]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/zswap.c
Merge tag 'io_uring-6.9-20240412' of git://git.kernel.dk/linux
[thirdparty/linux.git] / mm / zswap.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * zswap.c - zswap driver file
4 *
5 * zswap is a cache that takes pages that are in the process
6 * of being swapped out and attempts to compress and store them in a
7 * RAM-based memory pool. This can result in a significant I/O reduction on
8 * the swap device and, in the case where decompressing from RAM is faster
9 * than reading from the swap device, can also improve workload performance.
10 *
11 * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com>
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/rbtree.h>
24 #include <linux/swap.h>
25 #include <linux/crypto.h>
26 #include <linux/scatterlist.h>
27 #include <linux/mempolicy.h>
28 #include <linux/mempool.h>
29 #include <linux/zpool.h>
30 #include <crypto/acompress.h>
31 #include <linux/zswap.h>
32 #include <linux/mm_types.h>
33 #include <linux/page-flags.h>
34 #include <linux/swapops.h>
35 #include <linux/writeback.h>
36 #include <linux/pagemap.h>
37 #include <linux/workqueue.h>
38 #include <linux/list_lru.h>
39
40 #include "swap.h"
41 #include "internal.h"
42
43 /*********************************
44 * statistics
45 **********************************/
46 /* Total bytes used by the compressed storage */
47 u64 zswap_pool_total_size;
48 /* The number of compressed pages currently stored in zswap */
49 atomic_t zswap_stored_pages = ATOMIC_INIT(0);
50 /* The number of same-value filled pages currently stored in zswap */
51 static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0);
52
53 /*
54 * The statistics below are not protected from concurrent access for
55 * performance reasons so they may not be a 100% accurate. However,
56 * they do provide useful information on roughly how many times a
57 * certain event is occurring.
58 */
59
60 /* Pool limit was hit (see zswap_max_pool_percent) */
61 static u64 zswap_pool_limit_hit;
62 /* Pages written back when pool limit was reached */
63 static u64 zswap_written_back_pages;
64 /* Store failed due to a reclaim failure after pool limit was reached */
65 static u64 zswap_reject_reclaim_fail;
66 /* Store failed due to compression algorithm failure */
67 static u64 zswap_reject_compress_fail;
68 /* Compressed page was too big for the allocator to (optimally) store */
69 static u64 zswap_reject_compress_poor;
70 /* Store failed because underlying allocator could not get memory */
71 static u64 zswap_reject_alloc_fail;
72 /* Store failed because the entry metadata could not be allocated (rare) */
73 static u64 zswap_reject_kmemcache_fail;
74
75 /* Shrinker work queue */
76 static struct workqueue_struct *shrink_wq;
77 /* Pool limit was hit, we need to calm down */
78 static bool zswap_pool_reached_full;
79
80 /*********************************
81 * tunables
82 **********************************/
83
84 #define ZSWAP_PARAM_UNSET ""
85
86 static int zswap_setup(void);
87
88 /* Enable/disable zswap */
89 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
90 static int zswap_enabled_param_set(const char *,
91 const struct kernel_param *);
92 static const struct kernel_param_ops zswap_enabled_param_ops = {
93 .set = zswap_enabled_param_set,
94 .get = param_get_bool,
95 };
96 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
97
98 /* Crypto compressor to use */
99 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
100 static int zswap_compressor_param_set(const char *,
101 const struct kernel_param *);
102 static const struct kernel_param_ops zswap_compressor_param_ops = {
103 .set = zswap_compressor_param_set,
104 .get = param_get_charp,
105 .free = param_free_charp,
106 };
107 module_param_cb(compressor, &zswap_compressor_param_ops,
108 &zswap_compressor, 0644);
109
110 /* Compressed storage zpool to use */
111 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
112 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
113 static const struct kernel_param_ops zswap_zpool_param_ops = {
114 .set = zswap_zpool_param_set,
115 .get = param_get_charp,
116 .free = param_free_charp,
117 };
118 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
119
120 /* The maximum percentage of memory that the compressed pool can occupy */
121 static unsigned int zswap_max_pool_percent = 20;
122 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
123
124 /* The threshold for accepting new pages after the max_pool_percent was hit */
125 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
126 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
127 uint, 0644);
128
129 /*
130 * Enable/disable handling same-value filled pages (enabled by default).
131 * If disabled every page is considered non-same-value filled.
132 */
133 static bool zswap_same_filled_pages_enabled = true;
134 module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled,
135 bool, 0644);
136
137 /* Enable/disable handling non-same-value filled pages (enabled by default) */
138 static bool zswap_non_same_filled_pages_enabled = true;
139 module_param_named(non_same_filled_pages_enabled, zswap_non_same_filled_pages_enabled,
140 bool, 0644);
141
142 /* Number of zpools in zswap_pool (empirically determined for scalability) */
143 #define ZSWAP_NR_ZPOOLS 32
144
145 /* Enable/disable memory pressure-based shrinker. */
146 static bool zswap_shrinker_enabled = IS_ENABLED(
147 CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
148 module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
149
150 bool is_zswap_enabled(void)
151 {
152 return zswap_enabled;
153 }
154
155 /*********************************
156 * data structures
157 **********************************/
158
159 struct crypto_acomp_ctx {
160 struct crypto_acomp *acomp;
161 struct acomp_req *req;
162 struct crypto_wait wait;
163 u8 *buffer;
164 struct mutex mutex;
165 bool is_sleepable;
166 };
167
168 /*
169 * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
170 * The only case where lru_lock is not acquired while holding tree.lock is
171 * when a zswap_entry is taken off the lru for writeback, in that case it
172 * needs to be verified that it's still valid in the tree.
173 */
174 struct zswap_pool {
175 struct zpool *zpools[ZSWAP_NR_ZPOOLS];
176 struct crypto_acomp_ctx __percpu *acomp_ctx;
177 struct percpu_ref ref;
178 struct list_head list;
179 struct work_struct release_work;
180 struct hlist_node node;
181 char tfm_name[CRYPTO_MAX_ALG_NAME];
182 };
183
184 /* Global LRU lists shared by all zswap pools. */
185 static struct list_lru zswap_list_lru;
186 /* counter of pages stored in all zswap pools. */
187 static atomic_t zswap_nr_stored = ATOMIC_INIT(0);
188
189 /* The lock protects zswap_next_shrink updates. */
190 static DEFINE_SPINLOCK(zswap_shrink_lock);
191 static struct mem_cgroup *zswap_next_shrink;
192 static struct work_struct zswap_shrink_work;
193 static struct shrinker *zswap_shrinker;
194
195 /*
196 * struct zswap_entry
197 *
198 * This structure contains the metadata for tracking a single compressed
199 * page within zswap.
200 *
201 * rbnode - links the entry into red-black tree for the appropriate swap type
202 * swpentry - associated swap entry, the offset indexes into the red-black tree
203 * length - the length in bytes of the compressed page data. Needed during
204 * decompression. For a same value filled page length is 0, and both
205 * pool and lru are invalid and must be ignored.
206 * pool - the zswap_pool the entry's data is in
207 * handle - zpool allocation handle that stores the compressed page data
208 * value - value of the same-value filled pages which have same content
209 * objcg - the obj_cgroup that the compressed memory is charged to
210 * lru - handle to the pool's lru used to evict pages.
