]> git.ipfire.org Git - thirdparty/linux.git/blob - net/ipv4/tcp.c
f12d500ec85cf770b0b94cb5e08d16f77e4c126b
[thirdparty/linux.git] / net / ipv4 / tcp.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/xfrm.h>
275 #include <net/ip.h>
276 #include <net/sock.h>
277
278 #include <linux/uaccess.h>
279 #include <asm/ioctls.h>
280 #include <net/busy_poll.h>
281
282 struct percpu_counter tcp_orphan_count;
283 EXPORT_SYMBOL_GPL(tcp_orphan_count);
284
285 long sysctl_tcp_mem[3] __read_mostly;
286 EXPORT_SYMBOL(sysctl_tcp_mem);
287
288 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
289 EXPORT_SYMBOL(tcp_memory_allocated);
290
291 #if IS_ENABLED(CONFIG_SMC)
292 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
293 EXPORT_SYMBOL(tcp_have_smc);
294 #endif
295
296 /*
297 * Current number of TCP sockets.
298 */
299 struct percpu_counter tcp_sockets_allocated;
300 EXPORT_SYMBOL(tcp_sockets_allocated);
301
302 /*
303 * TCP splice context
304 */
305 struct tcp_splice_state {
306 struct pipe_inode_info *pipe;
307 size_t len;
308 unsigned int flags;
309 };
310
311 /*
312 * Pressure flag: try to collapse.
313 * Technical note: it is used by multiple contexts non atomically.
314 * All the __sk_mem_schedule() is of this nature: accounting
315 * is strict, actions are advisory and have some latency.
316 */
317 unsigned long tcp_memory_pressure __read_mostly;
318 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
319
320 void tcp_enter_memory_pressure(struct sock *sk)
321 {
322 unsigned long val;
323
324 if (tcp_memory_pressure)
325 return;
326 val = jiffies;
327
328 if (!val)
329 val--;
330 if (!cmpxchg(&tcp_memory_pressure, 0, val))
331 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
332 }
333 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
334
335 void tcp_leave_memory_pressure(struct sock *sk)
336 {
337 unsigned long val;
338
339 if (!tcp_memory_pressure)
340 return;
341 val = xchg(&tcp_memory_pressure, 0);
342 if (val)
343 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
344 jiffies_to_msecs(jiffies - val));
345 }
346 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
347
348 /* Convert seconds to retransmits based on initial and max timeout */
349 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
350 {
351 u8 res = 0;
352
353 if (seconds > 0) {
354 int period = timeout;
355
356 res = 1;
357 while (seconds > period && res < 255) {
358 res++;
359 timeout <<= 1;
360 if (timeout > rto_max)
361 timeout = rto_max;
362 period += timeout;
363 }
364 }
365 return res;
366 }
367
368 /* Convert retransmits to seconds based on initial and max timeout */
369 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
370 {
371 int period = 0;
372
373 if (retrans > 0) {
374 period = timeout;
375 while (--retrans) {
376 timeout <<= 1;
377 if (timeout > rto_max)
378 timeout = rto_max;
379 period += timeout;
380 }
381 }
382 return period;
383 }
384
385 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
386 {
387 u32 rate = READ_ONCE(tp->rate_delivered);
388 u32 intv = READ_ONCE(tp->rate_interval_us);
389 u64 rate64 = 0;
390
391 if (rate && intv) {
392 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
393 do_div(rate64, intv);
394 }
395 return rate64;
396 }
397
398 /* Address-family independent initialization for a tcp_sock.
399 *
400 * NOTE: A lot of things set to zero explicitly by call to
401 * sk_alloc() so need not be done here.
402 */
403 void tcp_init_sock(struct sock *sk)
404 {
405 struct inet_connection_sock *icsk = inet_csk(sk);
406 struct tcp_sock *tp = tcp_sk(sk);
407
408 tp->out_of_order_queue = RB_ROOT;
409 sk->tcp_rtx_queue = RB_ROOT;
410 tcp_init_xmit_timers(sk);
411 INIT_LIST_HEAD(&tp->tsq_node);
412 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
413
414 icsk->icsk_rto = TCP_TIMEOUT_INIT;
415 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
416 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
417
418 /* So many TCP implementations out there (incorrectly) count the
419 * initial SYN frame in their delayed-ACK and congestion control
420 * algorithms that we must have the following bandaid to talk
421 * efficiently to them. -DaveM
422 */
423 tp->snd_cwnd = TCP_INIT_CWND;
424
425 /* There's a bubble in the pipe until at least the first ACK. */
426 tp->app_limited = ~0U;
427
428 /* See draft-stevens-tcpca-spec-01 for discussion of the
429 * initialization of these values.
430 */
431 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
432 tp->snd_cwnd_clamp = ~0;
433 tp->mss_cache = TCP_MSS_DEFAULT;
434
435 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
436 tcp_assign_congestion_control(sk);
437
438 tp->tsoffset = 0;
439 tp->rack.reo_wnd_steps = 1;
440
441 sk->sk_state = TCP_CLOSE;
442
443 sk->sk_write_space = sk_stream_write_space;
444 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
445
446 icsk->icsk_sync_mss = tcp_sync_mss;
447
448 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
449 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
450
451 sk_sockets_allocated_inc(sk);
452 sk->sk_route_forced_caps = NETIF_F_GSO;
453 }
454 EXPORT_SYMBOL(tcp_init_sock);
455
456 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
457 {
458 struct sk_buff *skb = tcp_write_queue_tail(sk);
459
460 if (tsflags && skb) {
461 struct skb_shared_info *shinfo = skb_shinfo(skb);
462 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
463
464 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
465 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
466 tcb->txstamp_ack = 1;
467 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
468 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
469 }
470 }
471
472 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
473 int target, struct sock *sk)
474 {
475 return (tp->rcv_nxt - tp->copied_seq >= target) ||
476 (sk->sk_prot->stream_memory_read ?
477 sk->sk_prot->stream_memory_read(sk) : false);
478 }
479
480 /*
481 * Wait for a TCP event.
482 *
483 * Note that we don't need to lock the socket, as the upper poll layers
484 * take care of normal races (between the test and the event) and we don't
485 * go look at any of the socket buffers directly.
486 */
487 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
488 {
489 __poll_t mask;
490 struct sock *sk = sock->sk;
491 const struct tcp_sock *tp = tcp_sk(sk);
492 int state;
493
494 sock_poll_wait(file, sock, wait);
495
496 state = inet_sk_state_load(sk);
497 if (state == TCP_LISTEN)
498 return inet_csk_listen_poll(sk);
499
500 /* Socket is not locked. We are protected from async events
501 * by poll logic and correct handling of state changes
502 * made by other threads is impossible in any case.
503 */
504
505 mask = 0;
506
507 /*
508 * EPOLLHUP is certainly not done right. But poll() doesn't
509 * have a notion of HUP in just one direction, and for a
510 * socket the read side is more interesting.
511 *
512 * Some poll() documentation says that EPOLLHUP is incompatible
513 * with the EPOLLOUT/POLLWR flags, so somebody should check this
514 * all. But careful, it tends to be safer to return too many
515 * bits than too few, and you can easily break real applications
516 * if you don't tell them that something has hung up!
517 *
518 * Check-me.
519 *
520 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
521 * our fs/select.c). It means that after we received EOF,
522 * poll always returns immediately, making impossible poll() on write()
523 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
524 * if and only if shutdown has been made in both directions.
525 * Actually, it is interesting to look how Solaris and DUX
526 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
527 * then we could set it on SND_SHUTDOWN. BTW examples given
528 * in Stevens' books assume exactly this behaviour, it explains
529 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
530 *
531 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
532 * blocking on fresh not-connected or disconnected socket. --ANK
533 */
534 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
535 mask |= EPOLLHUP;
536 if (sk->sk_shutdown & RCV_SHUTDOWN)
537 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
538
539 /* Connected or passive Fast Open socket? */
540 if (state != TCP_SYN_SENT &&
541 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
542 int target = sock_rcvlowat(sk, 0, INT_MAX);
543
544 if (tp->urg_seq == tp->copied_seq &&
545 !sock_flag(sk, SOCK_URGINLINE) &&
546 tp->urg_data)
547 target++;
548
549 if (tcp_stream_is_readable(tp, target, sk))
550 mask |= EPOLLIN | EPOLLRDNORM;
551
552 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
553 if (sk_stream_is_writeable(sk)) {
554 mask |= EPOLLOUT | EPOLLWRNORM;
555 } else { /* send SIGIO later */
556 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
557 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
558
559 /* Race breaker. If space is freed after
560 * wspace test but before the flags are set,
561 * IO signal will be lost. Memory barrier
562 * pairs with the input side.
563 */
564 smp_mb__after_atomic();
565 if (sk_stream_is_writeable(sk))
566 mask |= EPOLLOUT | EPOLLWRNORM;
567 }
568 } else
569 mask |= EPOLLOUT | EPOLLWRNORM;
570
571 if (tp->urg_data & TCP_URG_VALID)
572 mask |= EPOLLPRI;
573 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
574 /* Active TCP fastopen socket with defer_connect
575 * Return EPOLLOUT so application can call write()
576 * in order for kernel to generate SYN+data
577 */
578 mask |= EPOLLOUT | EPOLLWRNORM;
579 }
580 /* This barrier is coupled with smp_wmb() in tcp_reset() */
581 smp_rmb();
582 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
583 mask |= EPOLLERR;
584
585 return mask;
586 }
587 EXPORT_SYMBOL(tcp_poll);
588
589 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
590 {
591 struct tcp_sock *tp = tcp_sk(sk);
592 int answ;
593 bool slow;
594
595 switch (cmd) {
596 case SIOCINQ:
597 if (sk->sk_state == TCP_LISTEN)
598 return -EINVAL;
599
600 slow = lock_sock_fast(sk);
601 answ = tcp_inq(sk);
602 unlock_sock_fast(sk, slow);
603 break;
604 case SIOCATMARK:
605 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
606 break;
607 case SIOCOUTQ:
608 if (sk->sk_state == TCP_LISTEN)
609 return -EINVAL;
610
611 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
612 answ = 0;
613 else
614 answ = tp->write_seq - tp->snd_una;
615 break;
616 case SIOCOUTQNSD:
617 if (sk->sk_state == TCP_LISTEN)
618 return -EINVAL;
619
620 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
621 answ = 0;
622 else
623 answ = tp->write_seq - tp->snd_nxt;
624 break;
625 default:
626 return -ENOIOCTLCMD;
627 }
628
629 return put_user(answ, (int __user *)arg);
630 }
631 EXPORT_SYMBOL(tcp_ioctl);
632
633 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
634 {
635 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
636 tp->pushed_seq = tp->write_seq;
637 }
638
639 static inline bool forced_push(const struct tcp_sock *tp)
640 {
641 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
642 }
643
644 static void skb_entail(struct sock *sk, struct sk_buff *skb)
645 {
646 struct tcp_sock *tp = tcp_sk(sk);
647 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
648
649 skb->csum = 0;
650 tcb->seq = tcb->end_seq = tp->write_seq;
651 tcb->tcp_flags = TCPHDR_ACK;
652 tcb->sacked = 0;
653 __skb_header_release(skb);
654 tcp_add_write_queue_tail(sk, skb);
655 sk->sk_wmem_queued += skb->truesize;
656 sk_mem_charge(sk, skb->truesize);
657 if (tp->nonagle & TCP_NAGLE_PUSH)
658 tp->nonagle &= ~TCP_NAGLE_PUSH;
659
660 tcp_slow_start_after_idle_check(sk);
661 }
662
663 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
664 {
665 if (flags & MSG_OOB)
666 tp->snd_up = tp->write_seq;
667 }
668
669 /* If a not yet filled skb is pushed, do not send it if
670 * we have data packets in Qdisc or NIC queues :
671 * Because TX completion will happen shortly, it gives a chance
672 * to coalesce future sendmsg() payload into this skb, without
673 * need for a timer, and with no latency trade off.
674 * As packets containing data payload have a bigger truesize
675 * than pure acks (dataless) packets, the last checks prevent
676 * autocorking if we only have an ACK in Qdisc/NIC queues,
677 * or if TX completion was delayed after we processed ACK packet.
678 */
679 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
680 int size_goal)
681 {
682 return skb->len < size_goal &&
683 sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
684 !tcp_rtx_queue_empty(sk) &&
685 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
686 }
687
688 static void tcp_push(struct sock *sk, int flags, int mss_now,
689 int nonagle, int size_goal)
690 {
691 struct tcp_sock *tp = tcp_sk(sk);
692 struct sk_buff *skb;
693
694 skb = tcp_write_queue_tail(sk);
695 if (!skb)
696 return;
697 if (!(flags & MSG_MORE) || forced_push(tp))
698 tcp_mark_push(tp, skb);
699
700 tcp_mark_urg(tp, flags);
701
702 if (tcp_should_autocork(sk, skb, size_goal)) {
703
704 /* avoid atomic op if TSQ_THROTTLED bit is already set */
705 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
706 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
707 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
708 }
709 /* It is possible TX completion already happened
710 * before we set TSQ_THROTTLED.
711 */
712 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
713 return;
714 }
715
716 if (flags & MSG_MORE)
717 nonagle = TCP_NAGLE_CORK;
718
719 __tcp_push_pending_frames(sk, mss_now, nonagle);
720 }
721
722 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
723 unsigned int offset, size_t len)
724 {
725 struct tcp_splice_state *tss = rd_desc->arg.data;
726 int ret;
727
728 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
729 min(rd_desc->count, len), tss->flags);
730 if (ret > 0)
731 rd_desc->count -= ret;
732 return ret;
733 }
734
735 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
736 {
737 /* Store TCP splice context information in read_descriptor_t. */
738 read_descriptor_t rd_desc = {
739 .arg.data = tss,
740 .count = tss->len,
741 };
742
743 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
744 }
745
746 /**
747 * tcp_splice_read - splice data from TCP socket to a pipe
748 * @sock: socket to splice from
749 * @ppos: position (not valid)
750 * @pipe: pipe to splice to
751 * @len: number of bytes to splice
752 * @flags: splice modifier flags
753 *
754 * Description:
755 * Will read pages from given socket and fill them into a pipe.
