]> git.ipfire.org Git - thirdparty/linux.git/blob - net/ipv4/tcp_output.c
Merge tag 'arc-5.2-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
[thirdparty/linux.git] / net / ipv4 / tcp_output.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes: Pedro Roque : Retransmit queue handled by TCP.
24 * : Fragmentation on mtu decrease
25 * : Segment collapse on retransmit
26 * : AF independence
27 *
28 * Linus Torvalds : send_delayed_ack
29 * David S. Miller : Charge memory using the right skb
30 * during syn/ack processing.
31 * David S. Miller : Output engine completely rewritten.
32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
33 * Cacophonix Gaul : draft-minshall-nagle-01
34 * J Hadi Salim : ECN support
35 *
36 */
37
38 #define pr_fmt(fmt) "TCP: " fmt
39
40 #include <net/tcp.h>
41
42 #include <linux/compiler.h>
43 #include <linux/gfp.h>
44 #include <linux/module.h>
45 #include <linux/static_key.h>
46
47 #include <trace/events/tcp.h>
48
49 /* Refresh clocks of a TCP socket,
50 * ensuring monotically increasing values.
51 */
52 void tcp_mstamp_refresh(struct tcp_sock *tp)
53 {
54 u64 val = tcp_clock_ns();
55
56 tp->tcp_clock_cache = val;
57 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
58 }
59
60 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
61 int push_one, gfp_t gfp);
62
63 /* Account for new data that has been sent to the network. */
64 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
65 {
66 struct inet_connection_sock *icsk = inet_csk(sk);
67 struct tcp_sock *tp = tcp_sk(sk);
68 unsigned int prior_packets = tp->packets_out;
69
70 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
71
72 __skb_unlink(skb, &sk->sk_write_queue);
73 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
74
75 tp->packets_out += tcp_skb_pcount(skb);
76 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
77 tcp_rearm_rto(sk);
78
79 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
80 tcp_skb_pcount(skb));
81 }
82
83 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
84 * window scaling factor due to loss of precision.
85 * If window has been shrunk, what should we make? It is not clear at all.
86 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
87 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
88 * invalid. OK, let's make this for now:
89 */
90 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
91 {
92 const struct tcp_sock *tp = tcp_sk(sk);
93
94 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
95 (tp->rx_opt.wscale_ok &&
96 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
97 return tp->snd_nxt;
98 else
99 return tcp_wnd_end(tp);
100 }
101
102 /* Calculate mss to advertise in SYN segment.
103 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
104 *
105 * 1. It is independent of path mtu.
106 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
107 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
108 * attached devices, because some buggy hosts are confused by
109 * large MSS.
110 * 4. We do not make 3, we advertise MSS, calculated from first
111 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
112 * This may be overridden via information stored in routing table.
113 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
114 * probably even Jumbo".
115 */
116 static __u16 tcp_advertise_mss(struct sock *sk)
117 {
118 struct tcp_sock *tp = tcp_sk(sk);
119 const struct dst_entry *dst = __sk_dst_get(sk);
120 int mss = tp->advmss;
121
122 if (dst) {
123 unsigned int metric = dst_metric_advmss(dst);
124
125 if (metric < mss) {
126 mss = metric;
127 tp->advmss = mss;
128 }
129 }
130
131 return (__u16)mss;
132 }
133
134 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
135 * This is the first part of cwnd validation mechanism.
136 */
137 void tcp_cwnd_restart(struct sock *sk, s32 delta)
138 {
139 struct tcp_sock *tp = tcp_sk(sk);
140 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
141 u32 cwnd = tp->snd_cwnd;
142
143 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
144
145 tp->snd_ssthresh = tcp_current_ssthresh(sk);
146 restart_cwnd = min(restart_cwnd, cwnd);
147
148 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
149 cwnd >>= 1;
150 tp->snd_cwnd = max(cwnd, restart_cwnd);
151 tp->snd_cwnd_stamp = tcp_jiffies32;
152 tp->snd_cwnd_used = 0;
153 }
154
155 /* Congestion state accounting after a packet has been sent. */
156 static void tcp_event_data_sent(struct tcp_sock *tp,
157 struct sock *sk)
158 {
159 struct inet_connection_sock *icsk = inet_csk(sk);
160 const u32 now = tcp_jiffies32;
161
162 if (tcp_packets_in_flight(tp) == 0)
163 tcp_ca_event(sk, CA_EVENT_TX_START);
164
165 /* If this is the first data packet sent in response to the
166 * previous received data,
167 * and it is a reply for ato after last received packet,
168 * increase pingpong count.
169 */
170 if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) &&
171 (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
172 inet_csk_inc_pingpong_cnt(sk);
173
174 tp->lsndtime = now;
175 }
176
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
179 u32 rcv_nxt)
180 {
181 struct tcp_sock *tp = tcp_sk(sk);
182
183 if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) {
184 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
185 tp->compressed_ack - TCP_FASTRETRANS_THRESH);
186 tp->compressed_ack = TCP_FASTRETRANS_THRESH;
187 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
188 __sock_put(sk);
189 }
190
191 if (unlikely(rcv_nxt != tp->rcv_nxt))
192 return; /* Special ACK sent by DCTCP to reflect ECN */
193 tcp_dec_quickack_mode(sk, pkts);
194 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
195 }
196
197 /* Determine a window scaling and initial window to offer.
198 * Based on the assumption that the given amount of space
199 * will be offered. Store the results in the tp structure.
200 * NOTE: for smooth operation initial space offering should
201 * be a multiple of mss if possible. We assume here that mss >= 1.
202 * This MUST be enforced by all callers.
203 */
204 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
205 __u32 *rcv_wnd, __u32 *window_clamp,
206 int wscale_ok, __u8 *rcv_wscale,
207 __u32 init_rcv_wnd)
208 {
209 unsigned int space = (__space < 0 ? 0 : __space);
210
211 /* If no clamp set the clamp to the max possible scaled window */
212 if (*window_clamp == 0)
213 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
214 space = min(*window_clamp, space);
215
216 /* Quantize space offering to a multiple of mss if possible. */
217 if (space > mss)
218 space = rounddown(space, mss);
219
220 /* NOTE: offering an initial window larger than 32767
221 * will break some buggy TCP stacks. If the admin tells us
222 * it is likely we could be speaking with such a buggy stack
223 * we will truncate our initial window offering to 32K-1
224 * unless the remote has sent us a window scaling option,
225 * which we interpret as a sign the remote TCP is not
226 * misinterpreting the window field as a signed quantity.
227 */
228 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
229 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
230 else
231 (*rcv_wnd) = min_t(u32, space, U16_MAX);
232
233 if (init_rcv_wnd)
234 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
235
236 *rcv_wscale = 0;
237 if (wscale_ok) {
238 /* Set window scaling on max possible window */
239 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
240 space = max_t(u32, space, sysctl_rmem_max);
241 space = min_t(u32, space, *window_clamp);
242 *rcv_wscale = clamp_t(int, ilog2(space) - 15,
243 0, TCP_MAX_WSCALE);
244 }
245 /* Set the clamp no higher than max representable value */
246 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
247 }
248 EXPORT_SYMBOL(tcp_select_initial_window);
249
250 /* Chose a new window to advertise, update state in tcp_sock for the
251 * socket, and return result with RFC1323 scaling applied. The return
252 * value can be stuffed directly into th->window for an outgoing
253 * frame.
254 */
255 static u16 tcp_select_window(struct sock *sk)
256 {
257 struct tcp_sock *tp = tcp_sk(sk);
258 u32 old_win = tp->rcv_wnd;
259 u32 cur_win = tcp_receive_window(tp);
260 u32 new_win = __tcp_select_window(sk);
261
262 /* Never shrink the offered window */
263 if (new_win < cur_win) {
264 /* Danger Will Robinson!
265 * Don't update rcv_wup/rcv_wnd here or else
266 * we will not be able to advertise a zero
267 * window in time. --DaveM
268 *
269 * Relax Will Robinson.
270 */
271 if (new_win == 0)
272 NET_INC_STATS(sock_net(sk),
273 LINUX_MIB_TCPWANTZEROWINDOWADV);
274 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
275 }
276 tp->rcv_wnd = new_win;
277 tp->rcv_wup = tp->rcv_nxt;
278
279 /* Make sure we do not exceed the maximum possible
280 * scaled window.
281 */
282 if (!tp->rx_opt.rcv_wscale &&
283 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
284 new_win = min(new_win, MAX_TCP_WINDOW);
285 else
286 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
287
288 /* RFC1323 scaling applied */
289 new_win >>= tp->rx_opt.rcv_wscale;
290
291 /* If we advertise zero window, disable fast path. */
292 if (new_win == 0) {
293 tp->pred_flags = 0;
294 if (old_win)
295 NET_INC_STATS(sock_net(sk),
296 LINUX_MIB_TCPTOZEROWINDOWADV);
297 } else if (old_win == 0) {
298 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
299 }
300
301 return new_win;
302 }
303
304 /* Packet ECN state for a SYN-ACK */
305 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
306 {
307 const struct tcp_sock *tp = tcp_sk(sk);
308
309 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
310 if (!(tp->ecn_flags & TCP_ECN_OK))
311 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
312 else if (tcp_ca_needs_ecn(sk) ||
313 tcp_bpf_ca_needs_ecn(sk))
314 INET_ECN_xmit(sk);
315 }
316
317 /* Packet ECN state for a SYN. */
318 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
319 {
320 struct tcp_sock *tp = tcp_sk(sk);
321 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
322 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
323 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
324
325 if (!use_ecn) {
326 const struct dst_entry *dst = __sk_dst_get(sk);
327
328 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
329 use_ecn = true;
330 }
331
332 tp->ecn_flags = 0;
333
334 if (use_ecn) {
335 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
336 tp->ecn_flags = TCP_ECN_OK;
337 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
338 INET_ECN_xmit(sk);
339 }
340 }
341
342 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
343 {
344 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
345 /* tp->ecn_flags are cleared at a later point in time when
346 * SYN ACK is ultimatively being received.
347 */
348 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
349 }
350
351 static void
352 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
353 {
354 if (inet_rsk(req)->ecn_ok)
355 th->ece = 1;
356 }
357
358 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
359 * be sent.
360 */
361 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
362 struct tcphdr *th, int tcp_header_len)
363 {
364 struct tcp_sock *tp = tcp_sk(sk);
365
366 if (tp->ecn_flags & TCP_ECN_OK) {
367 /* Not-retransmitted data segment: set ECT and inject CWR. */
368 if (skb->len != tcp_header_len &&
369 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
370 INET_ECN_xmit(sk);
371 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
372 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
373 th->cwr = 1;
374 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
375 }
376 } else if (!tcp_ca_needs_ecn(sk)) {
377 /* ACK or retransmitted segment: clear ECT|CE */
378 INET_ECN_dontxmit(sk);
379 }
380 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
381 th->ece = 1;
382 }
383 }
384
385 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
386 * auto increment end seqno.
387 */
388 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
389 {
390 skb->ip_summed = CHECKSUM_PARTIAL;
391
392 TCP_SKB_CB(skb)->tcp_flags = flags;
393 TCP_SKB_CB(skb)->sacked = 0;
394
395 tcp_skb_pcount_set(skb, 1);
396
397 TCP_SKB_CB(skb)->seq = seq;
398 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
399 seq++;
400 TCP_SKB_CB(skb)->end_seq = seq;
401 }
402
403 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
404 {
405 return tp->snd_una != tp->snd_up;
406 }
407
408 #define OPTION_SACK_ADVERTISE (1 << 0)
409 #define OPTION_TS (1 << 1)
410 #define OPTION_MD5 (1 << 2)
411 #define OPTION_WSCALE (1 << 3)
412 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
413 #define OPTION_SMC (1 << 9)
414
415 static void smc_options_write(__be32 *ptr, u16 *options)
416 {
417 #if IS_ENABLED(CONFIG_SMC)
418 if (static_branch_unlikely(&tcp_have_smc)) {
419 if (unlikely(OPTION_SMC & *options)) {
420 *ptr++ = htonl((TCPOPT_NOP << 24) |
421 (TCPOPT_NOP << 16) |
422 (TCPOPT_EXP << 8) |
423 (TCPOLEN_EXP_SMC_BASE));
424 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
425 }
426 }
427 #endif
428 }
429
430 struct tcp_out_options {
431 u16 options; /* bit field of OPTION_* */
432 u16 mss; /* 0 to disable */
433 u8 ws; /* window scale, 0 to disable */
434 u8 num_sack_blocks; /* number of SACK blocks to include */
435 u8 hash_size; /* bytes in hash_location */
436 __u8 *hash_location; /* temporary pointer, overloaded */
437 __u32 tsval, tsecr; /* need to include OPTION_TS */
438 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
439 };
440
441 /* Write previously computed TCP options to the packet.
442 *
443 * Beware: Something in the Internet is very sensitive to the ordering of
444 * TCP options, we learned this through the hard way, so be careful here.
445 * Luckily we can at least blame others for their non-compliance but from
446 * inter-operability perspective it seems that we're somewhat stuck with
447 * the ordering which we have been using if we want to keep working with
448 * those broken things (not that it currently hurts anybody as there isn't
449 * particular reason why the ordering would need to be changed).
450 *
451 * At least SACK_PERM as the first option is known to lead to a disaster
452 * (but it may well be that other scenarios fail similarly).