211 */
212 struct zswap_entry {
213 struct rb_node rbnode;
214 swp_entry_t swpentry;
215 unsigned int length;
216 struct zswap_pool *pool;
217 union {
218 unsigned long handle;
219 unsigned long value;
220 };
221 struct obj_cgroup *objcg;
222 struct list_head lru;
223 };
224
225 struct zswap_tree {
226 struct rb_root rbroot;
227 spinlock_t lock;
228 };
229
230 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
231 static unsigned int nr_zswap_trees[MAX_SWAPFILES];
232
233 /* RCU-protected iteration */
234 static LIST_HEAD(zswap_pools);
235 /* protects zswap_pools list modification */
236 static DEFINE_SPINLOCK(zswap_pools_lock);
237 /* pool counter to provide unique names to zpool */
238 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
239
240 enum zswap_init_type {
241 ZSWAP_UNINIT,
242 ZSWAP_INIT_SUCCEED,
243 ZSWAP_INIT_FAILED
244 };
245
246 static enum zswap_init_type zswap_init_state;
247
248 /* used to ensure the integrity of initialization */
249 static DEFINE_MUTEX(zswap_init_lock);
250
251 /* init completed, but couldn't create the initial pool */
252 static bool zswap_has_pool;
253
254 /*********************************
255 * helpers and fwd declarations
256 **********************************/
257
258 static inline struct zswap_tree *swap_zswap_tree(swp_entry_t swp)
259 {
260 return &zswap_trees[swp_type(swp)][swp_offset(swp)
261 >> SWAP_ADDRESS_SPACE_SHIFT];
262 }
263
264 #define zswap_pool_debug(msg, p) \
265 pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name, \
266 zpool_get_type((p)->zpools[0]))
267
268 static bool zswap_is_full(void)
269 {
270 return totalram_pages() * zswap_max_pool_percent / 100 <
271 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
272 }
273
274 static bool zswap_can_accept(void)
275 {
276 return totalram_pages() * zswap_accept_thr_percent / 100 *
277 zswap_max_pool_percent / 100 >
278 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
279 }
280
281 static u64 get_zswap_pool_size(struct zswap_pool *pool)
282 {
283 u64 pool_size = 0;
284 int i;
285
286 for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
287 pool_size += zpool_get_total_size(pool->zpools[i]);
288
289 return pool_size;
290 }
291
292 static void zswap_update_total_size(void)
293 {
294 struct zswap_pool *pool;
295 u64 total = 0;
296
297 rcu_read_lock();
298
299 list_for_each_entry_rcu(pool, &zswap_pools, list)
300 total += get_zswap_pool_size(pool);
301
302 rcu_read_unlock();
303
304 zswap_pool_total_size = total;
305 }
306
307 /*********************************
308 * pool functions
309 **********************************/
310 static void __zswap_pool_empty(struct percpu_ref *ref);
311
312 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
313 {
314 int i;
315 struct zswap_pool *pool;
316 char name[38]; /* 'zswap' + 32 char (max) num + \0 */
317 gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
318 int ret;
319
320 if (!zswap_has_pool) {
321 /* if either are unset, pool initialization failed, and we
322 * need both params to be set correctly before trying to
323 * create a pool.
324 */
325 if (!strcmp(type, ZSWAP_PARAM_UNSET))
326 return NULL;
327 if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
328 return NULL;
329 }
330
331 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
332 if (!pool)
333 return NULL;
334
335 for (i = 0; i < ZSWAP_NR_ZPOOLS; i++) {
336 /* unique name for each pool specifically required by zsmalloc */
337 snprintf(name, 38, "zswap%x",
338 atomic_inc_return(&zswap_pools_count));
339
340 pool->zpools[i] = zpool_create_pool(type, name, gfp);
341 if (!pool->zpools[i]) {
342 pr_err("%s zpool not available\n", type);
343 goto error;
344 }
345 }
346 pr_debug("using %s zpool\n", zpool_get_type(pool->zpools[0]));
347
348 strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
349
350 pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
351 if (!pool->acomp_ctx) {
352 pr_err("percpu alloc failed\n");
353 goto error;
354 }
355
356 ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
357 &pool->node);
358 if (ret)
359 goto error;
360
361 /* being the current pool takes 1 ref; this func expects the
362 * caller to always add the new pool as the current pool
363 */
364 ret = percpu_ref_init(&pool->ref, __zswap_pool_empty,
365 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
366 if (ret)
367 goto ref_fail;
368 INIT_LIST_HEAD(&pool->list);
369
370 zswap_pool_debug("created", pool);
371
372 return pool;
373
374 ref_fail:
375 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
376 error:
377 if (pool->acomp_ctx)
378 free_percpu(pool->acomp_ctx);
379 while (i--)
380 zpool_destroy_pool(pool->zpools[i]);
381 kfree(pool);
382 return NULL;
383 }
384
385 static struct zswap_pool *__zswap_pool_create_fallback(void)
386 {
387 bool has_comp, has_zpool;
388
389 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
390 if (!has_comp && strcmp(zswap_compressor,
391 CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
392 pr_err("compressor %s not available, using default %s\n",
393 zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
394 param_free_charp(&zswap_compressor);
395 zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
396 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
397 }
398 if (!has_comp) {
399 pr_err("default compressor %s not available\n",
400 zswap_compressor);
401 param_free_charp(&zswap_compressor);
402 zswap_compressor = ZSWAP_PARAM_UNSET;
403 }
404
405 has_zpool = zpool_has_pool(zswap_zpool_type);
406 if (!has_zpool && strcmp(zswap_zpool_type,
407 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
408 pr_err("zpool %s not available, using default %s\n",
409 zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
410 param_free_charp(&zswap_zpool_type);
411 zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
412 has_zpool = zpool_has_pool(zswap_zpool_type);
413 }
414 if (!has_zpool) {
415 pr_err("default zpool %s not available\n",
416 zswap_zpool_type);
417 param_free_charp(&zswap_zpool_type);
418 zswap_zpool_type = ZSWAP_PARAM_UNSET;
419 }
420
421 if (!has_comp || !has_zpool)
422 return NULL;
423
424 return zswap_pool_create(zswap_zpool_type, zswap_compressor);
425 }
426
427 static void zswap_pool_destroy(struct zswap_pool *pool)
428 {
429 int i;
430
431 zswap_pool_debug("destroying", pool);
432
433 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
434 free_percpu(pool->acomp_ctx);
435
436 for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
437 zpool_destroy_pool(pool->zpools[i]);
438 kfree(pool);
439 }
440
441 static void __zswap_pool_release(struct work_struct *work)
442 {
443 struct zswap_pool *pool = container_of(work, typeof(*pool),
444 release_work);
445
446 synchronize_rcu();
447
448 /* nobody should have been able to get a ref... */
449 WARN_ON(!percpu_ref_is_zero(&pool->ref));
450 percpu_ref_exit(&pool->ref);
451
452 /* pool is now off zswap_pools list and has no references. */
453 zswap_pool_destroy(pool);
454 }
455
456 static struct zswap_pool *zswap_pool_current(void);
457
458 static void __zswap_pool_empty(struct percpu_ref *ref)
459 {
460 struct zswap_pool *pool;
461
462 pool = container_of(ref, typeof(*pool), ref);
463
464 spin_lock_bh(&zswap_pools_lock);
465
466 WARN_ON(pool == zswap_pool_current());
467
468 list_del_rcu(&pool->list);
469
470 INIT_WORK(&pool->release_work, __zswap_pool_release);
471 schedule_work(&pool->release_work);
472
473 spin_unlock_bh(&zswap_pools_lock);
474 }
475
476 static int __must_check zswap_pool_get(struct zswap_pool *pool)
477 {
478 if (!pool)
479 return 0;
480
481 return percpu_ref_tryget(&pool->ref);
482 }
483
484 static void zswap_pool_put(struct zswap_pool *pool)
485 {
486 percpu_ref_put(&pool->ref);
487 }
488
489 static struct zswap_pool *__zswap_pool_current(void)
490 {
491 struct zswap_pool *pool;
492
493 pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
494 WARN_ONCE(!pool && zswap_has_pool,
495 "%s: no page storage pool!\n", __func__);
496
497 return pool;
498 }
499
500 static struct zswap_pool *zswap_pool_current(void)
501 {
502 assert_spin_locked(&zswap_pools_lock);
503
504 return __zswap_pool_current();
505 }
506
507 static struct zswap_pool *zswap_pool_current_get(void)
508 {
509 struct zswap_pool *pool;
510
511 rcu_read_lock();
512
513 pool = __zswap_pool_current();
514 if (!zswap_pool_get(pool))
515 pool = NULL;
516
517 rcu_read_unlock();
518
519 return pool;
520 }
521
522 /* type and compressor must be null-terminated */
523 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
524 {
525 struct zswap_pool *pool;
526
527 assert_spin_locked(&zswap_pools_lock);
528
529 list_for_each_entry_rcu(pool, &zswap_pools, list) {
530 if (strcmp(pool->tfm_name, compressor))
531 continue;
532 /* all zpools share the same type */
533 if (strcmp(zpool_get_type(pool->zpools[0]), type))
534 continue;
535 /* if we can't get it, it's about to be destroyed */
536 if (!zswap_pool_get(pool))
537 continue;
538 return pool;
539 }
540
541 return NULL;
542 }
543
544 /*********************************
545 * param callbacks
546 **********************************/
547
548 static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
549 {
550 /* no change required */
551 if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
552 return false;
553 return true;
554 }
555
556 /* val must be a null-terminated string */
557 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
558 char *type, char *compressor)
559 {
560 struct zswap_pool *pool, *put_pool = NULL;
561 char *s = strstrip((char *)val);
562 int ret = 0;
563 bool new_pool = false;
564
565 mutex_lock(&zswap_init_lock);
566 switch (zswap_init_state) {
567 case ZSWAP_UNINIT:
568 /* if this is load-time (pre-init) param setting,
569 * don't create a pool; that's done during init.