756 *
757 **/
758 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
759 struct pipe_inode_info *pipe, size_t len,
760 unsigned int flags)
761 {
762 struct sock *sk = sock->sk;
763 struct tcp_splice_state tss = {
764 .pipe = pipe,
765 .len = len,
766 .flags = flags,
767 };
768 long timeo;
769 ssize_t spliced;
770 int ret;
771
772 sock_rps_record_flow(sk);
773 /*
774 * We can't seek on a socket input
775 */
776 if (unlikely(*ppos))
777 return -ESPIPE;
778
779 ret = spliced = 0;
780
781 lock_sock(sk);
782
783 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
784 while (tss.len) {
785 ret = __tcp_splice_read(sk, &tss);
786 if (ret < 0)
787 break;
788 else if (!ret) {
789 if (spliced)
790 break;
791 if (sock_flag(sk, SOCK_DONE))
792 break;
793 if (sk->sk_err) {
794 ret = sock_error(sk);
795 break;
796 }
797 if (sk->sk_shutdown & RCV_SHUTDOWN)
798 break;
799 if (sk->sk_state == TCP_CLOSE) {
800 /*
801 * This occurs when user tries to read
802 * from never connected socket.
803 */
804 ret = -ENOTCONN;
805 break;
806 }
807 if (!timeo) {
808 ret = -EAGAIN;
809 break;
810 }
811 /* if __tcp_splice_read() got nothing while we have
812 * an skb in receive queue, we do not want to loop.
813 * This might happen with URG data.
814 */
815 if (!skb_queue_empty(&sk->sk_receive_queue))
816 break;
817 sk_wait_data(sk, &timeo, NULL);
818 if (signal_pending(current)) {
819 ret = sock_intr_errno(timeo);
820 break;
821 }
822 continue;
823 }
824 tss.len -= ret;
825 spliced += ret;
826
827 if (!timeo)
828 break;
829 release_sock(sk);
830 lock_sock(sk);
831
832 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
833 (sk->sk_shutdown & RCV_SHUTDOWN) ||
834 signal_pending(current))
835 break;
836 }
837
838 release_sock(sk);
839
840 if (spliced)
841 return spliced;
842
843 return ret;
844 }
845 EXPORT_SYMBOL(tcp_splice_read);
846
847 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
848 bool force_schedule)
849 {
850 struct sk_buff *skb;
851
852 if (likely(!size)) {
853 skb = sk->sk_tx_skb_cache;
854 if (skb) {
855 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
856 sk->sk_tx_skb_cache = NULL;
857 pskb_trim(skb, 0);
858 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
859 skb_shinfo(skb)->tx_flags = 0;
860 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
861 return skb;
862 }
863 }
864 /* The TCP header must be at least 32-bit aligned. */
865 size = ALIGN(size, 4);
866
867 if (unlikely(tcp_under_memory_pressure(sk)))
868 sk_mem_reclaim_partial(sk);
869
870 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
871 if (likely(skb)) {
872 bool mem_scheduled;
873
874 if (force_schedule) {
875 mem_scheduled = true;
876 sk_forced_mem_schedule(sk, skb->truesize);
877 } else {
878 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
879 }
880 if (likely(mem_scheduled)) {
881 skb_reserve(skb, sk->sk_prot->max_header);
882 /*
883 * Make sure that we have exactly size bytes
884 * available to the caller, no more, no less.
885 */
886 skb->reserved_tailroom = skb->end - skb->tail - size;
887 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
888 return skb;
889 }
890 __kfree_skb(skb);
891 } else {
892 sk->sk_prot->enter_memory_pressure(sk);
893 sk_stream_moderate_sndbuf(sk);
894 }
895 return NULL;
896 }
897
898 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
899 int large_allowed)
900 {
901 struct tcp_sock *tp = tcp_sk(sk);
902 u32 new_size_goal, size_goal;
903
904 if (!large_allowed)
905 return mss_now;
906
907 /* Note : tcp_tso_autosize() will eventually split this later */
908 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
909 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
910
911 /* We try hard to avoid divides here */
912 size_goal = tp->gso_segs * mss_now;
913 if (unlikely(new_size_goal < size_goal ||
914 new_size_goal >= size_goal + mss_now)) {
915 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
916 sk->sk_gso_max_segs);
917 size_goal = tp->gso_segs * mss_now;
918 }
919
920 return max(size_goal, mss_now);
921 }
922
923 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
924 {
925 int mss_now;
926
927 mss_now = tcp_current_mss(sk);
928 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
929
930 return mss_now;
931 }
932
933 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
934 size_t size, int flags)
935 {
936 struct tcp_sock *tp = tcp_sk(sk);
937 int mss_now, size_goal;
938 int err;
939 ssize_t copied;
940 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
941
942 if (IS_ENABLED(CONFIG_DEBUG_VM) &&
943 WARN_ONCE(PageSlab(page), "page must not be a Slab one"))
944 return -EINVAL;
945
946 /* Wait for a connection to finish. One exception is TCP Fast Open
947 * (passive side) where data is allowed to be sent before a connection
948 * is fully established.
949 */
950 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
951 !tcp_passive_fastopen(sk)) {
952 err = sk_stream_wait_connect(sk, &timeo);
953 if (err != 0)
954 goto out_err;
955 }
956
957 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
958
959 mss_now = tcp_send_mss(sk, &size_goal, flags);
960 copied = 0;
961
962 err = -EPIPE;
963 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
964 goto out_err;
965
966 while (size > 0) {
967 struct sk_buff *skb = tcp_write_queue_tail(sk);
968 int copy, i;
969 bool can_coalesce;
970
971 if (!skb || (copy = size_goal - skb->len) <= 0 ||
972 !tcp_skb_can_collapse_to(skb)) {
973 new_segment:
974 if (!sk_stream_memory_free(sk))
975 goto wait_for_sndbuf;
976
977 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
978 tcp_rtx_and_write_queues_empty(sk));
979 if (!skb)
980 goto wait_for_memory;
981
982 skb_entail(sk, skb);
983 copy = size_goal;
984 }
985
986 if (copy > size)
987 copy = size;
988
989 i = skb_shinfo(skb)->nr_frags;
990 can_coalesce = skb_can_coalesce(skb, i, page, offset);
991 if (!can_coalesce && i >= sysctl_max_skb_frags) {
992 tcp_mark_push(tp, skb);
993 goto new_segment;
994 }
995 if (!sk_wmem_schedule(sk, copy))
996 goto wait_for_memory;
997
998 if (can_coalesce) {
999 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1000 } else {
1001 get_page(page);
1002 skb_fill_page_desc(skb, i, page, offset, copy);
1003 }
1004
1005 if (!(flags & MSG_NO_SHARED_FRAGS))
1006 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1007
1008 skb->len += copy;
1009 skb->data_len += copy;
1010 skb->truesize += copy;
1011 sk->sk_wmem_queued += copy;
1012 sk_mem_charge(sk, copy);
1013 skb->ip_summed = CHECKSUM_PARTIAL;
1014 tp->write_seq += copy;
1015 TCP_SKB_CB(skb)->end_seq += copy;
1016 tcp_skb_pcount_set(skb, 0);
1017
1018 if (!copied)
1019 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1020
1021 copied += copy;
1022 offset += copy;
1023 size -= copy;
1024 if (!size)
1025 goto out;
1026
1027 if (skb->len < size_goal || (flags & MSG_OOB))
1028 continue;
1029
1030 if (forced_push(tp)) {
1031 tcp_mark_push(tp, skb);
1032 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1033 } else if (skb == tcp_send_head(sk))
1034 tcp_push_one(sk, mss_now);
1035 continue;
1036
1037 wait_for_sndbuf:
1038 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1039 wait_for_memory:
1040 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1041 TCP_NAGLE_PUSH, size_goal);
1042
1043 err = sk_stream_wait_memory(sk, &timeo);
1044 if (err != 0)
1045 goto do_error;
1046
1047 mss_now = tcp_send_mss(sk, &size_goal, flags);
1048 }
1049
1050 out:
1051 if (copied) {
1052 tcp_tx_timestamp(sk, sk->sk_tsflags);
1053 if (!(flags & MSG_SENDPAGE_NOTLAST))
1054 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1055 }
1056 return copied;
1057
1058 do_error:
1059 if (copied)
1060 goto out;
1061 out_err:
1062 /* make sure we wake any epoll edge trigger waiter */
1063 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1064 err == -EAGAIN)) {
1065 sk->sk_write_space(sk);
1066 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1067 }
1068 return sk_stream_error(sk, flags, err);
1069 }
1070 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1071
1072 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1073 size_t size, int flags)
1074 {
1075 if (!(sk->sk_route_caps & NETIF_F_SG))
1076 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1077
1078 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1079
1080 return do_tcp_sendpages(sk, page, offset, size, flags);
1081 }
1082 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1083
1084 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1085 size_t size, int flags)
1086 {
1087 int ret;
1088
1089 lock_sock(sk);
1090 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1091 release_sock(sk);
1092
1093 return ret;
1094 }
1095 EXPORT_SYMBOL(tcp_sendpage);
1096
1097 void tcp_free_fastopen_req(struct tcp_sock *tp)
1098 {
1099 if (tp->fastopen_req) {
1100 kfree(tp->fastopen_req);
1101 tp->fastopen_req = NULL;
1102 }
1103 }
1104
1105 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1106 int *copied, size_t size,
1107 struct ubuf_info *uarg)
1108 {
1109 struct tcp_sock *tp = tcp_sk(sk);
1110 struct inet_sock *inet = inet_sk(sk);
1111 struct sockaddr *uaddr = msg->msg_name;
1112 int err, flags;
1113
1114 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1115 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1116 uaddr->sa_family == AF_UNSPEC))
1117 return -EOPNOTSUPP;
1118 if (tp->fastopen_req)
1119 return -EALREADY; /* Another Fast Open is in progress */
1120
1121 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1122 sk->sk_allocation);
1123 if (unlikely(!tp->fastopen_req))
1124 return -ENOBUFS;
1125 tp->fastopen_req->data = msg;
1126 tp->fastopen_req->size = size;
1127 tp->fastopen_req->uarg = uarg;
1128
1129 if (inet->defer_connect) {
1130 err = tcp_connect(sk);
1131 /* Same failure procedure as in tcp_v4/6_connect */
1132 if (err) {
1133 tcp_set_state(sk, TCP_CLOSE);
1134 inet->inet_dport = 0;
1135 sk->sk_route_caps = 0;
1136 }
1137 }
1138 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1139 err = __inet_stream_connect(sk->sk_socket, uaddr,
1140 msg->msg_namelen, flags, 1);
1141 /* fastopen_req could already be freed in __inet_stream_connect
1142 * if the connection times out or gets rst
1143 */
1144 if (tp->fastopen_req) {
1145 *copied = tp->fastopen_req->copied;
1146 tcp_free_fastopen_req(tp);
1147 inet->defer_connect = 0;
1148 }
1149 return err;
1150 }
1151
1152 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1153 {
1154 struct tcp_sock *tp = tcp_sk(sk);
1155 struct ubuf_info *uarg = NULL;
1156 struct sk_buff *skb;
1157 struct sockcm_cookie sockc;
1158 int flags, err, copied = 0;
1159 int mss_now = 0, size_goal, copied_syn = 0;
1160 bool process_backlog = false;
1161 bool zc = false;
1162 long timeo;
1163
1164 flags = msg->msg_flags;
1165
1166 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1167 skb = tcp_write_queue_tail(sk);
1168 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1169 if (!uarg) {
1170 err = -ENOBUFS;
1171 goto out_err;
1172 }
1173
1174 zc = sk->sk_route_caps & NETIF_F_SG;
1175 if (!zc)
1176 uarg->zerocopy = 0;
1177 }
1178
1179 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1180 !tp->repair) {
1181 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1182 if (err == -EINPROGRESS && copied_syn > 0)
1183 goto out;
1184 else if (err)
1185 goto out_err;
1186 }
1187
1188 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1189
1190 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1191
1192 /* Wait for a connection to finish. One exception is TCP Fast Open
1193 * (passive side) where data is allowed to be sent before a connection
1194 * is fully established.
1195 */
1196 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1197 !tcp_passive_fastopen(sk)) {
1198 err = sk_stream_wait_connect(sk, &timeo);
1199 if (err != 0)
1200 goto do_error;
1201 }
1202
1203 if (unlikely(tp->repair)) {
1204 if (tp->repair_queue == TCP_RECV_QUEUE) {
1205 copied = tcp_send_rcvq(sk, msg, size);
1206 goto out_nopush;
1207 }
1208
1209 err = -EINVAL;
1210 if (tp->repair_queue == TCP_NO_QUEUE)
1211 goto out_err;
1212
1213 /* 'common' sending to sendq */
1214 }
1215
1216 sockcm_init(&sockc, sk);
1217 if (msg->msg_controllen) {
1218 err = sock_cmsg_send(sk, msg, &sockc);
1219 if (unlikely(err)) {
1220 err = -EINVAL;
1221 goto out_err;
1222 }
1223 }
1224
1225 /* This should be in poll */
1226 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1227
1228 /* Ok commence sending. */
1229 copied = 0;
1230
1231 restart:
1232 mss_now = tcp_send_mss(sk, &size_goal, flags);
1233
1234 err = -EPIPE;
1235 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1236 goto do_error;
1237
1238 while (msg_data_left(msg)) {
1239 int copy = 0;
1240
1241 skb = tcp_write_queue_tail(sk);
1242 if (skb)
1243 copy = size_goal - skb->len;
1244
1245 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1246 bool first_skb;
1247
1248 new_segment:
1249 if (!sk_stream_memory_free(sk))
1250 goto wait_for_sndbuf;
1251
1252 if (process_backlog && sk_flush_backlog(sk)) {
1253 process_backlog = false;
1254 goto restart;
1255 }
1256 first_skb = tcp_rtx_and_write_queues_empty(sk);
1257 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1258 first_skb);
1259 if (!skb)
1260 goto wait_for_memory;
1261
1262 process_backlog = true;
1263 skb->ip_summed = CHECKSUM_PARTIAL;
1264
1265 skb_entail(sk, skb);
1266 copy = size_goal;
1267
1268 /* All packets are restored as if they have
1269 * already been sent. skb_mstamp_ns isn't set to
1270 * avoid wrong rtt estimation.
