content
1624 * on disk will never be read, and seeking back there to write new content
1625 * later would only waste time away from clustering.
1626 *
1627 * NOTE: total_map_swapcount should not be relied upon by the caller if
1628 * reuse_swap_page() returns false, but it may be always overwritten
1629 * (see the other implementation for CONFIG_SWAP=n).
1630 */
1631 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1632 {
1633 int count, total_mapcount, total_swapcount;
1634
1635 VM_BUG_ON_PAGE(!PageLocked(page), page);
1636 if (unlikely(PageKsm(page)))
1637 return false;
1638 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1639 &total_swapcount);
1640 if (total_map_swapcount)
1641 *total_map_swapcount = total_mapcount + total_swapcount;
1642 if (count == 1 && PageSwapCache(page) &&
1643 (likely(!PageTransCompound(page)) ||
1644 /* The remaining swap count will be freed soon */
1645 total_swapcount == page_swapcount(page))) {
1646 if (!PageWriteback(page)) {
1647 page = compound_head(page);
1648 delete_from_swap_cache(page);
1649 SetPageDirty(page);
1650 } else {
1651 swp_entry_t entry;
1652 struct swap_info_struct *p;
1653
1654 entry.val = page_private(page);
1655 p = swap_info_get(entry);
1656 if (p->flags & SWP_STABLE_WRITES) {
1657 spin_unlock(&p->lock);
1658 return false;
1659 }
1660 spin_unlock(&p->lock);
1661 }
1662 }
1663
1664 return count <= 1;
1665 }
1666
1667 /*
1668 * If swap is getting full, or if there are no more mappings of this page,
1669 * then try_to_free_swap is called to free its swap space.
1670 */
1671 int try_to_free_swap(struct page *page)
1672 {
1673 VM_BUG_ON_PAGE(!PageLocked(page), page);
1674
1675 if (!PageSwapCache(page))
1676 return 0;
1677 if (PageWriteback(page))
1678 return 0;
1679 if (page_swapped(page))
1680 return 0;
1681
1682 /*
1683 * Once hibernation has begun to create its image of memory,
1684 * there's a danger that one of the calls to try_to_free_swap()
1685 * - most probably a call from __try_to_reclaim_swap() while
1686 * hibernation is allocating its own swap pages for the image,
1687 * but conceivably even a call from memory reclaim - will free
1688 * the swap from a page which has already been recorded in the
1689 * image as a clean swapcache page, and then reuse its swap for
1690 * another page of the image. On waking from hibernation, the
1691 * original page might be freed under memory pressure, then
1692 * later read back in from swap, now with the wrong data.
1693 *
1694 * Hibernation suspends storage while it is writing the image
1695 * to disk so check that here.
1696 */
1697 if (pm_suspended_storage())
1698 return 0;
1699
1700 page = compound_head(page);
1701 delete_from_swap_cache(page);
1702 SetPageDirty(page);
1703 return 1;
1704 }
1705
1706 /*
1707 * Free the swap entry like above, but also try to
1708 * free the page cache entry if it is the last user.
1709 */
1710 int free_swap_and_cache(swp_entry_t entry)
1711 {
1712 struct swap_info_struct *p;
1713 unsigned char count;
1714
1715 if (non_swap_entry(entry))
1716 return 1;
1717
1718 p = _swap_info_get(entry);
1719 if (p) {
1720 count = __swap_entry_free(p, entry, 1);
1721 if (count == SWAP_HAS_CACHE &&
1722 !swap_page_trans_huge_swapped(p, entry))
1723 __try_to_reclaim_swap(p, swp_offset(entry),
1724 TTRS_UNMAPPED | TTRS_FULL);
1725 }
1726 return p != NULL;
1727 }
1728
1729 #ifdef CONFIG_HIBERNATION
1730 /*
1731 * Find the swap type that corresponds to given device (if any).
1732 *
1733 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1734 * from 0, in which the swap header is expected to be located.
1735 *
1736 * This is needed for the suspend to disk (aka swsusp).
1737 */
1738 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1739 {
1740 struct block_device *bdev = NULL;
1741 int type;
1742
1743 if (device)
1744 bdev = bdget(device);
1745
1746 spin_lock(&swap_lock);
1747 for (type = 0; type < nr_swapfiles; type++) {
1748 struct swap_info_struct *sis = swap_info[type];
1749
1750 if (!(sis->flags & SWP_WRITEOK))
1751 continue;
1752
1753 if (!bdev) {
1754 if (bdev_p)
1755 *bdev_p = bdgrab(sis->bdev);
1756
1757 spin_unlock(&swap_lock);
1758 return type;
1759 }
1760 if (bdev == sis->bdev) {
1761 struct swap_extent *se = first_se(sis);
1762
1763 if (se->start_block == offset) {
1764 if (bdev_p)
1765 *bdev_p = bdgrab(sis->bdev);
1766
1767 spin_unlock(&swap_lock);
1768 bdput(bdev);
1769 return type;
1770 }
1771 }
1772 }
1773 spin_unlock(&swap_lock);
1774 if (bdev)
1775 bdput(bdev);
1776
1777 return -ENODEV;
1778 }
1779
1780 /*
1781 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1782 * corresponding to given index in swap_info (swap type).
1783 */
1784 sector_t swapdev_block(int type, pgoff_t offset)
1785 {
1786 struct block_device *bdev;
1787 struct swap_info_struct *si = swap_type_to_swap_info(type);
1788
1789 if (!si || !(si->flags & SWP_WRITEOK))
1790 return 0;
1791 return map_swap_entry(swp_entry(type, offset), &bdev);
1792 }
1793
1794 /*
1795 * Return either the total number of swap pages of given type, or the number
1796 * of free pages of that type (depending on @free)
1797 *
1798 * This is needed for software suspend
1799 */
1800 unsigned int count_swap_pages(int type, int free)
1801 {
1802 unsigned int n = 0;
1803
1804 spin_lock(&swap_lock);
1805 if ((unsigned int)type < nr_swapfiles) {
1806 struct swap_info_struct *sis = swap_info[type];
1807
1808 spin_lock(&sis->lock);
1809 if (sis->flags & SWP_WRITEOK) {
1810 n = sis->pages;
1811 if (free)
1812 n -= sis->inuse_pages;
1813 }
1814 spin_unlock(&sis->lock);
1815 }
1816 spin_unlock(&swap_lock);
1817 return n;
1818 }
1819 #endif /* CONFIG_HIBERNATION */
1820
1821 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1822 {
1823 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1824 }
1825
1826 /*
1827 * No need to decide whether this PTE shares the swap entry with others,
1828 * just let do_wp_page work it out if a write is requested later - to
1829 * force COW, vm_page_prot omits write permission from any private vma.
1830 */
1831 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1832 unsigned long addr, swp_entry_t entry, struct page *page)
1833 {
1834 struct page *swapcache;
1835 struct mem_cgroup *memcg;
1836 spinlock_t *ptl;
1837 pte_t *pte;
1838 int ret = 1;
1839
1840 swapcache = page;
1841 page = ksm_might_need_to_copy(page, vma, addr);
1842 if (unlikely(!page))
1843 return -ENOMEM;
1844
1845 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1846 &memcg, false)) {
1847 ret = -ENOMEM;
1848 goto out_nolock;
1849 }
1850
1851 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1852 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1853 mem_cgroup_cancel_charge(page, memcg, false);
1854 ret = 0;
1855 goto out;
1856 }
1857
1858 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1859 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1860 get_page(page);
1861 set_pte_at(vma->vm_mm, addr, pte,
1862 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1863 if (page == swapcache) {
1864 page_add_anon_rmap(page, vma, addr, false);
1865 mem_cgroup_commit_charge(page, memcg, true, false);
1866 } else { /* ksm created a completely new copy */
1867 page_add_new_anon_rmap(page, vma, addr, false);
1868 mem_cgroup_commit_charge(page, memcg, false, false);
1869 lru_cache_add_active_or_unevictable(page, vma);
1870 }
1871 swap_free(entry);
1872 /*
1873 * Move the page to the active list so it is not
1874 * immediately swapped out again after swapon.