570 */
571 ret = param_set_charp(s, kp);
572 break;
573 case ZSWAP_INIT_SUCCEED:
574 new_pool = zswap_pool_changed(s, kp);
575 break;
576 case ZSWAP_INIT_FAILED:
577 pr_err("can't set param, initialization failed\n");
578 ret = -ENODEV;
579 }
580 mutex_unlock(&zswap_init_lock);
581
582 /* no need to create a new pool, return directly */
583 if (!new_pool)
584 return ret;
585
586 if (!type) {
587 if (!zpool_has_pool(s)) {
588 pr_err("zpool %s not available\n", s);
589 return -ENOENT;
590 }
591 type = s;
592 } else if (!compressor) {
593 if (!crypto_has_acomp(s, 0, 0)) {
594 pr_err("compressor %s not available\n", s);
595 return -ENOENT;
596 }
597 compressor = s;
598 } else {
599 WARN_ON(1);
600 return -EINVAL;
601 }
602
603 spin_lock_bh(&zswap_pools_lock);
604
605 pool = zswap_pool_find_get(type, compressor);
606 if (pool) {
607 zswap_pool_debug("using existing", pool);
608 WARN_ON(pool == zswap_pool_current());
609 list_del_rcu(&pool->list);
610 }
611
612 spin_unlock_bh(&zswap_pools_lock);
613
614 if (!pool)
615 pool = zswap_pool_create(type, compressor);
616 else {
617 /*
618 * Restore the initial ref dropped by percpu_ref_kill()
619 * when the pool was decommissioned and switch it again
620 * to percpu mode.
621 */
622 percpu_ref_resurrect(&pool->ref);
623
624 /* Drop the ref from zswap_pool_find_get(). */
625 zswap_pool_put(pool);
626 }
627
628 if (pool)
629 ret = param_set_charp(s, kp);
630 else
631 ret = -EINVAL;
632
633 spin_lock_bh(&zswap_pools_lock);
634
635 if (!ret) {
636 put_pool = zswap_pool_current();
637 list_add_rcu(&pool->list, &zswap_pools);
638 zswap_has_pool = true;
639 } else if (pool) {
640 /* add the possibly pre-existing pool to the end of the pools
641 * list; if it's new (and empty) then it'll be removed and
642 * destroyed by the put after we drop the lock
643 */
644 list_add_tail_rcu(&pool->list, &zswap_pools);
645 put_pool = pool;
646 }
647
648 spin_unlock_bh(&zswap_pools_lock);
649
650 if (!zswap_has_pool && !pool) {
651 /* if initial pool creation failed, and this pool creation also
652 * failed, maybe both compressor and zpool params were bad.
653 * Allow changing this param, so pool creation will succeed
654 * when the other param is changed. We already verified this
655 * param is ok in the zpool_has_pool() or crypto_has_acomp()
656 * checks above.
657 */
658 ret = param_set_charp(s, kp);
659 }
660
661 /* drop the ref from either the old current pool,
662 * or the new pool we failed to add
663 */
664 if (put_pool)
665 percpu_ref_kill(&put_pool->ref);
666
667 return ret;
668 }
669
670 static int zswap_compressor_param_set(const char *val,
671 const struct kernel_param *kp)
672 {
673 return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
674 }
675
676 static int zswap_zpool_param_set(const char *val,
677 const struct kernel_param *kp)
678 {
679 return __zswap_param_set(val, kp, NULL, zswap_compressor);
680 }
681
682 static int zswap_enabled_param_set(const char *val,
683 const struct kernel_param *kp)
684 {
685 int ret = -ENODEV;
686
687 /* if this is load-time (pre-init) param setting, only set param. */
688 if (system_state != SYSTEM_RUNNING)
689 return param_set_bool(val, kp);
690
691 mutex_lock(&zswap_init_lock);
692 switch (zswap_init_state) {
693 case ZSWAP_UNINIT:
694 if (zswap_setup())
695 break;
696 fallthrough;
697 case ZSWAP_INIT_SUCCEED:
698 if (!zswap_has_pool)
699 pr_err("can't enable, no pool configured\n");
700 else
701 ret = param_set_bool(val, kp);
702 break;
703 case ZSWAP_INIT_FAILED:
704 pr_err("can't enable, initialization failed\n");
705 }
706 mutex_unlock(&zswap_init_lock);
707
708 return ret;
709 }
710
711 /*********************************
712 * lru functions
713 **********************************/
714
715 /* should be called under RCU */
716 #ifdef CONFIG_MEMCG
717 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
718 {
719 return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
720 }
721 #else
722 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
723 {
724 return NULL;
725 }
726 #endif
727
728 static inline int entry_to_nid(struct zswap_entry *entry)
729 {
730 return page_to_nid(virt_to_page(entry));
731 }
732
733 static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
734 {
735 atomic_long_t *nr_zswap_protected;
736 unsigned long lru_size, old, new;
737 int nid = entry_to_nid(entry);
738 struct mem_cgroup *memcg;
739 struct lruvec *lruvec;
740
741 /*
742 * Note that it is safe to use rcu_read_lock() here, even in the face of
743 * concurrent memcg offlining. Thanks to the memcg->kmemcg_id indirection
744 * used in list_lru lookup, only two scenarios are possible:
745 *
746 * 1. list_lru_add() is called before memcg->kmemcg_id is updated. The
747 * new entry will be reparented to memcg's parent's list_lru.
748 * 2. list_lru_add() is called after memcg->kmemcg_id is updated. The
749 * new entry will be added directly to memcg's parent's list_lru.
750 *
751 * Similar reasoning holds for list_lru_del().