453 */
454 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
455 struct tcp_out_options *opts)
456 {
457 u16 options = opts->options; /* mungable copy */
458
459 if (unlikely(OPTION_MD5 & options)) {
460 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
461 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
462 /* overload cookie hash location */
463 opts->hash_location = (__u8 *)ptr;
464 ptr += 4;
465 }
466
467 if (unlikely(opts->mss)) {
468 *ptr++ = htonl((TCPOPT_MSS << 24) |
469 (TCPOLEN_MSS << 16) |
470 opts->mss);
471 }
472
473 if (likely(OPTION_TS & options)) {
474 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
475 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
476 (TCPOLEN_SACK_PERM << 16) |
477 (TCPOPT_TIMESTAMP << 8) |
478 TCPOLEN_TIMESTAMP);
479 options &= ~OPTION_SACK_ADVERTISE;
480 } else {
481 *ptr++ = htonl((TCPOPT_NOP << 24) |
482 (TCPOPT_NOP << 16) |
483 (TCPOPT_TIMESTAMP << 8) |
484 TCPOLEN_TIMESTAMP);
485 }
486 *ptr++ = htonl(opts->tsval);
487 *ptr++ = htonl(opts->tsecr);
488 }
489
490 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
491 *ptr++ = htonl((TCPOPT_NOP << 24) |
492 (TCPOPT_NOP << 16) |
493 (TCPOPT_SACK_PERM << 8) |
494 TCPOLEN_SACK_PERM);
495 }
496
497 if (unlikely(OPTION_WSCALE & options)) {
498 *ptr++ = htonl((TCPOPT_NOP << 24) |
499 (TCPOPT_WINDOW << 16) |
500 (TCPOLEN_WINDOW << 8) |
501 opts->ws);
502 }
503
504 if (unlikely(opts->num_sack_blocks)) {
505 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
506 tp->duplicate_sack : tp->selective_acks;
507 int this_sack;
508
509 *ptr++ = htonl((TCPOPT_NOP << 24) |
510 (TCPOPT_NOP << 16) |
511 (TCPOPT_SACK << 8) |
512 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
513 TCPOLEN_SACK_PERBLOCK)));
514
515 for (this_sack = 0; this_sack < opts->num_sack_blocks;
516 ++this_sack) {
517 *ptr++ = htonl(sp[this_sack].start_seq);
518 *ptr++ = htonl(sp[this_sack].end_seq);
519 }
520
521 tp->rx_opt.dsack = 0;
522 }
523
524 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
525 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
526 u8 *p = (u8 *)ptr;
527 u32 len; /* Fast Open option length */
528
529 if (foc->exp) {
530 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
531 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
532 TCPOPT_FASTOPEN_MAGIC);
533 p += TCPOLEN_EXP_FASTOPEN_BASE;
534 } else {
535 len = TCPOLEN_FASTOPEN_BASE + foc->len;
536 *p++ = TCPOPT_FASTOPEN;
537 *p++ = len;
538 }
539
540 memcpy(p, foc->val, foc->len);
541 if ((len & 3) == 2) {
542 p[foc->len] = TCPOPT_NOP;
543 p[foc->len + 1] = TCPOPT_NOP;
544 }
545 ptr += (len + 3) >> 2;
546 }
547
548 smc_options_write(ptr, &options);
549 }
550
551 static void smc_set_option(const struct tcp_sock *tp,
552 struct tcp_out_options *opts,
553 unsigned int *remaining)
554 {
555 #if IS_ENABLED(CONFIG_SMC)
556 if (static_branch_unlikely(&tcp_have_smc)) {
557 if (tp->syn_smc) {
558 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
559 opts->options |= OPTION_SMC;
560 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
561 }
562 }
563 }
564 #endif
565 }
566
567 static void smc_set_option_cond(const struct tcp_sock *tp,
568 const struct inet_request_sock *ireq,
569 struct tcp_out_options *opts,
570 unsigned int *remaining)
571 {
572 #if IS_ENABLED(CONFIG_SMC)
573 if (static_branch_unlikely(&tcp_have_smc)) {
574 if (tp->syn_smc && ireq->smc_ok) {
575 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
576 opts->options |= OPTION_SMC;
577 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
578 }
579 }
580 }
581 #endif
582 }
583
584 /* Compute TCP options for SYN packets. This is not the final
585 * network wire format yet.
586 */
587 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
588 struct tcp_out_options *opts,
589 struct tcp_md5sig_key **md5)
590 {
591 struct tcp_sock *tp = tcp_sk(sk);
592 unsigned int remaining = MAX_TCP_OPTION_SPACE;
593 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
594
595 *md5 = NULL;
596 #ifdef CONFIG_TCP_MD5SIG
597 if (static_branch_unlikely(&tcp_md5_needed) &&
598 rcu_access_pointer(tp->md5sig_info)) {
599 *md5 = tp->af_specific->md5_lookup(sk, sk);
600 if (*md5) {
601 opts->options |= OPTION_MD5;
602 remaining -= TCPOLEN_MD5SIG_ALIGNED;
603 }
604 }
605 #endif
606
607 /* We always get an MSS option. The option bytes which will be seen in
608 * normal data packets should timestamps be used, must be in the MSS
609 * advertised. But we subtract them from tp->mss_cache so that
610 * calculations in tcp_sendmsg are simpler etc. So account for this
611 * fact here if necessary. If we don't do this correctly, as a
612 * receiver we won't recognize data packets as being full sized when we
613 * should, and thus we won't abide by the delayed ACK rules correctly.
614 * SACKs don't matter, we never delay an ACK when we have any of those
615 * going out. */
616 opts->mss = tcp_advertise_mss(sk);
617 remaining -= TCPOLEN_MSS_ALIGNED;
618
619 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
620 opts->options |= OPTION_TS;
621 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
622 opts->tsecr = tp->rx_opt.ts_recent;
623 remaining -= TCPOLEN_TSTAMP_ALIGNED;
624 }
625 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
626 opts->ws = tp->rx_opt.rcv_wscale;
627 opts->options |= OPTION_WSCALE;
628 remaining -= TCPOLEN_WSCALE_ALIGNED;
629 }
630 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
631 opts->options |= OPTION_SACK_ADVERTISE;
632 if (unlikely(!(OPTION_TS & opts->options)))
633 remaining -= TCPOLEN_SACKPERM_ALIGNED;
634 }
635
636 if (fastopen && fastopen->cookie.len >= 0) {
637 u32 need = fastopen->cookie.len;
638
639 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
640 TCPOLEN_FASTOPEN_BASE;
641 need = (need + 3) & ~3U; /* Align to 32 bits */
642 if (remaining >= need) {
643 opts->options |= OPTION_FAST_OPEN_COOKIE;
644 opts->fastopen_cookie = &fastopen->cookie;
645 remaining -= need;
646 tp->syn_fastopen = 1;
647 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
648 }
649 }
650
651 smc_set_option(tp, opts, &remaining);
652
653 return MAX_TCP_OPTION_SPACE - remaining;
654 }
655
656 /* Set up TCP options for SYN-ACKs. */
657 static unsigned int tcp_synack_options(const struct sock *sk,
658 struct request_sock *req,
659 unsigned int mss, struct sk_buff *skb,
660 struct tcp_out_options *opts,
661 const struct tcp_md5sig_key *md5,
662 struct tcp_fastopen_cookie *foc)
663 {
664 struct inet_request_sock *ireq = inet_rsk(req);
665 unsigned int remaining = MAX_TCP_OPTION_SPACE;
666
667 #ifdef CONFIG_TCP_MD5SIG
668 if (md5) {
669 opts->options |= OPTION_MD5;
670 remaining -= TCPOLEN_MD5SIG_ALIGNED;
671
672 /* We can't fit any SACK blocks in a packet with MD5 + TS
673 * options. There was discussion about disabling SACK
674 * rather than TS in order to fit in better with old,
675 * buggy kernels, but that was deemed to be unnecessary.
676 */
677 ireq->tstamp_ok &= !ireq->sack_ok;
678 }
679 #endif
680
681 /* We always send an MSS option. */
682 opts->mss = mss;
683 remaining -= TCPOLEN_MSS_ALIGNED;
684
685 if (likely(ireq->wscale_ok)) {
686 opts->ws = ireq->rcv_wscale;
687 opts->options |= OPTION_WSCALE;
688 remaining -= TCPOLEN_WSCALE_ALIGNED;
689 }
690 if (likely(ireq->tstamp_ok)) {
691 opts->options |= OPTION_TS;
692 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
693 opts->tsecr = req->ts_recent;
694 remaining -= TCPOLEN_TSTAMP_ALIGNED;
695 }
696 if (likely(ireq->sack_ok)) {
697 opts->options |= OPTION_SACK_ADVERTISE;
698 if (unlikely(!ireq->tstamp_ok))
699 remaining -= TCPOLEN_SACKPERM_ALIGNED;
700 }
701 if (foc != NULL && foc->len >= 0) {
702 u32 need = foc->len;
703
704 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
705 TCPOLEN_FASTOPEN_BASE;
706 need = (need + 3) & ~3U; /* Align to 32 bits */
707 if (remaining >= need) {
708 opts->options |= OPTION_FAST_OPEN_COOKIE;
709 opts->fastopen_cookie = foc;
710 remaining -= need;
711 }
712 }
713
714 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
715
716 return MAX_TCP_OPTION_SPACE - remaining;
717 }
718
719 /* Compute TCP options for ESTABLISHED sockets. This is not the
720 * final wire format yet.
721 */
722 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
723 struct tcp_out_options *opts,
724 struct tcp_md5sig_key **md5)
725 {
726 struct tcp_sock *tp = tcp_sk(sk);
727 unsigned int size = 0;
728 unsigned int eff_sacks;
729
730 opts->options = 0;
731
732 *md5 = NULL;
733 #ifdef CONFIG_TCP_MD5SIG
734 if (static_branch_unlikely(&tcp_md5_needed) &&
735 rcu_access_pointer(tp->md5sig_info)) {
736 *md5 = tp->af_specific->md5_lookup(sk, sk);
737 if (*md5) {
738 opts->options |= OPTION_MD5;
739 size += TCPOLEN_MD5SIG_ALIGNED;
740 }
741 }
742 #endif
743
744 if (likely(tp->rx_opt.tstamp_ok)) {
745 opts->options |= OPTION_TS;
746 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
747 opts->tsecr = tp->rx_opt.ts_recent;
748 size += TCPOLEN_TSTAMP_ALIGNED;
749 }
750
751 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
752 if (unlikely(eff_sacks)) {
753 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
754 opts->num_sack_blocks =
755 min_t(unsigned int, eff_sacks,
756 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
757 TCPOLEN_SACK_PERBLOCK);
758 size += TCPOLEN_SACK_BASE_ALIGNED +
759 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
760 }
761
762 return size;
763 }
764
765
766 /* TCP SMALL QUEUES (TSQ)
767 *
768 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
769 * to reduce RTT and bufferbloat.
770 * We do this using a special skb destructor (tcp_wfree).
771 *
772 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
773 * needs to be reallocated in a driver.
774 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
775 *
776 * Since transmit from skb destructor is forbidden, we use a tasklet
777 * to process all sockets that eventually need to send more skbs.
778 * We use one tasklet per cpu, with its own queue of sockets.
779 */
780 struct tsq_tasklet {
781 struct tasklet_struct tasklet;
782 struct list_head head; /* queue of tcp sockets */
783 };
784 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
785
786 static void tcp_tsq_write(struct sock *sk)
787 {
788 if ((1 << sk->sk_state) &
789 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
790 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
791 struct tcp_sock *tp = tcp_sk(sk);
792
793 if (tp->lost_out > tp->retrans_out &&
794 tp->snd_cwnd > tcp_packets_in_flight(tp)) {
795 tcp_mstamp_refresh(tp);
796 tcp_xmit_retransmit_queue(sk);
797 }
798
799 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
800 0, GFP_ATOMIC);
801 }
802 }
803
804 static void tcp_tsq_handler(struct sock *sk)
805 {
806 bh_lock_sock(sk);
807 if (!sock_owned_by_user(sk))
808 tcp_tsq_write(sk);
809 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
810 sock_hold(sk);
811 bh_unlock_sock(sk);
812 }
813 /*
814 * One tasklet per cpu tries to send more skbs.
815 * We run in tasklet context but need to disable irqs when
816 * transferring tsq->head because tcp_wfree() might
817 * interrupt us (non NAPI drivers)
818 */
819 static void tcp_tasklet_func(unsigned long data)
820 {
821 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
822 LIST_HEAD(list);
823 unsigned long flags;
824 struct list_head *q, *n;
825 struct tcp_sock *tp;
826 struct sock *sk;
827
828 local_irq_save(flags);
829 list_splice_init(&tsq->head, &list);
830 local_irq_restore(flags);
831
832 list_for_each_safe(q, n, &list) {
833 tp = list_entry(q, struct tcp_sock, tsq_node);
834 list_del(&tp->tsq_node);
835
836 sk = (struct sock *)tp;
837 smp_mb__before_atomic();
838 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
839
840 tcp_tsq_handler(sk);
841 sk_free(sk);
842 }
843 }
844
845 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
846 TCPF_WRITE_TIMER_DEFERRED | \
847 TCPF_DELACK_TIMER_DEFERRED | \
848 TCPF_MTU_REDUCED_DEFERRED)
849 /**
850 * tcp_release_cb - tcp release_sock() callback
851 * @sk: socket
852 *
853 * called from release_sock() to perform protocol dependent
854 * actions before socket release.
855 */
856 void tcp_release_cb(struct sock *sk)
857 {
858 unsigned long flags, nflags;
859
860 /* perform an atomic operation only if at least one flag is set */
861 do {
862 flags = sk->sk_tsq_flags;
863 if (!(flags & TCP_DEFERRED_ALL))
864 return;
865 nflags = flags & ~TCP_DEFERRED_ALL;
866 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
867
868 if (flags & TCPF_TSQ_DEFERRED) {
869 tcp_tsq_write(sk);
870 __sock_put(sk);
871 }
872 /* Here begins the tricky part :
873 * We are called from release_sock() with :
874 * 1) BH disabled
875 * 2) sk_lock.slock spinlock held
876 * 3) socket owned by us (sk->sk_lock.owned == 1)
877 *
878 * But following code is meant to be called from BH handlers,
879 * so we should keep BH disabled, but early release socket ownership
880 */
881 sock_release_ownership(sk);
882
883 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
884 tcp_write_timer_handler(sk);
885 __sock_put(sk);
886 }
887 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
888 tcp_delack_timer_handler(sk);
889 __sock_put(sk);
890 }
891 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
892 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
893 __sock_put(sk);
894 }
895 }
896 EXPORT_SYMBOL(tcp_release_cb);
897
898 void __init tcp_tasklet_init(void)
899 {
900 int i;
901
902 for_each_possible_cpu(i) {
903 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
904
905 INIT_LIST_HEAD(&tsq->head);
906 tasklet_init(&tsq->tasklet,
907 tcp_tasklet_func,
908 (unsigned long)tsq);
909 }
910 }
911
912 /*
913 * Write buffer destructor automatically called from kfree_skb.
914 * We can't xmit new skbs from this context, as we might already
915 * hold qdisc lock.
916 */
917 void tcp_wfree(struct sk_buff *skb)
918 {
919 struct sock *sk = skb->sk;
920 struct tcp_sock *tp = tcp_sk(sk);
921 unsigned long flags, nval, oval;
922
923 /* Keep one reference on sk_wmem_alloc.
924 * Will be released by sk_free() from here or tcp_tasklet_func()
925 */
926 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
927
928 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
929 * Wait until our queues (qdisc + devices) are drained.
930 * This gives :
931 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
932 * - chance for incoming ACK (processed by another cpu maybe)
933 * to migrate this flow (skb->ooo_okay will be eventually set)
934 */
935 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
936 goto out;
937
938 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
939 struct tsq_tasklet *tsq;
940 bool empty;
941
942 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
943 goto out;
944
945 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
946 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
947 if (nval != oval)
948 continue;
949
950 /* queue this socket to tasklet queue */
951 local_irq_save(flags);
952 tsq = this_cpu_ptr(&tsq_tasklet);
953 empty = list_empty(&tsq->head);
954 list_add(&tp->tsq_node, &tsq->head);
955 if (empty)
956 tasklet_schedule(&tsq->tasklet);
957 local_irq_restore(flags);
958 return;
959 }
960 out:
961 sk_free(sk);
962 }
963
964 /* Note: Called under soft irq.