1271 */
1272 if (tp->repair)
1273 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1274 }
1275
1276 /* Try to append data to the end of skb. */
1277 if (copy > msg_data_left(msg))
1278 copy = msg_data_left(msg);
1279
1280 /* Where to copy to? */
1281 if (skb_availroom(skb) > 0 && !zc) {
1282 /* We have some space in skb head. Superb! */
1283 copy = min_t(int, copy, skb_availroom(skb));
1284 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1285 if (err)
1286 goto do_fault;
1287 } else if (!zc) {
1288 bool merge = true;
1289 int i = skb_shinfo(skb)->nr_frags;
1290 struct page_frag *pfrag = sk_page_frag(sk);
1291
1292 if (!sk_page_frag_refill(sk, pfrag))
1293 goto wait_for_memory;
1294
1295 if (!skb_can_coalesce(skb, i, pfrag->page,
1296 pfrag->offset)) {
1297 if (i >= sysctl_max_skb_frags) {
1298 tcp_mark_push(tp, skb);
1299 goto new_segment;
1300 }
1301 merge = false;
1302 }
1303
1304 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1305
1306 if (!sk_wmem_schedule(sk, copy))
1307 goto wait_for_memory;
1308
1309 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1310 pfrag->page,
1311 pfrag->offset,
1312 copy);
1313 if (err)
1314 goto do_error;
1315
1316 /* Update the skb. */
1317 if (merge) {
1318 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1319 } else {
1320 skb_fill_page_desc(skb, i, pfrag->page,
1321 pfrag->offset, copy);
1322 page_ref_inc(pfrag->page);
1323 }
1324 pfrag->offset += copy;
1325 } else {
1326 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1327 if (err == -EMSGSIZE || err == -EEXIST) {
1328 tcp_mark_push(tp, skb);
1329 goto new_segment;
1330 }
1331 if (err < 0)
1332 goto do_error;
1333 copy = err;
1334 }
1335
1336 if (!copied)
1337 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1338
1339 tp->write_seq += copy;
1340 TCP_SKB_CB(skb)->end_seq += copy;
1341 tcp_skb_pcount_set(skb, 0);
1342
1343 copied += copy;
1344 if (!msg_data_left(msg)) {
1345 if (unlikely(flags & MSG_EOR))
1346 TCP_SKB_CB(skb)->eor = 1;
1347 goto out;
1348 }
1349
1350 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1351 continue;
1352
1353 if (forced_push(tp)) {
1354 tcp_mark_push(tp, skb);
1355 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1356 } else if (skb == tcp_send_head(sk))
1357 tcp_push_one(sk, mss_now);
1358 continue;
1359
1360 wait_for_sndbuf:
1361 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1362 wait_for_memory:
1363 if (copied)
1364 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1365 TCP_NAGLE_PUSH, size_goal);
1366
1367 err = sk_stream_wait_memory(sk, &timeo);
1368 if (err != 0)
1369 goto do_error;
1370
1371 mss_now = tcp_send_mss(sk, &size_goal, flags);
1372 }
1373
1374 out:
1375 if (copied) {
1376 tcp_tx_timestamp(sk, sockc.tsflags);
1377 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1378 }
1379 out_nopush:
1380 sock_zerocopy_put(uarg);
1381 return copied + copied_syn;
1382
1383 do_fault:
1384 if (!skb->len) {
1385 tcp_unlink_write_queue(skb, sk);
1386 /* It is the one place in all of TCP, except connection
1387 * reset, where we can be unlinking the send_head.
1388 */
1389 if (tcp_write_queue_empty(sk))
1390 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1391 sk_wmem_free_skb(sk, skb);
1392 }
1393
1394 do_error:
1395 if (copied + copied_syn)
1396 goto out;
1397 out_err:
1398 sock_zerocopy_put_abort(uarg, true);
1399 err = sk_stream_error(sk, flags, err);
1400 /* make sure we wake any epoll edge trigger waiter */
1401 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1402 err == -EAGAIN)) {
1403 sk->sk_write_space(sk);
1404 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1405 }
1406 return err;
1407 }
1408 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1409
1410 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1411 {
1412 int ret;
1413
1414 lock_sock(sk);
1415 ret = tcp_sendmsg_locked(sk, msg, size);
1416 release_sock(sk);
1417
1418 return ret;
1419 }
1420 EXPORT_SYMBOL(tcp_sendmsg);
1421
1422 /*
1423 * Handle reading urgent data. BSD has very simple semantics for
1424 * this, no blocking and very strange errors 8)
1425 */
1426
1427 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1428 {
1429 struct tcp_sock *tp = tcp_sk(sk);
1430
1431 /* No URG data to read. */
1432 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1433 tp->urg_data == TCP_URG_READ)
1434 return -EINVAL; /* Yes this is right ! */
1435
1436 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1437 return -ENOTCONN;
1438
1439 if (tp->urg_data & TCP_URG_VALID) {
1440 int err = 0;
1441 char c = tp->urg_data;
1442
1443 if (!(flags & MSG_PEEK))
1444 tp->urg_data = TCP_URG_READ;
1445
1446 /* Read urgent data. */
1447 msg->msg_flags |= MSG_OOB;
1448
1449 if (len > 0) {
1450 if (!(flags & MSG_TRUNC))
1451 err = memcpy_to_msg(msg, &c, 1);
1452 len = 1;
1453 } else
1454 msg->msg_flags |= MSG_TRUNC;
1455
1456 return err ? -EFAULT : len;
1457 }
1458
1459 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1460 return 0;
1461
1462 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1463 * the available implementations agree in this case:
1464 * this call should never block, independent of the
1465 * blocking state of the socket.
1466 * Mike <pall@rz.uni-karlsruhe.de>
1467 */
1468 return -EAGAIN;
1469 }
1470
1471 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1472 {
1473 struct sk_buff *skb;
1474 int copied = 0, err = 0;
1475
1476 /* XXX -- need to support SO_PEEK_OFF */
1477
1478 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1479 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1480 if (err)
1481 return err;
1482 copied += skb->len;
1483 }
1484
1485 skb_queue_walk(&sk->sk_write_queue, skb) {
1486 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1487 if (err)
1488 break;
1489
1490 copied += skb->len;
1491 }
1492
1493 return err ?: copied;
1494 }
1495
1496 /* Clean up the receive buffer for full frames taken by the user,
1497 * then send an ACK if necessary. COPIED is the number of bytes
1498 * tcp_recvmsg has given to the user so far, it speeds up the
1499 * calculation of whether or not we must ACK for the sake of
1500 * a window update.
1501 */
1502 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1503 {
1504 struct tcp_sock *tp = tcp_sk(sk);
1505 bool time_to_ack = false;
1506
1507 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1508
1509 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1510 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1511 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1512
1513 if (inet_csk_ack_scheduled(sk)) {
1514 const struct inet_connection_sock *icsk = inet_csk(sk);
1515 /* Delayed ACKs frequently hit locked sockets during bulk
1516 * receive. */
1517 if (icsk->icsk_ack.blocked ||
1518 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1519 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1520 /*
1521 * If this read emptied read buffer, we send ACK, if
1522 * connection is not bidirectional, user drained
1523 * receive buffer and there was a small segment
1524 * in queue.
1525 */
1526 (copied > 0 &&
1527 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1528 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1529 !inet_csk_in_pingpong_mode(sk))) &&
1530 !atomic_read(&sk->sk_rmem_alloc)))
1531 time_to_ack = true;
1532 }
1533
1534 /* We send an ACK if we can now advertise a non-zero window
1535 * which has been raised "significantly".
1536 *
1537 * Even if window raised up to infinity, do not send window open ACK
1538 * in states, where we will not receive more. It is useless.
1539 */
1540 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1541 __u32 rcv_window_now = tcp_receive_window(tp);
1542
1543 /* Optimize, __tcp_select_window() is not cheap. */
1544 if (2*rcv_window_now <= tp->window_clamp) {
1545 __u32 new_window = __tcp_select_window(sk);
1546
1547 /* Send ACK now, if this read freed lots of space
1548 * in our buffer. Certainly, new_window is new window.
1549 * We can advertise it now, if it is not less than current one.
1550 * "Lots" means "at least twice" here.
1551 */
1552 if (new_window && new_window >= 2 * rcv_window_now)
1553 time_to_ack = true;
1554 }
1555 }
1556 if (time_to_ack)
1557 tcp_send_ack(sk);
1558 }
1559
1560 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1561 {
1562 struct sk_buff *skb;
1563 u32 offset;
1564
1565 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1566 offset = seq - TCP_SKB_CB(skb)->seq;
1567 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1568 pr_err_once("%s: found a SYN, please report !\n", __func__);
1569 offset--;
1570 }
1571 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1572 *off = offset;
1573 return skb;
1574 }
1575 /* This looks weird, but this can happen if TCP collapsing
1576 * splitted a fat GRO packet, while we released socket lock
1577 * in skb_splice_bits()
1578 */
1579 sk_eat_skb(sk, skb);
1580 }
1581 return NULL;
1582 }
1583
1584 /*
1585 * This routine provides an alternative to tcp_recvmsg() for routines
1586 * that would like to handle copying from skbuffs directly in 'sendfile'
1587 * fashion.
1588 * Note:
1589 * - It is assumed that the socket was locked by the caller.
1590 * - The routine does not block.
1591 * - At present, there is no support for reading OOB data
1592 * or for 'peeking' the socket using this routine
1593 * (although both would be easy to implement).
1594 */
1595 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1596 sk_read_actor_t recv_actor)
1597 {
1598 struct sk_buff *skb;
1599 struct tcp_sock *tp = tcp_sk(sk);
1600 u32 seq = tp->copied_seq;
1601 u32 offset;
1602 int copied = 0;
1603
1604 if (sk->sk_state == TCP_LISTEN)
1605 return -ENOTCONN;
1606 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1607 if (offset < skb->len) {
1608 int used;
1609 size_t len;
1610
1611 len = skb->len - offset;
1612 /* Stop reading if we hit a patch of urgent data */
1613 if (tp->urg_data) {
1614 u32 urg_offset = tp->urg_seq - seq;
1615 if (urg_offset < len)
1616 len = urg_offset;
1617 if (!len)
1618 break;
1619 }
1620 used = recv_actor(desc, skb, offset, len);
1621 if (used <= 0) {
1622 if (!copied)
1623 copied = used;
1624 break;
1625 } else if (used <= len) {
1626 seq += used;
1627 copied += used;
1628 offset += used;
1629 }
1630 /* If recv_actor drops the lock (e.g. TCP splice
1631 * receive) the skb pointer might be invalid when
1632 * getting here: tcp_collapse might have deleted it
1633 * while aggregating skbs from the socket queue.
1634 */
1635 skb = tcp_recv_skb(sk, seq - 1, &offset);
1636 if (!skb)
1637 break;
1638 /* TCP coalescing might have appended data to the skb.
