]> git.ipfire.org Git - thirdparty/linux.git/blob - net/tls/tls_main.c
net/tls: remove sock unlock/lock around strp_done()
[thirdparty/linux.git] / net / tls / tls_main.c
1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42
43 #include <net/tls.h>
44
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 MODULE_ALIAS_TCP_ULP("tls");
49
50 enum {
51 TLSV4,
52 TLSV6,
53 TLS_NUM_PROTS,
54 };
55
56 static struct proto *saved_tcpv6_prot;
57 static DEFINE_MUTEX(tcpv6_prot_mutex);
58 static struct proto *saved_tcpv4_prot;
59 static DEFINE_MUTEX(tcpv4_prot_mutex);
60 static LIST_HEAD(device_list);
61 static DEFINE_SPINLOCK(device_spinlock);
62 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
63 static struct proto_ops tls_sw_proto_ops;
64 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
65 struct proto *base);
66
67 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
68 {
69 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
70
71 sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
72 }
73
74 int wait_on_pending_writer(struct sock *sk, long *timeo)
75 {
76 int rc = 0;
77 DEFINE_WAIT_FUNC(wait, woken_wake_function);
78
79 add_wait_queue(sk_sleep(sk), &wait);
80 while (1) {
81 if (!*timeo) {
82 rc = -EAGAIN;
83 break;
84 }
85
86 if (signal_pending(current)) {
87 rc = sock_intr_errno(*timeo);
88 break;
89 }
90
91 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
92 break;
93 }
94 remove_wait_queue(sk_sleep(sk), &wait);
95 return rc;
96 }
97
98 int tls_push_sg(struct sock *sk,
99 struct tls_context *ctx,
100 struct scatterlist *sg,
101 u16 first_offset,
102 int flags)
103 {
104 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
105 int ret = 0;
106 struct page *p;
107 size_t size;
108 int offset = first_offset;
109
110 size = sg->length - offset;
111 offset += sg->offset;
112
113 ctx->in_tcp_sendpages = true;
114 while (1) {
115 if (sg_is_last(sg))
116 sendpage_flags = flags;
117
118 /* is sending application-limited? */
119 tcp_rate_check_app_limited(sk);
120 p = sg_page(sg);
121 retry:
122 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
123
124 if (ret != size) {
125 if (ret > 0) {
126 offset += ret;
127 size -= ret;
128 goto retry;
129 }
130
131 offset -= sg->offset;
132 ctx->partially_sent_offset = offset;
133 ctx->partially_sent_record = (void *)sg;
134 ctx->in_tcp_sendpages = false;
135 return ret;
136 }
137
138 put_page(p);
139 sk_mem_uncharge(sk, sg->length);
140 sg = sg_next(sg);
141 if (!sg)
142 break;
143
144 offset = sg->offset;
145 size = sg->length;
146 }
147
148 ctx->in_tcp_sendpages = false;
149
150 return 0;
151 }
152
153 static int tls_handle_open_record(struct sock *sk, int flags)
154 {
155 struct tls_context *ctx = tls_get_ctx(sk);
156
157 if (tls_is_pending_open_record(ctx))
158 return ctx->push_pending_record(sk, flags);
159
160 return 0;
161 }
162
163 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
164 unsigned char *record_type)
165 {
166 struct cmsghdr *cmsg;
167 int rc = -EINVAL;
168
169 for_each_cmsghdr(cmsg, msg) {
170 if (!CMSG_OK(msg, cmsg))
171 return -EINVAL;
172 if (cmsg->cmsg_level != SOL_TLS)
173 continue;
174
175 switch (cmsg->cmsg_type) {
176 case TLS_SET_RECORD_TYPE:
177 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
178 return -EINVAL;
179
180 if (msg->msg_flags & MSG_MORE)
181 return -EINVAL;
182
183 rc = tls_handle_open_record(sk, msg->msg_flags);
184 if (rc)
185 return rc;
186
187 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
188 rc = 0;
189 break;
190 default:
191 return -EINVAL;
192 }
193 }
194
195 return rc;
196 }
197
198 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
199 int flags)
200 {
201 struct scatterlist *sg;
202 u16 offset;
203
204 sg = ctx->partially_sent_record;
205 offset = ctx->partially_sent_offset;
206
207 ctx->partially_sent_record = NULL;
208 return tls_push_sg(sk, ctx, sg, offset, flags);
209 }
210
211 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
212 {
213 struct scatterlist *sg;
214
215 sg = ctx->partially_sent_record;
216 if (!sg)
217 return false;
218
219 while (1) {
220 put_page(sg_page(sg));
221 sk_mem_uncharge(sk, sg->length);
222
223 if (sg_is_last(sg))
224 break;
225 sg++;
226 }
227 ctx->partially_sent_record = NULL;
228 return true;
229 }
230
231 static void tls_write_space(struct sock *sk)
232 {
233 struct tls_context *ctx = tls_get_ctx(sk);
234
235 /* If in_tcp_sendpages call lower protocol write space handler
236 * to ensure we wake up any waiting operations there. For example
237 * if do_tcp_sendpages where to call sk_wait_event.