752 */
753 rcu_read_lock();
754 memcg = mem_cgroup_from_entry(entry);
755 /* will always succeed */
756 list_lru_add(list_lru, &entry->lru, nid, memcg);
757
758 /* Update the protection area */
759 lru_size = list_lru_count_one(list_lru, nid, memcg);
760 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
761 nr_zswap_protected = &lruvec->zswap_lruvec_state.nr_zswap_protected;
762 old = atomic_long_inc_return(nr_zswap_protected);
763 /*
764 * Decay to avoid overflow and adapt to changing workloads.
765 * This is based on LRU reclaim cost decaying heuristics.
766 */
767 do {
768 new = old > lru_size / 4 ? old / 2 : old;
769 } while (!atomic_long_try_cmpxchg(nr_zswap_protected, &old, new));
770 rcu_read_unlock();
771 }
772
773 static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
774 {
775 int nid = entry_to_nid(entry);
776 struct mem_cgroup *memcg;
777
778 rcu_read_lock();
779 memcg = mem_cgroup_from_entry(entry);
780 /* will always succeed */
781 list_lru_del(list_lru, &entry->lru, nid, memcg);
782 rcu_read_unlock();
783 }
784
785 void zswap_lruvec_state_init(struct lruvec *lruvec)
786 {
787 atomic_long_set(&lruvec->zswap_lruvec_state.nr_zswap_protected, 0);
788 }
789
790 void zswap_folio_swapin(struct folio *folio)
791 {
792 struct lruvec *lruvec;
793
794 if (folio) {
795 lruvec = folio_lruvec(folio);
796 atomic_long_inc(&lruvec->zswap_lruvec_state.nr_zswap_protected);
797 }
798 }
799
800 void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
801 {
802 /* lock out zswap shrinker walking memcg tree */
803 spin_lock(&zswap_shrink_lock);
804 if (zswap_next_shrink == memcg)
805 zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
806 spin_unlock(&zswap_shrink_lock);
807 }
808
809 /*********************************
810 * rbtree functions
811 **********************************/
812 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
813 {
814 struct rb_node *node = root->rb_node;
815 struct zswap_entry *entry;
816 pgoff_t entry_offset;
817
818 while (node) {
819 entry = rb_entry(node, struct zswap_entry, rbnode);
820 entry_offset = swp_offset(entry->swpentry);
821 if (entry_offset > offset)
822 node = node->rb_left;
823 else if (entry_offset < offset)
824 node = node->rb_right;
825 else
826 return entry;
827 }
828 return NULL;
829 }
830
831 /*
832 * In the case that a entry with the same offset is found, a pointer to
833 * the existing entry is stored in dupentry and the function returns -EEXIST
834 */
835 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
836 struct zswap_entry **dupentry)
837 {
838 struct rb_node **link = &root->rb_node, *parent = NULL;
839 struct zswap_entry *myentry;
840 pgoff_t myentry_offset, entry_offset = swp_offset(entry->swpentry);
841
842 while (*link) {
843 parent = *link;
844 myentry = rb_entry(parent, struct zswap_entry, rbnode);
845 myentry_offset = swp_offset(myentry->swpentry);
846 if (myentry_offset > entry_offset)
847 link = &(*link)->rb_left;
848 else if (myentry_offset < entry_offset)
849 link = &(*link)->rb_right;
850 else {
851 *dupentry = myentry;
852 return -EEXIST;
853 }
854 }
855 rb_link_node(&entry->rbnode, parent, link);
856 rb_insert_color(&entry->rbnode, root);
857 return 0;
858 }
859
860 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
861 {
862 rb_erase(&entry->rbnode, root);
863 RB_CLEAR_NODE(&entry->rbnode);
864 }
865
866 /*********************************
867 * zswap entry functions
868 **********************************/
869 static struct kmem_cache *zswap_entry_cache;
870
871 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
872 {
873 struct zswap_entry *entry;
874 entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
875 if (!entry)
876 return NULL;
877 RB_CLEAR_NODE(&entry->rbnode);
878 return entry;
879 }
880
881 static void zswap_entry_cache_free(struct zswap_entry *entry)
882 {
883 kmem_cache_free(zswap_entry_cache, entry);
884 }
885
886 static struct zpool *zswap_find_zpool(struct zswap_entry *entry)
887 {
888 int i = 0;
889
890 if (ZSWAP_NR_ZPOOLS > 1)
891 i = hash_ptr(entry, ilog2(ZSWAP_NR_ZPOOLS));
892
893 return entry->pool->zpools[i];
894 }
895
896 /*
897 * Carries out the common pattern of freeing and entry's zpool allocation,
898 * freeing the entry itself, and decrementing the number of stored pages.
899 */
900 static void zswap_entry_free(struct zswap_entry *entry)
901 {
902 if (!entry->length)
903 atomic_dec(&zswap_same_filled_pages);
904 else {
905 zswap_lru_del(&zswap_list_lru, entry);
906 zpool_free(zswap_find_zpool(entry), entry->handle);
907 atomic_dec(&zswap_nr_stored);
908 zswap_pool_put(entry->pool);
909 }
910 if (entry->objcg) {
911 obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
912 obj_cgroup_put(entry->objcg);
913 }
914 zswap_entry_cache_free(entry);
915 atomic_dec(&zswap_stored_pages);
916 zswap_update_total_size();
917 }
918
919 /*
920 * The caller hold the tree lock and search the entry from the tree,
921 * so it must be on the tree, remove it from the tree and free it.
922 */
923 static void zswap_invalidate_entry(struct zswap_tree *tree,
924 struct zswap_entry *entry)
925 {
926 zswap_rb_erase(&tree->rbroot, entry);
927 zswap_entry_free(entry);
928 }
929
930 /*********************************
931 * compressed storage functions
932 **********************************/
933 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
934 {
935 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
936 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
937 struct crypto_acomp *acomp;
938 struct acomp_req *req;
939 int ret;
940
941 mutex_init(&acomp_ctx->mutex);
942
943 acomp_ctx->buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
944 if (!acomp_ctx->buffer)
945 return -ENOMEM;
946
947 acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
948 if (IS_ERR(acomp)) {
949 pr_err("could not alloc crypto acomp %s : %ld\n",
950 pool->tfm_name, PTR_ERR(acomp));
951 ret = PTR_ERR(acomp);
952 goto acomp_fail;
953 }
954 acomp_ctx->acomp = acomp;
955 acomp_ctx->is_sleepable = acomp_is_async(acomp);
956
957 req = acomp_request_alloc(acomp_ctx->acomp);
958 if (!req) {
959 pr_err("could not alloc crypto acomp_request %s\n",
960 pool->tfm_name);
961 ret = -ENOMEM;
962 goto req_fail;
963 }
964 acomp_ctx->req = req;
965
966 crypto_init_wait(&acomp_ctx->wait);
967 /*
968 * if the backend of acomp is async zip, crypto_req_done() will wakeup
969 * crypto_wait_req(); if the backend of acomp is scomp, the callback
970 * won't be called, crypto_wait_req() will return without blocking.