1875 */
1876 activate_page(page);
1877 out:
1878 pte_unmap_unlock(pte, ptl);
1879 out_nolock:
1880 if (page != swapcache) {
1881 unlock_page(page);
1882 put_page(page);
1883 }
1884 return ret;
1885 }
1886
1887 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1888 unsigned long addr, unsigned long end,
1889 unsigned int type, bool frontswap,
1890 unsigned long *fs_pages_to_unuse)
1891 {
1892 struct page *page;
1893 swp_entry_t entry;
1894 pte_t *pte;
1895 struct swap_info_struct *si;
1896 unsigned long offset;
1897 int ret = 0;
1898 volatile unsigned char *swap_map;
1899
1900 si = swap_info[type];
1901 pte = pte_offset_map(pmd, addr);
1902 do {
1903 struct vm_fault vmf;
1904
1905 if (!is_swap_pte(*pte))
1906 continue;
1907
1908 entry = pte_to_swp_entry(*pte);
1909 if (swp_type(entry) != type)
1910 continue;
1911
1912 offset = swp_offset(entry);
1913 if (frontswap && !frontswap_test(si, offset))
1914 continue;
1915
1916 pte_unmap(pte);
1917 swap_map = &si->swap_map[offset];
1918 page = lookup_swap_cache(entry, vma, addr);
1919 if (!page) {
1920 vmf.vma = vma;
1921 vmf.address = addr;
1922 vmf.pmd = pmd;
1923 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1924 &vmf);
1925 }
1926 if (!page) {
1927 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1928 goto try_next;
1929 return -ENOMEM;
1930 }
1931
1932 lock_page(page);
1933 wait_on_page_writeback(page);
1934 ret = unuse_pte(vma, pmd, addr, entry, page);
1935 if (ret < 0) {
1936 unlock_page(page);
1937 put_page(page);
1938 goto out;
1939 }
1940
1941 try_to_free_swap(page);
1942 unlock_page(page);
1943 put_page(page);
1944
1945 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1946 ret = FRONTSWAP_PAGES_UNUSED;
1947 goto out;
1948 }
1949 try_next:
1950 pte = pte_offset_map(pmd, addr);
1951 } while (pte++, addr += PAGE_SIZE, addr != end);
1952 pte_unmap(pte - 1);
1953
1954 ret = 0;
1955 out:
1956 return ret;
1957 }
1958
1959 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1960 unsigned long addr, unsigned long end,
1961 unsigned int type, bool frontswap,
1962 unsigned long *fs_pages_to_unuse)
1963 {
1964 pmd_t *pmd;
1965 unsigned long next;
1966 int ret;
1967
1968 pmd = pmd_offset(pud, addr);
1969 do {
1970 cond_resched();
1971 next = pmd_addr_end(addr, end);
1972 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1973 continue;
1974 ret = unuse_pte_range(vma, pmd, addr, next, type,
1975 frontswap, fs_pages_to_unuse);
1976 if (ret)
1977 return ret;
1978 } while (pmd++, addr = next, addr != end);
1979 return 0;
1980 }
1981
1982 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1983 unsigned long addr, unsigned long end,
1984 unsigned int type, bool frontswap,
1985 unsigned long *fs_pages_to_unuse)
1986 {
1987 pud_t *pud;
1988 unsigned long next;
1989 int ret;
1990
1991 pud = pud_offset(p4d, addr);
1992 do {
1993 next = pud_addr_end(addr, end);
1994 if (pud_none_or_clear_bad(pud))
1995 continue;
1996 ret = unuse_pmd_range(vma, pud, addr, next, type,
1997 frontswap, fs_pages_to_unuse);
1998 if (ret)
1999 return ret;
2000 } while (pud++, addr = next, addr != end);
2001 return 0;
2002 }
2003
2004 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2005 unsigned long addr, unsigned long end,
2006 unsigned int type, bool frontswap,
2007 unsigned long *fs_pages_to_unuse)
2008 {
2009 p4d_t *p4d;
2010 unsigned long next;
2011 int ret;
2012
2013 p4d = p4d_offset(pgd, addr);
2014 do {
2015 next = p4d_addr_end(addr, end);
2016 if (p4d_none_or_clear_bad(p4d))
2017 continue;
2018 ret = unuse_pud_range(vma, p4d, addr, next, type,
2019 frontswap, fs_pages_to_unuse);
2020 if (ret)
2021 return ret;
2022 } while (p4d++, addr = next, addr != end);
2023 return 0;
2024 }
2025
2026 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2027 bool frontswap, unsigned long *fs_pages_to_unuse)
2028 {
2029 pgd_t *pgd;
2030 unsigned long addr, end, next;
2031 int ret;
2032
2033 addr = vma->vm_start;
2034 end = vma->vm_end;
2035
2036 pgd = pgd_offset(vma->vm_mm, addr);
2037 do {
2038 next = pgd_addr_end(addr, end);
2039 if (pgd_none_or_clear_bad(pgd))
2040 continue;
2041 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2042 frontswap, fs_pages_to_unuse);
2043 if (ret)
2044 return ret;
2045 } while (pgd++, addr = next, addr != end);
2046 return 0;
2047 }
2048
2049 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2050 bool frontswap, unsigned long *fs_pages_to_unuse)
2051 {
2052 struct vm_area_struct *vma;
2053 int ret = 0;
2054
2055 down_read(&mm->mmap_sem);
2056 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2057 if (vma->anon_vma) {
2058 ret = unuse_vma(vma, type, frontswap,
2059 fs_pages_to_unuse);
2060 if (ret)
2061 break;
2062 }
2063 cond_resched();
2064 }
2065 up_read(&mm->mmap_sem);
2066 return ret;
2067 }
2068
2069 /*
2070 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2071 * from current position to next entry still in use. Return 0
2072 * if there are no inuse entries after prev till end of the map.
2073 */
2074 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2075 unsigned int prev, bool frontswap)
2076 {
2077 unsigned int i;
2078 unsigned char count;
2079
2080 /*
2081 * No need for swap_lock here: we're just looking
2082 * for whether an entry is in use, not modifying it; false
2083 * hits are okay, and sys_swapoff() has already prevented new
2084 * allocations from this area (while holding swap_lock).
2085 */
2086 for (i = prev + 1; i < si->max; i++) {
2087 count = READ_ONCE(si->swap_map[i]);
2088 if (count && swap_count(count) != SWAP_MAP_BAD)
2089 if (!frontswap || frontswap_test(si, i))
2090 break;
2091 if ((i % LATENCY_LIMIT) == 0)
2092 cond_resched();
2093 }
2094
2095 if (i == si->max)
2096 i = 0;
2097
2098 return i;
2099 }
2100
2101 /*
2102 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2103 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2104 */
2105 int try_to_unuse(unsigned int type, bool frontswap,
2106 unsigned long pages_to_unuse)
2107 {
2108 struct mm_struct *prev_mm;
2109 struct mm_struct *mm;
2110 struct list_head *p;
2111 int retval = 0;
2112 struct swap_info_struct *si = swap_info[type];
2113 struct page *page;
2114 swp_entry_t entry;
2115 unsigned int i;
2116
2117 if (!READ_ONCE(si->inuse_pages))
2118 return 0;
2119
2120 if (!frontswap)
2121 pages_to_unuse = 0;
2122
2123 retry:
2124 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2125 if (retval)
2126 goto out;
2127
2128 prev_mm = &init_mm;
2129 mmget(prev_mm);
2130
2131 spin_lock(&mmlist_lock);
2132 p = &init_mm.mmlist;
2133 while (READ_ONCE(si->inuse_pages) &&
2134 !signal_pending(current) &&
2135 (p = p->next) != &init_mm.mmlist) {
2136
2137 mm = list_entry(p, struct mm_struct, mmlist);
2138 if (!mmget_not_zero(mm))
2139 continue;
2140 spin_unlock(&mmlist_lock);
2141 mmput(prev_mm);
2142 prev_mm = mm;
2143 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2144
2145 if (retval) {
2146 mmput(prev_mm);
2147 goto out;
2148 }
2149
2150 /*
2151 * Make sure that we aren't completely killing
2152 * interactive performance.