965 * We can call TCP stack right away, unless socket is owned by user.
966 */
967 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
968 {
969 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
970 struct sock *sk = (struct sock *)tp;
971
972 tcp_tsq_handler(sk);
973 sock_put(sk);
974
975 return HRTIMER_NORESTART;
976 }
977
978 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
979 u64 prior_wstamp)
980 {
981 struct tcp_sock *tp = tcp_sk(sk);
982
983 if (sk->sk_pacing_status != SK_PACING_NONE) {
984 unsigned long rate = sk->sk_pacing_rate;
985
986 /* Original sch_fq does not pace first 10 MSS
987 * Note that tp->data_segs_out overflows after 2^32 packets,
988 * this is a minor annoyance.
989 */
990 if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
991 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
992 u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
993
994 /* take into account OS jitter */
995 len_ns -= min_t(u64, len_ns / 2, credit);
996 tp->tcp_wstamp_ns += len_ns;
997 }
998 }
999 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1000 }
1001
1002 /* This routine actually transmits TCP packets queued in by
1003 * tcp_do_sendmsg(). This is used by both the initial
1004 * transmission and possible later retransmissions.
1005 * All SKB's seen here are completely headerless. It is our
1006 * job to build the TCP header, and pass the packet down to
1007 * IP so it can do the same plus pass the packet off to the
1008 * device.
1009 *
1010 * We are working here with either a clone of the original
1011 * SKB, or a fresh unique copy made by the retransmit engine.
1012 */
1013 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1014 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1015 {
1016 const struct inet_connection_sock *icsk = inet_csk(sk);
1017 struct inet_sock *inet;
1018 struct tcp_sock *tp;
1019 struct tcp_skb_cb *tcb;
1020 struct tcp_out_options opts;
1021 unsigned int tcp_options_size, tcp_header_size;
1022 struct sk_buff *oskb = NULL;
1023 struct tcp_md5sig_key *md5;
1024 struct tcphdr *th;
1025 u64 prior_wstamp;
1026 int err;
1027
1028 BUG_ON(!skb || !tcp_skb_pcount(skb));
1029 tp = tcp_sk(sk);
1030 prior_wstamp = tp->tcp_wstamp_ns;
1031 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1032 skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1033 if (clone_it) {
1034 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1035 - tp->snd_una;
1036 oskb = skb;
1037
1038 tcp_skb_tsorted_save(oskb) {
1039 if (unlikely(skb_cloned(oskb)))
1040 skb = pskb_copy(oskb, gfp_mask);
1041 else
1042 skb = skb_clone(oskb, gfp_mask);
1043 } tcp_skb_tsorted_restore(oskb);
1044
1045 if (unlikely(!skb))
1046 return -ENOBUFS;
1047 }
1048
1049 inet = inet_sk(sk);
1050 tcb = TCP_SKB_CB(skb);
1051 memset(&opts, 0, sizeof(opts));
1052
1053 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1054 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1055 else
1056 tcp_options_size = tcp_established_options(sk, skb, &opts,
1057 &md5);
1058 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1059
1060 /* if no packet is in qdisc/device queue, then allow XPS to select
1061 * another queue. We can be called from tcp_tsq_handler()
1062 * which holds one reference to sk.
1063 *
1064 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1065 * One way to get this would be to set skb->truesize = 2 on them.
1066 */
1067 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1068
1069 /* If we had to use memory reserve to allocate this skb,
1070 * this might cause drops if packet is looped back :
1071 * Other socket might not have SOCK_MEMALLOC.
1072 * Packets not looped back do not care about pfmemalloc.
1073 */
1074 skb->pfmemalloc = 0;
1075
1076 skb_push(skb, tcp_header_size);
1077 skb_reset_transport_header(skb);
1078
1079 skb_orphan(skb);
1080 skb->sk = sk;
1081 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1082 skb_set_hash_from_sk(skb, sk);
1083 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1084
1085 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1086
1087 /* Build TCP header and checksum it. */
1088 th = (struct tcphdr *)skb->data;
1089 th->source = inet->inet_sport;
1090 th->dest = inet->inet_dport;
1091 th->seq = htonl(tcb->seq);
1092 th->ack_seq = htonl(rcv_nxt);
1093 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1094 tcb->tcp_flags);
1095
1096 th->check = 0;
1097 th->urg_ptr = 0;
1098
1099 /* The urg_mode check is necessary during a below snd_una win probe */
1100 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1101 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1102 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1103 th->urg = 1;
1104 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1105 th->urg_ptr = htons(0xFFFF);
1106 th->urg = 1;
1107 }
1108 }
1109
1110 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1111 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1112 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1113 th->window = htons(tcp_select_window(sk));
1114 tcp_ecn_send(sk, skb, th, tcp_header_size);
1115 } else {
1116 /* RFC1323: The window in SYN & SYN/ACK segments
1117 * is never scaled.
1118 */
1119 th->window = htons(min(tp->rcv_wnd, 65535U));
1120 }
1121 #ifdef CONFIG_TCP_MD5SIG
1122 /* Calculate the MD5 hash, as we have all we need now */
1123 if (md5) {
1124 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1125 tp->af_specific->calc_md5_hash(opts.hash_location,
1126 md5, sk, skb);
1127 }
1128 #endif
1129
1130 icsk->icsk_af_ops->send_check(sk, skb);
1131
1132 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1133 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1134
1135 if (skb->len != tcp_header_size) {
1136 tcp_event_data_sent(tp, sk);
1137 tp->data_segs_out += tcp_skb_pcount(skb);
1138 tp->bytes_sent += skb->len - tcp_header_size;
1139 }
1140
1141 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1142 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1143 tcp_skb_pcount(skb));
1144
1145 tp->segs_out += tcp_skb_pcount(skb);
1146 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1147 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1148 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1149
1150 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1151
1152 /* Cleanup our debris for IP stacks */
1153 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1154 sizeof(struct inet6_skb_parm)));
1155
1156 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1157
1158 if (unlikely(err > 0)) {
1159 tcp_enter_cwr(sk);
1160 err = net_xmit_eval(err);
1161 }
1162 if (!err && oskb) {
1163 tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1164 tcp_rate_skb_sent(sk, oskb);
1165 }
1166 return err;
1167 }
1168
1169 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1170 gfp_t gfp_mask)
1171 {
1172 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1173 tcp_sk(sk)->rcv_nxt);
1174 }
1175
1176 /* This routine just queues the buffer for sending.
1177 *
1178 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1179 * otherwise socket can stall.
1180 */
1181 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1182 {
1183 struct tcp_sock *tp = tcp_sk(sk);
1184
1185 /* Advance write_seq and place onto the write_queue. */
1186 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1187 __skb_header_release(skb);
1188 tcp_add_write_queue_tail(sk, skb);
1189 sk->sk_wmem_queued += skb->truesize;
1190 sk_mem_charge(sk, skb->truesize);
1191 }
1192
1193 /* Initialize TSO segments for a packet. */
1194 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1195 {
1196 if (skb->len <= mss_now) {
1197 /* Avoid the costly divide in the normal
1198 * non-TSO case.
1199 */
1200 tcp_skb_pcount_set(skb, 1);
1201 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1202 } else {
1203 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1204 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1205 }
1206 }
1207
1208 /* Pcount in the middle of the write queue got changed, we need to do various
1209 * tweaks to fix counters
1210 */
1211 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1212 {
1213 struct tcp_sock *tp = tcp_sk(sk);
1214
1215 tp->packets_out -= decr;
1216
1217 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1218 tp->sacked_out -= decr;
1219 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1220 tp->retrans_out -= decr;
1221 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1222 tp->lost_out -= decr;
1223
1224 /* Reno case is special. Sigh... */
1225 if (tcp_is_reno(tp) && decr > 0)
1226 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1227
1228 if (tp->lost_skb_hint &&
1229 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1230 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1231 tp->lost_cnt_hint -= decr;
1232
1233 tcp_verify_left_out(tp);
1234 }
1235
1236 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1237 {
1238 return TCP_SKB_CB(skb)->txstamp_ack ||
1239 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1240 }
1241
1242 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1243 {
1244 struct skb_shared_info *shinfo = skb_shinfo(skb);
1245
1246 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1247 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1248 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1249 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1250
1251 shinfo->tx_flags &= ~tsflags;
1252 shinfo2->tx_flags |= tsflags;
1253 swap(shinfo->tskey, shinfo2->tskey);
1254 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1255 TCP_SKB_CB(skb)->txstamp_ack = 0;
1256 }
1257 }
1258
1259 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1260 {
1261 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1262 TCP_SKB_CB(skb)->eor = 0;
1263 }
1264
1265 /* Insert buff after skb on the write or rtx queue of sk. */
1266 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1267 struct sk_buff *buff,
1268 struct sock *sk,
1269 enum tcp_queue tcp_queue)
1270 {
1271 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1272 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1273 else
1274 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1275 }
1276
1277 /* Function to create two new TCP segments. Shrinks the given segment
1278 * to the specified size and appends a new segment with the rest of the
1279 * packet to the list. This won't be called frequently, I hope.
1280 * Remember, these are still headerless SKBs at this point.
1281 */
1282 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1283 struct sk_buff *skb, u32 len,
1284 unsigned int mss_now, gfp_t gfp)
1285 {
1286 struct tcp_sock *tp = tcp_sk(sk);
1287 struct sk_buff *buff;
1288 int nsize, old_factor;
1289 int nlen;
1290 u8 flags;
1291
1292 if (WARN_ON(len > skb->len))
1293 return -EINVAL;
1294
1295 nsize = skb_headlen(skb) - len;
1296 if (nsize < 0)
1297 nsize = 0;
1298
1299 if (skb_unclone(skb, gfp))
1300 return -ENOMEM;
1301
1302 /* Get a new skb... force flag on. */
1303 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1304 if (!buff)
1305 return -ENOMEM; /* We'll just try again later. */
1306
1307 sk->sk_wmem_queued += buff->truesize;
1308 sk_mem_charge(sk, buff->truesize);
1309 nlen = skb->len - len - nsize;
1310 buff->truesize += nlen;
1311 skb->truesize -= nlen;
1312
1313 /* Correct the sequence numbers. */
1314 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1315 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1316 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1317
1318 /* PSH and FIN should only be set in the second packet. */
1319 flags = TCP_SKB_CB(skb)->tcp_flags;
1320 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1321 TCP_SKB_CB(buff)->tcp_flags = flags;
1322 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1323 tcp_skb_fragment_eor(skb, buff);
1324
1325 skb_split(skb, buff, len);
1326
1327 buff->ip_summed = CHECKSUM_PARTIAL;
1328
1329 buff->tstamp = skb->tstamp;
1330 tcp_fragment_tstamp(skb, buff);
1331
1332 old_factor = tcp_skb_pcount(skb);
1333
1334 /* Fix up tso_factor for both original and new SKB. */
1335 tcp_set_skb_tso_segs(skb, mss_now);
1336 tcp_set_skb_tso_segs(buff, mss_now);
1337
1338 /* Update delivered info for the new segment */
1339 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1340
1341 /* If this packet has been sent out already, we must
1342 * adjust the various packet counters.
1343 */
1344 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1345 int diff = old_factor - tcp_skb_pcount(skb) -
1346 tcp_skb_pcount(buff);
1347
1348 if (diff)
1349 tcp_adjust_pcount(sk, skb, diff);
1350 }
1351
1352 /* Link BUFF into the send queue. */
1353 __skb_header_release(buff);
1354 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1355 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1356 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1357
1358 return 0;
1359 }
1360
1361 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1362 * data is not copied, but immediately discarded.
1363 */
1364 static int __pskb_trim_head(struct sk_buff *skb, int len)
1365 {
1366 struct skb_shared_info *shinfo;
1367 int i, k, eat;
1368
1369 eat = min_t(int, len, skb_headlen(skb));
1370 if (eat) {
1371 __skb_pull(skb, eat);
1372 len -= eat;
1373 if (!len)
1374 return 0;
1375 }
1376 eat = len;
1377 k = 0;
1378 shinfo = skb_shinfo(skb);
1379 for (i = 0; i < shinfo->nr_frags; i++) {
1380 int size = skb_frag_size(&shinfo->frags[i]);
1381
1382 if (size <= eat) {
1383 skb_frag_unref(skb, i);
1384 eat -= size;
1385 } else {
1386 shinfo->frags[k] = shinfo->frags[i];
1387 if (eat) {
1388 shinfo->frags[k].page_offset += eat;
1389 skb_frag_size_sub(&shinfo->frags[k], eat);
1390 eat = 0;
1391 }
1392 k++;
1393 }
1394 }
1395 shinfo->nr_frags = k;
1396
1397 skb->data_len -= len;
1398 skb->len = skb->data_len;
1399 return len;
1400 }
1401
1402 /* Remove acked data from a packet in the transmit queue. */
1403 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1404 {
1405 u32 delta_truesize;
1406
1407 if (skb_unclone(skb, GFP_ATOMIC))
1408 return -ENOMEM;
1409
1410 delta_truesize = __pskb_trim_head(skb, len);
1411
1412 TCP_SKB_CB(skb)->seq += len;
1413 skb->ip_summed = CHECKSUM_PARTIAL;
1414
1415 if (delta_truesize) {
1416 skb->truesize -= delta_truesize;
1417 sk->sk_wmem_queued -= delta_truesize;
1418 sk_mem_uncharge(sk, delta_truesize);
1419 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1420 }
1421
1422 /* Any change of skb->len requires recalculation of tso factor. */
1423 if (tcp_skb_pcount(skb) > 1)
1424 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1425
1426 return 0;
1427 }
1428
1429 /* Calculate MSS not accounting any TCP options. */
1430 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1431 {
1432 const struct tcp_sock *tp = tcp_sk(sk);
1433 const struct inet_connection_sock *icsk = inet_csk(sk);
1434 int mss_now;
1435
1436 /* Calculate base mss without TCP options:
1437 It is MMS_S - sizeof(tcphdr) of rfc1122
1438 */
1439 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1440
1441 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1442 if (icsk->icsk_af_ops->net_frag_header_len) {
1443 const struct dst_entry *dst = __sk_dst_get(sk);
1444
1445 if (dst && dst_allfrag(dst))
1446 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1447 }
1448
1449 /* Clamp it (mss_clamp does not include tcp options) */
1450 if (mss_now > tp->rx_opt.mss_clamp)
1451 mss_now = tp->rx_opt.mss_clamp;
1452
1453 /* Now subtract optional transport overhead */
1454 mss_now -= icsk->icsk_ext_hdr_len;
1455
1456 /* Then reserve room for full set of TCP options and 8 bytes of data */
1457 if (mss_now < 48)
1458 mss_now = 48;
1459 return mss_now;
1460 }
1461
1462 /* Calculate MSS. Not accounting for SACKs here. */
1463 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1464 {
1465 /* Subtract TCP options size, not including SACKs */
1466 return __tcp_mtu_to_mss(sk, pmtu) -
1467 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1468 }
1469
1470 /* Inverse of above */
1471 int tcp_mss_to_mtu(struct sock *sk, int mss)
1472 {
1473 const struct tcp_sock *tp = tcp_sk(sk);
1474 const struct inet_connection_sock *icsk = inet_csk(sk);
1475 int mtu;
1476
1477 mtu = mss +
1478 tp->tcp_header_len +
1479 icsk->icsk_ext_hdr_len +
1480 icsk->icsk_af_ops->net_header_len;
1481
1482 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1483 if (icsk->icsk_af_ops->net_frag_header_len) {
1484 const struct dst_entry *dst = __sk_dst_get(sk);
1485
1486 if (dst && dst_allfrag(dst))
1487 mtu += icsk->icsk_af_ops->net_frag_header_len;
1488 }
1489 return mtu;
1490 }
1491 EXPORT_SYMBOL(tcp_mss_to_mtu);
1492
1493 /* MTU probing init per socket */
1494 void tcp_mtup_init(struct sock *sk)
1495 {
1496 struct tcp_sock *tp = tcp_sk(sk);
1497 struct inet_connection_sock *icsk = inet_csk(sk);
1498 struct net *net = sock_net(sk);
1499
1500 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1501 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1502 icsk->icsk_af_ops->net_header_len;
1503 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1504 icsk->icsk_mtup.probe_size = 0;
1505 if (icsk->icsk_mtup.enabled)
1506 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1507 }
1508 EXPORT_SYMBOL(tcp_mtup_init);
1509
1510 /* This function synchronize snd mss to current pmtu/exthdr set.