238 */
239 if (ctx->in_tcp_sendpages) {
240 ctx->sk_write_space(sk);
241 return;
242 }
243
244 #ifdef CONFIG_TLS_DEVICE
245 if (ctx->tx_conf == TLS_HW)
246 tls_device_write_space(sk, ctx);
247 else
248 #endif
249 tls_sw_write_space(sk, ctx);
250
251 ctx->sk_write_space(sk);
252 }
253
254 void tls_ctx_free(struct tls_context *ctx)
255 {
256 if (!ctx)
257 return;
258
259 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
260 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
261 kfree(ctx);
262 }
263
264 static void tls_sk_proto_cleanup(struct sock *sk,
265 struct tls_context *ctx, long timeo)
266 {
267 if (unlikely(sk->sk_write_pending) &&
268 !wait_on_pending_writer(sk, &timeo))
269 tls_handle_open_record(sk, 0);
270
271 /* We need these for tls_sw_fallback handling of other packets */
272 if (ctx->tx_conf == TLS_SW) {
273 kfree(ctx->tx.rec_seq);
274 kfree(ctx->tx.iv);
275 tls_sw_release_resources_tx(sk);
276 #ifdef CONFIG_TLS_DEVICE
277 } else if (ctx->tx_conf == TLS_HW) {
278 tls_device_free_resources_tx(sk);
279 #endif
280 }
281
282 if (ctx->rx_conf == TLS_SW)
283 tls_sw_release_resources_rx(sk);
284
285 #ifdef CONFIG_TLS_DEVICE
286 if (ctx->rx_conf == TLS_HW)
287 tls_device_offload_cleanup_rx(sk);
288 #endif
289 }
290
291 static void tls_sk_proto_close(struct sock *sk, long timeout)
292 {
293 void (*sk_proto_close)(struct sock *sk, long timeout);
294 struct tls_context *ctx = tls_get_ctx(sk);
295 long timeo = sock_sndtimeo(sk, 0);
296 bool free_ctx;
297
298 if (ctx->tx_conf == TLS_SW)
299 tls_sw_cancel_work_tx(ctx);
300
301 lock_sock(sk);
302 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
303 sk_proto_close = ctx->sk_proto_close;
304
305 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
306 tls_sk_proto_cleanup(sk, ctx, timeo);
307
308 release_sock(sk);
309 if (ctx->tx_conf == TLS_SW)
310 tls_sw_free_ctx_tx(ctx);
311 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
312 tls_sw_strparser_done(ctx);
313 if (ctx->rx_conf == TLS_SW)
314 tls_sw_free_ctx_rx(ctx);
315 sk_proto_close(sk, timeout);
316
317 if (free_ctx)
318 tls_ctx_free(ctx);
319 }
320
321 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
322 int __user *optlen)
323 {
324 int rc = 0;
325 struct tls_context *ctx = tls_get_ctx(sk);
326 struct tls_crypto_info *crypto_info;
327 int len;
328
329 if (get_user(len, optlen))
330 return -EFAULT;
331
332 if (!optval || (len < sizeof(*crypto_info))) {
333 rc = -EINVAL;
334 goto out;
335 }
336
337 if (!ctx) {
338 rc = -EBUSY;
339 goto out;
340 }
341
342 /* get user crypto info */
343 crypto_info = &ctx->crypto_send.info;
344
345 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
346 rc = -EBUSY;
347 goto out;
348 }
349
350 if (len == sizeof(*crypto_info)) {
351 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
352 rc = -EFAULT;
353 goto out;
354 }
355
356 switch (crypto_info->cipher_type) {
357 case TLS_CIPHER_AES_GCM_128: {
358 struct tls12_crypto_info_aes_gcm_128 *
359 crypto_info_aes_gcm_128 =
360 container_of(crypto_info,
361 struct tls12_crypto_info_aes_gcm_128,
362 info);
363
364 if (len != sizeof(*crypto_info_aes_gcm_128)) {
365 rc = -EINVAL;
366 goto out;
367 }
368 lock_sock(sk);
369 memcpy(crypto_info_aes_gcm_128->iv,
370 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
371 TLS_CIPHER_AES_GCM_128_IV_SIZE);
372 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
373 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
374 release_sock(sk);
375 if (copy_to_user(optval,
376 crypto_info_aes_gcm_128,
377 sizeof(*crypto_info_aes_gcm_128)))
378 rc = -EFAULT;
379 break;
380 }
381 case TLS_CIPHER_AES_GCM_256: {
382 struct tls12_crypto_info_aes_gcm_256 *
383 crypto_info_aes_gcm_256 =
384 container_of(crypto_info,
385 struct tls12_crypto_info_aes_gcm_256,
386 info);
387