2153 */
2154 cond_resched();
2155 spin_lock(&mmlist_lock);
2156 }
2157 spin_unlock(&mmlist_lock);
2158
2159 mmput(prev_mm);
2160
2161 i = 0;
2162 while (READ_ONCE(si->inuse_pages) &&
2163 !signal_pending(current) &&
2164 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2165
2166 entry = swp_entry(type, i);
2167 page = find_get_page(swap_address_space(entry), i);
2168 if (!page)
2169 continue;
2170
2171 /*
2172 * It is conceivable that a racing task removed this page from
2173 * swap cache just before we acquired the page lock. The page
2174 * might even be back in swap cache on another swap area. But
2175 * that is okay, try_to_free_swap() only removes stale pages.
2176 */
2177 lock_page(page);
2178 wait_on_page_writeback(page);
2179 try_to_free_swap(page);
2180 unlock_page(page);
2181 put_page(page);
2182
2183 /*
2184 * For frontswap, we just need to unuse pages_to_unuse, if
2185 * it was specified. Need not check frontswap again here as
2186 * we already zeroed out pages_to_unuse if not frontswap.
2187 */
2188 if (pages_to_unuse && --pages_to_unuse == 0)
2189 goto out;
2190 }
2191
2192 /*
2193 * Lets check again to see if there are still swap entries in the map.
2194 * If yes, we would need to do retry the unuse logic again.
2195 * Under global memory pressure, swap entries can be reinserted back
2196 * into process space after the mmlist loop above passes over them.
2197 *
2198 * Limit the number of retries? No: when mmget_not_zero() above fails,
2199 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2200 * at its own independent pace; and even shmem_writepage() could have
2201 * been preempted after get_swap_page(), temporarily hiding that swap.
2202 * It's easy and robust (though cpu-intensive) just to keep retrying.
2203 */
2204 if (READ_ONCE(si->inuse_pages)) {
2205 if (!signal_pending(current))
2206 goto retry;
2207 retval = -EINTR;
2208 }
2209 out:
2210 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2211 }
2212
2213 /*
2214 * After a successful try_to_unuse, if no swap is now in use, we know
2215 * we can empty the mmlist. swap_lock must be held on entry and exit.
2216 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2217 * added to the mmlist just after page_duplicate - before would be racy.
2218 */
2219 static void drain_mmlist(void)
2220 {
2221 struct list_head *p, *next;
2222 unsigned int type;
2223
2224 for (type = 0; type < nr_swapfiles; type++)
2225 if (swap_info[type]->inuse_pages)
2226 return;
2227 spin_lock(&mmlist_lock);
2228 list_for_each_safe(p, next, &init_mm.mmlist)
2229 list_del_init(p);
2230 spin_unlock(&mmlist_lock);
2231 }
2232
2233 /*
2234 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2235 * corresponds to page offset for the specified swap entry.
2236 * Note that the type of this function is sector_t, but it returns page offset
2237 * into the bdev, not sector offset.
2238 */
2239 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2240 {
2241 struct swap_info_struct *sis;
2242 struct swap_extent *se;
2243 pgoff_t offset;
2244
2245 sis = swp_swap_info(entry);
2246 *bdev = sis->bdev;
2247
2248 offset = swp_offset(entry);
2249 se = offset_to_swap_extent(sis, offset);
2250 return se->start_block + (offset - se->start_page);
2251 }
2252
2253 /*
2254 * Returns the page offset into bdev for the specified page's swap entry.
2255 */
2256 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2257 {
2258 swp_entry_t entry;
2259 entry.val = page_private(page);
2260 return map_swap_entry(entry, bdev);
2261 }
2262
2263 /*
2264 * Free all of a swapdev's extent information
2265 */
2266 static void destroy_swap_extents(struct swap_info_struct *sis)
2267 {
2268 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2269 struct rb_node *rb = sis->swap_extent_root.rb_node;
2270 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2271
2272 rb_erase(rb, &sis->swap_extent_root);
2273 kfree(se);
2274 }
2275
2276 if (sis->flags & SWP_ACTIVATED) {
2277 struct file *swap_file = sis->swap_file;
2278 struct address_space *mapping = swap_file->f_mapping;
2279
2280 sis->flags &= ~SWP_ACTIVATED;
2281 if (mapping->a_ops->swap_deactivate)
2282 mapping->a_ops->swap_deactivate(swap_file);
2283 }
2284 }
2285
2286 /*
2287 * Add a block range (and the corresponding page range) into this swapdev's
2288 * extent tree.
2289 *
2290 * This function rather assumes that it is called in ascending page order.
2291 */
2292 int
2293 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2294 unsigned long nr_pages, sector_t start_block)
2295 {
2296 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2297 struct swap_extent *se;
2298 struct swap_extent *new_se;
2299
2300 /*
2301 * place the new node at the right most since the
2302 * function is called in ascending page order.
2303 */
2304 while (*link) {
2305 parent = *link;
2306 link = &parent->rb_right;
2307 }
2308
2309 if (parent) {
2310 se = rb_entry(parent, struct swap_extent, rb_node);
2311 BUG_ON(se->start_page + se->nr_pages != start_page);
2312 if (se->start_block + se->nr_pages == start_block) {
2313 /* Merge it */
2314 se->nr_pages += nr_pages;
2315 return 0;
2316 }
2317 }
2318
2319 /* No merge, insert a new extent. */
2320 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2321 if (new_se == NULL)
2322 return -ENOMEM;
2323 new_se->start_page = start_page;
2324 new_se->nr_pages = nr_pages;
2325 new_se->start_block = start_block;
2326
2327 rb_link_node(&new_se->rb_node, parent, link);
2328 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2329 return 1;
2330 }
2331 EXPORT_SYMBOL_GPL(add_swap_extent);
2332
2333 /*
2334 * A `swap extent' is a simple thing which maps a contiguous range of pages
2335 * onto a contiguous range of disk blocks. An ordered list of swap extents
2336 * is built at swapon time and is then used at swap_writepage/swap_readpage
2337 * time for locating where on disk a page belongs.
2338 *
2339 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2340 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2341 * swap files identically.
2342 *
2343 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2344 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2345 * swapfiles are handled *identically* after swapon time.
2346 *
2347 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2348 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2349 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2350 * requirements, they are simply tossed out - we will never use those blocks
2351 * for swapping.
2352 *
2353 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2354 * prevents users from writing to the swap device, which will corrupt memory.
2355 *
2356 * The amount of disk space which a single swap extent represents varies.
2357 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2358 * extents in the list. To avoid much list walking, we cache the previous
2359 * search location in `curr_swap_extent', and start new searches from there.
2360 * This is extremely effective. The average number of iterations in
2361 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2362 */
2363 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2364 {
2365 struct file *swap_file = sis->swap_file;
2366 struct address_space *mapping = swap_file->f_mapping;
2367 struct inode *inode = mapping->host;
2368 int ret;
2369
2370 if (S_ISBLK(inode->i_mode)) {
2371 ret = add_swap_extent(sis, 0, sis->max, 0);
2372 *span = sis->pages;
2373 return ret;
2374 }
2375
2376 if (mapping->a_ops->swap_activate) {
2377 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2378 if (ret >= 0)
2379 sis->flags |= SWP_ACTIVATED;
2380 if (!ret) {
2381 sis->flags |= SWP_FS;
2382 ret = add_swap_extent(sis, 0, sis->max, 0);
2383 *span = sis->pages;
2384 }
2385 return ret;
2386 }
2387
2388 return generic_swapfile_activate(sis, swap_file, span);
2389 }
2390
2391 static int swap_node(struct swap_info_struct *p)
2392 {
2393 struct block_device *bdev;
2394
2395 if (p->bdev)
2396 bdev = p->bdev;
2397 else
2398 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2399
2400 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2401 }
2402
2403 static void setup_swap_info(struct swap_info_struct *p, int prio,
2404 unsigned char *swap_map,
2405 struct swap_cluster_info *cluster_info)
2406 {
2407 int i;
2408
2409 if (prio >= 0)
2410 p->prio = prio;
2411 else
2412 p->prio = --least_priority;
2413 /*
2414 * the plist prio is negated because plist ordering is
2415 * low-to-high, while swap ordering is high-to-low
2416 */
2417 p->list.prio = -p->prio;
2418 for_each_node(i) {
2419 if (p->prio >= 0)
2420 p->avail_lists[i].prio = -p->prio;
2421 else {
2422 if (swap_node(p) == i)
2423 p->avail_lists[i].prio = 1;
2424 else
2425 p->avail_lists[i].prio = -p->prio;
2426 }
2427 }
2428 p->swap_map = swap_map;
2429 p->cluster_info = cluster_info;
2430 }
2431
2432 static void _enable_swap_info(struct swap_info_struct *p)
2433 {
2434 p->flags |= SWP_WRITEOK | SWP_VALID;
2435 atomic_long_add(p->pages, &nr_swap_pages);
2436 total_swap_pages += p->pages;
2437
2438 assert_spin_locked(&swap_lock);
2439 /*
2440 * both lists are plists, and thus priority ordered.