1511
1512 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1513 for TCP options, but includes only bare TCP header.
1514
1515 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1516 It is minimum of user_mss and mss received with SYN.
1517 It also does not include TCP options.
1518
1519 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1520
1521 tp->mss_cache is current effective sending mss, including
1522 all tcp options except for SACKs. It is evaluated,
1523 taking into account current pmtu, but never exceeds
1524 tp->rx_opt.mss_clamp.
1525
1526 NOTE1. rfc1122 clearly states that advertised MSS
1527 DOES NOT include either tcp or ip options.
1528
1529 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1530 are READ ONLY outside this function. --ANK (980731)
1531 */
1532 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1533 {
1534 struct tcp_sock *tp = tcp_sk(sk);
1535 struct inet_connection_sock *icsk = inet_csk(sk);
1536 int mss_now;
1537
1538 if (icsk->icsk_mtup.search_high > pmtu)
1539 icsk->icsk_mtup.search_high = pmtu;
1540
1541 mss_now = tcp_mtu_to_mss(sk, pmtu);
1542 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1543
1544 /* And store cached results */
1545 icsk->icsk_pmtu_cookie = pmtu;
1546 if (icsk->icsk_mtup.enabled)
1547 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1548 tp->mss_cache = mss_now;
1549
1550 return mss_now;
1551 }
1552 EXPORT_SYMBOL(tcp_sync_mss);
1553
1554 /* Compute the current effective MSS, taking SACKs and IP options,
1555 * and even PMTU discovery events into account.
1556 */
1557 unsigned int tcp_current_mss(struct sock *sk)
1558 {
1559 const struct tcp_sock *tp = tcp_sk(sk);
1560 const struct dst_entry *dst = __sk_dst_get(sk);
1561 u32 mss_now;
1562 unsigned int header_len;
1563 struct tcp_out_options opts;
1564 struct tcp_md5sig_key *md5;
1565
1566 mss_now = tp->mss_cache;
1567
1568 if (dst) {
1569 u32 mtu = dst_mtu(dst);
1570 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1571 mss_now = tcp_sync_mss(sk, mtu);
1572 }
1573
1574 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1575 sizeof(struct tcphdr);
1576 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1577 * some common options. If this is an odd packet (because we have SACK
1578 * blocks etc) then our calculated header_len will be different, and
1579 * we have to adjust mss_now correspondingly */
1580 if (header_len != tp->tcp_header_len) {
1581 int delta = (int) header_len - tp->tcp_header_len;
1582 mss_now -= delta;
1583 }
1584
1585 return mss_now;
1586 }
1587
1588 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1589 * As additional protections, we do not touch cwnd in retransmission phases,
1590 * and if application hit its sndbuf limit recently.
1591 */
1592 static void tcp_cwnd_application_limited(struct sock *sk)
1593 {
1594 struct tcp_sock *tp = tcp_sk(sk);
1595
1596 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1597 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1598 /* Limited by application or receiver window. */
1599 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1600 u32 win_used = max(tp->snd_cwnd_used, init_win);
1601 if (win_used < tp->snd_cwnd) {
1602 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1603 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1604 }
1605 tp->snd_cwnd_used = 0;
1606 }
1607 tp->snd_cwnd_stamp = tcp_jiffies32;
1608 }
1609
1610 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1611 {
1612 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1613 struct tcp_sock *tp = tcp_sk(sk);
1614
1615 /* Track the maximum number of outstanding packets in each
1616 * window, and remember whether we were cwnd-limited then.
1617 */
1618 if (!before(tp->snd_una, tp->max_packets_seq) ||
1619 tp->packets_out > tp->max_packets_out) {
1620 tp->max_packets_out = tp->packets_out;
1621 tp->max_packets_seq = tp->snd_nxt;
1622 tp->is_cwnd_limited = is_cwnd_limited;
1623 }
1624
1625 if (tcp_is_cwnd_limited(sk)) {
1626 /* Network is feed fully. */
1627 tp->snd_cwnd_used = 0;
1628 tp->snd_cwnd_stamp = tcp_jiffies32;
1629 } else {
1630 /* Network starves. */
1631 if (tp->packets_out > tp->snd_cwnd_used)
1632 tp->snd_cwnd_used = tp->packets_out;
1633
1634 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1635 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1636 !ca_ops->cong_control)
1637 tcp_cwnd_application_limited(sk);
1638
1639 /* The following conditions together indicate the starvation
1640 * is caused by insufficient sender buffer:
1641 * 1) just sent some data (see tcp_write_xmit)
1642 * 2) not cwnd limited (this else condition)
1643 * 3) no more data to send (tcp_write_queue_empty())
1644 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1645 */
1646 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1647 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1648 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1649 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1650 }
1651 }
1652
1653 /* Minshall's variant of the Nagle send check. */
1654 static bool tcp_minshall_check(const struct tcp_sock *tp)
1655 {
1656 return after(tp->snd_sml, tp->snd_una) &&
1657 !after(tp->snd_sml, tp->snd_nxt);
1658 }
1659
1660 /* Update snd_sml if this skb is under mss
1661 * Note that a TSO packet might end with a sub-mss segment
1662 * The test is really :
1663 * if ((skb->len % mss) != 0)
1664 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1665 * But we can avoid doing the divide again given we already have
1666 * skb_pcount = skb->len / mss_now
1667 */
1668 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1669 const struct sk_buff *skb)
1670 {
1671 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1672 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1673 }
1674
1675 /* Return false, if packet can be sent now without violation Nagle's rules:
1676 * 1. It is full sized. (provided by caller in %partial bool)
1677 * 2. Or it contains FIN. (already checked by caller)
1678 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1679 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1680 * With Minshall's modification: all sent small packets are ACKed.
1681 */
1682 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1683 int nonagle)
1684 {
1685 return partial &&
1686 ((nonagle & TCP_NAGLE_CORK) ||
1687 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1688 }
1689
1690 /* Return how many segs we'd like on a TSO packet,
1691 * to send one TSO packet per ms
1692 */
1693 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1694 int min_tso_segs)
1695 {
1696 u32 bytes, segs;
1697
1698 bytes = min_t(unsigned long,
1699 sk->sk_pacing_rate >> sk->sk_pacing_shift,
1700 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1701
1702 /* Goal is to send at least one packet per ms,
1703 * not one big TSO packet every 100 ms.
1704 * This preserves ACK clocking and is consistent
1705 * with tcp_tso_should_defer() heuristic.
1706 */
1707 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1708
1709 return segs;
1710 }
1711
1712 /* Return the number of segments we want in the skb we are transmitting.
1713 * See if congestion control module wants to decide; otherwise, autosize.
1714 */
1715 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1716 {
1717 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1718 u32 min_tso, tso_segs;
1719
1720 min_tso = ca_ops->min_tso_segs ?
1721 ca_ops->min_tso_segs(sk) :
1722 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1723
1724 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1725 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1726 }
1727
1728 /* Returns the portion of skb which can be sent right away */
1729 static unsigned int tcp_mss_split_point(const struct sock *sk,
1730 const struct sk_buff *skb,
1731 unsigned int mss_now,
1732 unsigned int max_segs,
1733 int nonagle)
1734 {
1735 const struct tcp_sock *tp = tcp_sk(sk);
1736 u32 partial, needed, window, max_len;
1737
1738 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1739 max_len = mss_now * max_segs;
1740
1741 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1742 return max_len;
1743
1744 needed = min(skb->len, window);
1745
1746 if (max_len <= needed)
1747 return max_len;
1748
1749 partial = needed % mss_now;
1750 /* If last segment is not a full MSS, check if Nagle rules allow us
1751 * to include this last segment in this skb.
1752 * Otherwise, we'll split the skb at last MSS boundary
1753 */
1754 if (tcp_nagle_check(partial != 0, tp, nonagle))
1755 return needed - partial;
1756
1757 return needed;
1758 }
1759
1760 /* Can at least one segment of SKB be sent right now, according to the
1761 * congestion window rules? If so, return how many segments are allowed.
1762 */
1763 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1764 const struct sk_buff *skb)
1765 {
1766 u32 in_flight, cwnd, halfcwnd;
1767
1768 /* Don't be strict about the congestion window for the final FIN. */
1769 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1770 tcp_skb_pcount(skb) == 1)
1771 return 1;
1772
1773 in_flight = tcp_packets_in_flight(tp);
1774 cwnd = tp->snd_cwnd;
1775 if (in_flight >= cwnd)
1776 return 0;
1777
1778 /* For better scheduling, ensure we have at least
1779 * 2 GSO packets in flight.
1780 */
1781 halfcwnd = max(cwnd >> 1, 1U);
1782 return min(halfcwnd, cwnd - in_flight);
1783 }
1784
1785 /* Initialize TSO state of a skb.
1786 * This must be invoked the first time we consider transmitting
1787 * SKB onto the wire.
1788 */
1789 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1790 {
1791 int tso_segs = tcp_skb_pcount(skb);
1792
1793 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1794 tcp_set_skb_tso_segs(skb, mss_now);
1795 tso_segs = tcp_skb_pcount(skb);
1796 }
1797 return tso_segs;
1798 }
1799
1800
1801 /* Return true if the Nagle test allows this packet to be
1802 * sent now.
1803 */
1804 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1805 unsigned int cur_mss, int nonagle)
1806 {
1807 /* Nagle rule does not apply to frames, which sit in the middle of the
1808 * write_queue (they have no chances to get new data).
1809 *
1810 * This is implemented in the callers, where they modify the 'nonagle'
1811 * argument based upon the location of SKB in the send queue.
1812 */
1813 if (nonagle & TCP_NAGLE_PUSH)
1814 return true;
1815
1816 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1817 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1818 return true;
1819
1820 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1821 return true;
1822
1823 return false;
1824 }
1825
1826 /* Does at least the first segment of SKB fit into the send window? */
1827 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1828 const struct sk_buff *skb,
1829 unsigned int cur_mss)
1830 {
1831 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1832
1833 if (skb->len > cur_mss)
1834 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1835
1836 return !after(end_seq, tcp_wnd_end(tp));
1837 }
1838
1839 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1840 * which is put after SKB on the list. It is very much like
1841 * tcp_fragment() except that it may make several kinds of assumptions
1842 * in order to speed up the splitting operation. In particular, we
1843 * know that all the data is in scatter-gather pages, and that the
1844 * packet has never been sent out before (and thus is not cloned).
1845 */
1846 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1847 unsigned int mss_now, gfp_t gfp)
1848 {
1849 int nlen = skb->len - len;
1850 struct sk_buff *buff;
1851 u8 flags;
1852
1853 /* All of a TSO frame must be composed of paged data. */
1854 if (skb->len != skb->data_len)
1855 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
1856 skb, len, mss_now, gfp);
1857
1858 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1859 if (unlikely(!buff))
1860 return -ENOMEM;
1861
1862 sk->sk_wmem_queued += buff->truesize;
1863 sk_mem_charge(sk, buff->truesize);
1864 buff->truesize += nlen;
1865 skb->truesize -= nlen;
1866
1867 /* Correct the sequence numbers. */
1868 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1869 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1870 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1871
1872 /* PSH and FIN should only be set in the second packet. */
1873 flags = TCP_SKB_CB(skb)->tcp_flags;
1874 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1875 TCP_SKB_CB(buff)->tcp_flags = flags;
1876
1877 /* This packet was never sent out yet, so no SACK bits. */
1878 TCP_SKB_CB(buff)->sacked = 0;
1879
1880 tcp_skb_fragment_eor(skb, buff);
1881
1882 buff->ip_summed = CHECKSUM_PARTIAL;
1883 skb_split(skb, buff, len);
1884 tcp_fragment_tstamp(skb, buff);
1885
1886 /* Fix up tso_factor for both original and new SKB. */
1887 tcp_set_skb_tso_segs(skb, mss_now);
1888 tcp_set_skb_tso_segs(buff, mss_now);
1889
1890 /* Link BUFF into the send queue. */
1891 __skb_header_release(buff);
1892 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
1893
1894 return 0;
1895 }
1896
1897 /* Try to defer sending, if possible, in order to minimize the amount
1898 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1899 *
1900 * This algorithm is from John Heffner.
1901 */
1902 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1903 bool *is_cwnd_limited,
1904 bool *is_rwnd_limited,
1905 u32 max_segs)
1906 {
1907 const struct inet_connection_sock *icsk = inet_csk(sk);
1908 u32 send_win, cong_win, limit, in_flight;
1909 struct tcp_sock *tp = tcp_sk(sk);
1910 struct sk_buff *head;
1911 int win_divisor;
1912 s64 delta;
1913
1914 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1915 goto send_now;
1916
1917 /* Avoid bursty behavior by allowing defer
1918 * only if the last write was recent (1 ms).