1639 * Try to splice more frags
1640 */
1641 if (offset + 1 != skb->len)
1642 continue;
1643 }
1644 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1645 sk_eat_skb(sk, skb);
1646 ++seq;
1647 break;
1648 }
1649 sk_eat_skb(sk, skb);
1650 if (!desc->count)
1651 break;
1652 tp->copied_seq = seq;
1653 }
1654 tp->copied_seq = seq;
1655
1656 tcp_rcv_space_adjust(sk);
1657
1658 /* Clean up data we have read: This will do ACK frames. */
1659 if (copied > 0) {
1660 tcp_recv_skb(sk, seq, &offset);
1661 tcp_cleanup_rbuf(sk, copied);
1662 }
1663 return copied;
1664 }
1665 EXPORT_SYMBOL(tcp_read_sock);
1666
1667 int tcp_peek_len(struct socket *sock)
1668 {
1669 return tcp_inq(sock->sk);
1670 }
1671 EXPORT_SYMBOL(tcp_peek_len);
1672
1673 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1674 int tcp_set_rcvlowat(struct sock *sk, int val)
1675 {
1676 int cap;
1677
1678 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1679 cap = sk->sk_rcvbuf >> 1;
1680 else
1681 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1682 val = min(val, cap);
1683 sk->sk_rcvlowat = val ? : 1;
1684
1685 /* Check if we need to signal EPOLLIN right now */
1686 tcp_data_ready(sk);
1687
1688 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1689 return 0;
1690
1691 val <<= 1;
1692 if (val > sk->sk_rcvbuf) {
1693 sk->sk_rcvbuf = val;
1694 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1695 }
1696 return 0;
1697 }
1698 EXPORT_SYMBOL(tcp_set_rcvlowat);
1699
1700 #ifdef CONFIG_MMU
1701 static const struct vm_operations_struct tcp_vm_ops = {
1702 };
1703
1704 int tcp_mmap(struct file *file, struct socket *sock,
1705 struct vm_area_struct *vma)
1706 {
1707 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1708 return -EPERM;
1709 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1710
1711 /* Instruct vm_insert_page() to not down_read(mmap_sem) */
1712 vma->vm_flags |= VM_MIXEDMAP;
1713
1714 vma->vm_ops = &tcp_vm_ops;
1715 return 0;
1716 }
1717 EXPORT_SYMBOL(tcp_mmap);
1718
1719 static int tcp_zerocopy_receive(struct sock *sk,
1720 struct tcp_zerocopy_receive *zc)
1721 {
1722 unsigned long address = (unsigned long)zc->address;
1723 const skb_frag_t *frags = NULL;
1724 u32 length = 0, seq, offset;
1725 struct vm_area_struct *vma;
1726 struct sk_buff *skb = NULL;
1727 struct tcp_sock *tp;
1728 int inq;
1729 int ret;
1730
1731 if (address & (PAGE_SIZE - 1) || address != zc->address)
1732 return -EINVAL;
1733
1734 if (sk->sk_state == TCP_LISTEN)
1735 return -ENOTCONN;
1736
1737 sock_rps_record_flow(sk);
1738
1739 down_read(&current->mm->mmap_sem);
1740
1741 ret = -EINVAL;
1742 vma = find_vma(current->mm, address);
1743 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops)
1744 goto out;
1745 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address);
1746
1747 tp = tcp_sk(sk);
1748 seq = tp->copied_seq;
1749 inq = tcp_inq(sk);
1750 zc->length = min_t(u32, zc->length, inq);
1751 zc->length &= ~(PAGE_SIZE - 1);
1752 if (zc->length) {
1753 zap_page_range(vma, address, zc->length);
1754 zc->recv_skip_hint = 0;
1755 } else {
1756 zc->recv_skip_hint = inq;
1757 }
1758 ret = 0;
1759 while (length + PAGE_SIZE <= zc->length) {
1760 if (zc->recv_skip_hint < PAGE_SIZE) {
1761 if (skb) {
1762 skb = skb->next;
1763 offset = seq - TCP_SKB_CB(skb)->seq;
1764 } else {
1765 skb = tcp_recv_skb(sk, seq, &offset);
1766 }
1767
1768 zc->recv_skip_hint = skb->len - offset;
1769 offset -= skb_headlen(skb);
1770 if ((int)offset < 0 || skb_has_frag_list(skb))
1771 break;
1772 frags = skb_shinfo(skb)->frags;
1773 while (offset) {
1774 if (frags->size > offset)
1775 goto out;
1776 offset -= frags->size;
1777 frags++;
1778 }
1779 }
1780 if (frags->size != PAGE_SIZE || frags->page_offset) {
1781 int remaining = zc->recv_skip_hint;
1782
1783 while (remaining && (frags->size != PAGE_SIZE ||
1784 frags->page_offset)) {
1785 remaining -= frags->size;
1786 frags++;
1787 }
1788 zc->recv_skip_hint -= remaining;
1789 break;
1790 }
1791 ret = vm_insert_page(vma, address + length,
1792 skb_frag_page(frags));
1793 if (ret)
1794 break;
1795 length += PAGE_SIZE;
1796 seq += PAGE_SIZE;
1797 zc->recv_skip_hint -= PAGE_SIZE;
1798 frags++;
1799 }
1800 out:
1801 up_read(&current->mm->mmap_sem);
1802 if (length) {
1803 tp->copied_seq = seq;
1804 tcp_rcv_space_adjust(sk);
1805
1806 /* Clean up data we have read: This will do ACK frames. */
1807 tcp_recv_skb(sk, seq, &offset);
1808 tcp_cleanup_rbuf(sk, length);
1809 ret = 0;
1810 if (length == zc->length)
1811 zc->recv_skip_hint = 0;
1812 } else {
1813 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1814 ret = -EIO;
1815 }
1816 zc->length = length;
1817 return ret;
1818 }
1819 #endif
1820
1821 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1822 struct scm_timestamping_internal *tss)
1823 {
1824 if (skb->tstamp)
1825 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1826 else
1827 tss->ts[0] = (struct timespec64) {0};
1828
1829 if (skb_hwtstamps(skb)->hwtstamp)
1830 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1831 else
1832 tss->ts[2] = (struct timespec64) {0};
1833 }
1834
1835 /* Similar to __sock_recv_timestamp, but does not require an skb */
1836 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1837 struct scm_timestamping_internal *tss)
1838 {
1839 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
1840 bool has_timestamping = false;
1841
1842 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1843 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1844 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1845 if (new_tstamp) {
1846 struct __kernel_timespec kts = {tss->ts[0].tv_sec, tss->ts[0].tv_nsec};
1847
1848 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
1849 sizeof(kts), &kts);
1850 } else {
1851 struct timespec ts_old = timespec64_to_timespec(tss->ts[0]);
1852
1853 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
1854 sizeof(ts_old), &ts_old);
1855 }
1856 } else {
1857 if (new_tstamp) {
1858 struct __kernel_sock_timeval stv;
1859
1860 stv.tv_sec = tss->ts[0].tv_sec;
1861 stv.tv_usec = tss->ts[0].tv_nsec / 1000;
1862 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
1863 sizeof(stv), &stv);
1864 } else {
1865 struct __kernel_old_timeval tv;
1866
1867 tv.tv_sec = tss->ts[0].tv_sec;
1868 tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1869 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
1870 sizeof(tv), &tv);
1871 }
1872 }
1873 }
1874
1875 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1876 has_timestamping = true;
1877 else
1878 tss->ts[0] = (struct timespec64) {0};
1879 }
1880
1881 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1882 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1883 has_timestamping = true;
1884 else
1885 tss->ts[2] = (struct timespec64) {0};
1886 }
1887
1888 if (has_timestamping) {
1889 tss->ts[1] = (struct timespec64) {0};
1890 if (sock_flag(sk, SOCK_TSTAMP_NEW))
1891 put_cmsg_scm_timestamping64(msg, tss);
1892 else
1893 put_cmsg_scm_timestamping(msg, tss);
1894 }
1895 }
1896
1897 static int tcp_inq_hint(struct sock *sk)
1898 {
1899 const struct tcp_sock *tp = tcp_sk(sk);
1900 u32 copied_seq = READ_ONCE(tp->copied_seq);
1901 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
1902 int inq;
1903
1904 inq = rcv_nxt - copied_seq;
1905 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
1906 lock_sock(sk);
1907 inq = tp->rcv_nxt - tp->copied_seq;
1908 release_sock(sk);
1909 }
1910 /* After receiving a FIN, tell the user-space to continue reading
1911 * by returning a non-zero inq.
1912 */
1913 if (inq == 0 && sock_flag(sk, SOCK_DONE))
1914 inq = 1;
1915 return inq;
1916 }
1917
1918 /*
1919 * This routine copies from a sock struct into the user buffer.
1920 *
1921 * Technical note: in 2.3 we work on _locked_ socket, so that
1922 * tricks with *seq access order and skb->users are not required.
1923 * Probably, code can be easily improved even more.
1924 */
1925
1926 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1927 int flags, int *addr_len)
1928 {
1929 struct tcp_sock *tp = tcp_sk(sk);
1930 int copied = 0;
1931 u32 peek_seq;
1932 u32 *seq;
1933 unsigned long used;
1934 int err, inq;
1935 int target; /* Read at least this many bytes */
1936 long timeo;
1937 struct sk_buff *skb, *last;
1938 u32 urg_hole = 0;
1939 struct scm_timestamping_internal tss;
1940 bool has_tss = false;
1941 bool has_cmsg;
1942
1943 if (unlikely(flags & MSG_ERRQUEUE))
1944 return inet_recv_error(sk, msg, len, addr_len);
1945
1946 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1947 (sk->sk_state == TCP_ESTABLISHED))
1948 sk_busy_loop(sk, nonblock);
1949
1950 lock_sock(sk);
1951
1952 err = -ENOTCONN;
1953 if (sk->sk_state == TCP_LISTEN)
1954 goto out;
1955
1956 has_cmsg = tp->recvmsg_inq;
1957 timeo = sock_rcvtimeo(sk, nonblock);
1958
1959 /* Urgent data needs to be handled specially. */
1960 if (flags & MSG_OOB)
1961 goto recv_urg;
1962
1963 if (unlikely(tp->repair)) {
1964 err = -EPERM;
1965 if (!(flags & MSG_PEEK))
1966 goto out;
1967
1968 if (tp->repair_queue == TCP_SEND_QUEUE)
1969 goto recv_sndq;
1970
1971 err = -EINVAL;
1972 if (tp->repair_queue == TCP_NO_QUEUE)
1973 goto out;
1974
1975 /* 'common' recv queue MSG_PEEK-ing */
1976 }
1977
1978 seq = &tp->copied_seq;
1979 if (flags & MSG_PEEK) {
1980 peek_seq = tp->copied_seq;
1981 seq = &peek_seq;
1982 }
1983
1984 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1985
1986 do {
1987 u32 offset;
1988
1989 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1990 if (tp->urg_data && tp->urg_seq == *seq) {
1991 if (copied)
1992 break;
1993 if (signal_pending(current)) {
1994 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1995 break;
1996 }
1997 }
1998
1999 /* Next get a buffer. */
2000
2001 last = skb_peek_tail(&sk->sk_receive_queue);
2002 skb_queue_walk(&sk->sk_receive_queue, skb) {
2003 last = skb;
2004 /* Now that we have two receive queues this
2005 * shouldn't happen.
2006 */
2007 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2008 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2009 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2010 flags))
2011 break;
2012
2013 offset = *seq - TCP_SKB_CB(skb)->seq;
2014 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2015 pr_err_once("%s: found a SYN, please report !\n", __func__);
2016 offset--;
2017 }
2018 if (offset < skb->len)
2019 goto found_ok_skb;
2020 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2021 goto found_fin_ok;
2022 WARN(!(flags & MSG_PEEK),
2023 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2024 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2025 }
2026
2027 /* Well, if we have backlog, try to process it now yet. */
2028
2029 if (copied >= target && !sk->sk_backlog.tail)
2030 break;
2031
2032 if (copied) {
2033 if (sk->sk_err ||
2034 sk->sk_state == TCP_CLOSE ||
2035 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2036 !timeo ||
2037 signal_pending(current))
2038 break;
2039 } else {
2040 if (sock_flag(sk, SOCK_DONE))
2041 break;
2042
2043 if (sk->sk_err) {
2044 copied = sock_error(sk);
2045 break;
2046 }
2047
2048 if (sk->sk_shutdown & RCV_SHUTDOWN)
2049 break;
2050
2051 if (sk->sk_state == TCP_CLOSE) {
2052 /* This occurs when user tries to read
2053 * from never connected socket.
2054 */
2055 copied = -ENOTCONN;
2056 break;
2057 }
2058
2059 if (!timeo) {
2060 copied = -EAGAIN;
2061 break;
2062 }
2063
2064 if (signal_pending(current)) {
2065 copied = sock_intr_errno(timeo);
2066 break;
2067 }
2068 }
2069
2070 tcp_cleanup_rbuf(sk, copied);
2071
2072 if (copied >= target) {
2073 /* Do not sleep, just process backlog. */
2074 release_sock(sk);
2075 lock_sock(sk);
2076 } else {
2077 sk_wait_data(sk, &timeo, last);
2078 }
2079
2080 if ((flags & MSG_PEEK) &&
2081 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2082 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2083 current->comm,
2084 task_pid_nr(current));
2085 peek_seq = tp->copied_seq;
2086 }
2087 continue;
2088
2089 found_ok_skb:
2090 /* Ok so how much can we use? */
2091 used = skb->len - offset;
2092 if (len < used)
2093 used = len;
2094
2095 /* Do we have urgent data here? */
2096 if (tp->urg_data) {
2097 u32 urg_offset = tp->urg_seq - *seq;
2098 if (urg_offset < used) {
2099 if (!urg_offset) {
2100 if (!sock_flag(sk, SOCK_URGINLINE)) {
2101 ++*seq;
2102 urg_hole++;
2103 offset++;
2104 used--;
2105 if (!used)
2106 goto skip_copy;
2107 }
2108 } else
2109 used = urg_offset;
2110 }
2111 }
2112
2113 if (!(flags & MSG_TRUNC)) {
2114 err = skb_copy_datagram_msg(skb, offset, msg, used);
2115 if (err) {
2116 /* Exception. Bailout! */
2117 if (!copied)
2118 copied = -EFAULT;
2119 break;
2120 }
2121 }
2122
2123 *seq += used;
2124 copied += used;
2125 len -= used;
2126
2127 tcp_rcv_space_adjust(sk);
2128
2129 skip_copy:
2130 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2131 tp->urg_data = 0;
2132 tcp_fast_path_check(sk);
2133 }
2134 if (used + offset < skb->len)
2135 continue;
2136
2137 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2138 tcp_update_recv_tstamps(skb, &tss);
2139 has_tss = true;
2140 has_cmsg = true;
2141 }
2142 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2143 goto found_fin_ok;
2144 if (!(flags & MSG_PEEK))
2145 sk_eat_skb(sk, skb);
2146 continue;
2147
2148 found_fin_ok:
2149 /* Process the FIN. */
2150 ++*seq;
2151 if (!(flags & MSG_PEEK))
2152 sk_eat_skb(sk, skb);
2153 break;
2154 } while (len > 0);
2155
2156 /* According to UNIX98, msg_name/msg_namelen are ignored
2157 * on connected socket. I was just happy when found this 8) --ANK
2158 */
2159
2160 /* Clean up data we have read: This will do ACK frames. */
2161 tcp_cleanup_rbuf(sk, copied);
2162
2163 release_sock(sk);
2164
2165 if (has_cmsg) {
2166 if (has_tss)
2167 tcp_recv_timestamp(msg, sk, &tss);
2168 if (tp->recvmsg_inq) {
2169 inq = tcp_inq_hint(sk);
2170 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2171 }
2172 }
2173
2174 return copied;
2175
2176 out:
2177 release_sock(sk);
2178 return err;
2179
2180 recv_urg:
2181 err = tcp_recv_urg(sk, msg, len, flags);
2182 goto out;
2183
2184 recv_sndq:
2185 err = tcp_peek_sndq(sk, msg, len);
2186 goto out;
2187 }
2188 EXPORT_SYMBOL(tcp_recvmsg);
2189
2190 void tcp_set_state(struct sock *sk, int state)
2191 {
2192 int oldstate = sk->sk_state;
2193
2194 /* We defined a new enum for TCP states that are exported in BPF
2195 * so as not force the internal TCP states to be frozen. The
2196 * following checks will detect if an internal state value ever
2197 * differs from the BPF value. If this ever happens, then we will
2198 * need to remap the internal value to the BPF value before calling
2199 * tcp_call_bpf_2arg.