2441 * swap_active_head needs to be priority ordered for swapoff(),
2442 * which on removal of any swap_info_struct with an auto-assigned
2443 * (i.e. negative) priority increments the auto-assigned priority
2444 * of any lower-priority swap_info_structs.
2445 * swap_avail_head needs to be priority ordered for get_swap_page(),
2446 * which allocates swap pages from the highest available priority
2447 * swap_info_struct.
2448 */
2449 plist_add(&p->list, &swap_active_head);
2450 add_to_avail_list(p);
2451 }
2452
2453 static void enable_swap_info(struct swap_info_struct *p, int prio,
2454 unsigned char *swap_map,
2455 struct swap_cluster_info *cluster_info,
2456 unsigned long *frontswap_map)
2457 {
2458 frontswap_init(p->type, frontswap_map);
2459 spin_lock(&swap_lock);
2460 spin_lock(&p->lock);
2461 setup_swap_info(p, prio, swap_map, cluster_info);
2462 spin_unlock(&p->lock);
2463 spin_unlock(&swap_lock);
2464 /*
2465 * Guarantee swap_map, cluster_info, etc. fields are valid
2466 * between get/put_swap_device() if SWP_VALID bit is set
2467 */
2468 synchronize_rcu();
2469 spin_lock(&swap_lock);
2470 spin_lock(&p->lock);
2471 _enable_swap_info(p);
2472 spin_unlock(&p->lock);
2473 spin_unlock(&swap_lock);
2474 }
2475
2476 static void reinsert_swap_info(struct swap_info_struct *p)
2477 {
2478 spin_lock(&swap_lock);
2479 spin_lock(&p->lock);
2480 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2481 _enable_swap_info(p);
2482 spin_unlock(&p->lock);
2483 spin_unlock(&swap_lock);
2484 }
2485
2486 bool has_usable_swap(void)
2487 {
2488 bool ret = true;
2489
2490 spin_lock(&swap_lock);
2491 if (plist_head_empty(&swap_active_head))
2492 ret = false;
2493 spin_unlock(&swap_lock);
2494 return ret;
2495 }
2496
2497 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2498 {
2499 struct swap_info_struct *p = NULL;
2500 unsigned char *swap_map;
2501 struct swap_cluster_info *cluster_info;
2502 unsigned long *frontswap_map;
2503 struct file *swap_file, *victim;
2504 struct address_space *mapping;
2505 struct inode *inode;
2506 struct filename *pathname;
2507 int err, found = 0;
2508 unsigned int old_block_size;
2509
2510 if (!capable(CAP_SYS_ADMIN))
2511 return -EPERM;
2512
2513 BUG_ON(!current->mm);
2514
2515 pathname = getname(specialfile);
2516 if (IS_ERR(pathname))
2517 return PTR_ERR(pathname);
2518
2519 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2520 err = PTR_ERR(victim);
2521 if (IS_ERR(victim))
2522 goto out;
2523
2524 mapping = victim->f_mapping;
2525 spin_lock(&swap_lock);
2526 plist_for_each_entry(p, &swap_active_head, list) {
2527 if (p->flags & SWP_WRITEOK) {
2528 if (p->swap_file->f_mapping == mapping) {
2529 found = 1;
2530 break;
2531 }
2532 }
2533 }
2534 if (!found) {
2535 err = -EINVAL;
2536 spin_unlock(&swap_lock);
2537 goto out_dput;
2538 }
2539 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2540 vm_unacct_memory(p->pages);
2541 else {
2542 err = -ENOMEM;
2543 spin_unlock(&swap_lock);
2544 goto out_dput;
2545 }
2546 del_from_avail_list(p);
2547 spin_lock(&p->lock);
2548 if (p->prio < 0) {
2549 struct swap_info_struct *si = p;
2550 int nid;
2551
2552 plist_for_each_entry_continue(si, &swap_active_head, list) {
2553 si->prio++;
2554 si->list.prio--;
2555 for_each_node(nid) {
2556 if (si->avail_lists[nid].prio != 1)
2557 si->avail_lists[nid].prio--;
2558 }
2559 }
2560 least_priority++;
2561 }
2562 plist_del(&p->list, &swap_active_head);
2563 atomic_long_sub(p->pages, &nr_swap_pages);
2564 total_swap_pages -= p->pages;
2565 p->flags &= ~SWP_WRITEOK;
2566 spin_unlock(&p->lock);
2567 spin_unlock(&swap_lock);
2568
2569 disable_swap_slots_cache_lock();
2570
2571 set_current_oom_origin();
2572 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2573 clear_current_oom_origin();
2574
2575 if (err) {
2576 /* re-insert swap space back into swap_list */
2577 reinsert_swap_info(p);
2578 reenable_swap_slots_cache_unlock();
2579 goto out_dput;
2580 }
2581
2582 reenable_swap_slots_cache_unlock();
2583
2584 spin_lock(&swap_lock);
2585 spin_lock(&p->lock);
2586 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2587 spin_unlock(&p->lock);
2588 spin_unlock(&swap_lock);
2589 /*
2590 * wait for swap operations protected by get/put_swap_device()
2591 * to complete
2592 */
2593 synchronize_rcu();
2594
2595 flush_work(&p->discard_work);
2596
2597 destroy_swap_extents(p);
2598 if (p->flags & SWP_CONTINUED)
2599 free_swap_count_continuations(p);
2600
2601 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2602 atomic_dec(&nr_rotate_swap);
2603
2604 mutex_lock(&swapon_mutex);
2605 spin_lock(&swap_lock);
2606 spin_lock(&p->lock);
2607 drain_mmlist();
2608
2609 /* wait for anyone still in scan_swap_map */
2610 p->highest_bit = 0; /* cuts scans short */
2611 while (p->flags >= SWP_SCANNING) {
2612 spin_unlock(&p->lock);
2613 spin_unlock(&swap_lock);
2614 schedule_timeout_uninterruptible(1);
2615 spin_lock(&swap_lock);
2616 spin_lock(&p->lock);
2617 }
2618
2619 swap_file = p->swap_file;
2620 old_block_size = p->old_block_size;
2621 p->swap_file = NULL;
2622 p->max = 0;
2623 swap_map = p->swap_map;
2624 p->swap_map = NULL;
2625 cluster_info = p->cluster_info;
2626 p->cluster_info = NULL;
2627 frontswap_map = frontswap_map_get(p);
2628 spin_unlock(&p->lock);
2629 spin_unlock(&swap_lock);
2630 frontswap_invalidate_area(p->type);
2631 frontswap_map_set(p, NULL);
2632 mutex_unlock(&swapon_mutex);
2633 free_percpu(p->percpu_cluster);
2634 p->percpu_cluster = NULL;
2635 vfree(swap_map);
2636 kvfree(cluster_info);
2637 kvfree(frontswap_map);
2638 /* Destroy swap account information */
2639 swap_cgroup_swapoff(p->type);
2640 exit_swap_address_space(p->type);
2641
2642 inode = mapping->host;
2643 if (S_ISBLK(inode->i_mode)) {
2644 struct block_device *bdev = I_BDEV(inode);
2645
2646 set_blocksize(bdev, old_block_size);
2647 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2648 }
2649
2650 inode_lock(inode);
2651 inode->i_flags &= ~S_SWAPFILE;
2652 inode_unlock(inode);
2653 filp_close(swap_file, NULL);
2654
2655 /*
2656 * Clear the SWP_USED flag after all resources are freed so that swapon
2657 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2658 * not hold p->lock after we cleared its SWP_WRITEOK.