1919 * Note that tp->tcp_wstamp_ns can be in the future if we have
1920 * packets waiting in a qdisc or device for EDT delivery.
1921 */
1922 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
1923 if (delta > 0)
1924 goto send_now;
1925
1926 in_flight = tcp_packets_in_flight(tp);
1927
1928 BUG_ON(tcp_skb_pcount(skb) <= 1);
1929 BUG_ON(tp->snd_cwnd <= in_flight);
1930
1931 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1932
1933 /* From in_flight test above, we know that cwnd > in_flight. */
1934 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1935
1936 limit = min(send_win, cong_win);
1937
1938 /* If a full-sized TSO skb can be sent, do it. */
1939 if (limit >= max_segs * tp->mss_cache)
1940 goto send_now;
1941
1942 /* Middle in queue won't get any more data, full sendable already? */
1943 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1944 goto send_now;
1945
1946 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1947 if (win_divisor) {
1948 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1949
1950 /* If at least some fraction of a window is available,
1951 * just use it.
1952 */
1953 chunk /= win_divisor;
1954 if (limit >= chunk)
1955 goto send_now;
1956 } else {
1957 /* Different approach, try not to defer past a single
1958 * ACK. Receiver should ACK every other full sized
1959 * frame, so if we have space for more than 3 frames
1960 * then send now.
1961 */
1962 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1963 goto send_now;
1964 }
1965
1966 /* TODO : use tsorted_sent_queue ? */
1967 head = tcp_rtx_queue_head(sk);
1968 if (!head)
1969 goto send_now;
1970 delta = tp->tcp_clock_cache - head->tstamp;
1971 /* If next ACK is likely to come too late (half srtt), do not defer */
1972 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
1973 goto send_now;
1974
1975 /* Ok, it looks like it is advisable to defer.
1976 * Three cases are tracked :
1977 * 1) We are cwnd-limited
1978 * 2) We are rwnd-limited
1979 * 3) We are application limited.
1980 */
1981 if (cong_win < send_win) {
1982 if (cong_win <= skb->len) {
1983 *is_cwnd_limited = true;
1984 return true;
1985 }
1986 } else {
1987 if (send_win <= skb->len) {
1988 *is_rwnd_limited = true;
1989 return true;
1990 }
1991 }
1992
1993 /* If this packet won't get more data, do not wait. */
1994 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
1995 TCP_SKB_CB(skb)->eor)
1996 goto send_now;
1997
1998 return true;
1999
2000 send_now:
2001 return false;
2002 }
2003
2004 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2005 {
2006 struct inet_connection_sock *icsk = inet_csk(sk);
2007 struct tcp_sock *tp = tcp_sk(sk);
2008 struct net *net = sock_net(sk);
2009 u32 interval;
2010 s32 delta;
2011
2012 interval = net->ipv4.sysctl_tcp_probe_interval;
2013 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2014 if (unlikely(delta >= interval * HZ)) {
2015 int mss = tcp_current_mss(sk);
2016
2017 /* Update current search range */
2018 icsk->icsk_mtup.probe_size = 0;
2019 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2020 sizeof(struct tcphdr) +
2021 icsk->icsk_af_ops->net_header_len;
2022 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2023
2024 /* Update probe time stamp */
2025 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2026 }
2027 }
2028
2029 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2030 {
2031 struct sk_buff *skb, *next;
2032
2033 skb = tcp_send_head(sk);
2034 tcp_for_write_queue_from_safe(skb, next, sk) {
2035 if (len <= skb->len)
2036 break;
2037
2038 if (unlikely(TCP_SKB_CB(skb)->eor))
2039 return false;
2040
2041 len -= skb->len;
2042 }
2043
2044 return true;
2045 }
2046
2047 /* Create a new MTU probe if we are ready.
2048 * MTU probe is regularly attempting to increase the path MTU by
2049 * deliberately sending larger packets. This discovers routing
2050 * changes resulting in larger path MTUs.
2051 *
2052 * Returns 0 if we should wait to probe (no cwnd available),
2053 * 1 if a probe was sent,
2054 * -1 otherwise
2055 */
2056 static int tcp_mtu_probe(struct sock *sk)
2057 {
2058 struct inet_connection_sock *icsk = inet_csk(sk);
2059 struct tcp_sock *tp = tcp_sk(sk);
2060 struct sk_buff *skb, *nskb, *next;
2061 struct net *net = sock_net(sk);
2062 int probe_size;
2063 int size_needed;
2064 int copy, len;
2065 int mss_now;
2066 int interval;
2067
2068 /* Not currently probing/verifying,
2069 * not in recovery,
2070 * have enough cwnd, and
2071 * not SACKing (the variable headers throw things off)
2072 */
2073 if (likely(!icsk->icsk_mtup.enabled ||
2074 icsk->icsk_mtup.probe_size ||
2075 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2076 tp->snd_cwnd < 11 ||
2077 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2078 return -1;
2079
2080 /* Use binary search for probe_size between tcp_mss_base,
2081 * and current mss_clamp. if (search_high - search_low)
2082 * smaller than a threshold, backoff from probing.
2083 */
2084 mss_now = tcp_current_mss(sk);
2085 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2086 icsk->icsk_mtup.search_low) >> 1);
2087 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2088 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2089 /* When misfortune happens, we are reprobing actively,
2090 * and then reprobe timer has expired. We stick with current
2091 * probing process by not resetting search range to its orignal.
2092 */
2093 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2094 interval < net->ipv4.sysctl_tcp_probe_threshold) {
2095 /* Check whether enough time has elaplased for
2096 * another round of probing.
2097 */
2098 tcp_mtu_check_reprobe(sk);
2099 return -1;
2100 }
2101
2102 /* Have enough data in the send queue to probe? */
2103 if (tp->write_seq - tp->snd_nxt < size_needed)
2104 return -1;
2105
2106 if (tp->snd_wnd < size_needed)
2107 return -1;
2108 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2109 return 0;
2110
2111 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2112 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2113 if (!tcp_packets_in_flight(tp))
2114 return -1;
2115 else
2116 return 0;
2117 }
2118
2119 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2120 return -1;
2121
2122 /* We're allowed to probe. Build it now. */
2123 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2124 if (!nskb)
2125 return -1;
2126 sk->sk_wmem_queued += nskb->truesize;
2127 sk_mem_charge(sk, nskb->truesize);
2128
2129 skb = tcp_send_head(sk);
2130
2131 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2132 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2133 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2134 TCP_SKB_CB(nskb)->sacked = 0;
2135 nskb->csum = 0;
2136 nskb->ip_summed = CHECKSUM_PARTIAL;
2137
2138 tcp_insert_write_queue_before(nskb, skb, sk);
2139 tcp_highest_sack_replace(sk, skb, nskb);
2140
2141 len = 0;
2142 tcp_for_write_queue_from_safe(skb, next, sk) {
2143 copy = min_t(int, skb->len, probe_size - len);
2144 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2145
2146 if (skb->len <= copy) {
2147 /* We've eaten all the data from this skb.
2148 * Throw it away. */
2149 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2150 /* If this is the last SKB we copy and eor is set
2151 * we need to propagate it to the new skb.
2152 */
2153 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2154 tcp_unlink_write_queue(skb, sk);
2155 sk_wmem_free_skb(sk, skb);
2156 } else {
2157 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2158 ~(TCPHDR_FIN|TCPHDR_PSH);
2159 if (!skb_shinfo(skb)->nr_frags) {
2160 skb_pull(skb, copy);
2161 } else {
2162 __pskb_trim_head(skb, copy);
2163 tcp_set_skb_tso_segs(skb, mss_now);
2164 }
2165 TCP_SKB_CB(skb)->seq += copy;
2166 }
2167
2168 len += copy;
2169
2170 if (len >= probe_size)
2171 break;
2172 }
2173 tcp_init_tso_segs(nskb, nskb->len);
2174
2175 /* We're ready to send. If this fails, the probe will
2176 * be resegmented into mss-sized pieces by tcp_write_xmit().
2177 */
2178 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2179 /* Decrement cwnd here because we are sending
2180 * effectively two packets. */
2181 tp->snd_cwnd--;
2182 tcp_event_new_data_sent(sk, nskb);
2183
2184 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2185 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2186 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2187
2188 return 1;
2189 }
2190
2191 return -1;
2192 }
2193
2194 static bool tcp_pacing_check(struct sock *sk)
2195 {
2196 struct tcp_sock *tp = tcp_sk(sk);
2197
2198 if (!tcp_needs_internal_pacing(sk))
2199 return false;
2200
2201 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2202 return false;
2203
2204 if (!hrtimer_is_queued(&tp->pacing_timer)) {
2205 hrtimer_start(&tp->pacing_timer,
2206 ns_to_ktime(tp->tcp_wstamp_ns),
2207 HRTIMER_MODE_ABS_PINNED_SOFT);
2208 sock_hold(sk);
2209 }
2210 return true;
2211 }
2212
2213 /* TCP Small Queues :
2214 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2215 * (These limits are doubled for retransmits)
2216 * This allows for :
2217 * - better RTT estimation and ACK scheduling
2218 * - faster recovery
2219 * - high rates
2220 * Alas, some drivers / subsystems require a fair amount
2221 * of queued bytes to ensure line rate.
2222 * One example is wifi aggregation (802.11 AMPDU)
2223 */
2224 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2225 unsigned int factor)
2226 {
2227 unsigned long limit;
2228
2229 limit = max_t(unsigned long,
2230 2 * skb->truesize,
2231 sk->sk_pacing_rate >> sk->sk_pacing_shift);
2232 if (sk->sk_pacing_status == SK_PACING_NONE)
2233 limit = min_t(unsigned long, limit,
2234 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2235 limit <<= factor;
2236
2237 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2238 /* Always send skb if rtx queue is empty.
2239 * No need to wait for TX completion to call us back,
2240 * after softirq/tasklet schedule.
2241 * This helps when TX completions are delayed too much.
2242 */
2243 if (tcp_rtx_queue_empty(sk))
2244 return false;
2245
2246 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2247 /* It is possible TX completion already happened
2248 * before we set TSQ_THROTTLED, so we must
2249 * test again the condition.
2250 */
2251 smp_mb__after_atomic();
2252 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2253 return true;
2254 }
2255 return false;
2256 }
2257
2258 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2259 {
2260 const u32 now = tcp_jiffies32;
2261 enum tcp_chrono old = tp->chrono_type;
2262
2263 if (old > TCP_CHRONO_UNSPEC)
2264 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2265 tp->chrono_start = now;
2266 tp->chrono_type = new;
2267 }
2268
2269 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2270 {
2271 struct tcp_sock *tp = tcp_sk(sk);
2272
2273 /* If there are multiple conditions worthy of tracking in a
2274 * chronograph then the highest priority enum takes precedence
2275 * over the other conditions. So that if something "more interesting"
2276 * starts happening, stop the previous chrono and start a new one.
2277 */
2278 if (type > tp->chrono_type)
2279 tcp_chrono_set(tp, type);
2280 }
2281
2282 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2283 {
2284 struct tcp_sock *tp = tcp_sk(sk);
2285
2286
2287 /* There are multiple conditions worthy of tracking in a
2288 * chronograph, so that the highest priority enum takes
2289 * precedence over the other conditions (see tcp_chrono_start).
2290 * If a condition stops, we only stop chrono tracking if
2291 * it's the "most interesting" or current chrono we are
2292 * tracking and starts busy chrono if we have pending data.
2293 */
2294 if (tcp_rtx_and_write_queues_empty(sk))
2295 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2296 else if (type == tp->chrono_type)
2297 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2298 }
2299
2300 /* This routine writes packets to the network. It advances the
2301 * send_head. This happens as incoming acks open up the remote
2302 * window for us.
2303 *
2304 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2305 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2306 * account rare use of URG, this is not a big flaw.
2307 *
2308 * Send at most one packet when push_one > 0. Temporarily ignore
2309 * cwnd limit to force at most one packet out when push_one == 2.
2310
2311 * Returns true, if no segments are in flight and we have queued segments,
2312 * but cannot send anything now because of SWS or another problem.
2313 */
2314 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2315 int push_one, gfp_t gfp)
2316 {
2317 struct tcp_sock *tp = tcp_sk(sk);
2318 struct sk_buff *skb;
2319 unsigned int tso_segs, sent_pkts;
2320 int cwnd_quota;
2321 int result;
2322 bool is_cwnd_limited = false, is_rwnd_limited = false;
2323 u32 max_segs;
2324
2325 sent_pkts = 0;
2326
2327 tcp_mstamp_refresh(tp);
2328 if (!push_one) {
2329 /* Do MTU probing. */
2330 result = tcp_mtu_probe(sk);
2331 if (!result) {
2332 return false;
2333 } else if (result > 0) {
2334 sent_pkts = 1;
2335 }
2336 }
2337
2338 max_segs = tcp_tso_segs(sk, mss_now);
2339 while ((skb = tcp_send_head(sk))) {
2340 unsigned int limit;
2341
2342 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2343 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2344 skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2345 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2346 tcp_init_tso_segs(skb, mss_now);
2347 goto repair; /* Skip network transmission */
2348 }
2349
2350 if (tcp_pacing_check(sk))
2351 break;
2352
2353 tso_segs = tcp_init_tso_segs(skb, mss_now);
2354 BUG_ON(!tso_segs);
2355
2356 cwnd_quota = tcp_cwnd_test(tp, skb);
2357 if (!cwnd_quota) {
2358 if (push_one == 2)
2359 /* Force out a loss probe pkt. */
2360 cwnd_quota = 1;
2361 else
2362 break;
2363 }
2364
2365 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2366 is_rwnd_limited = true;
2367 break;
2368 }
2369
2370 if (tso_segs == 1) {
2371 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2372 (tcp_skb_is_last(sk, skb) ?
2373 nonagle : TCP_NAGLE_PUSH))))
2374 break;
2375 } else {
2376 if (!push_one &&
2377 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2378 &is_rwnd_limited, max_segs))
2379 break;
2380 }
2381
2382 limit = mss_now;
2383 if (tso_segs > 1 && !tcp_urg_mode(tp))
2384 limit = tcp_mss_split_point(sk, skb, mss_now,
2385 min_t(unsigned int,
2386 cwnd_quota,
2387 max_segs),
2388 nonagle);
2389
2390 if (skb->len > limit &&
2391 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2392 break;
2393
2394 if (tcp_small_queue_check(sk, skb, 0))
2395 break;
2396
2397 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2398 break;
2399
2400 repair:
2401 /* Advance the send_head. This one is sent out.
2402 * This call will increment packets_out.