2200 */
2201 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2202 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2203 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2204 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2205 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2206 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2207 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2208 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2209 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2210 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2211 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2212 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2213 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2214
2215 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2216 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2217
2218 switch (state) {
2219 case TCP_ESTABLISHED:
2220 if (oldstate != TCP_ESTABLISHED)
2221 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2222 break;
2223
2224 case TCP_CLOSE:
2225 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2226 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2227
2228 sk->sk_prot->unhash(sk);
2229 if (inet_csk(sk)->icsk_bind_hash &&
2230 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2231 inet_put_port(sk);
2232 /* fall through */
2233 default:
2234 if (oldstate == TCP_ESTABLISHED)
2235 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2236 }
2237
2238 /* Change state AFTER socket is unhashed to avoid closed
2239 * socket sitting in hash tables.
2240 */
2241 inet_sk_state_store(sk, state);
2242 }
2243 EXPORT_SYMBOL_GPL(tcp_set_state);
2244
2245 /*
2246 * State processing on a close. This implements the state shift for
2247 * sending our FIN frame. Note that we only send a FIN for some
2248 * states. A shutdown() may have already sent the FIN, or we may be
2249 * closed.
2250 */
2251
2252 static const unsigned char new_state[16] = {
2253 /* current state: new state: action: */
2254 [0 /* (Invalid) */] = TCP_CLOSE,
2255 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2256 [TCP_SYN_SENT] = TCP_CLOSE,
2257 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2258 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2259 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2260 [TCP_TIME_WAIT] = TCP_CLOSE,
2261 [TCP_CLOSE] = TCP_CLOSE,
2262 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2263 [TCP_LAST_ACK] = TCP_LAST_ACK,
2264 [TCP_LISTEN] = TCP_CLOSE,
2265 [TCP_CLOSING] = TCP_CLOSING,
2266 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2267 };
2268
2269 static int tcp_close_state(struct sock *sk)
2270 {
2271 int next = (int)new_state[sk->sk_state];
2272 int ns = next & TCP_STATE_MASK;
2273
2274 tcp_set_state(sk, ns);
2275
2276 return next & TCP_ACTION_FIN;
2277 }
2278
2279 /*
2280 * Shutdown the sending side of a connection. Much like close except
2281 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2282 */
2283
2284 void tcp_shutdown(struct sock *sk, int how)
2285 {
2286 /* We need to grab some memory, and put together a FIN,
2287 * and then put it into the queue to be sent.
2288 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2289 */
2290 if (!(how & SEND_SHUTDOWN))
2291 return;
2292
2293 /* If we've already sent a FIN, or it's a closed state, skip this. */
2294 if ((1 << sk->sk_state) &
2295 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2296 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2297 /* Clear out any half completed packets. FIN if needed. */
2298 if (tcp_close_state(sk))
2299 tcp_send_fin(sk);
2300 }
2301 }
2302 EXPORT_SYMBOL(tcp_shutdown);
2303
2304 bool tcp_check_oom(struct sock *sk, int shift)
2305 {
2306 bool too_many_orphans, out_of_socket_memory;
2307
2308 too_many_orphans = tcp_too_many_orphans(sk, shift);
2309 out_of_socket_memory = tcp_out_of_memory(sk);
2310
2311 if (too_many_orphans)
2312 net_info_ratelimited("too many orphaned sockets\n");
2313 if (out_of_socket_memory)
2314 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2315 return too_many_orphans || out_of_socket_memory;
2316 }
2317
2318 void tcp_close(struct sock *sk, long timeout)
2319 {
2320 struct sk_buff *skb;
2321 int data_was_unread = 0;
2322 int state;
2323
2324 lock_sock(sk);
2325 sk->sk_shutdown = SHUTDOWN_MASK;
2326
2327 if (sk->sk_state == TCP_LISTEN) {
2328 tcp_set_state(sk, TCP_CLOSE);
2329
2330 /* Special case. */
2331 inet_csk_listen_stop(sk);
2332
2333 goto adjudge_to_death;
2334 }
2335
2336 /* We need to flush the recv. buffs. We do this only on the
2337 * descriptor close, not protocol-sourced closes, because the
2338 * reader process may not have drained the data yet!
2339 */
2340 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2341 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2342
2343 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2344 len--;
2345 data_was_unread += len;
2346 __kfree_skb(skb);
2347 }
2348
2349 sk_mem_reclaim(sk);
2350
2351 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2352 if (sk->sk_state == TCP_CLOSE)
2353 goto adjudge_to_death;
2354
2355 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2356 * data was lost. To witness the awful effects of the old behavior of
2357 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2358 * GET in an FTP client, suspend the process, wait for the client to
2359 * advertise a zero window, then kill -9 the FTP client, wheee...
2360 * Note: timeout is always zero in such a case.
2361 */
2362 if (unlikely(tcp_sk(sk)->repair)) {
2363 sk->sk_prot->disconnect(sk, 0);
2364 } else if (data_was_unread) {
2365 /* Unread data was tossed, zap the connection. */
2366 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2367 tcp_set_state(sk, TCP_CLOSE);
2368 tcp_send_active_reset(sk, sk->sk_allocation);
2369 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2370 /* Check zero linger _after_ checking for unread data. */
2371 sk->sk_prot->disconnect(sk, 0);
2372 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2373 } else if (tcp_close_state(sk)) {
2374 /* We FIN if the application ate all the data before
2375 * zapping the connection.
2376 */
2377
2378 /* RED-PEN. Formally speaking, we have broken TCP state
2379 * machine. State transitions:
2380 *
2381 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2382 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2383 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2384 *
2385 * are legal only when FIN has been sent (i.e. in window),
2386 * rather than queued out of window. Purists blame.
2387 *
2388 * F.e. "RFC state" is ESTABLISHED,
2389 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2390 *
2391 * The visible declinations are that sometimes
2392 * we enter time-wait state, when it is not required really
2393 * (harmless), do not send active resets, when they are
2394 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2395 * they look as CLOSING or LAST_ACK for Linux)
2396 * Probably, I missed some more holelets.
2397 * --ANK
2398 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2399 * in a single packet! (May consider it later but will
2400 * probably need API support or TCP_CORK SYN-ACK until
2401 * data is written and socket is closed.)
2402 */
2403 tcp_send_fin(sk);
2404 }
2405
2406 sk_stream_wait_close(sk, timeout);
2407
2408 adjudge_to_death:
2409 state = sk->sk_state;
2410 sock_hold(sk);
2411 sock_orphan(sk);
2412
2413 local_bh_disable();
2414 bh_lock_sock(sk);
2415 /* remove backlog if any, without releasing ownership. */
2416 __release_sock(sk);
2417
2418 percpu_counter_inc(sk->sk_prot->orphan_count);
2419
2420 /* Have we already been destroyed by a softirq or backlog? */
2421 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2422 goto out;
2423
2424 /* This is a (useful) BSD violating of the RFC. There is a
2425 * problem with TCP as specified in that the other end could
2426 * keep a socket open forever with no application left this end.
2427 * We use a 1 minute timeout (about the same as BSD) then kill
2428 * our end. If they send after that then tough - BUT: long enough
2429 * that we won't make the old 4*rto = almost no time - whoops
2430 * reset mistake.
2431 *
2432 * Nope, it was not mistake. It is really desired behaviour
2433 * f.e. on http servers, when such sockets are useless, but
2434 * consume significant resources. Let's do it with special
2435 * linger2 option. --ANK
2436 */
2437
2438 if (sk->sk_state == TCP_FIN_WAIT2) {
2439 struct tcp_sock *tp = tcp_sk(sk);
2440 if (tp->linger2 < 0) {
2441 tcp_set_state(sk, TCP_CLOSE);
2442 tcp_send_active_reset(sk, GFP_ATOMIC);
2443 __NET_INC_STATS(sock_net(sk),
2444 LINUX_MIB_TCPABORTONLINGER);
2445 } else {
2446 const int tmo = tcp_fin_time(sk);
2447
2448 if (tmo > TCP_TIMEWAIT_LEN) {
2449 inet_csk_reset_keepalive_timer(sk,
2450 tmo - TCP_TIMEWAIT_LEN);
2451 } else {
2452 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2453 goto out;
2454 }
2455 }
2456 }
2457 if (sk->sk_state != TCP_CLOSE) {
2458 sk_mem_reclaim(sk);
2459 if (tcp_check_oom(sk, 0)) {
2460 tcp_set_state(sk, TCP_CLOSE);
2461 tcp_send_active_reset(sk, GFP_ATOMIC);
2462 __NET_INC_STATS(sock_net(sk),
2463 LINUX_MIB_TCPABORTONMEMORY);
2464 } else if (!check_net(sock_net(sk))) {
2465 /* Not possible to send reset; just close */
2466 tcp_set_state(sk, TCP_CLOSE);
2467 }
2468 }
2469
2470 if (sk->sk_state == TCP_CLOSE) {
2471 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2472 /* We could get here with a non-NULL req if the socket is
2473 * aborted (e.g., closed with unread data) before 3WHS
2474 * finishes.