2659 */
2660 spin_lock(&swap_lock);
2661 p->flags = 0;
2662 spin_unlock(&swap_lock);
2663
2664 err = 0;
2665 atomic_inc(&proc_poll_event);
2666 wake_up_interruptible(&proc_poll_wait);
2667
2668 out_dput:
2669 filp_close(victim, NULL);
2670 out:
2671 putname(pathname);
2672 return err;
2673 }
2674
2675 #ifdef CONFIG_PROC_FS
2676 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2677 {
2678 struct seq_file *seq = file->private_data;
2679
2680 poll_wait(file, &proc_poll_wait, wait);
2681
2682 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2683 seq->poll_event = atomic_read(&proc_poll_event);
2684 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2685 }
2686
2687 return EPOLLIN | EPOLLRDNORM;
2688 }
2689
2690 /* iterator */
2691 static void *swap_start(struct seq_file *swap, loff_t *pos)
2692 {
2693 struct swap_info_struct *si;
2694 int type;
2695 loff_t l = *pos;
2696
2697 mutex_lock(&swapon_mutex);
2698
2699 if (!l)
2700 return SEQ_START_TOKEN;
2701
2702 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2703 if (!(si->flags & SWP_USED) || !si->swap_map)
2704 continue;
2705 if (!--l)
2706 return si;
2707 }
2708
2709 return NULL;
2710 }
2711
2712 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2713 {
2714 struct swap_info_struct *si = v;
2715 int type;
2716
2717 if (v == SEQ_START_TOKEN)
2718 type = 0;
2719 else
2720 type = si->type + 1;
2721
2722 ++(*pos);
2723 for (; (si = swap_type_to_swap_info(type)); type++) {
2724 if (!(si->flags & SWP_USED) || !si->swap_map)
2725 continue;
2726 return si;
2727 }
2728
2729 return NULL;
2730 }
2731
2732 static void swap_stop(struct seq_file *swap, void *v)
2733 {
2734 mutex_unlock(&swapon_mutex);
2735 }
2736
2737 static int swap_show(struct seq_file *swap, void *v)
2738 {
2739 struct swap_info_struct *si = v;
2740 struct file *file;
2741 int len;
2742
2743 if (si == SEQ_START_TOKEN) {
2744 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2745 return 0;
2746 }
2747
2748 file = si->swap_file;
2749 len = seq_file_path(swap, file, " \t\n\\");
2750 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2751 len < 40 ? 40 - len : 1, " ",
2752 S_ISBLK(file_inode(file)->i_mode) ?
2753 "partition" : "file\t",
2754 si->pages << (PAGE_SHIFT - 10),
2755 si->inuse_pages << (PAGE_SHIFT - 10),
2756 si->prio);
2757 return 0;
2758 }
2759
2760 static const struct seq_operations swaps_op = {
2761 .start = swap_start,
2762 .next = swap_next,
2763 .stop = swap_stop,
2764 .show = swap_show
2765 };
2766
2767 static int swaps_open(struct inode *inode, struct file *file)
2768 {
2769 struct seq_file *seq;
2770 int ret;
2771
2772 ret = seq_open(file, &swaps_op);
2773 if (ret)
2774 return ret;
2775
2776 seq = file->private_data;
2777 seq->poll_event = atomic_read(&proc_poll_event);
2778 return 0;
2779 }
2780
2781 static const struct proc_ops swaps_proc_ops = {
2782 .proc_flags = PROC_ENTRY_PERMANENT,
2783 .proc_open = swaps_open,
2784 .proc_read = seq_read,
2785 .proc_lseek = seq_lseek,
2786 .proc_release = seq_release,
2787 .proc_poll = swaps_poll,
2788 };
2789
2790 static int __init procswaps_init(void)
2791 {
2792 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2793 return 0;
2794 }
2795 __initcall(procswaps_init);
2796 #endif /* CONFIG_PROC_FS */
2797
2798 #ifdef MAX_SWAPFILES_CHECK
2799 static int __init max_swapfiles_check(void)
2800 {
2801 MAX_SWAPFILES_CHECK();
2802 return 0;
2803 }
2804 late_initcall(max_swapfiles_check);
2805 #endif
2806
2807 static struct swap_info_struct *alloc_swap_info(void)
2808 {
2809 struct swap_info_struct *p;
2810 unsigned int type;
2811 int i;
2812
2813 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2814 if (!p)
2815 return ERR_PTR(-ENOMEM);
2816
2817 spin_lock(&swap_lock);
2818 for (type = 0; type < nr_swapfiles; type++) {
2819 if (!(swap_info[type]->flags & SWP_USED))
2820 break;
2821 }
2822 if (type >= MAX_SWAPFILES) {
2823 spin_unlock(&swap_lock);
2824 kvfree(p);
2825 return ERR_PTR(-EPERM);
2826 }
2827 if (type >= nr_swapfiles) {
2828 p->type = type;
2829 WRITE_ONCE(swap_info[type], p);
2830 /*
2831 * Write swap_info[type] before nr_swapfiles, in case a
2832 * racing procfs swap_start() or swap_next() is reading them.
2833 * (We never shrink nr_swapfiles, we never free this entry.)
2834 */
2835 smp_wmb();
2836 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2837 } else {
2838 kvfree(p);
2839 p = swap_info[type];
2840 /*
2841 * Do not memset this entry: a racing procfs swap_next()
2842 * would be relying on p->type to remain valid.
2843 */
2844 }
2845 p->swap_extent_root = RB_ROOT;
2846 plist_node_init(&p->list, 0);
2847 for_each_node(i)
2848 plist_node_init(&p->avail_lists[i], 0);
2849 p->flags = SWP_USED;
2850 spin_unlock(&swap_lock);
2851 spin_lock_init(&p->lock);
2852 spin_lock_init(&p->cont_lock);
2853
2854 return p;
2855 }
2856
2857 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2858 {
2859 int error;
2860
2861 if (S_ISBLK(inode->i_mode)) {
2862 p->bdev = bdgrab(I_BDEV(inode));
2863 error = blkdev_get(p->bdev,
2864 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2865 if (error < 0) {
2866 p->bdev = NULL;
2867 return error;
2868 }
2869 p->old_block_size = block_size(p->bdev);
2870 error = set_blocksize(p->bdev, PAGE_SIZE);
2871 if (error < 0)
2872 return error;
2873 /*
2874 * Zoned block devices contain zones that have a sequential
2875 * write only restriction. Hence zoned block devices are not
2876 * suitable for swapping. Disallow them here.
2877 */
2878 if (blk_queue_is_zoned(p->bdev->bd_queue))
2879 return -EINVAL;
2880 p->flags |= SWP_BLKDEV;
2881 } else if (S_ISREG(inode->i_mode)) {
2882 p->bdev = inode->i_sb->s_bdev;
2883 }
2884
2885 return 0;
2886 }
2887
2888
2889 /*
2890 * Find out how many pages are allowed for a single swap device. There
2891 * are two limiting factors:
2892 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2893 * 2) the number of bits in the swap pte, as defined by the different
2894 * architectures.
2895 *
2896 * In order to find the largest possible bit mask, a swap entry with
2897 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2898 * decoded to a swp_entry_t again, and finally the swap offset is
2899 * extracted.
2900 *
2901 * This will mask all the bits from the initial ~0UL mask that can't
2902 * be encoded in either the swp_entry_t or the architecture definition
2903 * of a swap pte.