971 */
972 acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
973 crypto_req_done, &acomp_ctx->wait);
974
975 return 0;
976
977 req_fail:
978 crypto_free_acomp(acomp_ctx->acomp);
979 acomp_fail:
980 kfree(acomp_ctx->buffer);
981 return ret;
982 }
983
984 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
985 {
986 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
987 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
988
989 if (!IS_ERR_OR_NULL(acomp_ctx)) {
990 if (!IS_ERR_OR_NULL(acomp_ctx->req))
991 acomp_request_free(acomp_ctx->req);
992 if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
993 crypto_free_acomp(acomp_ctx->acomp);
994 kfree(acomp_ctx->buffer);
995 }
996
997 return 0;
998 }
999
1000 static bool zswap_compress(struct folio *folio, struct zswap_entry *entry)
1001 {
1002 struct crypto_acomp_ctx *acomp_ctx;
1003 struct scatterlist input, output;
1004 int comp_ret = 0, alloc_ret = 0;
1005 unsigned int dlen = PAGE_SIZE;
1006 unsigned long handle;
1007 struct zpool *zpool;
1008 char *buf;
1009 gfp_t gfp;
1010 u8 *dst;
1011
1012 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1013
1014 mutex_lock(&acomp_ctx->mutex);
1015
1016 dst = acomp_ctx->buffer;
1017 sg_init_table(&input, 1);
1018 sg_set_page(&input, &folio->page, PAGE_SIZE, 0);
1019
1020 /*
1021 * We need PAGE_SIZE * 2 here since there maybe over-compression case,
1022 * and hardware-accelerators may won't check the dst buffer size, so
1023 * giving the dst buffer with enough length to avoid buffer overflow.
1024 */
1025 sg_init_one(&output, dst, PAGE_SIZE * 2);
1026 acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
1027
1028 /*
1029 * it maybe looks a little bit silly that we send an asynchronous request,
1030 * then wait for its completion synchronously. This makes the process look
1031 * synchronous in fact.
1032 * Theoretically, acomp supports users send multiple acomp requests in one
1033 * acomp instance, then get those requests done simultaneously. but in this
1034 * case, zswap actually does store and load page by page, there is no
1035 * existing method to send the second page before the first page is done
1036 * in one thread doing zwap.
1037 * but in different threads running on different cpu, we have different
1038 * acomp instance, so multiple threads can do (de)compression in parallel.
1039 */
1040 comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
1041 dlen = acomp_ctx->req->dlen;
1042 if (comp_ret)
1043 goto unlock;
1044
1045 zpool = zswap_find_zpool(entry);
1046 gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1047 if (zpool_malloc_support_movable(zpool))
1048 gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
1049 alloc_ret = zpool_malloc(zpool, dlen, gfp, &handle);
1050 if (alloc_ret)
1051 goto unlock;
1052
1053 buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO);
1054 memcpy(buf, dst, dlen);
1055 zpool_unmap_handle(zpool, handle);
1056
1057 entry->handle = handle;
1058 entry->length = dlen;
1059
1060 unlock:
1061 if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC)
1062 zswap_reject_compress_poor++;
1063 else if (comp_ret)
1064 zswap_reject_compress_fail++;
1065 else if (alloc_ret)
1066 zswap_reject_alloc_fail++;
1067
1068 mutex_unlock(&acomp_ctx->mutex);
1069 return comp_ret == 0 && alloc_ret == 0;
1070 }
1071
1072 static void zswap_decompress(struct zswap_entry *entry, struct page *page)
1073 {
1074 struct zpool *zpool = zswap_find_zpool(entry);
1075 struct scatterlist input, output;
1076 struct crypto_acomp_ctx *acomp_ctx;
1077 u8 *src;
1078
1079 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1080 mutex_lock(&acomp_ctx->mutex);
1081
1082 src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO);
1083 /*
1084 * If zpool_map_handle is atomic, we cannot reliably utilize its mapped buffer
1085 * to do crypto_acomp_decompress() which might sleep. In such cases, we must
1086 * resort to copying the buffer to a temporary one.
1087 * Meanwhile, zpool_map_handle() might return a non-linearly mapped buffer,
1088 * such as a kmap address of high memory or even ever a vmap address.
1089 * However, sg_init_one is only equipped to handle linearly mapped low memory.
1090 * In such cases, we also must copy the buffer to a temporary and lowmem one.
1091 */
1092 if ((acomp_ctx->is_sleepable && !zpool_can_sleep_mapped(zpool)) ||
1093 !virt_addr_valid(src)) {
1094 memcpy(acomp_ctx->buffer, src, entry->length);
1095 src = acomp_ctx->buffer;
1096 zpool_unmap_handle(zpool, entry->handle);
1097 }
1098
1099 sg_init_one(&input, src, entry->length);
1100 sg_init_table(&output, 1);
1101 sg_set_page(&output, page, PAGE_SIZE, 0);
1102 acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE);
1103 BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait));
1104 BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE);
1105 mutex_unlock(&acomp_ctx->mutex);
1106
1107 if (src != acomp_ctx->buffer)
1108 zpool_unmap_handle(zpool, entry->handle);
1109 }
1110
1111 /*********************************
1112 * writeback code
1113 **********************************/
1114 /*
1115 * Attempts to free an entry by adding a folio to the swap cache,
1116 * decompressing the entry data into the folio, and issuing a
1117 * bio write to write the folio back to the swap device.
1118 *
1119 * This can be thought of as a "resumed writeback" of the folio
1120 * to the swap device. We are basically resuming the same swap
1121 * writeback path that was intercepted with the zswap_store()
1122 * in the first place. After the folio has been decompressed into
1123 * the swap cache, the compressed version stored by zswap can be
1124 * freed.
1125 */
1126 static int zswap_writeback_entry(struct zswap_entry *entry,
1127 swp_entry_t swpentry)
1128 {
1129 struct zswap_tree *tree;
1130 struct folio *folio;
1131 struct mempolicy *mpol;
1132 bool folio_was_allocated;
1133 struct writeback_control wbc = {
1134 .sync_mode = WB_SYNC_NONE,
1135 };
1136
1137 /* try to allocate swap cache folio */
1138 mpol = get_task_policy(current);
1139 folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1140 NO_INTERLEAVE_INDEX, &folio_was_allocated, true);
1141 if (!folio)
1142 return -ENOMEM;
1143
1144 /*
1145 * Found an existing folio, we raced with swapin or concurrent
1146 * shrinker. We generally writeback cold folios from zswap, and
1147 * swapin means the folio just became hot, so skip this folio.
1148 * For unlikely concurrent shrinker case, it will be unlinked
1149 * and freed when invalidated by the concurrent shrinker anyway.
1150 */
1151 if (!folio_was_allocated) {
1152 folio_put(folio);
1153 return -EEXIST;
1154 }
1155
1156 /*
1157 * folio is locked, and the swapcache is now secured against
1158 * concurrent swapping to and from the slot, and concurrent
1159 * swapoff so we can safely dereference the zswap tree here.
1160 * Verify that the swap entry hasn't been invalidated and recycled
1161 * behind our backs, to avoid overwriting a new swap folio with
1162 * old compressed data. Only when this is successful can the entry
1163 * be dereferenced.
1164 */
1165 tree = swap_zswap_tree(swpentry);
1166 spin_lock(&tree->lock);
1167 if (zswap_rb_search(&tree->rbroot, swp_offset(swpentry)) != entry) {
1168 spin_unlock(&tree->lock);
1169 delete_from_swap_cache(folio);
1170 folio_unlock(folio);
1171 folio_put(folio);
1172 return -ENOMEM;
1173 }
1174
1175 /* Safe to deref entry after the entry is verified above. */
1176 zswap_rb_erase(&tree->rbroot, entry);
1177 spin_unlock(&tree->lock);
1178
1179 zswap_decompress(entry, &folio->page);
1180
1181 count_vm_event(ZSWPWB);
1182 if (entry->objcg)
1183 count_objcg_event(entry->objcg, ZSWPWB);
1184
1185 zswap_entry_free(entry);
1186
1187 /* folio is up to date */
1188 folio_mark_uptodate(folio);
1189
1190 /* move it to the tail of the inactive list after end_writeback */
1191 folio_set_reclaim(folio);
1192
1193 /* start writeback */
1194 __swap_writepage(folio, &wbc);
1195 folio_put(folio);
1196
1197 return 0;
1198 }
1199
1200 /*********************************
1201 * shrinker functions
1202 **********************************/
1203 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
1204 spinlock_t *lock, void *arg)
1205 {
1206 struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
1207 bool *encountered_page_in_swapcache = (bool *)arg;
1208 swp_entry_t swpentry;
1209 enum lru_status ret = LRU_REMOVED_RETRY;
1210 int writeback_result;
1211
1212 /*
1213 * As soon as we drop the LRU lock, the entry can be freed by
1214 * a concurrent invalidation. This means the following:
1215 *
1216 * 1. We extract the swp_entry_t to the stack, allowing
1217 * zswap_writeback_entry() to pin the swap entry and
1218 * then validate the zwap entry against that swap entry's
1219 * tree using pointer value comparison. Only when that
1220 * is successful can the entry be dereferenced.