2475 */
2476 if (req)
2477 reqsk_fastopen_remove(sk, req, false);
2478 inet_csk_destroy_sock(sk);
2479 }
2480 /* Otherwise, socket is reprieved until protocol close. */
2481
2482 out:
2483 bh_unlock_sock(sk);
2484 local_bh_enable();
2485 release_sock(sk);
2486 sock_put(sk);
2487 }
2488 EXPORT_SYMBOL(tcp_close);
2489
2490 /* These states need RST on ABORT according to RFC793 */
2491
2492 static inline bool tcp_need_reset(int state)
2493 {
2494 return (1 << state) &
2495 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2496 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2497 }
2498
2499 static void tcp_rtx_queue_purge(struct sock *sk)
2500 {
2501 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2502
2503 while (p) {
2504 struct sk_buff *skb = rb_to_skb(p);
2505
2506 p = rb_next(p);
2507 /* Since we are deleting whole queue, no need to
2508 * list_del(&skb->tcp_tsorted_anchor)
2509 */
2510 tcp_rtx_queue_unlink(skb, sk);
2511 sk_wmem_free_skb(sk, skb);
2512 }
2513 }
2514
2515 void tcp_write_queue_purge(struct sock *sk)
2516 {
2517 struct sk_buff *skb;
2518
2519 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2520 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2521 tcp_skb_tsorted_anchor_cleanup(skb);
2522 sk_wmem_free_skb(sk, skb);
2523 }
2524 tcp_rtx_queue_purge(sk);
2525 skb = sk->sk_tx_skb_cache;
2526 if (skb) {
2527 __kfree_skb(skb);
2528 sk->sk_tx_skb_cache = NULL;
2529 }
2530 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2531 sk_mem_reclaim(sk);
2532 tcp_clear_all_retrans_hints(tcp_sk(sk));
2533 tcp_sk(sk)->packets_out = 0;
2534 inet_csk(sk)->icsk_backoff = 0;
2535 }
2536
2537 int tcp_disconnect(struct sock *sk, int flags)
2538 {
2539 struct inet_sock *inet = inet_sk(sk);
2540 struct inet_connection_sock *icsk = inet_csk(sk);
2541 struct tcp_sock *tp = tcp_sk(sk);
2542 int old_state = sk->sk_state;
2543
2544 if (old_state != TCP_CLOSE)
2545 tcp_set_state(sk, TCP_CLOSE);
2546
2547 /* ABORT function of RFC793 */
2548 if (old_state == TCP_LISTEN) {
2549 inet_csk_listen_stop(sk);
2550 } else if (unlikely(tp->repair)) {
2551 sk->sk_err = ECONNABORTED;
2552 } else if (tcp_need_reset(old_state) ||
2553 (tp->snd_nxt != tp->write_seq &&
2554 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2555 /* The last check adjusts for discrepancy of Linux wrt. RFC
2556 * states
2557 */
2558 tcp_send_active_reset(sk, gfp_any());
2559 sk->sk_err = ECONNRESET;
2560 } else if (old_state == TCP_SYN_SENT)
2561 sk->sk_err = ECONNRESET;
2562
2563 tcp_clear_xmit_timers(sk);
2564 __skb_queue_purge(&sk->sk_receive_queue);
2565 if (sk->sk_rx_skb_cache) {
2566 __kfree_skb(sk->sk_rx_skb_cache);
2567 sk->sk_rx_skb_cache = NULL;
2568 }
2569 tp->copied_seq = tp->rcv_nxt;
2570 tp->urg_data = 0;
2571 tcp_write_queue_purge(sk);
2572 tcp_fastopen_active_disable_ofo_check(sk);
2573 skb_rbtree_purge(&tp->out_of_order_queue);
2574
2575 inet->inet_dport = 0;
2576
2577 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2578 inet_reset_saddr(sk);
2579
2580 sk->sk_shutdown = 0;
2581 sock_reset_flag(sk, SOCK_DONE);
2582 tp->srtt_us = 0;
2583 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2584 tp->rcv_rtt_last_tsecr = 0;
2585 tp->write_seq += tp->max_window + 2;
2586 if (tp->write_seq == 0)
2587 tp->write_seq = 1;
2588 icsk->icsk_backoff = 0;
2589 tp->snd_cwnd = 2;
2590 icsk->icsk_probes_out = 0;
2591 icsk->icsk_rto = TCP_TIMEOUT_INIT;
2592 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2593 tp->snd_cwnd = TCP_INIT_CWND;
2594 tp->snd_cwnd_cnt = 0;
2595 tp->window_clamp = 0;
2596 tp->delivered_ce = 0;
2597 tcp_set_ca_state(sk, TCP_CA_Open);
2598 tp->is_sack_reneg = 0;
2599 tcp_clear_retrans(tp);
2600 inet_csk_delack_init(sk);
2601 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2602 * issue in __tcp_select_window()
2603 */
2604 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2605 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2606 __sk_dst_reset(sk);
2607 dst_release(sk->sk_rx_dst);
2608 sk->sk_rx_dst = NULL;
2609 tcp_saved_syn_free(tp);
2610 tp->compressed_ack = 0;
2611 tp->bytes_sent = 0;
2612 tp->bytes_retrans = 0;
2613 tp->duplicate_sack[0].start_seq = 0;
2614 tp->duplicate_sack[0].end_seq = 0;
2615 tp->dsack_dups = 0;
2616 tp->reord_seen = 0;
2617 tp->retrans_out = 0;
2618 tp->sacked_out = 0;
2619 tp->tlp_high_seq = 0;
2620 tp->last_oow_ack_time = 0;
2621 /* There's a bubble in the pipe until at least the first ACK. */
2622 tp->app_limited = ~0U;
2623 tp->rack.mstamp = 0;
2624 tp->rack.advanced = 0;
2625 tp->rack.reo_wnd_steps = 1;
2626 tp->rack.last_delivered = 0;
2627 tp->rack.reo_wnd_persist = 0;
2628 tp->rack.dsack_seen = 0;
2629 tp->syn_data_acked = 0;
2630 tp->rx_opt.saw_tstamp = 0;
2631 tp->rx_opt.dsack = 0;
2632 tp->rx_opt.num_sacks = 0;
2633
2634
2635 /* Clean up fastopen related fields */
2636 tcp_free_fastopen_req(tp);
2637 inet->defer_connect = 0;
2638
2639 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2640
2641 if (sk->sk_frag.page) {
2642 put_page(sk->sk_frag.page);
2643 sk->sk_frag.page = NULL;
2644 sk->sk_frag.offset = 0;
2645 }
2646
2647 sk->sk_error_report(sk);
2648 return 0;
2649 }
2650 EXPORT_SYMBOL(tcp_disconnect);
2651
2652 static inline bool tcp_can_repair_sock(const struct sock *sk)
2653 {
2654 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2655 (sk->sk_state != TCP_LISTEN);
2656 }
2657
2658 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2659 {
2660 struct tcp_repair_window opt;
2661
2662 if (!tp->repair)
2663 return -EPERM;
2664
2665 if (len != sizeof(opt))
2666 return -EINVAL;
2667
2668 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2669 return -EFAULT;
2670
2671 if (opt.max_window < opt.snd_wnd)
2672 return -EINVAL;
2673
2674 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2675 return -EINVAL;
2676
2677 if (after(opt.rcv_wup, tp->rcv_nxt))
2678 return -EINVAL;
2679
2680 tp->snd_wl1 = opt.snd_wl1;
2681 tp->snd_wnd = opt.snd_wnd;
2682 tp->max_window = opt.max_window;
2683
2684 tp->rcv_wnd = opt.rcv_wnd;
2685 tp->rcv_wup = opt.rcv_wup;
2686
2687 return 0;
2688 }
2689
2690 static int tcp_repair_options_est(struct sock *sk,
2691 struct tcp_repair_opt __user *optbuf, unsigned int len)
2692 {
2693 struct tcp_sock *tp = tcp_sk(sk);
2694 struct tcp_repair_opt opt;
2695
2696 while (len >= sizeof(opt)) {
2697 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2698 return -EFAULT;
2699
2700 optbuf++;
2701 len -= sizeof(opt);
2702
2703 switch (opt.opt_code) {
2704 case TCPOPT_MSS:
2705 tp->rx_opt.mss_clamp = opt.opt_val;
2706 tcp_mtup_init(sk);
2707 break;
2708 case TCPOPT_WINDOW:
2709 {
2710 u16 snd_wscale = opt.opt_val & 0xFFFF;
2711 u16 rcv_wscale = opt.opt_val >> 16;
2712
2713 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2714 return -EFBIG;
2715
2716 tp->rx_opt.snd_wscale = snd_wscale;
2717 tp->rx_opt.rcv_wscale = rcv_wscale;
2718 tp->rx_opt.wscale_ok = 1;
2719 }
2720 break;
2721 case TCPOPT_SACK_PERM:
2722 if (opt.opt_val != 0)
2723 return -EINVAL;
2724
2725 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2726 break;
2727 case TCPOPT_TIMESTAMP:
2728 if (opt.opt_val != 0)
2729 return -EINVAL;
2730
2731 tp->rx_opt.tstamp_ok = 1;
2732 break;
2733 }
2734 }
2735
2736 return 0;
2737 }
2738
2739 /*
2740 * Socket option code for TCP.
2741 */
2742 static int do_tcp_setsockopt(struct sock *sk, int level,
2743 int optname, char __user *optval, unsigned int optlen)
2744 {
2745 struct tcp_sock *tp = tcp_sk(sk);
2746 struct inet_connection_sock *icsk = inet_csk(sk);
2747 struct net *net = sock_net(sk);
2748 int val;
2749 int err = 0;
2750
2751 /* These are data/string values, all the others are ints */
2752 switch (optname) {
2753 case TCP_CONGESTION: {
2754 char name[TCP_CA_NAME_MAX];
2755
2756 if (optlen < 1)
2757 return -EINVAL;
2758
2759 val = strncpy_from_user(name, optval,
2760 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2761 if (val < 0)
2762 return -EFAULT;
2763 name[val] = 0;
2764
2765 lock_sock(sk);
2766 err = tcp_set_congestion_control(sk, name, true, true);
2767 release_sock(sk);
2768 return err;
2769 }
2770 case TCP_ULP: {
2771 char name[TCP_ULP_NAME_MAX];
2772
2773 if (optlen < 1)
2774 return -EINVAL;
2775
2776 val = strncpy_from_user(name, optval,
2777 min_t(long, TCP_ULP_NAME_MAX - 1,
2778 optlen));
2779 if (val < 0)
2780 return -EFAULT;
2781 name[val] = 0;
2782
2783 lock_sock(sk);
2784 err = tcp_set_ulp(sk, name);
2785 release_sock(sk);
2786 return err;
2787 }
2788 case TCP_FASTOPEN_KEY: {
2789 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
2790
2791 if (optlen != sizeof(key))
2792 return -EINVAL;
2793
2794 if (copy_from_user(key, optval, optlen))
2795 return -EFAULT;
2796
2797 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key));
2798 }
2799 default:
2800 /* fallthru */
2801 break;
2802 }
2803
2804 if (optlen < sizeof(int))
2805 return -EINVAL;
2806
2807 if (get_user(val, (int __user *)optval))
2808 return -EFAULT;
2809
2810 lock_sock(sk);
2811
2812 switch (optname) {
2813 case TCP_MAXSEG:
2814 /* Values greater than interface MTU won't take effect. However
2815 * at the point when this call is done we typically don't yet
2816 * know which interface is going to be used
2817 */
2818 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2819 err = -EINVAL;
2820 break;
2821 }
2822 tp->rx_opt.user_mss = val;
2823 break;
2824
2825 case TCP_NODELAY:
2826 if (val) {
2827 /* TCP_NODELAY is weaker than TCP_CORK, so that
2828 * this option on corked socket is remembered, but
2829 * it is not activated until cork is cleared.
2830 *
2831 * However, when TCP_NODELAY is set we make
2832 * an explicit push, which overrides even TCP_CORK
2833 * for currently queued segments.
2834 */
2835 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2836 tcp_push_pending_frames(sk);
2837 } else {
2838 tp->nonagle &= ~TCP_NAGLE_OFF;
2839 }
2840 break;
2841
2842 case TCP_THIN_LINEAR_TIMEOUTS:
2843 if (val < 0 || val > 1)
2844 err = -EINVAL;
2845 else
2846 tp->thin_lto = val;
2847 break;
2848
2849 case TCP_THIN_DUPACK:
2850 if (val < 0 || val > 1)
2851 err = -EINVAL;
2852 break;
2853
2854 case TCP_REPAIR:
2855 if (!tcp_can_repair_sock(sk))
2856 err = -EPERM;
2857 else if (val == TCP_REPAIR_ON) {
2858 tp->repair = 1;
2859 sk->sk_reuse = SK_FORCE_REUSE;
2860 tp->repair_queue = TCP_NO_QUEUE;
2861 } else if (val == TCP_REPAIR_OFF) {
2862 tp->repair = 0;
2863 sk->sk_reuse = SK_NO_REUSE;
2864 tcp_send_window_probe(sk);
2865 } else if (val == TCP_REPAIR_OFF_NO_WP) {
2866 tp->repair = 0;
2867 sk->sk_reuse = SK_NO_REUSE;
2868 } else
2869 err = -EINVAL;
2870
2871 break;
2872
2873 case TCP_REPAIR_QUEUE:
2874 if (!tp->repair)
2875 err = -EPERM;
2876 else if ((unsigned int)val < TCP_QUEUES_NR)
2877 tp->repair_queue = val;
2878 else
2879 err = -EINVAL;
2880 break;
2881
2882 case TCP_QUEUE_SEQ:
2883 if (sk->sk_state != TCP_CLOSE)
2884 err = -EPERM;
2885 else if (tp->repair_queue == TCP_SEND_QUEUE)
2886 tp->write_seq = val;
2887 else if (tp->repair_queue == TCP_RECV_QUEUE)
2888 tp->rcv_nxt = val;
2889 else
2890 err = -EINVAL;
2891 break;
2892
2893 case TCP_REPAIR_OPTIONS:
2894 if (!tp->repair)
2895 err = -EINVAL;
2896 else if (sk->sk_state == TCP_ESTABLISHED)
2897 err = tcp_repair_options_est(sk,
2898 (struct tcp_repair_opt __user *)optval,
2899 optlen);
2900 else
2901 err = -EPERM;
2902 break;
2903
2904 case TCP_CORK:
2905 /* When set indicates to always queue non-full frames.
2906 * Later the user clears this option and we transmit
2907 * any pending partial frames in the queue. This is
2908 * meant to be used alongside sendfile() to get properly
2909 * filled frames when the user (for example) must write
2910 * out headers with a write() call first and then use
2911 * sendfile to send out the data parts.
2912 *
2913 * TCP_CORK can be set together with TCP_NODELAY and it is
2914 * stronger than TCP_NODELAY.
2915 */
2916 if (val) {
2917 tp->nonagle |= TCP_NAGLE_CORK;
2918 } else {
2919 tp->nonagle &= ~TCP_NAGLE_CORK;
2920 if (tp->nonagle&TCP_NAGLE_OFF)
2921 tp->nonagle |= TCP_NAGLE_PUSH;
2922 tcp_push_pending_frames(sk);
2923 }
2924 break;
2925
2926 case TCP_KEEPIDLE:
2927 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2928 err = -EINVAL;
2929 else {
2930 tp->keepalive_time = val * HZ;
2931 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2932 !((1 << sk->sk_state) &
2933 (TCPF_CLOSE | TCPF_LISTEN))) {
2934 u32 elapsed = keepalive_time_elapsed(tp);
2935 if (tp->keepalive_time > elapsed)
2936 elapsed = tp->keepalive_time - elapsed;
2937 else
2938 elapsed = 0;
2939 inet_csk_reset_keepalive_timer(sk, elapsed);
2940 }
2941 }
2942 break;
2943 case TCP_KEEPINTVL:
2944 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2945 err = -EINVAL;
2946 else
2947 tp->keepalive_intvl = val * HZ;
2948 break;
2949 case TCP_KEEPCNT:
2950 if (val < 1 || val > MAX_TCP_KEEPCNT)
2951 err = -EINVAL;
2952 else
2953 tp->keepalive_probes = val;
2954 break;
2955 case TCP_SYNCNT:
2956 if (val < 1 || val > MAX_TCP_SYNCNT)
2957 err = -EINVAL;
2958 else
2959 icsk->icsk_syn_retries = val;
2960 break;
2961
2962 case TCP_SAVE_SYN:
2963 if (val < 0 || val > 1)
2964 err = -EINVAL;
2965 else
2966 tp->save_syn = val;
2967 break;
2968
2969 case TCP_LINGER2:
2970 if (val < 0)
2971 tp->linger2 = -1;
2972 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2973 tp->linger2 = 0;
2974 else
2975 tp->linger2 = val * HZ;
2976 break;
2977
2978 case TCP_DEFER_ACCEPT:
2979 /* Translate value in seconds to number of retransmits */
2980 icsk->icsk_accept_queue.rskq_defer_accept =
2981 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2982 TCP_RTO_MAX / HZ);
2983 break;
2984
2985 case TCP_WINDOW_CLAMP:
2986 if (!val) {
2987 if (sk->sk_state != TCP_CLOSE) {
2988 err = -EINVAL;
2989 break;
2990 }
2991 tp->window_clamp = 0;
2992 } else
2993 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2994 SOCK_MIN_RCVBUF / 2 : val;
2995 break;
2996
2997 case TCP_QUICKACK:
2998 if (!val) {
2999 inet_csk_enter_pingpong_mode(sk);
3000 } else {
3001 inet_csk_exit_pingpong_mode(sk);
3002 if ((1 << sk->sk_state) &
3003 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3004 inet_csk_ack_scheduled(sk)) {
3005 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
3006 tcp_cleanup_rbuf(sk, 1);
3007 if (!(val & 1))
3008 inet_csk_enter_pingpong_mode(sk);
3009 }
3010 }
3011 break;
3012
3013 #ifdef CONFIG_TCP_MD5SIG
3014 case TCP_MD5SIG:
3015 case TCP_MD5SIG_EXT:
3016 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
3017 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3018 else
3019 err = -EINVAL;
3020 break;
3021 #endif
3022 case TCP_USER_TIMEOUT:
3023 /* Cap the max time in ms TCP will retry or probe the window
3024 * before giving up and aborting (ETIMEDOUT) a connection.