2403 */
2404 tcp_event_new_data_sent(sk, skb);
2405
2406 tcp_minshall_update(tp, mss_now, skb);
2407 sent_pkts += tcp_skb_pcount(skb);
2408
2409 if (push_one)
2410 break;
2411 }
2412
2413 if (is_rwnd_limited)
2414 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2415 else
2416 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2417
2418 if (likely(sent_pkts)) {
2419 if (tcp_in_cwnd_reduction(sk))
2420 tp->prr_out += sent_pkts;
2421
2422 /* Send one loss probe per tail loss episode. */
2423 if (push_one != 2)
2424 tcp_schedule_loss_probe(sk, false);
2425 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2426 tcp_cwnd_validate(sk, is_cwnd_limited);
2427 return false;
2428 }
2429 return !tp->packets_out && !tcp_write_queue_empty(sk);
2430 }
2431
2432 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2433 {
2434 struct inet_connection_sock *icsk = inet_csk(sk);
2435 struct tcp_sock *tp = tcp_sk(sk);
2436 u32 timeout, rto_delta_us;
2437 int early_retrans;
2438
2439 /* Don't do any loss probe on a Fast Open connection before 3WHS
2440 * finishes.
2441 */
2442 if (tp->fastopen_rsk)
2443 return false;
2444
2445 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2446 /* Schedule a loss probe in 2*RTT for SACK capable connections
2447 * not in loss recovery, that are either limited by cwnd or application.
2448 */
2449 if ((early_retrans != 3 && early_retrans != 4) ||
2450 !tp->packets_out || !tcp_is_sack(tp) ||
2451 (icsk->icsk_ca_state != TCP_CA_Open &&
2452 icsk->icsk_ca_state != TCP_CA_CWR))
2453 return false;
2454
2455 /* Probe timeout is 2*rtt. Add minimum RTO to account
2456 * for delayed ack when there's one outstanding packet. If no RTT
2457 * sample is available then probe after TCP_TIMEOUT_INIT.
2458 */
2459 if (tp->srtt_us) {
2460 timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2461 if (tp->packets_out == 1)
2462 timeout += TCP_RTO_MIN;
2463 else
2464 timeout += TCP_TIMEOUT_MIN;
2465 } else {
2466 timeout = TCP_TIMEOUT_INIT;
2467 }
2468
2469 /* If the RTO formula yields an earlier time, then use that time. */
2470 rto_delta_us = advancing_rto ?
2471 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2472 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2473 if (rto_delta_us > 0)
2474 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2475
2476 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2477 TCP_RTO_MAX, NULL);
2478 return true;
2479 }
2480
2481 /* Thanks to skb fast clones, we can detect if a prior transmit of
2482 * a packet is still in a qdisc or driver queue.
2483 * In this case, there is very little point doing a retransmit !
2484 */
2485 static bool skb_still_in_host_queue(const struct sock *sk,
2486 const struct sk_buff *skb)
2487 {
2488 if (unlikely(skb_fclone_busy(sk, skb))) {
2489 NET_INC_STATS(sock_net(sk),
2490 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2491 return true;
2492 }
2493 return false;
2494 }
2495
2496 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2497 * retransmit the last segment.
2498 */
2499 void tcp_send_loss_probe(struct sock *sk)
2500 {
2501 struct tcp_sock *tp = tcp_sk(sk);
2502 struct sk_buff *skb;
2503 int pcount;
2504 int mss = tcp_current_mss(sk);
2505
2506 skb = tcp_send_head(sk);
2507 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2508 pcount = tp->packets_out;
2509 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2510 if (tp->packets_out > pcount)
2511 goto probe_sent;
2512 goto rearm_timer;
2513 }
2514 skb = skb_rb_last(&sk->tcp_rtx_queue);
2515 if (unlikely(!skb)) {
2516 WARN_ONCE(tp->packets_out,
2517 "invalid inflight: %u state %u cwnd %u mss %d\n",
2518 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2519 inet_csk(sk)->icsk_pending = 0;
2520 return;
2521 }
2522
2523 /* At most one outstanding TLP retransmission. */
2524 if (tp->tlp_high_seq)
2525 goto rearm_timer;
2526
2527 if (skb_still_in_host_queue(sk, skb))
2528 goto rearm_timer;
2529
2530 pcount = tcp_skb_pcount(skb);
2531 if (WARN_ON(!pcount))
2532 goto rearm_timer;
2533
2534 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2535 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2536 (pcount - 1) * mss, mss,
2537 GFP_ATOMIC)))
2538 goto rearm_timer;
2539 skb = skb_rb_next(skb);
2540 }
2541
2542 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2543 goto rearm_timer;
2544
2545 if (__tcp_retransmit_skb(sk, skb, 1))
2546 goto rearm_timer;
2547
2548 /* Record snd_nxt for loss detection. */
2549 tp->tlp_high_seq = tp->snd_nxt;
2550
2551 probe_sent:
2552 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2553 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2554 inet_csk(sk)->icsk_pending = 0;
2555 rearm_timer:
2556 tcp_rearm_rto(sk);
2557 }
2558
2559 /* Push out any pending frames which were held back due to
2560 * TCP_CORK or attempt at coalescing tiny packets.
2561 * The socket must be locked by the caller.
2562 */
2563 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2564 int nonagle)
2565 {
2566 /* If we are closed, the bytes will have to remain here.
2567 * In time closedown will finish, we empty the write queue and
2568 * all will be happy.
2569 */
2570 if (unlikely(sk->sk_state == TCP_CLOSE))
2571 return;
2572
2573 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2574 sk_gfp_mask(sk, GFP_ATOMIC)))
2575 tcp_check_probe_timer(sk);
2576 }
2577
2578 /* Send _single_ skb sitting at the send head. This function requires
2579 * true push pending frames to setup probe timer etc.
2580 */
2581 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2582 {
2583 struct sk_buff *skb = tcp_send_head(sk);
2584
2585 BUG_ON(!skb || skb->len < mss_now);
2586
2587 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2588 }
2589
2590 /* This function returns the amount that we can raise the
2591 * usable window based on the following constraints
2592 *
2593 * 1. The window can never be shrunk once it is offered (RFC 793)
2594 * 2. We limit memory per socket
2595 *
2596 * RFC 1122:
2597 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2598 * RECV.NEXT + RCV.WIN fixed until:
2599 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2600 *
2601 * i.e. don't raise the right edge of the window until you can raise
2602 * it at least MSS bytes.
2603 *
2604 * Unfortunately, the recommended algorithm breaks header prediction,
2605 * since header prediction assumes th->window stays fixed.
2606 *
2607 * Strictly speaking, keeping th->window fixed violates the receiver
2608 * side SWS prevention criteria. The problem is that under this rule
2609 * a stream of single byte packets will cause the right side of the
2610 * window to always advance by a single byte.
2611 *
2612 * Of course, if the sender implements sender side SWS prevention
2613 * then this will not be a problem.
2614 *
2615 * BSD seems to make the following compromise:
2616 *
2617 * If the free space is less than the 1/4 of the maximum
2618 * space available and the free space is less than 1/2 mss,
2619 * then set the window to 0.
2620 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2621 * Otherwise, just prevent the window from shrinking
2622 * and from being larger than the largest representable value.
2623 *
2624 * This prevents incremental opening of the window in the regime
2625 * where TCP is limited by the speed of the reader side taking
2626 * data out of the TCP receive queue. It does nothing about
2627 * those cases where the window is constrained on the sender side
2628 * because the pipeline is full.
2629 *
2630 * BSD also seems to "accidentally" limit itself to windows that are a
2631 * multiple of MSS, at least until the free space gets quite small.
2632 * This would appear to be a side effect of the mbuf implementation.
2633 * Combining these two algorithms results in the observed behavior
2634 * of having a fixed window size at almost all times.
2635 *
2636 * Below we obtain similar behavior by forcing the offered window to
2637 * a multiple of the mss when it is feasible to do so.
2638 *
2639 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2640 * Regular options like TIMESTAMP are taken into account.
2641 */
2642 u32 __tcp_select_window(struct sock *sk)
2643 {
2644 struct inet_connection_sock *icsk = inet_csk(sk);
2645 struct tcp_sock *tp = tcp_sk(sk);
2646 /* MSS for the peer's data. Previous versions used mss_clamp
2647 * here. I don't know if the value based on our guesses
2648 * of peer's MSS is better for the performance. It's more correct
2649 * but may be worse for the performance because of rcv_mss
2650 * fluctuations. --SAW 1998/11/1
2651 */
2652 int mss = icsk->icsk_ack.rcv_mss;
2653 int free_space = tcp_space(sk);
2654 int allowed_space = tcp_full_space(sk);
2655 int full_space = min_t(int, tp->window_clamp, allowed_space);
2656 int window;
2657
2658 if (unlikely(mss > full_space)) {
2659 mss = full_space;
2660 if (mss <= 0)
2661 return 0;
2662 }
2663 if (free_space < (full_space >> 1)) {
2664 icsk->icsk_ack.quick = 0;
2665
2666 if (tcp_under_memory_pressure(sk))
2667 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2668 4U * tp->advmss);
2669
2670 /* free_space might become our new window, make sure we don't
2671 * increase it due to wscale.
2672 */
2673 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2674
2675 /* if free space is less than mss estimate, or is below 1/16th
2676 * of the maximum allowed, try to move to zero-window, else
2677 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2678 * new incoming data is dropped due to memory limits.
2679 * With large window, mss test triggers way too late in order
2680 * to announce zero window in time before rmem limit kicks in.
2681 */
2682 if (free_space < (allowed_space >> 4) || free_space < mss)
2683 return 0;
2684 }
2685
2686 if (free_space > tp->rcv_ssthresh)
2687 free_space = tp->rcv_ssthresh;
2688
2689 /* Don't do rounding if we are using window scaling, since the
2690 * scaled window will not line up with the MSS boundary anyway.
2691 */
2692 if (tp->rx_opt.rcv_wscale) {
2693 window = free_space;
2694
2695 /* Advertise enough space so that it won't get scaled away.
2696 * Import case: prevent zero window announcement if
2697 * 1<<rcv_wscale > mss.
2698 */
2699 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2700 } else {
2701 window = tp->rcv_wnd;
2702 /* Get the largest window that is a nice multiple of mss.
2703 * Window clamp already applied above.
2704 * If our current window offering is within 1 mss of the
2705 * free space we just keep it. This prevents the divide
2706 * and multiply from happening most of the time.
2707 * We also don't do any window rounding when the free space
2708 * is too small.
2709 */
2710 if (window <= free_space - mss || window > free_space)
2711 window = rounddown(free_space, mss);
2712 else if (mss == full_space &&
2713 free_space > window + (full_space >> 1))
2714 window = free_space;
2715 }
2716
2717 return window;
2718 }
2719
2720 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2721 const struct sk_buff *next_skb)
2722 {
2723 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2724 const struct skb_shared_info *next_shinfo =
2725 skb_shinfo(next_skb);
2726 struct skb_shared_info *shinfo = skb_shinfo(skb);
2727
2728 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2729 shinfo->tskey = next_shinfo->tskey;
2730 TCP_SKB_CB(skb)->txstamp_ack |=
2731 TCP_SKB_CB(next_skb)->txstamp_ack;
2732 }
2733 }
2734
2735 /* Collapses two adjacent SKB's during retransmission. */
2736 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2737 {
2738 struct tcp_sock *tp = tcp_sk(sk);
2739 struct sk_buff *next_skb = skb_rb_next(skb);
2740 int next_skb_size;
2741
2742 next_skb_size = next_skb->len;
2743
2744 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2745
2746 if (next_skb_size) {
2747 if (next_skb_size <= skb_availroom(skb))
2748 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2749 next_skb_size);
2750 else if (!skb_shift(skb, next_skb, next_skb_size))
2751 return false;
2752 }
2753 tcp_highest_sack_replace(sk, next_skb, skb);
2754
2755 /* Update sequence range on original skb. */
2756 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2757
2758 /* Merge over control information. This moves PSH/FIN etc. over */
2759 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2760
2761 /* All done, get rid of second SKB and account for it so
2762 * packet counting does not break.
2763 */
2764 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2765 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2766
2767 /* changed transmit queue under us so clear hints */
2768 tcp_clear_retrans_hints_partial(tp);
2769 if (next_skb == tp->retransmit_skb_hint)
2770 tp->retransmit_skb_hint = skb;
2771
2772 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2773
2774 tcp_skb_collapse_tstamp(skb, next_skb);
2775
2776 tcp_rtx_queue_unlink_and_free(next_skb, sk);
2777 return true;
2778 }
2779
2780 /* Check if coalescing SKBs is legal. */
2781 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2782 {
2783 if (tcp_skb_pcount(skb) > 1)
2784 return false;
2785 if (skb_cloned(skb))
2786 return false;
2787 /* Some heuristics for collapsing over SACK'd could be invented */
2788 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2789 return false;
2790
2791 return true;
2792 }
2793
2794 /* Collapse packets in the retransmit queue to make to create
2795 * less packets on the wire. This is only done on retransmission.
2796 */
2797 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2798 int space)
2799 {
2800 struct tcp_sock *tp = tcp_sk(sk);
2801 struct sk_buff *skb = to, *tmp;
2802 bool first = true;
2803
2804 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2805 return;
2806 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2807 return;
2808
2809 skb_rbtree_walk_from_safe(skb, tmp) {
2810 if (!tcp_can_collapse(sk, skb))
2811 break;
2812
2813 if (!tcp_skb_can_collapse_to(to))
2814 break;
2815
2816 space -= skb->len;
2817
2818 if (first) {
2819 first = false;
2820 continue;
2821 }
2822
2823 if (space < 0)
2824 break;
2825
2826 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2827 break;
2828
2829 if (!tcp_collapse_retrans(sk, to))
2830 break;
2831 }
2832 }
2833
2834 /* This retransmits one SKB. Policy decisions and retransmit queue
2835 * state updates are done by the caller. Returns non-zero if an
2836 * error occurred which prevented the send.
2837 */
2838 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2839 {
2840 struct inet_connection_sock *icsk = inet_csk(sk);
2841 struct tcp_sock *tp = tcp_sk(sk);
2842 unsigned int cur_mss;
2843 int diff, len, err;
2844
2845
2846 /* Inconclusive MTU probe */
2847 if (icsk->icsk_mtup.probe_size)
2848 icsk->icsk_mtup.probe_size = 0;
2849
2850 /* Do not sent more than we queued. 1/4 is reserved for possible
2851 * copying overhead: fragmentation, tunneling, mangling etc.