1221 *
1222 * 2. Usually, objects are taken off the LRU for reclaim. In
1223 * this case this isn't possible, because if reclaim fails
1224 * for whatever reason, we have no means of knowing if the
1225 * entry is alive to put it back on the LRU.
1226 *
1227 * So rotate it before dropping the lock. If the entry is
1228 * written back or invalidated, the free path will unlink
1229 * it. For failures, rotation is the right thing as well.
1230 *
1231 * Temporary failures, where the same entry should be tried
1232 * again immediately, almost never happen for this shrinker.
1233 * We don't do any trylocking; -ENOMEM comes closest,
1234 * but that's extremely rare and doesn't happen spuriously
1235 * either. Don't bother distinguishing this case.
1236 */
1237 list_move_tail(item, &l->list);
1238
1239 /*
1240 * Once the lru lock is dropped, the entry might get freed. The
1241 * swpentry is copied to the stack, and entry isn't deref'd again
1242 * until the entry is verified to still be alive in the tree.
1243 */
1244 swpentry = entry->swpentry;
1245
1246 /*
1247 * It's safe to drop the lock here because we return either
1248 * LRU_REMOVED_RETRY or LRU_RETRY.
1249 */
1250 spin_unlock(lock);
1251
1252 writeback_result = zswap_writeback_entry(entry, swpentry);
1253
1254 if (writeback_result) {
1255 zswap_reject_reclaim_fail++;
1256 ret = LRU_RETRY;
1257
1258 /*
1259 * Encountering a page already in swap cache is a sign that we are shrinking
1260 * into the warmer region. We should terminate shrinking (if we're in the dynamic
1261 * shrinker context).
1262 */
1263 if (writeback_result == -EEXIST && encountered_page_in_swapcache) {
1264 ret = LRU_STOP;
1265 *encountered_page_in_swapcache = true;
1266 }
1267 } else {
1268 zswap_written_back_pages++;
1269 }
1270
1271 spin_lock(lock);
1272 return ret;
1273 }
1274
1275 static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
1276 struct shrink_control *sc)
1277 {
1278 struct lruvec *lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
1279 unsigned long shrink_ret, nr_protected, lru_size;
1280 bool encountered_page_in_swapcache = false;
1281
1282 if (!zswap_shrinker_enabled ||
1283 !mem_cgroup_zswap_writeback_enabled(sc->memcg)) {
1284 sc->nr_scanned = 0;
1285 return SHRINK_STOP;
1286 }
1287
1288 nr_protected =
1289 atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
1290 lru_size = list_lru_shrink_count(&zswap_list_lru, sc);
1291
1292 /*
1293 * Abort if we are shrinking into the protected region.
1294 *
1295 * This short-circuiting is necessary because if we have too many multiple
1296 * concurrent reclaimers getting the freeable zswap object counts at the
1297 * same time (before any of them made reasonable progress), the total
1298 * number of reclaimed objects might be more than the number of unprotected
1299 * objects (i.e the reclaimers will reclaim into the protected area of the
1300 * zswap LRU).
1301 */
1302 if (nr_protected >= lru_size - sc->nr_to_scan) {
1303 sc->nr_scanned = 0;
1304 return SHRINK_STOP;
1305 }
1306
1307 shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb,
1308 &encountered_page_in_swapcache);
1309
1310 if (encountered_page_in_swapcache)
1311 return SHRINK_STOP;
1312
1313 return shrink_ret ? shrink_ret : SHRINK_STOP;
1314 }
1315
1316 static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
1317 struct shrink_control *sc)
1318 {
1319 struct mem_cgroup *memcg = sc->memcg;
1320 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
1321 unsigned long nr_backing, nr_stored, nr_freeable, nr_protected;
1322
1323 if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg))
1324 return 0;
1325
1326 /*
1327 * The shrinker resumes swap writeback, which will enter block
1328 * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS
1329 * rules (may_enter_fs()), which apply on a per-folio basis.
1330 */
1331 if (!gfp_has_io_fs(sc->gfp_mask))
1332 return 0;
1333
1334 #ifdef CONFIG_MEMCG_KMEM
1335 mem_cgroup_flush_stats(memcg);
1336 nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
1337 nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
1338 #else
1339 /* use pool stats instead of memcg stats */
1340 nr_backing = zswap_pool_total_size >> PAGE_SHIFT;
1341 nr_stored = atomic_read(&zswap_nr_stored);
1342 #endif
1343
1344 if (!nr_stored)
1345 return 0;
1346
1347 nr_protected =
1348 atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
1349 nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc);
1350 /*
1351 * Subtract the lru size by an estimate of the number of pages
1352 * that should be protected.
1353 */
1354 nr_freeable = nr_freeable > nr_protected ? nr_freeable - nr_protected : 0;
1355
1356 /*
1357 * Scale the number of freeable pages by the memory saving factor.
1358 * This ensures that the better zswap compresses memory, the fewer
1359 * pages we will evict to swap (as it will otherwise incur IO for
1360 * relatively small memory saving).
1361 */
1362 return mult_frac(nr_freeable, nr_backing, nr_stored);
1363 }
1364
1365 static struct shrinker *zswap_alloc_shrinker(void)
1366 {
1367 struct shrinker *shrinker;
1368
1369 shrinker =
1370 shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
1371 if (!shrinker)
1372 return NULL;
1373
1374 shrinker->scan_objects = zswap_shrinker_scan;
1375 shrinker->count_objects = zswap_shrinker_count;
1376 shrinker->batch = 0;
1377 shrinker->seeks = DEFAULT_SEEKS;
1378 return shrinker;
1379 }
1380
1381 static int shrink_memcg(struct mem_cgroup *memcg)
1382 {
1383 int nid, shrunk = 0;
1384
1385 if (!mem_cgroup_zswap_writeback_enabled(memcg))
1386 return -EINVAL;
1387
1388 /*
1389 * Skip zombies because their LRUs are reparented and we would be
1390 * reclaiming from the parent instead of the dead memcg.
1391 */
1392 if (memcg && !mem_cgroup_online(memcg))
1393 return -ENOENT;
1394
1395 for_each_node_state(nid, N_NORMAL_MEMORY) {
1396 unsigned long nr_to_walk = 1;
1397
1398 shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg,
1399 &shrink_memcg_cb, NULL, &nr_to_walk);
1400 }
1401 return shrunk ? 0 : -EAGAIN;
1402 }
1403
1404 static void shrink_worker(struct work_struct *w)
1405 {
1406 struct mem_cgroup *memcg;
1407 int ret, failures = 0;
1408
1409 /* global reclaim will select cgroup in a round-robin fashion. */
1410 do {
1411 spin_lock(&zswap_shrink_lock);
1412 zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
1413 memcg = zswap_next_shrink;
1414
1415 /*
1416 * We need to retry if we have gone through a full round trip, or if we
1417 * got an offline memcg (or else we risk undoing the effect of the
1418 * zswap memcg offlining cleanup callback). This is not catastrophic
1419 * per se, but it will keep the now offlined memcg hostage for a while.