3025 */
3026 if (val < 0)
3027 err = -EINVAL;
3028 else
3029 icsk->icsk_user_timeout = val;
3030 break;
3031
3032 case TCP_FASTOPEN:
3033 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3034 TCPF_LISTEN))) {
3035 tcp_fastopen_init_key_once(net);
3036
3037 fastopen_queue_tune(sk, val);
3038 } else {
3039 err = -EINVAL;
3040 }
3041 break;
3042 case TCP_FASTOPEN_CONNECT:
3043 if (val > 1 || val < 0) {
3044 err = -EINVAL;
3045 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3046 if (sk->sk_state == TCP_CLOSE)
3047 tp->fastopen_connect = val;
3048 else
3049 err = -EINVAL;
3050 } else {
3051 err = -EOPNOTSUPP;
3052 }
3053 break;
3054 case TCP_FASTOPEN_NO_COOKIE:
3055 if (val > 1 || val < 0)
3056 err = -EINVAL;
3057 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3058 err = -EINVAL;
3059 else
3060 tp->fastopen_no_cookie = val;
3061 break;
3062 case TCP_TIMESTAMP:
3063 if (!tp->repair)
3064 err = -EPERM;
3065 else
3066 tp->tsoffset = val - tcp_time_stamp_raw();
3067 break;
3068 case TCP_REPAIR_WINDOW:
3069 err = tcp_repair_set_window(tp, optval, optlen);
3070 break;
3071 case TCP_NOTSENT_LOWAT:
3072 tp->notsent_lowat = val;
3073 sk->sk_write_space(sk);
3074 break;
3075 case TCP_INQ:
3076 if (val > 1 || val < 0)
3077 err = -EINVAL;
3078 else
3079 tp->recvmsg_inq = val;
3080 break;
3081 default:
3082 err = -ENOPROTOOPT;
3083 break;
3084 }
3085
3086 release_sock(sk);
3087 return err;
3088 }
3089
3090 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
3091 unsigned int optlen)
3092 {
3093 const struct inet_connection_sock *icsk = inet_csk(sk);
3094
3095 if (level != SOL_TCP)
3096 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3097 optval, optlen);
3098 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3099 }
3100 EXPORT_SYMBOL(tcp_setsockopt);
3101
3102 #ifdef CONFIG_COMPAT
3103 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
3104 char __user *optval, unsigned int optlen)
3105 {
3106 if (level != SOL_TCP)
3107 return inet_csk_compat_setsockopt(sk, level, optname,
3108 optval, optlen);
3109 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3110 }
3111 EXPORT_SYMBOL(compat_tcp_setsockopt);
3112 #endif
3113
3114 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3115 struct tcp_info *info)
3116 {
3117 u64 stats[__TCP_CHRONO_MAX], total = 0;
3118 enum tcp_chrono i;
3119
3120 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3121 stats[i] = tp->chrono_stat[i - 1];
3122 if (i == tp->chrono_type)
3123 stats[i] += tcp_jiffies32 - tp->chrono_start;
3124 stats[i] *= USEC_PER_SEC / HZ;
3125 total += stats[i];
3126 }
3127
3128 info->tcpi_busy_time = total;
3129 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3130 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3131 }
3132
3133 /* Return information about state of tcp endpoint in API format. */
3134 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3135 {
3136 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3137 const struct inet_connection_sock *icsk = inet_csk(sk);
3138 unsigned long rate;
3139 u32 now;
3140 u64 rate64;
3141 bool slow;
3142
3143 memset(info, 0, sizeof(*info));
3144 if (sk->sk_type != SOCK_STREAM)
3145 return;
3146
3147 info->tcpi_state = inet_sk_state_load(sk);
3148
3149 /* Report meaningful fields for all TCP states, including listeners */
3150 rate = READ_ONCE(sk->sk_pacing_rate);
3151 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3152 info->tcpi_pacing_rate = rate64;
3153
3154 rate = READ_ONCE(sk->sk_max_pacing_rate);
3155 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3156 info->tcpi_max_pacing_rate = rate64;
3157
3158 info->tcpi_reordering = tp->reordering;
3159 info->tcpi_snd_cwnd = tp->snd_cwnd;
3160
3161 if (info->tcpi_state == TCP_LISTEN) {
3162 /* listeners aliased fields :
3163 * tcpi_unacked -> Number of children ready for accept()
3164 * tcpi_sacked -> max backlog
3165 */
3166 info->tcpi_unacked = sk->sk_ack_backlog;
3167 info->tcpi_sacked = sk->sk_max_ack_backlog;
3168 return;
3169 }
3170
3171 slow = lock_sock_fast(sk);
3172
3173 info->tcpi_ca_state = icsk->icsk_ca_state;
3174 info->tcpi_retransmits = icsk->icsk_retransmits;
3175 info->tcpi_probes = icsk->icsk_probes_out;
3176 info->tcpi_backoff = icsk->icsk_backoff;
3177
3178 if (tp->rx_opt.tstamp_ok)
3179 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3180 if (tcp_is_sack(tp))
3181 info->tcpi_options |= TCPI_OPT_SACK;
3182 if (tp->rx_opt.wscale_ok) {
3183 info->tcpi_options |= TCPI_OPT_WSCALE;
3184 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3185 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3186 }
3187
3188 if (tp->ecn_flags & TCP_ECN_OK)
3189 info->tcpi_options |= TCPI_OPT_ECN;
3190 if (tp->ecn_flags & TCP_ECN_SEEN)
3191 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3192 if (tp->syn_data_acked)
3193 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3194
3195 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3196 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3197 info->tcpi_snd_mss = tp->mss_cache;
3198 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3199
3200 info->tcpi_unacked = tp->packets_out;
3201 info->tcpi_sacked = tp->sacked_out;
3202
3203 info->tcpi_lost = tp->lost_out;
3204 info->tcpi_retrans = tp->retrans_out;
3205
3206 now = tcp_jiffies32;
3207 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3208 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3209 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3210
3211 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3212 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3213 info->tcpi_rtt = tp->srtt_us >> 3;
3214 info->tcpi_rttvar = tp->mdev_us >> 2;
3215 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3216 info->tcpi_advmss = tp->advmss;
3217
3218 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3219 info->tcpi_rcv_space = tp->rcvq_space.space;
3220
3221 info->tcpi_total_retrans = tp->total_retrans;
3222
3223 info->tcpi_bytes_acked = tp->bytes_acked;
3224 info->tcpi_bytes_received = tp->bytes_received;
3225 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3226 tcp_get_info_chrono_stats(tp, info);
3227
3228 info->tcpi_segs_out = tp->segs_out;
3229 info->tcpi_segs_in = tp->segs_in;
3230
3231 info->tcpi_min_rtt = tcp_min_rtt(tp);
3232 info->tcpi_data_segs_in = tp->data_segs_in;
3233 info->tcpi_data_segs_out = tp->data_segs_out;
3234
3235 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3236 rate64 = tcp_compute_delivery_rate(tp);
3237 if (rate64)
3238 info->tcpi_delivery_rate = rate64;
3239 info->tcpi_delivered = tp->delivered;
3240 info->tcpi_delivered_ce = tp->delivered_ce;
3241 info->tcpi_bytes_sent = tp->bytes_sent;
3242 info->tcpi_bytes_retrans = tp->bytes_retrans;
3243 info->tcpi_dsack_dups = tp->dsack_dups;
3244 info->tcpi_reord_seen = tp->reord_seen;
3245 unlock_sock_fast(sk, slow);
3246 }
3247 EXPORT_SYMBOL_GPL(tcp_get_info);
3248
3249 static size_t tcp_opt_stats_get_size(void)
3250 {
3251 return
3252 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3253 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3254 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3255 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3256 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3257 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3258 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3259 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3260 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3261 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3262 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3263 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3264 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3265 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3266 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3267 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3268 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3269 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3270 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3271 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3272 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3273 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3274 0;
3275 }
3276
3277 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3278 {
3279 const struct tcp_sock *tp = tcp_sk(sk);
3280 struct sk_buff *stats;
3281 struct tcp_info info;
3282 unsigned long rate;
3283 u64 rate64;
3284
3285 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3286 if (!stats)
3287 return NULL;
3288
3289 tcp_get_info_chrono_stats(tp, &info);
3290 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3291 info.tcpi_busy_time, TCP_NLA_PAD);
3292 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3293 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3294 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3295 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3296 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3297 tp->data_segs_out, TCP_NLA_PAD);
3298 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3299 tp->total_retrans, TCP_NLA_PAD);
3300
3301 rate = READ_ONCE(sk->sk_pacing_rate);
3302 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3303 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3304
3305 rate64 = tcp_compute_delivery_rate(tp);
3306 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3307
3308 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3309 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3310 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3311
3312 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3313 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3314 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3315 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3316 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3317
3318 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3319 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3320
3321 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3322 TCP_NLA_PAD);
3323 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3324 TCP_NLA_PAD);
3325 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3326 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3327 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3328
3329 return stats;
3330 }
3331
3332 static int do_tcp_getsockopt(struct sock *sk, int level,
3333 int optname, char __user *optval, int __user *optlen)
3334 {
3335 struct inet_connection_sock *icsk = inet_csk(sk);
3336 struct tcp_sock *tp = tcp_sk(sk);
3337 struct net *net = sock_net(sk);
3338 int val, len;
3339
3340 if (get_user(len, optlen))
3341 return -EFAULT;
3342
3343 len = min_t(unsigned int, len, sizeof(int));
3344
3345 if (len < 0)
3346 return -EINVAL;
3347
3348 switch (optname) {
3349 case TCP_MAXSEG:
3350 val = tp->mss_cache;
3351 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3352 val = tp->rx_opt.user_mss;
3353 if (tp->repair)
3354 val = tp->rx_opt.mss_clamp;
3355 break;
3356 case TCP_NODELAY:
3357 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3358 break;
3359 case TCP_CORK:
3360 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3361 break;
3362 case TCP_KEEPIDLE:
3363 val = keepalive_time_when(tp) / HZ;
3364 break;
3365 case TCP_KEEPINTVL:
3366 val = keepalive_intvl_when(tp) / HZ;
3367 break;
3368 case TCP_KEEPCNT:
3369 val = keepalive_probes(tp);
3370 break;
3371 case TCP_SYNCNT:
3372 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3373 break;
3374 case TCP_LINGER2:
3375 val = tp->linger2;
3376 if (val >= 0)
3377 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3378 break;
3379 case TCP_DEFER_ACCEPT:
3380 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3381 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3382 break;
3383 case TCP_WINDOW_CLAMP:
3384 val = tp->window_clamp;
3385 break;
3386 case TCP_INFO: {
3387 struct tcp_info info;
3388
3389 if (get_user(len, optlen))
3390 return -EFAULT;
3391
3392 tcp_get_info(sk, &info);
3393
3394 len = min_t(unsigned int, len, sizeof(info));
3395 if (put_user(len, optlen))
3396 return -EFAULT;
3397 if (copy_to_user(optval, &info, len))
3398 return -EFAULT;
3399 return 0;
3400 }
3401 case TCP_CC_INFO: {
3402 const struct tcp_congestion_ops *ca_ops;
3403 union tcp_cc_info info;
3404 size_t sz = 0;
3405 int attr;
3406
3407 if (get_user(len, optlen))
3408 return -EFAULT;
3409
3410 ca_ops = icsk->icsk_ca_ops;
3411 if (ca_ops && ca_ops->get_info)
3412 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3413
3414 len = min_t(unsigned int, len, sz);
3415 if (put_user(len, optlen))
3416 return -EFAULT;
3417 if (copy_to_user(optval, &info, len))
3418 return -EFAULT;
3419 return 0;
3420 }
3421 case TCP_QUICKACK:
3422 val = !inet_csk_in_pingpong_mode(sk);
3423 break;
3424
3425 case TCP_CONGESTION:
3426 if (get_user(len, optlen))
3427 return -EFAULT;
3428 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3429 if (put_user(len, optlen))
3430 return -EFAULT;
3431 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3432 return -EFAULT;
3433 return 0;
3434
3435 case TCP_ULP:
3436 if (get_user(len, optlen))
3437 return -EFAULT;
3438 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3439 if (!icsk->icsk_ulp_ops) {
3440 if (put_user(0, optlen))
3441 return -EFAULT;
3442 return 0;
3443 }
3444 if (put_user(len, optlen))
3445 return -EFAULT;
3446 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3447 return -EFAULT;