2852 */
2853 if (refcount_read(&sk->sk_wmem_alloc) >
2854 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2855 sk->sk_sndbuf))
2856 return -EAGAIN;
2857
2858 if (skb_still_in_host_queue(sk, skb))
2859 return -EBUSY;
2860
2861 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2862 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2863 WARN_ON_ONCE(1);
2864 return -EINVAL;
2865 }
2866 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2867 return -ENOMEM;
2868 }
2869
2870 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2871 return -EHOSTUNREACH; /* Routing failure or similar. */
2872
2873 cur_mss = tcp_current_mss(sk);
2874
2875 /* If receiver has shrunk his window, and skb is out of
2876 * new window, do not retransmit it. The exception is the
2877 * case, when window is shrunk to zero. In this case
2878 * our retransmit serves as a zero window probe.
2879 */
2880 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2881 TCP_SKB_CB(skb)->seq != tp->snd_una)
2882 return -EAGAIN;
2883
2884 len = cur_mss * segs;
2885 if (skb->len > len) {
2886 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2887 cur_mss, GFP_ATOMIC))
2888 return -ENOMEM; /* We'll try again later. */
2889 } else {
2890 if (skb_unclone(skb, GFP_ATOMIC))
2891 return -ENOMEM;
2892
2893 diff = tcp_skb_pcount(skb);
2894 tcp_set_skb_tso_segs(skb, cur_mss);
2895 diff -= tcp_skb_pcount(skb);
2896 if (diff)
2897 tcp_adjust_pcount(sk, skb, diff);
2898 if (skb->len < cur_mss)
2899 tcp_retrans_try_collapse(sk, skb, cur_mss);
2900 }
2901
2902 /* RFC3168, section 6.1.1.1. ECN fallback */
2903 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2904 tcp_ecn_clear_syn(sk, skb);
2905
2906 /* Update global and local TCP statistics. */
2907 segs = tcp_skb_pcount(skb);
2908 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2909 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2910 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2911 tp->total_retrans += segs;
2912 tp->bytes_retrans += skb->len;
2913
2914 /* make sure skb->data is aligned on arches that require it
2915 * and check if ack-trimming & collapsing extended the headroom
2916 * beyond what csum_start can cover.
2917 */
2918 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2919 skb_headroom(skb) >= 0xFFFF)) {
2920 struct sk_buff *nskb;
2921
2922 tcp_skb_tsorted_save(skb) {
2923 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2924 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2925 -ENOBUFS;
2926 } tcp_skb_tsorted_restore(skb);
2927
2928 if (!err) {
2929 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
2930 tcp_rate_skb_sent(sk, skb);
2931 }
2932 } else {
2933 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2934 }
2935
2936 /* To avoid taking spuriously low RTT samples based on a timestamp
2937 * for a transmit that never happened, always mark EVER_RETRANS
2938 */
2939 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2940
2941 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
2942 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
2943 TCP_SKB_CB(skb)->seq, segs, err);
2944
2945 if (likely(!err)) {
2946 trace_tcp_retransmit_skb(sk, skb);
2947 } else if (err != -EBUSY) {
2948 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
2949 }
2950 return err;
2951 }
2952
2953 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2954 {
2955 struct tcp_sock *tp = tcp_sk(sk);
2956 int err = __tcp_retransmit_skb(sk, skb, segs);
2957
2958 if (err == 0) {
2959 #if FASTRETRANS_DEBUG > 0
2960 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2961 net_dbg_ratelimited("retrans_out leaked\n");
2962 }
2963 #endif
2964 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2965 tp->retrans_out += tcp_skb_pcount(skb);
2966 }
2967
2968 /* Save stamp of the first (attempted) retransmit. */
2969 if (!tp->retrans_stamp)
2970 tp->retrans_stamp = tcp_skb_timestamp(skb);
2971
2972 if (tp->undo_retrans < 0)
2973 tp->undo_retrans = 0;
2974 tp->undo_retrans += tcp_skb_pcount(skb);
2975 return err;
2976 }
2977
2978 /* This gets called after a retransmit timeout, and the initially
2979 * retransmitted data is acknowledged. It tries to continue
2980 * resending the rest of the retransmit queue, until either
2981 * we've sent it all or the congestion window limit is reached.
2982 */
2983 void tcp_xmit_retransmit_queue(struct sock *sk)
2984 {
2985 const struct inet_connection_sock *icsk = inet_csk(sk);
2986 struct sk_buff *skb, *rtx_head, *hole = NULL;
2987 struct tcp_sock *tp = tcp_sk(sk);
2988 u32 max_segs;
2989 int mib_idx;
2990
2991 if (!tp->packets_out)
2992 return;
2993
2994 rtx_head = tcp_rtx_queue_head(sk);
2995 skb = tp->retransmit_skb_hint ?: rtx_head;
2996 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2997 skb_rbtree_walk_from(skb) {
2998 __u8 sacked;
2999 int segs;
3000
3001 if (tcp_pacing_check(sk))
3002 break;
3003
3004 /* we could do better than to assign each time */
3005 if (!hole)
3006 tp->retransmit_skb_hint = skb;
3007
3008 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3009 if (segs <= 0)
3010 return;
3011 sacked = TCP_SKB_CB(skb)->sacked;
3012 /* In case tcp_shift_skb_data() have aggregated large skbs,
3013 * we need to make sure not sending too bigs TSO packets
3014 */
3015 segs = min_t(int, segs, max_segs);
3016
3017 if (tp->retrans_out >= tp->lost_out) {
3018 break;
3019 } else if (!(sacked & TCPCB_LOST)) {
3020 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3021 hole = skb;
3022 continue;
3023
3024 } else {
3025 if (icsk->icsk_ca_state != TCP_CA_Loss)
3026 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3027 else
3028 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3029 }
3030
3031 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3032 continue;
3033
3034 if (tcp_small_queue_check(sk, skb, 1))
3035 return;
3036
3037 if (tcp_retransmit_skb(sk, skb, segs))
3038 return;
3039
3040 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3041
3042 if (tcp_in_cwnd_reduction(sk))
3043 tp->prr_out += tcp_skb_pcount(skb);
3044
3045 if (skb == rtx_head &&
3046 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3047 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3048 inet_csk(sk)->icsk_rto,
3049 TCP_RTO_MAX,
3050 skb);
3051 }
3052 }
3053
3054 /* We allow to exceed memory limits for FIN packets to expedite
3055 * connection tear down and (memory) recovery.
3056 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3057 * or even be forced to close flow without any FIN.
3058 * In general, we want to allow one skb per socket to avoid hangs
3059 * with edge trigger epoll()
3060 */
3061 void sk_forced_mem_schedule(struct sock *sk, int size)
3062 {
3063 int amt;
3064
3065 if (size <= sk->sk_forward_alloc)
3066 return;
3067 amt = sk_mem_pages(size);
3068 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3069 sk_memory_allocated_add(sk, amt);
3070
3071 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3072 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3073 }
3074
3075 /* Send a FIN. The caller locks the socket for us.
3076 * We should try to send a FIN packet really hard, but eventually give up.
3077 */
3078 void tcp_send_fin(struct sock *sk)
3079 {
3080 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3081 struct tcp_sock *tp = tcp_sk(sk);
3082
3083 /* Optimization, tack on the FIN if we have one skb in write queue and
3084 * this skb was not yet sent, or we are under memory pressure.
3085 * Note: in the latter case, FIN packet will be sent after a timeout,
3086 * as TCP stack thinks it has already been transmitted.
3087 */
3088 if (!tskb && tcp_under_memory_pressure(sk))
3089 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3090
3091 if (tskb) {
3092 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3093 TCP_SKB_CB(tskb)->end_seq++;
3094 tp->write_seq++;
3095 if (tcp_write_queue_empty(sk)) {
3096 /* This means tskb was already sent.
3097 * Pretend we included the FIN on previous transmit.
3098 * We need to set tp->snd_nxt to the value it would have
3099 * if FIN had been sent. This is because retransmit path
3100 * does not change tp->snd_nxt.
3101 */
3102 tp->snd_nxt++;
3103 return;
3104 }
3105 } else {
3106 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3107 if (unlikely(!skb))
3108 return;
3109
3110 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3111 skb_reserve(skb, MAX_TCP_HEADER);
3112 sk_forced_mem_schedule(sk, skb->truesize);
3113 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3114 tcp_init_nondata_skb(skb, tp->write_seq,
3115 TCPHDR_ACK | TCPHDR_FIN);
3116 tcp_queue_skb(sk, skb);
3117 }
3118 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3119 }
3120
3121 /* We get here when a process closes a file descriptor (either due to
3122 * an explicit close() or as a byproduct of exit()'ing) and there
3123 * was unread data in the receive queue. This behavior is recommended
3124 * by RFC 2525, section 2.17. -DaveM
3125 */
3126 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3127 {
3128 struct sk_buff *skb;
3129
3130 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3131
3132 /* NOTE: No TCP options attached and we never retransmit this. */
3133 skb = alloc_skb(MAX_TCP_HEADER, priority);
3134 if (!skb) {
3135 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3136 return;
3137 }
3138
3139 /* Reserve space for headers and prepare control bits. */
3140 skb_reserve(skb, MAX_TCP_HEADER);
3141 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3142 TCPHDR_ACK | TCPHDR_RST);
3143 tcp_mstamp_refresh(tcp_sk(sk));
3144 /* Send it off. */
3145 if (tcp_transmit_skb(sk, skb, 0, priority))
3146 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3147
3148 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3149 * skb here is different to the troublesome skb, so use NULL
3150 */
3151 trace_tcp_send_reset(sk, NULL);
3152 }
3153
3154 /* Send a crossed SYN-ACK during socket establishment.
3155 * WARNING: This routine must only be called when we have already sent
3156 * a SYN packet that crossed the incoming SYN that caused this routine
3157 * to get called. If this assumption fails then the initial rcv_wnd
3158 * and rcv_wscale values will not be correct.
3159 */
3160 int tcp_send_synack(struct sock *sk)
3161 {
3162 struct sk_buff *skb;
3163
3164 skb = tcp_rtx_queue_head(sk);
3165 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3166 pr_err("%s: wrong queue state\n", __func__);
3167 return -EFAULT;
3168 }
3169 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3170 if (skb_cloned(skb)) {
3171 struct sk_buff *nskb;
3172
3173 tcp_skb_tsorted_save(skb) {
3174 nskb = skb_copy(skb, GFP_ATOMIC);
3175 } tcp_skb_tsorted_restore(skb);
3176 if (!nskb)
3177 return -ENOMEM;
3178 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3179 tcp_rtx_queue_unlink_and_free(skb, sk);
3180 __skb_header_release(nskb);
3181 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3182 sk->sk_wmem_queued += nskb->truesize;
3183 sk_mem_charge(sk, nskb->truesize);
3184 skb = nskb;
3185 }
3186
3187 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3188 tcp_ecn_send_synack(sk, skb);
3189 }
3190 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3191 }
3192
3193 /**
3194 * tcp_make_synack - Prepare a SYN-ACK.
3195 * sk: listener socket
3196 * dst: dst entry attached to the SYNACK
3197 * req: request_sock pointer
3198 *
3199 * Allocate one skb and build a SYNACK packet.
3200 * @dst is consumed : Caller should not use it again.
3201 */
3202 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3203 struct request_sock *req,
3204 struct tcp_fastopen_cookie *foc,
3205 enum tcp_synack_type synack_type)
3206 {
3207 struct inet_request_sock *ireq = inet_rsk(req);
3208 const struct tcp_sock *tp = tcp_sk(sk);
3209 struct tcp_md5sig_key *md5 = NULL;
3210 struct tcp_out_options opts;
3211 struct sk_buff *skb;
3212 int tcp_header_size;
3213 struct tcphdr *th;
3214 int mss;
3215
3216 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3217 if (unlikely(!skb)) {
3218 dst_release(dst);
3219 return NULL;
3220 }
3221 /* Reserve space for headers. */
3222 skb_reserve(skb, MAX_TCP_HEADER);
3223
3224 switch (synack_type) {
3225 case TCP_SYNACK_NORMAL:
3226 skb_set_owner_w(skb, req_to_sk(req));
3227 break;
3228 case TCP_SYNACK_COOKIE:
3229 /* Under synflood, we do not attach skb to a socket,
3230 * to avoid false sharing.
3231 */
3232 break;
3233 case TCP_SYNACK_FASTOPEN:
3234 /* sk is a const pointer, because we want to express multiple
3235 * cpu might call us concurrently.
3236 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3237 */
3238 skb_set_owner_w(skb, (struct sock *)sk);
3239 break;
3240 }
3241 skb_dst_set(skb, dst);
3242
3243 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3244
3245 memset(&opts, 0, sizeof(opts));
3246 #ifdef CONFIG_SYN_COOKIES
3247 if (unlikely(req->cookie_ts))
3248 skb->skb_mstamp_ns = cookie_init_timestamp(req);
3249 else
3250 #endif
3251 {
3252 skb->skb_mstamp_ns = tcp_clock_ns();
3253 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3254 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3255 }
3256
3257 #ifdef CONFIG_TCP_MD5SIG
3258 rcu_read_lock();
3259 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3260 #endif
3261 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3262 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3263 foc) + sizeof(*th);
3264
3265 skb_push(skb, tcp_header_size);
3266 skb_reset_transport_header(skb);
3267
3268 th = (struct tcphdr *)skb->data;
3269 memset(th, 0, sizeof(struct tcphdr));
3270 th->syn = 1;
3271 th->ack = 1;
3272 tcp_ecn_make_synack(req, th);
3273 th->source = htons(ireq->ir_num);
3274 th->dest = ireq->ir_rmt_port;
3275 skb->mark = ireq->ir_mark;
3276 skb->ip_summed = CHECKSUM_PARTIAL;
3277 th->seq = htonl(tcp_rsk(req)->snt_isn);
3278 /* XXX data is queued and acked as is. No buffer/window check */
3279 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3280
3281 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3282 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3283 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3284 th->doff = (tcp_header_size >> 2);
3285 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3286
3287 #ifdef CONFIG_TCP_MD5SIG
3288 /* Okay, we have all we need - do the md5 hash if needed */
3289 if (md5)
3290 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3291 md5, req_to_sk(req), skb);
3292 rcu_read_unlock();
3293 #endif
3294
3295 /* Do not fool tcpdump (if any), clean our debris */
3296 skb->tstamp = 0;
3297 return skb;
3298 }
3299 EXPORT_SYMBOL(tcp_make_synack);
3300
3301 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3302 {
3303 struct inet_connection_sock *icsk = inet_csk(sk);
3304 const struct tcp_congestion_ops *ca;
3305 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3306
3307 if (ca_key == TCP_CA_UNSPEC)
3308 return;
3309
3310 rcu_read_lock();
3311 ca = tcp_ca_find_key(ca_key);
3312 if (likely(ca && try_module_get(ca->owner))) {
3313 module_put(icsk->icsk_ca_ops->owner);
3314 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3315 icsk->icsk_ca_ops = ca;
3316 }
3317 rcu_read_unlock();
3318 }
3319
3320 /* Do all connect socket setups that can be done AF independent. */
3321 static void tcp_connect_init(struct sock *sk)
3322 {
3323 const struct dst_entry *dst = __sk_dst_get(sk);
3324 struct tcp_sock *tp = tcp_sk(sk);
3325 __u8 rcv_wscale;
3326 u32 rcv_wnd;
3327
3328 /* We'll fix this up when we get a response from the other end.