2904 */
2905 unsigned long generic_max_swapfile_size(void)
2906 {
2907 return swp_offset(pte_to_swp_entry(
2908 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2909 }
2910
2911 /* Can be overridden by an architecture for additional checks. */
2912 __weak unsigned long max_swapfile_size(void)
2913 {
2914 return generic_max_swapfile_size();
2915 }
2916
2917 static unsigned long read_swap_header(struct swap_info_struct *p,
2918 union swap_header *swap_header,
2919 struct inode *inode)
2920 {
2921 int i;
2922 unsigned long maxpages;
2923 unsigned long swapfilepages;
2924 unsigned long last_page;
2925
2926 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2927 pr_err("Unable to find swap-space signature\n");
2928 return 0;
2929 }
2930
2931 /* swap partition endianess hack... */
2932 if (swab32(swap_header->info.version) == 1) {
2933 swab32s(&swap_header->info.version);
2934 swab32s(&swap_header->info.last_page);
2935 swab32s(&swap_header->info.nr_badpages);
2936 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2937 return 0;
2938 for (i = 0; i < swap_header->info.nr_badpages; i++)
2939 swab32s(&swap_header->info.badpages[i]);
2940 }
2941 /* Check the swap header's sub-version */
2942 if (swap_header->info.version != 1) {
2943 pr_warn("Unable to handle swap header version %d\n",
2944 swap_header->info.version);
2945 return 0;
2946 }
2947
2948 p->lowest_bit = 1;
2949 p->cluster_next = 1;
2950 p->cluster_nr = 0;
2951
2952 maxpages = max_swapfile_size();
2953 last_page = swap_header->info.last_page;
2954 if (!last_page) {
2955 pr_warn("Empty swap-file\n");
2956 return 0;
2957 }
2958 if (last_page > maxpages) {
2959 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2960 maxpages << (PAGE_SHIFT - 10),
2961 last_page << (PAGE_SHIFT - 10));
2962 }
2963 if (maxpages > last_page) {
2964 maxpages = last_page + 1;
2965 /* p->max is an unsigned int: don't overflow it */
2966 if ((unsigned int)maxpages == 0)
2967 maxpages = UINT_MAX;
2968 }
2969 p->highest_bit = maxpages - 1;
2970
2971 if (!maxpages)
2972 return 0;
2973 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2974 if (swapfilepages && maxpages > swapfilepages) {
2975 pr_warn("Swap area shorter than signature indicates\n");
2976 return 0;
2977 }
2978 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2979 return 0;
2980 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2981 return 0;
2982
2983 return maxpages;
2984 }
2985
2986 #define SWAP_CLUSTER_INFO_COLS \
2987 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2988 #define SWAP_CLUSTER_SPACE_COLS \
2989 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2990 #define SWAP_CLUSTER_COLS \
2991 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2992
2993 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2994 union swap_header *swap_header,
2995 unsigned char *swap_map,
2996 struct swap_cluster_info *cluster_info,
2997 unsigned long maxpages,
2998 sector_t *span)
2999 {
3000 unsigned int j, k;
3001 unsigned int nr_good_pages;
3002 int nr_extents;
3003 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3004 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3005 unsigned long i, idx;
3006
3007 nr_good_pages = maxpages - 1; /* omit header page */
3008
3009 cluster_list_init(&p->free_clusters);
3010 cluster_list_init(&p->discard_clusters);
3011
3012 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3013 unsigned int page_nr = swap_header->info.badpages[i];
3014 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3015 return -EINVAL;
3016 if (page_nr < maxpages) {
3017 swap_map[page_nr] = SWAP_MAP_BAD;
3018 nr_good_pages--;
3019 /*
3020 * Haven't marked the cluster free yet, no list
3021 * operation involved
3022 */
3023 inc_cluster_info_page(p, cluster_info, page_nr);
3024 }
3025 }
3026
3027 /* Haven't marked the cluster free yet, no list operation involved */
3028 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3029 inc_cluster_info_page(p, cluster_info, i);
3030
3031 if (nr_good_pages) {
3032 swap_map[0] = SWAP_MAP_BAD;
3033 /*
3034 * Not mark the cluster free yet, no list
3035 * operation involved
3036 */
3037 inc_cluster_info_page(p, cluster_info, 0);
3038 p->max = maxpages;
3039 p->pages = nr_good_pages;
3040 nr_extents = setup_swap_extents(p, span);
3041 if (nr_extents < 0)
3042 return nr_extents;
3043 nr_good_pages = p->pages;
3044 }
3045 if (!nr_good_pages) {
3046 pr_warn("Empty swap-file\n");
3047 return -EINVAL;
3048 }
3049
3050 if (!cluster_info)
3051 return nr_extents;
3052
3053
3054 /*
3055 * Reduce false cache line sharing between cluster_info and
3056 * sharing same address space.
3057 */
3058 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3059 j = (k + col) % SWAP_CLUSTER_COLS;
3060 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3061 idx = i * SWAP_CLUSTER_COLS + j;
3062 if (idx >= nr_clusters)
3063 continue;
3064 if (cluster_count(&cluster_info[idx]))
3065 continue;
3066 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3067 cluster_list_add_tail(&p->free_clusters, cluster_info,
3068 idx);
3069 }
3070 }
3071 return nr_extents;
3072 }
3073
3074 /*
3075 * Helper to sys_swapon determining if a given swap
3076 * backing device queue supports DISCARD operations.
3077 */
3078 static bool swap_discardable(struct swap_info_struct *si)
3079 {
3080 struct request_queue *q = bdev_get_queue(si->bdev);
3081
3082 if (!q || !blk_queue_discard(q))
3083 return false;
3084
3085 return true;
3086 }
3087
3088 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3089 {
3090 struct swap_info_struct *p;
3091 struct filename *name;
3092 struct file *swap_file = NULL;
3093 struct address_space *mapping;
3094 int prio;
3095 int error;
3096 union swap_header *swap_header;
3097 int nr_extents;
3098 sector_t span;
3099 unsigned long maxpages;
3100 unsigned char *swap_map = NULL;
3101 struct swap_cluster_info *cluster_info = NULL;
3102 unsigned long *frontswap_map = NULL;
3103 struct page *page = NULL;
3104 struct inode *inode = NULL;
3105 bool inced_nr_rotate_swap = false;
3106
3107 if (swap_flags & ~SWAP_FLAGS_VALID)
3108 return -EINVAL;
3109
3110 if (!capable(CAP_SYS_ADMIN))
3111 return -EPERM;
3112
3113 if (!swap_avail_heads)
3114 return -ENOMEM;
3115
3116 p = alloc_swap_info();
3117 if (IS_ERR(p))
3118 return PTR_ERR(p);
3119
3120 INIT_WORK(&p->discard_work, swap_discard_work);
3121
3122 name = getname(specialfile);
3123 if (IS_ERR(name)) {
3124 error = PTR_ERR(name);
3125 name = NULL;
3126 goto bad_swap;
3127 }
3128 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3129 if (IS_ERR(swap_file)) {
3130 error = PTR_ERR(swap_file);
3131 swap_file = NULL;
3132 goto bad_swap;
3133 }
3134
3135 p->swap_file = swap_file;
3136 mapping = swap_file->f_mapping;
3137 inode = mapping->host;
3138
3139 error = claim_swapfile(p, inode);
3140 if (unlikely(error))
3141 goto bad_swap;
3142
3143 inode_lock(inode);
3144 if (IS_SWAPFILE(inode)) {
3145 error = -EBUSY;
3146 goto bad_swap_unlock_inode;
3147 }
3148
3149 /*
3150 * Read the swap header.
3151 */
3152 if (!mapping->a_ops->readpage) {
3153 error = -EINVAL;
3154 goto bad_swap_unlock_inode;
3155 }
3156 page = read_mapping_page(mapping, 0, swap_file);
3157 if (IS_ERR(page)) {
3158 error = PTR_ERR(page);
3159 goto bad_swap_unlock_inode;
3160 }
3161 swap_header = kmap(page);
3162
3163 maxpages = read_swap_header(p, swap_header, inode);
3164 if (unlikely(!maxpages)) {
3165 error = -EINVAL;
3166 goto bad_swap_unlock_inode;
3167 }
3168
3169 /* OK, set up the swap map and apply the bad block list */
3170 swap_map = vzalloc(maxpages);
3171 if (!swap_map) {
3172 error = -ENOMEM;
3173 goto bad_swap_unlock_inode;
3174 }
3175
3176 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3177 p->flags |= SWP_STABLE_WRITES;
3178
3179 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3180 p->flags |= SWP_SYNCHRONOUS_IO;
3181
3182 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3183 int cpu;
3184 unsigned long ci, nr_cluster;
3185
3186 p->flags |= SWP_SOLIDSTATE;
3187 /*
3188 * select a random position to start with to help wear leveling
3189 * SSD
3190 */
3191 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3192 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3193
3194 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3195 GFP_KERNEL);
3196 if (!cluster_info) {
3197 error = -ENOMEM;
3198 goto bad_swap_unlock_inode;
3199 }
3200
3201 for (ci = 0; ci < nr_cluster; ci++)
3202 spin_lock_init(&((cluster_info + ci)->lock));
3203
3204 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3205 if (!p->percpu_cluster) {
3206 error = -ENOMEM;
3207 goto bad_swap_unlock_inode;
3208 }
3209 for_each_possible_cpu(cpu) {
3210 struct percpu_cluster *cluster;
3211 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3212 cluster_set_null(&cluster->index);
3213 }
3214 } else {
3215 atomic_inc(&nr_rotate_swap);
3216 inced_nr_rotate_swap = true;
3217 }
3218
3219 error = swap_cgroup_swapon(p->type, maxpages);
3220 if (error)
3221 goto bad_swap_unlock_inode;
3222
3223 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3224 cluster_info, maxpages, &span);
3225 if (unlikely(nr_extents < 0)) {
3226 error = nr_extents;
3227 goto bad_swap_unlock_inode;
3228 }
3229 /* frontswap enabled? set up bit-per-page map for frontswap */
3230 if (IS_ENABLED(CONFIG_FRONTSWAP))
3231 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3232 sizeof(long),
3233 GFP_KERNEL);
3234
3235 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3236 /*
3237 * When discard is enabled for swap with no particular
3238 * policy flagged, we set all swap discard flags here in
3239 * order to sustain backward compatibility with older
3240 * swapon(8) releases.