1420 *
1421 * Note that if we got an online memcg, we will keep the extra
1422 * reference in case the original reference obtained by mem_cgroup_iter
1423 * is dropped by the zswap memcg offlining callback, ensuring that the
1424 * memcg is not killed when we are reclaiming.
1425 */
1426 if (!memcg) {
1427 spin_unlock(&zswap_shrink_lock);
1428 if (++failures == MAX_RECLAIM_RETRIES)
1429 break;
1430
1431 goto resched;
1432 }
1433
1434 if (!mem_cgroup_tryget_online(memcg)) {
1435 /* drop the reference from mem_cgroup_iter() */
1436 mem_cgroup_iter_break(NULL, memcg);
1437 zswap_next_shrink = NULL;
1438 spin_unlock(&zswap_shrink_lock);
1439
1440 if (++failures == MAX_RECLAIM_RETRIES)
1441 break;
1442
1443 goto resched;
1444 }
1445 spin_unlock(&zswap_shrink_lock);
1446
1447 ret = shrink_memcg(memcg);
1448 /* drop the extra reference */
1449 mem_cgroup_put(memcg);
1450
1451 if (ret == -EINVAL)
1452 break;
1453 if (ret && ++failures == MAX_RECLAIM_RETRIES)
1454 break;
1455
1456 resched:
1457 cond_resched();
1458 } while (!zswap_can_accept());
1459 }
1460
1461 static int zswap_is_page_same_filled(void *ptr, unsigned long *value)
1462 {
1463 unsigned long *page;
1464 unsigned long val;
1465 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
1466
1467 page = (unsigned long *)ptr;
1468 val = page[0];
1469
1470 if (val != page[last_pos])
1471 return 0;
1472
1473 for (pos = 1; pos < last_pos; pos++) {
1474 if (val != page[pos])
1475 return 0;
1476 }
1477
1478 *value = val;
1479
1480 return 1;
1481 }
1482
1483 static void zswap_fill_page(void *ptr, unsigned long value)
1484 {
1485 unsigned long *page;
1486
1487 page = (unsigned long *)ptr;
1488 memset_l(page, value, PAGE_SIZE / sizeof(unsigned long));
1489 }
1490
1491 bool zswap_store(struct folio *folio)
1492 {
1493 swp_entry_t swp = folio->swap;
1494 pgoff_t offset = swp_offset(swp);
1495 struct zswap_tree *tree = swap_zswap_tree(swp);
1496 struct zswap_entry *entry, *dupentry;
1497 struct obj_cgroup *objcg = NULL;
1498 struct mem_cgroup *memcg = NULL;
1499
1500 VM_WARN_ON_ONCE(!folio_test_locked(folio));
1501 VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1502
1503 /* Large folios aren't supported */
1504 if (folio_test_large(folio))
1505 return false;
1506
1507 if (!zswap_enabled)
1508 goto check_old;
1509
1510 objcg = get_obj_cgroup_from_folio(folio);
1511 if (objcg && !obj_cgroup_may_zswap(objcg)) {
1512 memcg = get_mem_cgroup_from_objcg(objcg);
1513 if (shrink_memcg(memcg)) {
1514 mem_cgroup_put(memcg);
1515 goto reject;
1516 }
1517 mem_cgroup_put(memcg);
1518 }
1519
1520 /* reclaim space if needed */
1521 if (zswap_is_full()) {
1522 zswap_pool_limit_hit++;
1523 zswap_pool_reached_full = true;
1524 goto shrink;
1525 }
1526
1527 if (zswap_pool_reached_full) {
1528 if (!zswap_can_accept())
1529 goto shrink;
1530 else
1531 zswap_pool_reached_full = false;
1532 }
1533
1534 /* allocate entry */
1535 entry = zswap_entry_cache_alloc(GFP_KERNEL, folio_nid(folio));
1536 if (!entry) {
1537 zswap_reject_kmemcache_fail++;
1538 goto reject;
1539 }
1540
1541 if (zswap_same_filled_pages_enabled) {
1542 unsigned long value;
1543 u8 *src;
1544
1545 src = kmap_local_folio(folio, 0);
1546 if (zswap_is_page_same_filled(src, &value)) {
1547 kunmap_local(src);
1548 entry->length = 0;
1549 entry->value = value;
1550 atomic_inc(&zswap_same_filled_pages);
1551 goto insert_entry;
1552 }
1553 kunmap_local(src);
1554 }
1555
1556 if (!zswap_non_same_filled_pages_enabled)
1557 goto freepage;
1558
1559 /* if entry is successfully added, it keeps the reference */
1560 entry->pool = zswap_pool_current_get();
1561 if (!entry->pool)
1562 goto freepage;
1563
1564 if (objcg) {
1565 memcg = get_mem_cgroup_from_objcg(objcg);
1566 if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) {
1567 mem_cgroup_put(memcg);
1568 goto put_pool;
1569 }
1570 mem_cgroup_put(memcg);
1571 }
1572
1573 if (!zswap_compress(folio, entry))
1574 goto put_pool;
1575
1576 insert_entry:
1577 entry->swpentry = swp;
1578 entry->objcg = objcg;
1579 if (objcg) {
1580 obj_cgroup_charge_zswap(objcg, entry->length);
1581 /* Account before objcg ref is moved to tree */
1582 count_objcg_event(objcg, ZSWPOUT);
1583 }
1584
1585 /* map */
1586 spin_lock(&tree->lock);
1587 /*
1588 * The folio may have been dirtied again, invalidate the
1589 * possibly stale entry before inserting the new entry.
1590 */
1591 if (zswap_rb_insert(&tree->rbroot, entry, &dupentry) == -EEXIST) {
1592 zswap_invalidate_entry(tree, dupentry);
1593 WARN_ON(zswap_rb_insert(&tree->rbroot, entry, &dupentry));
1594 }
1595 if (entry->length) {
1596 INIT_LIST_HEAD(&entry->lru);
1597 zswap_lru_add(&zswap_list_lru, entry);
1598 atomic_inc(&zswap_nr_stored);
1599 }
1600 spin_unlock(&tree->lock);
1601
1602 /* update stats */
1603 atomic_inc(&zswap_stored_pages);
1604 zswap_update_total_size();
1605 count_vm_event(ZSWPOUT);
1606
1607 return true;
1608
1609 put_pool:
1610 zswap_pool_put(entry->pool);
1611 freepage:
1612 zswap_entry_cache_free(entry);
1613 reject:
1614 if (objcg)
1615 obj_cgroup_put(objcg);
1616 check_old:
1617 /*
1618 * If the zswap store fails or zswap is disabled, we must invalidate the
1619 * possibly stale entry which was previously stored at this offset.
1620 * Otherwise, writeback could overwrite the new data in the swapfile.
1621 */
1622 spin_lock(&tree->lock);
1623 entry = zswap_rb_search(&tree->rbroot, offset);
1624 if (entry)
1625 zswap_invalidate_entry(tree, entry);
1626 spin_unlock(&tree->lock);
1627 return false;
1628
1629 shrink:
1630 queue_work(shrink_wq, &zswap_shrink_work);
1631 goto reject;
1632 }
1633
1634 bool zswap_load(struct folio *folio)
1635 {
1636 swp_entry_t swp = folio->swap;
1637 pgoff_t offset = swp_offset(swp);
1638 struct page *page = &folio->page;
1639 bool swapcache = folio_test_swapcache(folio);
1640 struct zswap_tree *tree = swap_zswap_tree(swp);
1641 struct zswap_entry *entry;
1642 u8 *dst;
1643
1644 VM_WARN_ON_ONCE(!folio_test_locked(folio));
1645
1646 spin_lock(&tree->lock);
1647 entry = zswap_rb_search(&tree->rbroot, offset);
1648 if (!entry) {
1649 spin_unlock(&tree->lock);
1650 return false;
1651 }
1652 /*
1653 * When reading into the swapcache, invalidate our entry. The
1654 * swapcache can be the authoritative owner of the page and
1655 * its mappings, and the pressure that results from having two
1656 * in-memory copies outweighs any benefits of caching the
1657 * compression work.