3329 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3330 */
3331 tp->tcp_header_len = sizeof(struct tcphdr);
3332 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3333 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3334
3335 #ifdef CONFIG_TCP_MD5SIG
3336 if (tp->af_specific->md5_lookup(sk, sk))
3337 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3338 #endif
3339
3340 /* If user gave his TCP_MAXSEG, record it to clamp */
3341 if (tp->rx_opt.user_mss)
3342 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3343 tp->max_window = 0;
3344 tcp_mtup_init(sk);
3345 tcp_sync_mss(sk, dst_mtu(dst));
3346
3347 tcp_ca_dst_init(sk, dst);
3348
3349 if (!tp->window_clamp)
3350 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3351 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3352
3353 tcp_initialize_rcv_mss(sk);
3354
3355 /* limit the window selection if the user enforce a smaller rx buffer */
3356 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3357 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3358 tp->window_clamp = tcp_full_space(sk);
3359
3360 rcv_wnd = tcp_rwnd_init_bpf(sk);
3361 if (rcv_wnd == 0)
3362 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3363
3364 tcp_select_initial_window(sk, tcp_full_space(sk),
3365 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3366 &tp->rcv_wnd,
3367 &tp->window_clamp,
3368 sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3369 &rcv_wscale,
3370 rcv_wnd);
3371
3372 tp->rx_opt.rcv_wscale = rcv_wscale;
3373 tp->rcv_ssthresh = tp->rcv_wnd;
3374
3375 sk->sk_err = 0;
3376 sock_reset_flag(sk, SOCK_DONE);
3377 tp->snd_wnd = 0;
3378 tcp_init_wl(tp, 0);
3379 tcp_write_queue_purge(sk);
3380 tp->snd_una = tp->write_seq;
3381 tp->snd_sml = tp->write_seq;
3382 tp->snd_up = tp->write_seq;
3383 tp->snd_nxt = tp->write_seq;
3384
3385 if (likely(!tp->repair))
3386 tp->rcv_nxt = 0;
3387 else
3388 tp->rcv_tstamp = tcp_jiffies32;
3389 tp->rcv_wup = tp->rcv_nxt;
3390 tp->copied_seq = tp->rcv_nxt;
3391
3392 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3393 inet_csk(sk)->icsk_retransmits = 0;
3394 tcp_clear_retrans(tp);
3395 }
3396
3397 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3398 {
3399 struct tcp_sock *tp = tcp_sk(sk);
3400 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3401
3402 tcb->end_seq += skb->len;
3403 __skb_header_release(skb);
3404 sk->sk_wmem_queued += skb->truesize;
3405 sk_mem_charge(sk, skb->truesize);
3406 tp->write_seq = tcb->end_seq;
3407 tp->packets_out += tcp_skb_pcount(skb);
3408 }
3409
3410 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3411 * queue a data-only packet after the regular SYN, such that regular SYNs
3412 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3413 * only the SYN sequence, the data are retransmitted in the first ACK.
3414 * If cookie is not cached or other error occurs, falls back to send a
3415 * regular SYN with Fast Open cookie request option.
3416 */
3417 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3418 {
3419 struct tcp_sock *tp = tcp_sk(sk);
3420 struct tcp_fastopen_request *fo = tp->fastopen_req;
3421 int space, err = 0;
3422 struct sk_buff *syn_data;
3423
3424 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3425 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3426 goto fallback;
3427
3428 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3429 * user-MSS. Reserve maximum option space for middleboxes that add
3430 * private TCP options. The cost is reduced data space in SYN :(
3431 */
3432 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3433
3434 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3435 MAX_TCP_OPTION_SPACE;
3436
3437 space = min_t(size_t, space, fo->size);
3438
3439 /* limit to order-0 allocations */
3440 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3441
3442 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3443 if (!syn_data)
3444 goto fallback;
3445 syn_data->ip_summed = CHECKSUM_PARTIAL;
3446 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3447 if (space) {
3448 int copied = copy_from_iter(skb_put(syn_data, space), space,
3449 &fo->data->msg_iter);
3450 if (unlikely(!copied)) {
3451 tcp_skb_tsorted_anchor_cleanup(syn_data);
3452 kfree_skb(syn_data);
3453 goto fallback;
3454 }
3455 if (copied != space) {
3456 skb_trim(syn_data, copied);
3457 space = copied;
3458 }
3459 skb_zcopy_set(syn_data, fo->uarg, NULL);
3460 }
3461 /* No more data pending in inet_wait_for_connect() */
3462 if (space == fo->size)
3463 fo->data = NULL;
3464 fo->copied = space;
3465
3466 tcp_connect_queue_skb(sk, syn_data);
3467 if (syn_data->len)
3468 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3469
3470 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3471
3472 syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3473
3474 /* Now full SYN+DATA was cloned and sent (or not),
3475 * remove the SYN from the original skb (syn_data)
3476 * we keep in write queue in case of a retransmit, as we
3477 * also have the SYN packet (with no data) in the same queue.
3478 */
3479 TCP_SKB_CB(syn_data)->seq++;
3480 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3481 if (!err) {
3482 tp->syn_data = (fo->copied > 0);
3483 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3484 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3485 goto done;
3486 }
3487
3488 /* data was not sent, put it in write_queue */
3489 __skb_queue_tail(&sk->sk_write_queue, syn_data);
3490 tp->packets_out -= tcp_skb_pcount(syn_data);
3491
3492 fallback:
3493 /* Send a regular SYN with Fast Open cookie request option */
3494 if (fo->cookie.len > 0)
3495 fo->cookie.len = 0;
3496 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3497 if (err)
3498 tp->syn_fastopen = 0;
3499 done:
3500 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3501 return err;
3502 }
3503
3504 /* Build a SYN and send it off. */
3505 int tcp_connect(struct sock *sk)
3506 {
3507 struct tcp_sock *tp = tcp_sk(sk);
3508 struct sk_buff *buff;
3509 int err;
3510
3511 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3512
3513 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3514 return -EHOSTUNREACH; /* Routing failure or similar. */
3515
3516 tcp_connect_init(sk);
3517
3518 if (unlikely(tp->repair)) {
3519 tcp_finish_connect(sk, NULL);
3520 return 0;
3521 }
3522
3523 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3524 if (unlikely(!buff))
3525 return -ENOBUFS;
3526
3527 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3528 tcp_mstamp_refresh(tp);
3529 tp->retrans_stamp = tcp_time_stamp(tp);
3530 tcp_connect_queue_skb(sk, buff);
3531 tcp_ecn_send_syn(sk, buff);
3532 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3533
3534 /* Send off SYN; include data in Fast Open. */
3535 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3536 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3537 if (err == -ECONNREFUSED)
3538 return err;
3539
3540 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3541 * in order to make this packet get counted in tcpOutSegs.
3542 */
3543 tp->snd_nxt = tp->write_seq;
3544 tp->pushed_seq = tp->write_seq;
3545 buff = tcp_send_head(sk);
3546 if (unlikely(buff)) {
3547 tp->snd_nxt = TCP_SKB_CB(buff)->seq;
3548 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3549 }
3550 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3551
3552 /* Timer for repeating the SYN until an answer. */
3553 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3554 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3555 return 0;
3556 }
3557 EXPORT_SYMBOL(tcp_connect);
3558
3559 /* Send out a delayed ack, the caller does the policy checking
3560 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3561 * for details.
3562 */
3563 void tcp_send_delayed_ack(struct sock *sk)
3564 {
3565 struct inet_connection_sock *icsk = inet_csk(sk);
3566 int ato = icsk->icsk_ack.ato;
3567 unsigned long timeout;
3568
3569 if (ato > TCP_DELACK_MIN) {
3570 const struct tcp_sock *tp = tcp_sk(sk);
3571 int max_ato = HZ / 2;
3572
3573 if (inet_csk_in_pingpong_mode(sk) ||
3574 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3575 max_ato = TCP_DELACK_MAX;
3576
3577 /* Slow path, intersegment interval is "high". */
3578
3579 /* If some rtt estimate is known, use it to bound delayed ack.
3580 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3581 * directly.
3582 */
3583 if (tp->srtt_us) {
3584 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3585 TCP_DELACK_MIN);
3586
3587 if (rtt < max_ato)
3588 max_ato = rtt;
3589 }
3590
3591 ato = min(ato, max_ato);
3592 }
3593
3594 /* Stay within the limit we were given */
3595 timeout = jiffies + ato;
3596
3597 /* Use new timeout only if there wasn't a older one earlier. */
3598 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3599 /* If delack timer was blocked or is about to expire,
3600 * send ACK now.
3601 */
3602 if (icsk->icsk_ack.blocked ||
3603 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3604 tcp_send_ack(sk);
3605 return;
3606 }
3607
3608 if (!time_before(timeout, icsk->icsk_ack.timeout))
3609 timeout = icsk->icsk_ack.timeout;
3610 }
3611 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3612 icsk->icsk_ack.timeout = timeout;
3613 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3614 }
3615
3616 /* This routine sends an ack and also updates the window. */
3617 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3618 {
3619 struct sk_buff *buff;
3620
3621 /* If we have been reset, we may not send again. */
3622 if (sk->sk_state == TCP_CLOSE)
3623 return;
3624
3625 /* We are not putting this on the write queue, so
3626 * tcp_transmit_skb() will set the ownership to this
3627 * sock.
3628 */
3629 buff = alloc_skb(MAX_TCP_HEADER,
3630 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3631 if (unlikely(!buff)) {
3632 inet_csk_schedule_ack(sk);
3633 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3634 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3635 TCP_DELACK_MAX, TCP_RTO_MAX);
3636 return;
3637 }
3638
3639 /* Reserve space for headers and prepare control bits. */
3640 skb_reserve(buff, MAX_TCP_HEADER);
3641 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3642
3643 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3644 * too much.
3645 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3646 */
3647 skb_set_tcp_pure_ack(buff);
3648
3649 /* Send it off, this clears delayed acks for us. */
3650 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3651 }
3652 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3653
3654 void tcp_send_ack(struct sock *sk)
3655 {
3656 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3657 }
3658
3659 /* This routine sends a packet with an out of date sequence
3660 * number. It assumes the other end will try to ack it.
3661 *
3662 * Question: what should we make while urgent mode?
3663 * 4.4BSD forces sending single byte of data. We cannot send
3664 * out of window data, because we have SND.NXT==SND.MAX...
3665 *
3666 * Current solution: to send TWO zero-length segments in urgent mode:
3667 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3668 * out-of-date with SND.UNA-1 to probe window.
3669 */
3670 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3671 {
3672 struct tcp_sock *tp = tcp_sk(sk);
3673 struct sk_buff *skb;
3674
3675 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3676 skb = alloc_skb(MAX_TCP_HEADER,
3677 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3678 if (!skb)
3679 return -1;
3680
3681 /* Reserve space for headers and set control bits. */
3682 skb_reserve(skb, MAX_TCP_HEADER);
3683 /* Use a previous sequence. This should cause the other
3684 * end to send an ack. Don't queue or clone SKB, just
3685 * send it.
3686 */
3687 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3688 NET_INC_STATS(sock_net(sk), mib);
3689 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3690 }
3691
3692 /* Called from setsockopt( ... TCP_REPAIR ) */
3693 void tcp_send_window_probe(struct sock *sk)
3694 {
3695 if (sk->sk_state == TCP_ESTABLISHED) {
3696 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3697 tcp_mstamp_refresh(tcp_sk(sk));
3698 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3699 }
3700 }
3701
3702 /* Initiate keepalive or window probe from timer. */
3703 int tcp_write_wakeup(struct sock *sk, int mib)
3704 {
3705 struct tcp_sock *tp = tcp_sk(sk);
3706 struct sk_buff *skb;
3707
3708 if (sk->sk_state == TCP_CLOSE)
3709 return -1;
3710
3711 skb = tcp_send_head(sk);
3712 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3713 int err;
3714 unsigned int mss = tcp_current_mss(sk);
3715 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3716
3717 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3718 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3719
3720 /* We are probing the opening of a window
3721 * but the window size is != 0
3722 * must have been a result SWS avoidance ( sender )
3723 */
3724 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3725 skb->len > mss) {
3726 seg_size = min(seg_size, mss);
3727 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3728 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3729 skb, seg_size, mss, GFP_ATOMIC))
3730 return -1;
3731 } else if (!tcp_skb_pcount(skb))
3732 tcp_set_skb_tso_segs(skb, mss);
3733
3734 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3735 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3736 if (!err)
3737 tcp_event_new_data_sent(sk, skb);
3738 return err;
3739 } else {
3740 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3741 tcp_xmit_probe_skb(sk, 1, mib);
3742 return tcp_xmit_probe_skb(sk, 0, mib);
3743 }
3744 }
3745
3746 /* A window probe timeout has occurred. If window is not closed send
3747 * a partial packet else a zero probe.
3748 */
3749 void tcp_send_probe0(struct sock *sk)
3750 {
3751 struct inet_connection_sock *icsk = inet_csk(sk);
3752 struct tcp_sock *tp = tcp_sk(sk);
3753 struct net *net = sock_net(sk);
3754 unsigned long timeout;
3755 int err;
3756
3757 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3758
3759 if (tp->packets_out || tcp_write_queue_empty(sk)) {
3760 /* Cancel probe timer, if it is not required. */
3761 icsk->icsk_probes_out = 0;
3762 icsk->icsk_backoff = 0;
3763 return;
3764 }
3765
3766 icsk->icsk_probes_out++;
3767 if (err <= 0) {
3768 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3769 icsk->icsk_backoff++;
3770 timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
3771 } else {
3772 /* If packet was not sent due to local congestion,
3773 * Let senders fight for local resources conservatively.
3774 */
3775 timeout = TCP_RESOURCE_PROBE_INTERVAL;
3776 }
3777 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX, NULL);
3778 }
3779
3780 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3781 {
3782 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3783 struct flowi fl;
3784 int res;
3785
3786 tcp_rsk(req)->txhash = net_tx_rndhash();
3787 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3788 if (!res) {
3789 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3790 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3791 if (unlikely(tcp_passive_fastopen(sk)))
3792 tcp_sk(sk)->total_retrans++;
3793 trace_tcp_retransmit_synack(sk, req);
3794 }
3795 return res;
3796 }
3797 EXPORT_SYMBOL(tcp_rtx_synack);