3241 */
3242 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3243 SWP_PAGE_DISCARD);
3244
3245 /*
3246 * By flagging sys_swapon, a sysadmin can tell us to
3247 * either do single-time area discards only, or to just
3248 * perform discards for released swap page-clusters.
3249 * Now it's time to adjust the p->flags accordingly.
3250 */
3251 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3252 p->flags &= ~SWP_PAGE_DISCARD;
3253 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3254 p->flags &= ~SWP_AREA_DISCARD;
3255
3256 /* issue a swapon-time discard if it's still required */
3257 if (p->flags & SWP_AREA_DISCARD) {
3258 int err = discard_swap(p);
3259 if (unlikely(err))
3260 pr_err("swapon: discard_swap(%p): %d\n",
3261 p, err);
3262 }
3263 }
3264
3265 error = init_swap_address_space(p->type, maxpages);
3266 if (error)
3267 goto bad_swap_unlock_inode;
3268
3269 /*
3270 * Flush any pending IO and dirty mappings before we start using this
3271 * swap device.
3272 */
3273 inode->i_flags |= S_SWAPFILE;
3274 error = inode_drain_writes(inode);
3275 if (error) {
3276 inode->i_flags &= ~S_SWAPFILE;
3277 goto bad_swap_unlock_inode;
3278 }
3279
3280 mutex_lock(&swapon_mutex);
3281 prio = -1;
3282 if (swap_flags & SWAP_FLAG_PREFER)
3283 prio =
3284 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3285 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3286
3287 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3288 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3289 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3290 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3291 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3292 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3293 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3294 (frontswap_map) ? "FS" : "");
3295
3296 mutex_unlock(&swapon_mutex);
3297 atomic_inc(&proc_poll_event);
3298 wake_up_interruptible(&proc_poll_wait);
3299
3300 error = 0;
3301 goto out;
3302 bad_swap_unlock_inode:
3303 inode_unlock(inode);
3304 bad_swap:
3305 free_percpu(p->percpu_cluster);
3306 p->percpu_cluster = NULL;
3307 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3308 set_blocksize(p->bdev, p->old_block_size);
3309 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3310 }
3311 inode = NULL;
3312 destroy_swap_extents(p);
3313 swap_cgroup_swapoff(p->type);
3314 spin_lock(&swap_lock);
3315 p->swap_file = NULL;
3316 p->flags = 0;
3317 spin_unlock(&swap_lock);
3318 vfree(swap_map);
3319 kvfree(cluster_info);
3320 kvfree(frontswap_map);
3321 if (inced_nr_rotate_swap)
3322 atomic_dec(&nr_rotate_swap);
3323 if (swap_file)
3324 filp_close(swap_file, NULL);
3325 out:
3326 if (page && !IS_ERR(page)) {
3327 kunmap(page);
3328 put_page(page);
3329 }
3330 if (name)
3331 putname(name);
3332 if (inode)
3333 inode_unlock(inode);
3334 if (!error)
3335 enable_swap_slots_cache();
3336 return error;
3337 }
3338
3339 void si_swapinfo(struct sysinfo *val)
3340 {
3341 unsigned int type;
3342 unsigned long nr_to_be_unused = 0;
3343
3344 spin_lock(&swap_lock);
3345 for (type = 0; type < nr_swapfiles; type++) {
3346 struct swap_info_struct *si = swap_info[type];
3347
3348 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3349 nr_to_be_unused += si->inuse_pages;
3350 }
3351 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3352 val->totalswap = total_swap_pages + nr_to_be_unused;
3353 spin_unlock(&swap_lock);
3354 }
3355
3356 /*
3357 * Verify that a swap entry is valid and increment its swap map count.
3358 *
3359 * Returns error code in following case.
3360 * - success -> 0
3361 * - swp_entry is invalid -> EINVAL
3362 * - swp_entry is migration entry -> EINVAL
3363 * - swap-cache reference is requested but there is already one. -> EEXIST
3364 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3365 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3366 */
3367 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3368 {
3369 struct swap_info_struct *p;
3370 struct swap_cluster_info *ci;
3371 unsigned long offset;
3372 unsigned char count;
3373 unsigned char has_cache;
3374 int err = -EINVAL;
3375
3376 p = get_swap_device(entry);
3377 if (!p)
3378 goto out;
3379
3380 offset = swp_offset(entry);
3381 ci = lock_cluster_or_swap_info(p, offset);
3382
3383 count = p->swap_map[offset];
3384
3385 /*
3386 * swapin_readahead() doesn't check if a swap entry is valid, so the
3387 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3388 */
3389 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3390 err = -ENOENT;
3391 goto unlock_out;
3392 }
3393
3394 has_cache = count & SWAP_HAS_CACHE;
3395 count &= ~SWAP_HAS_CACHE;
3396 err = 0;
3397
3398 if (usage == SWAP_HAS_CACHE) {
3399
3400 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3401 if (!has_cache && count)
3402 has_cache = SWAP_HAS_CACHE;
3403 else if (has_cache) /* someone else added cache */
3404 err = -EEXIST;
3405 else /* no users remaining */
3406 err = -ENOENT;
3407
3408 } else if (count || has_cache) {
3409
3410 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3411 count += usage;
3412 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3413 err = -EINVAL;
3414 else if (swap_count_continued(p, offset, count))
3415 count = COUNT_CONTINUED;
3416 else
3417 err = -ENOMEM;
3418 } else
3419 err = -ENOENT; /* unused swap entry */
3420
3421 p->swap_map[offset] = count | has_cache;
3422
3423 unlock_out:
3424 unlock_cluster_or_swap_info(p, ci);
3425 out:
3426 if (p)
3427 put_swap_device(p);
3428 return err;
3429 }
3430
3431 /*
3432 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3433 * (in which case its reference count is never incremented).
3434 */
3435 void swap_shmem_alloc(swp_entry_t entry)
3436 {
3437 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3438 }
3439
3440 /*
3441 * Increase reference count of swap entry by 1.
3442 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3443 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3444 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3445 * might occur if a page table entry has got corrupted.
3446 */
3447 int swap_duplicate(swp_entry_t entry)
3448 {
3449 int err = 0;
3450
3451 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3452 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3453 return err;
3454 }
3455
3456 /*
3457 * @entry: swap entry for which we allocate swap cache.
3458 *
3459 * Called when allocating swap cache for existing swap entry,
3460 * This can return error codes. Returns 0 at success.
3461 * -EEXIST means there is a swap cache.
3462 * Note: return code is different from swap_duplicate().
3463 */
3464 int swapcache_prepare(swp_entry_t entry)
3465 {
3466 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3467 }
3468
3469 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3470 {
3471 return swap_type_to_swap_info(swp_type(entry));
3472 }
3473
3474 struct swap_info_struct *page_swap_info(struct page *page)
3475 {
3476 swp_entry_t entry = { .val = page_private(page) };
3477 return swp_swap_info(entry);
3478 }
3479
3480 /*
3481 * out-of-line __page_file_ methods to avoid include hell.