1658 *
1659 * (Most swapins go through the swapcache. The notable
1660 * exception is the singleton fault on SWP_SYNCHRONOUS_IO
1661 * files, which reads into a private page and may free it if
1662 * the fault fails. We remain the primary owner of the entry.)
1663 */
1664 if (swapcache)
1665 zswap_rb_erase(&tree->rbroot, entry);
1666 spin_unlock(&tree->lock);
1667
1668 if (entry->length)
1669 zswap_decompress(entry, page);
1670 else {
1671 dst = kmap_local_page(page);
1672 zswap_fill_page(dst, entry->value);
1673 kunmap_local(dst);
1674 }
1675
1676 count_vm_event(ZSWPIN);
1677 if (entry->objcg)
1678 count_objcg_event(entry->objcg, ZSWPIN);
1679
1680 if (swapcache) {
1681 zswap_entry_free(entry);
1682 folio_mark_dirty(folio);
1683 }
1684
1685 return true;
1686 }
1687
1688 void zswap_invalidate(swp_entry_t swp)
1689 {
1690 pgoff_t offset = swp_offset(swp);
1691 struct zswap_tree *tree = swap_zswap_tree(swp);
1692 struct zswap_entry *entry;
1693
1694 spin_lock(&tree->lock);
1695 entry = zswap_rb_search(&tree->rbroot, offset);
1696 if (entry)
1697 zswap_invalidate_entry(tree, entry);
1698 spin_unlock(&tree->lock);
1699 }
1700
1701 int zswap_swapon(int type, unsigned long nr_pages)
1702 {
1703 struct zswap_tree *trees, *tree;
1704 unsigned int nr, i;
1705
1706 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
1707 trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL);
1708 if (!trees) {
1709 pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1710 return -ENOMEM;
1711 }
1712
1713 for (i = 0; i < nr; i++) {
1714 tree = trees + i;
1715 tree->rbroot = RB_ROOT;
1716 spin_lock_init(&tree->lock);
1717 }
1718
1719 nr_zswap_trees[type] = nr;
1720 zswap_trees[type] = trees;
1721 return 0;
1722 }
1723
1724 void zswap_swapoff(int type)
1725 {
1726 struct zswap_tree *trees = zswap_trees[type];
1727 unsigned int i;
1728
1729 if (!trees)
1730 return;
1731
1732 /* try_to_unuse() invalidated all the entries already */
1733 for (i = 0; i < nr_zswap_trees[type]; i++)
1734 WARN_ON_ONCE(!RB_EMPTY_ROOT(&trees[i].rbroot));
1735
1736 kvfree(trees);
1737 nr_zswap_trees[type] = 0;
1738 zswap_trees[type] = NULL;
1739 }
1740
1741 /*********************************
1742 * debugfs functions
1743 **********************************/
1744 #ifdef CONFIG_DEBUG_FS
1745 #include <linux/debugfs.h>
1746
1747 static struct dentry *zswap_debugfs_root;
1748
1749 static int zswap_debugfs_init(void)
1750 {
1751 if (!debugfs_initialized())
1752 return -ENODEV;
1753
1754 zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1755
1756 debugfs_create_u64("pool_limit_hit", 0444,
1757 zswap_debugfs_root, &zswap_pool_limit_hit);
1758 debugfs_create_u64("reject_reclaim_fail", 0444,
1759 zswap_debugfs_root, &zswap_reject_reclaim_fail);
1760 debugfs_create_u64("reject_alloc_fail", 0444,
1761 zswap_debugfs_root, &zswap_reject_alloc_fail);
1762 debugfs_create_u64("reject_kmemcache_fail", 0444,
1763 zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1764 debugfs_create_u64("reject_compress_fail", 0444,
1765 zswap_debugfs_root, &zswap_reject_compress_fail);
1766 debugfs_create_u64("reject_compress_poor", 0444,
1767 zswap_debugfs_root, &zswap_reject_compress_poor);
1768 debugfs_create_u64("written_back_pages", 0444,
1769 zswap_debugfs_root, &zswap_written_back_pages);
1770 debugfs_create_u64("pool_total_size", 0444,
1771 zswap_debugfs_root, &zswap_pool_total_size);
1772 debugfs_create_atomic_t("stored_pages", 0444,
1773 zswap_debugfs_root, &zswap_stored_pages);
1774 debugfs_create_atomic_t("same_filled_pages", 0444,
1775 zswap_debugfs_root, &zswap_same_filled_pages);
1776
1777 return 0;
1778 }
1779 #else
1780 static int zswap_debugfs_init(void)
1781 {
1782 return 0;
1783 }
1784 #endif
1785
1786 /*********************************
1787 * module init and exit
1788 **********************************/
1789 static int zswap_setup(void)
1790 {
1791 struct zswap_pool *pool;
1792 int ret;
1793
1794 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1795 if (!zswap_entry_cache) {
1796 pr_err("entry cache creation failed\n");
1797 goto cache_fail;
1798 }
1799
1800 ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1801 "mm/zswap_pool:prepare",
1802 zswap_cpu_comp_prepare,
1803 zswap_cpu_comp_dead);
1804 if (ret)
1805 goto hp_fail;
1806
1807 shrink_wq = alloc_workqueue("zswap-shrink",
1808 WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
1809 if (!shrink_wq)
1810 goto shrink_wq_fail;
1811
1812 zswap_shrinker = zswap_alloc_shrinker();
1813 if (!zswap_shrinker)
1814 goto shrinker_fail;
1815 if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker))
1816 goto lru_fail;
1817 shrinker_register(zswap_shrinker);
1818
1819 INIT_WORK(&zswap_shrink_work, shrink_worker);
1820
1821 pool = __zswap_pool_create_fallback();
1822 if (pool) {
1823 pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1824 zpool_get_type(pool->zpools[0]));
1825 list_add(&pool->list, &zswap_pools);
1826 zswap_has_pool = true;
1827 } else {
1828 pr_err("pool creation failed\n");
1829 zswap_enabled = false;
1830 }
1831
1832 if (zswap_debugfs_init())
1833 pr_warn("debugfs initialization failed\n");
1834 zswap_init_state = ZSWAP_INIT_SUCCEED;
1835 return 0;
1836
1837 lru_fail:
1838 shrinker_free(zswap_shrinker);
1839 shrinker_fail:
1840 destroy_workqueue(shrink_wq);
1841 shrink_wq_fail:
1842 cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE);
1843 hp_fail:
1844 kmem_cache_destroy(zswap_entry_cache);
1845 cache_fail:
1846 /* if built-in, we aren't unloaded on failure; don't allow use */
1847 zswap_init_state = ZSWAP_INIT_FAILED;
1848 zswap_enabled = false;
1849 return -ENOMEM;
1850 }
1851
1852 static int __init zswap_init(void)
1853 {
1854 if (!zswap_enabled)
1855 return 0;
1856 return zswap_setup();
1857 }
1858 /* must be late so crypto has time to come up */
1859 late_initcall(zswap_init);
1860
1861 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1862 MODULE_DESCRIPTION("Compressed cache for swap pages");