3448 return 0;
3449
3450 case TCP_FASTOPEN_KEY: {
3451 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
3452 struct tcp_fastopen_context *ctx;
3453
3454 if (get_user(len, optlen))
3455 return -EFAULT;
3456
3457 rcu_read_lock();
3458 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3459 if (ctx)
3460 memcpy(key, ctx->key, sizeof(key));
3461 else
3462 len = 0;
3463 rcu_read_unlock();
3464
3465 len = min_t(unsigned int, len, sizeof(key));
3466 if (put_user(len, optlen))
3467 return -EFAULT;
3468 if (copy_to_user(optval, key, len))
3469 return -EFAULT;
3470 return 0;
3471 }
3472 case TCP_THIN_LINEAR_TIMEOUTS:
3473 val = tp->thin_lto;
3474 break;
3475
3476 case TCP_THIN_DUPACK:
3477 val = 0;
3478 break;
3479
3480 case TCP_REPAIR:
3481 val = tp->repair;
3482 break;
3483
3484 case TCP_REPAIR_QUEUE:
3485 if (tp->repair)
3486 val = tp->repair_queue;
3487 else
3488 return -EINVAL;
3489 break;
3490
3491 case TCP_REPAIR_WINDOW: {
3492 struct tcp_repair_window opt;
3493
3494 if (get_user(len, optlen))
3495 return -EFAULT;
3496
3497 if (len != sizeof(opt))
3498 return -EINVAL;
3499
3500 if (!tp->repair)
3501 return -EPERM;
3502
3503 opt.snd_wl1 = tp->snd_wl1;
3504 opt.snd_wnd = tp->snd_wnd;
3505 opt.max_window = tp->max_window;
3506 opt.rcv_wnd = tp->rcv_wnd;
3507 opt.rcv_wup = tp->rcv_wup;
3508
3509 if (copy_to_user(optval, &opt, len))
3510 return -EFAULT;
3511 return 0;
3512 }
3513 case TCP_QUEUE_SEQ:
3514 if (tp->repair_queue == TCP_SEND_QUEUE)
3515 val = tp->write_seq;
3516 else if (tp->repair_queue == TCP_RECV_QUEUE)
3517 val = tp->rcv_nxt;
3518 else
3519 return -EINVAL;
3520 break;
3521
3522 case TCP_USER_TIMEOUT:
3523 val = icsk->icsk_user_timeout;
3524 break;
3525
3526 case TCP_FASTOPEN:
3527 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3528 break;
3529
3530 case TCP_FASTOPEN_CONNECT:
3531 val = tp->fastopen_connect;
3532 break;
3533
3534 case TCP_FASTOPEN_NO_COOKIE:
3535 val = tp->fastopen_no_cookie;
3536 break;
3537
3538 case TCP_TIMESTAMP:
3539 val = tcp_time_stamp_raw() + tp->tsoffset;
3540 break;
3541 case TCP_NOTSENT_LOWAT:
3542 val = tp->notsent_lowat;
3543 break;
3544 case TCP_INQ:
3545 val = tp->recvmsg_inq;
3546 break;
3547 case TCP_SAVE_SYN:
3548 val = tp->save_syn;
3549 break;
3550 case TCP_SAVED_SYN: {
3551 if (get_user(len, optlen))
3552 return -EFAULT;
3553
3554 lock_sock(sk);
3555 if (tp->saved_syn) {
3556 if (len < tp->saved_syn[0]) {
3557 if (put_user(tp->saved_syn[0], optlen)) {
3558 release_sock(sk);
3559 return -EFAULT;
3560 }
3561 release_sock(sk);
3562 return -EINVAL;
3563 }
3564 len = tp->saved_syn[0];
3565 if (put_user(len, optlen)) {
3566 release_sock(sk);
3567 return -EFAULT;
3568 }
3569 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3570 release_sock(sk);
3571 return -EFAULT;
3572 }
3573 tcp_saved_syn_free(tp);
3574 release_sock(sk);
3575 } else {
3576 release_sock(sk);
3577 len = 0;
3578 if (put_user(len, optlen))
3579 return -EFAULT;
3580 }
3581 return 0;
3582 }
3583 #ifdef CONFIG_MMU
3584 case TCP_ZEROCOPY_RECEIVE: {
3585 struct tcp_zerocopy_receive zc;
3586 int err;
3587
3588 if (get_user(len, optlen))
3589 return -EFAULT;
3590 if (len != sizeof(zc))
3591 return -EINVAL;
3592 if (copy_from_user(&zc, optval, len))
3593 return -EFAULT;
3594 lock_sock(sk);
3595 err = tcp_zerocopy_receive(sk, &zc);
3596 release_sock(sk);
3597 if (!err && copy_to_user(optval, &zc, len))
3598 err = -EFAULT;
3599 return err;
3600 }
3601 #endif
3602 default:
3603 return -ENOPROTOOPT;
3604 }
3605
3606 if (put_user(len, optlen))
3607 return -EFAULT;
3608 if (copy_to_user(optval, &val, len))
3609 return -EFAULT;
3610 return 0;
3611 }
3612
3613 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3614 int __user *optlen)
3615 {
3616 struct inet_connection_sock *icsk = inet_csk(sk);
3617
3618 if (level != SOL_TCP)
3619 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3620 optval, optlen);
3621 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3622 }
3623 EXPORT_SYMBOL(tcp_getsockopt);
3624
3625 #ifdef CONFIG_COMPAT
3626 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3627 char __user *optval, int __user *optlen)
3628 {
3629 if (level != SOL_TCP)
3630 return inet_csk_compat_getsockopt(sk, level, optname,
3631 optval, optlen);
3632 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3633 }
3634 EXPORT_SYMBOL(compat_tcp_getsockopt);
3635 #endif
3636
3637 #ifdef CONFIG_TCP_MD5SIG
3638 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3639 static DEFINE_MUTEX(tcp_md5sig_mutex);
3640 static bool tcp_md5sig_pool_populated = false;
3641
3642 static void __tcp_alloc_md5sig_pool(void)
3643 {
3644 struct crypto_ahash *hash;
3645 int cpu;
3646
3647 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3648 if (IS_ERR(hash))
3649 return;
3650
3651 for_each_possible_cpu(cpu) {
3652 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3653 struct ahash_request *req;
3654
3655 if (!scratch) {
3656 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3657 sizeof(struct tcphdr),
3658 GFP_KERNEL,
3659 cpu_to_node(cpu));
3660 if (!scratch)
3661 return;
3662 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3663 }
3664 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3665 continue;
3666
3667 req = ahash_request_alloc(hash, GFP_KERNEL);
3668 if (!req)
3669 return;
3670
3671 ahash_request_set_callback(req, 0, NULL, NULL);
3672
3673 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3674 }
3675 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3676 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3677 */
3678 smp_wmb();
3679 tcp_md5sig_pool_populated = true;
3680 }
3681
3682 bool tcp_alloc_md5sig_pool(void)
3683 {
3684 if (unlikely(!tcp_md5sig_pool_populated)) {
3685 mutex_lock(&tcp_md5sig_mutex);
3686
3687 if (!tcp_md5sig_pool_populated) {
3688 __tcp_alloc_md5sig_pool();
3689 if (tcp_md5sig_pool_populated)
3690 static_branch_inc(&tcp_md5_needed);
3691 }
3692
3693 mutex_unlock(&tcp_md5sig_mutex);
3694 }
3695 return tcp_md5sig_pool_populated;
3696 }
3697 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3698
3699
3700 /**
3701 * tcp_get_md5sig_pool - get md5sig_pool for this user
3702 *
3703 * We use percpu structure, so if we succeed, we exit with preemption
3704 * and BH disabled, to make sure another thread or softirq handling
3705 * wont try to get same context.
3706 */
3707 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3708 {
3709 local_bh_disable();
3710
3711 if (tcp_md5sig_pool_populated) {
3712 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3713 smp_rmb();
3714 return this_cpu_ptr(&tcp_md5sig_pool);
3715 }
3716 local_bh_enable();
3717 return NULL;
3718 }
3719 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3720
3721 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3722 const struct sk_buff *skb, unsigned int header_len)
3723 {
3724 struct scatterlist sg;
3725 const struct tcphdr *tp = tcp_hdr(skb);
3726 struct ahash_request *req = hp->md5_req;
3727 unsigned int i;
3728 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3729 skb_headlen(skb) - header_len : 0;
3730 const struct skb_shared_info *shi = skb_shinfo(skb);
3731 struct sk_buff *frag_iter;
3732
3733 sg_init_table(&sg, 1);
3734
3735 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3736 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3737 if (crypto_ahash_update(req))
3738 return 1;
3739
3740 for (i = 0; i < shi->nr_frags; ++i) {
3741 const struct skb_frag_struct *f = &shi->frags[i];
3742 unsigned int offset = f->page_offset;
3743 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3744
3745 sg_set_page(&sg, page, skb_frag_size(f),
3746 offset_in_page(offset));
3747 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3748 if (crypto_ahash_update(req))
3749 return 1;
3750 }
3751
3752 skb_walk_frags(skb, frag_iter)
3753 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3754 return 1;
3755
3756 return 0;
3757 }
3758 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3759
3760 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3761 {
3762 struct scatterlist sg;
3763
3764 sg_init_one(&sg, key->key, key->keylen);
3765 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3766 return crypto_ahash_update(hp->md5_req);
3767 }
3768 EXPORT_SYMBOL(tcp_md5_hash_key);
3769
3770 #endif
3771
3772 void tcp_done(struct sock *sk)
3773 {
3774 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3775
3776 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3777 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3778
3779 tcp_set_state(sk, TCP_CLOSE);
3780 tcp_clear_xmit_timers(sk);
3781 if (req)
3782 reqsk_fastopen_remove(sk, req, false);
3783
3784 sk->sk_shutdown = SHUTDOWN_MASK;
3785
3786 if (!sock_flag(sk, SOCK_DEAD))
3787 sk->sk_state_change(sk);
3788 else
3789 inet_csk_destroy_sock(sk);
3790 }
3791 EXPORT_SYMBOL_GPL(tcp_done);
3792
3793 int tcp_abort(struct sock *sk, int err)
3794 {
3795 if (!sk_fullsock(sk)) {
3796 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3797 struct request_sock *req = inet_reqsk(sk);
3798
3799 local_bh_disable();
3800 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
3801 local_bh_enable();
3802 return 0;
3803 }
3804 return -EOPNOTSUPP;
3805 }
3806
3807 /* Don't race with userspace socket closes such as tcp_close. */
3808 lock_sock(sk);
3809
3810 if (sk->sk_state == TCP_LISTEN) {
3811 tcp_set_state(sk, TCP_CLOSE);
3812 inet_csk_listen_stop(sk);
3813 }
3814
3815 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3816 local_bh_disable();
3817 bh_lock_sock(sk);
3818
3819 if (!sock_flag(sk, SOCK_DEAD)) {
3820 sk->sk_err = err;
3821 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3822 smp_wmb();
3823 sk->sk_error_report(sk);
3824 if (tcp_need_reset(sk->sk_state))
3825 tcp_send_active_reset(sk, GFP_ATOMIC);
3826 tcp_done(sk);
3827 }
3828
3829 bh_unlock_sock(sk);
3830 local_bh_enable();
3831 tcp_write_queue_purge(sk);
3832 release_sock(sk);
3833 return 0;
3834 }
3835 EXPORT_SYMBOL_GPL(tcp_abort);
3836
3837 extern struct tcp_congestion_ops tcp_reno;
3838
3839 static __initdata unsigned long thash_entries;
3840 static int __init set_thash_entries(char *str)
3841 {
3842 ssize_t ret;
3843
3844 if (!str)
3845 return 0;
3846
3847 ret = kstrtoul(str, 0, &thash_entries);
3848 if (ret)
3849 return 0;
3850
3851 return 1;
3852 }
3853 __setup("thash_entries=", set_thash_entries);
3854
3855 static void __init tcp_init_mem(void)
3856 {
3857 unsigned long limit = nr_free_buffer_pages() / 16;
3858
3859 limit = max(limit, 128UL);
3860 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3861 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3862 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3863 }
3864
3865 void __init tcp_init(void)
3866 {
3867 int max_rshare, max_wshare, cnt;
3868 unsigned long limit;
3869 unsigned int i;
3870
3871 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3872 FIELD_SIZEOF(struct sk_buff, cb));
3873
3874 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3875 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3876 inet_hashinfo_init(&tcp_hashinfo);
3877 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
3878 thash_entries, 21, /* one slot per 2 MB*/
3879 0, 64 * 1024);
3880 tcp_hashinfo.bind_bucket_cachep =
3881 kmem_cache_create("tcp_bind_bucket",
3882 sizeof(struct inet_bind_bucket), 0,
3883 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3884
3885 /* Size and allocate the main established and bind bucket
3886 * hash tables.
3887 *
3888 * The methodology is similar to that of the buffer cache.
3889 */
3890 tcp_hashinfo.ehash =
3891 alloc_large_system_hash("TCP established",
3892 sizeof(struct inet_ehash_bucket),
3893 thash_entries,
3894 17, /* one slot per 128 KB of memory */
3895 0,
3896 NULL,
3897 &tcp_hashinfo.ehash_mask,
3898 0,
3899 thash_entries ? 0 : 512 * 1024);
3900 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3901 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3902
3903 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3904 panic("TCP: failed to alloc ehash_locks");
3905 tcp_hashinfo.bhash =
3906 alloc_large_system_hash("TCP bind",
3907 sizeof(struct inet_bind_hashbucket),
3908 tcp_hashinfo.ehash_mask + 1,
3909 17, /* one slot per 128 KB of memory */
3910 0,
3911 &tcp_hashinfo.bhash_size,
3912 NULL,
3913 0,
3914 64 * 1024);
3915 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3916 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3917 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3918 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3919 }
3920
3921
3922 cnt = tcp_hashinfo.ehash_mask + 1;
3923 sysctl_tcp_max_orphans = cnt / 2;
3924
3925 tcp_init_mem();
3926 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3927 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3928 max_wshare = min(4UL*1024*1024, limit);
3929 max_rshare = min(6UL*1024*1024, limit);
3930
3931 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3932 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
3933 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3934
3935 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3936 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
3937 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
3938
3939 pr_info("Hash tables configured (established %u bind %u)\n",
3940 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3941
3942 tcp_v4_init();
3943 tcp_metrics_init();
3944 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3945 tcp_tasklet_init();
3946 }