3482 */
3483 struct address_space *__page_file_mapping(struct page *page)
3484 {
3485 return page_swap_info(page)->swap_file->f_mapping;
3486 }
3487 EXPORT_SYMBOL_GPL(__page_file_mapping);
3488
3489 pgoff_t __page_file_index(struct page *page)
3490 {
3491 swp_entry_t swap = { .val = page_private(page) };
3492 return swp_offset(swap);
3493 }
3494 EXPORT_SYMBOL_GPL(__page_file_index);
3495
3496 /*
3497 * add_swap_count_continuation - called when a swap count is duplicated
3498 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3499 * page of the original vmalloc'ed swap_map, to hold the continuation count
3500 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3501 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3502 *
3503 * These continuation pages are seldom referenced: the common paths all work
3504 * on the original swap_map, only referring to a continuation page when the
3505 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3506 *
3507 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3508 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3509 * can be called after dropping locks.
3510 */
3511 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3512 {
3513 struct swap_info_struct *si;
3514 struct swap_cluster_info *ci;
3515 struct page *head;
3516 struct page *page;
3517 struct page *list_page;
3518 pgoff_t offset;
3519 unsigned char count;
3520 int ret = 0;
3521
3522 /*
3523 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3524 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3525 */
3526 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3527
3528 si = get_swap_device(entry);
3529 if (!si) {
3530 /*
3531 * An acceptable race has occurred since the failing
3532 * __swap_duplicate(): the swap device may be swapoff
3533 */
3534 goto outer;
3535 }
3536 spin_lock(&si->lock);
3537
3538 offset = swp_offset(entry);
3539
3540 ci = lock_cluster(si, offset);
3541
3542 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3543
3544 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3545 /*
3546 * The higher the swap count, the more likely it is that tasks
3547 * will race to add swap count continuation: we need to avoid
3548 * over-provisioning.
3549 */
3550 goto out;
3551 }
3552
3553 if (!page) {
3554 ret = -ENOMEM;
3555 goto out;
3556 }
3557
3558 /*
3559 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3560 * no architecture is using highmem pages for kernel page tables: so it
3561 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3562 */
3563 head = vmalloc_to_page(si->swap_map + offset);
3564 offset &= ~PAGE_MASK;
3565
3566 spin_lock(&si->cont_lock);
3567 /*
3568 * Page allocation does not initialize the page's lru field,
3569 * but it does always reset its private field.
3570 */
3571 if (!page_private(head)) {
3572 BUG_ON(count & COUNT_CONTINUED);
3573 INIT_LIST_HEAD(&head->lru);
3574 set_page_private(head, SWP_CONTINUED);
3575 si->flags |= SWP_CONTINUED;
3576 }
3577
3578 list_for_each_entry(list_page, &head->lru, lru) {
3579 unsigned char *map;
3580
3581 /*
3582 * If the previous map said no continuation, but we've found
3583 * a continuation page, free our allocation and use this one.
3584 */
3585 if (!(count & COUNT_CONTINUED))
3586 goto out_unlock_cont;
3587
3588 map = kmap_atomic(list_page) + offset;
3589 count = *map;
3590 kunmap_atomic(map);
3591
3592 /*
3593 * If this continuation count now has some space in it,
3594 * free our allocation and use this one.
3595 */
3596 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3597 goto out_unlock_cont;
3598 }
3599
3600 list_add_tail(&page->lru, &head->lru);
3601 page = NULL; /* now it's attached, don't free it */
3602 out_unlock_cont:
3603 spin_unlock(&si->cont_lock);
3604 out:
3605 unlock_cluster(ci);
3606 spin_unlock(&si->lock);
3607 put_swap_device(si);
3608 outer:
3609 if (page)
3610 __free_page(page);
3611 return ret;
3612 }
3613
3614 /*
3615 * swap_count_continued - when the original swap_map count is incremented
3616 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3617 * into, carry if so, or else fail until a new continuation page is allocated;
3618 * when the original swap_map count is decremented from 0 with continuation,
3619 * borrow from the continuation and report whether it still holds more.
3620 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3621 * lock.
3622 */
3623 static bool swap_count_continued(struct swap_info_struct *si,
3624 pgoff_t offset, unsigned char count)
3625 {
3626 struct page *head;
3627 struct page *page;
3628 unsigned char *map;
3629 bool ret;
3630
3631 head = vmalloc_to_page(si->swap_map + offset);
3632 if (page_private(head) != SWP_CONTINUED) {
3633 BUG_ON(count & COUNT_CONTINUED);
3634 return false; /* need to add count continuation */
3635 }
3636
3637 spin_lock(&si->cont_lock);
3638 offset &= ~PAGE_MASK;
3639 page = list_next_entry(head, lru);
3640 map = kmap_atomic(page) + offset;
3641
3642 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3643 goto init_map; /* jump over SWAP_CONT_MAX checks */
3644
3645 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3646 /*
3647 * Think of how you add 1 to 999
3648 */
3649 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3650 kunmap_atomic(map);
3651 page = list_next_entry(page, lru);
3652 BUG_ON(page == head);
3653 map = kmap_atomic(page) + offset;
3654 }
3655 if (*map == SWAP_CONT_MAX) {
3656 kunmap_atomic(map);
3657 page = list_next_entry(page, lru);
3658 if (page == head) {
3659 ret = false; /* add count continuation */
3660 goto out;
3661 }
3662 map = kmap_atomic(page) + offset;
3663 init_map: *map = 0; /* we didn't zero the page */
3664 }
3665 *map += 1;
3666 kunmap_atomic(map);
3667 while ((page = list_prev_entry(page, lru)) != head) {
3668 map = kmap_atomic(page) + offset;
3669 *map = COUNT_CONTINUED;
3670 kunmap_atomic(map);
3671 }
3672 ret = true; /* incremented */
3673
3674 } else { /* decrementing */
3675 /*
3676 * Think of how you subtract 1 from 1000
3677 */
3678 BUG_ON(count != COUNT_CONTINUED);
3679 while (*map == COUNT_CONTINUED) {
3680 kunmap_atomic(map);
3681 page = list_next_entry(page, lru);
3682 BUG_ON(page == head);
3683 map = kmap_atomic(page) + offset;
3684 }
3685 BUG_ON(*map == 0);
3686 *map -= 1;
3687 if (*map == 0)
3688 count = 0;
3689 kunmap_atomic(map);
3690 while ((page = list_prev_entry(page, lru)) != head) {
3691 map = kmap_atomic(page) + offset;
3692 *map = SWAP_CONT_MAX | count;
3693 count = COUNT_CONTINUED;
3694 kunmap_atomic(map);
3695 }
3696 ret = count == COUNT_CONTINUED;
3697 }
3698 out:
3699 spin_unlock(&si->cont_lock);
3700 return ret;
3701 }
3702
3703 /*
3704 * free_swap_count_continuations - swapoff free all the continuation pages
3705 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3706 */
3707 static void free_swap_count_continuations(struct swap_info_struct *si)
3708 {
3709 pgoff_t offset;
3710
3711 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3712 struct page *head;
3713 head = vmalloc_to_page(si->swap_map + offset);
3714 if (page_private(head)) {
3715 struct page *page, *next;
3716
3717 list_for_each_entry_safe(page, next, &head->lru, lru) {
3718 list_del(&page->lru);
3719 __free_page(page);
3720 }
3721 }
3722 }
3723 }
3724
3725 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3726 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3727 gfp_t gfp_mask)
3728 {
3729 struct swap_info_struct *si, *next;
3730 if (!(gfp_mask & __GFP_IO) || !memcg)
3731 return;
3732
3733 if (!blk_cgroup_congested())
3734 return;
3735
3736 /*
3737 * We've already scheduled a throttle, avoid taking the global swap
3738 * lock.
3739 */
3740 if (current->throttle_queue)
3741 return;
3742
3743 spin_lock(&swap_avail_lock);
3744 plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3745 avail_lists[node]) {
3746 if (si->bdev) {
3747 blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3748 true);
3749 break;
3750 }
3751 }
3752 spin_unlock(&swap_avail_lock);
3753 }
3754 #endif
3755
3756 static int __init swapfile_init(void)
3757 {
3758 int nid;
3759
3760 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3761 GFP_KERNEL);
3762 if (!swap_avail_heads) {
3763 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3764 return -ENOMEM;
3765 }
3766
3767 for_each_node(nid)
3768 plist_head_init(&swap_avail_heads[nid]);
3769
3770 return 0;
3771 }
3772 subsys_initcall(swapfile_init);