388 if (len != sizeof(*crypto_info_aes_gcm_256)) {
389 rc = -EINVAL;
390 goto out;
391 }
392 lock_sock(sk);
393 memcpy(crypto_info_aes_gcm_256->iv,
394 ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
395 TLS_CIPHER_AES_GCM_256_IV_SIZE);
396 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
397 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
398 release_sock(sk);
399 if (copy_to_user(optval,
400 crypto_info_aes_gcm_256,
401 sizeof(*crypto_info_aes_gcm_256)))
402 rc = -EFAULT;
403 break;
404 }
405 default:
406 rc = -EINVAL;
407 }
408
409 out:
410 return rc;
411 }
412
413 static int do_tls_getsockopt(struct sock *sk, int optname,
414 char __user *optval, int __user *optlen)
415 {
416 int rc = 0;
417
418 switch (optname) {
419 case TLS_TX:
420 rc = do_tls_getsockopt_tx(sk, optval, optlen);
421 break;
422 default:
423 rc = -ENOPROTOOPT;
424 break;
425 }
426 return rc;
427 }
428
429 static int tls_getsockopt(struct sock *sk, int level, int optname,
430 char __user *optval, int __user *optlen)
431 {
432 struct tls_context *ctx = tls_get_ctx(sk);
433
434 if (level != SOL_TLS)
435 return ctx->getsockopt(sk, level, optname, optval, optlen);
436
437 return do_tls_getsockopt(sk, optname, optval, optlen);
438 }
439
440 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
441 unsigned int optlen, int tx)
442 {
443 struct tls_crypto_info *crypto_info;
444 struct tls_crypto_info *alt_crypto_info;
445 struct tls_context *ctx = tls_get_ctx(sk);
446 size_t optsize;
447 int rc = 0;
448 int conf;
449
450 if (!optval || (optlen < sizeof(*crypto_info))) {
451 rc = -EINVAL;
452 goto out;
453 }
454
455 if (tx) {
456 crypto_info = &ctx->crypto_send.info;
457 alt_crypto_info = &ctx->crypto_recv.info;
458 } else {
459 crypto_info = &ctx->crypto_recv.info;
460 alt_crypto_info = &ctx->crypto_send.info;
461 }
462
463 /* Currently we don't support set crypto info more than one time */
464 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
465 rc = -EBUSY;
466 goto out;
467 }
468
469 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
470 if (rc) {
471 rc = -EFAULT;
472 goto err_crypto_info;
473 }
474
475 /* check version */
476 if (crypto_info->version != TLS_1_2_VERSION &&
477 crypto_info->version != TLS_1_3_VERSION) {
478 rc = -ENOTSUPP;
479 goto err_crypto_info;
480 }
481
482 /* Ensure that TLS version and ciphers are same in both directions */
483 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
484 if (alt_crypto_info->version != crypto_info->version ||
485 alt_crypto_info->cipher_type != crypto_info->cipher_type) {
486 rc = -EINVAL;
487 goto err_crypto_info;
488 }
489 }
490
491 switch (crypto_info->cipher_type) {
492 case TLS_CIPHER_AES_GCM_128:
493 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
494 break;
495 case TLS_CIPHER_AES_GCM_256: {
496 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
497 break;
498 }
499 case TLS_CIPHER_AES_CCM_128:
500 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
501 break;
502 default:
503 rc = -EINVAL;
504 goto err_crypto_info;
505 }
506
507 if (optlen != optsize) {
508 rc = -EINVAL;
509 goto err_crypto_info;
510 }
511
512 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
513 optlen - sizeof(*crypto_info));
514 if (rc) {
515 rc = -EFAULT;
516 goto err_crypto_info;
517 }
518
519 if (tx) {
520 #ifdef CONFIG_TLS_DEVICE
521 rc = tls_set_device_offload(sk, ctx);
522 conf = TLS_HW;
523 if (rc) {
524 #else
525 {
526 #endif
527 rc = tls_set_sw_offload(sk, ctx, 1);
528 if (rc)
529 goto err_crypto_info;
530 conf = TLS_SW;
531 }
532 } else {
533 #ifdef CONFIG_TLS_DEVICE
534 rc = tls_set_device_offload_rx(sk, ctx);
535 conf = TLS_HW;
536 if (rc) {
537 #else
538 {
539 #endif
540 rc = tls_set_sw_offload(sk, ctx, 0);
541 if (rc)
542 goto err_crypto_info;
543 conf = TLS_SW;
544 }
545 tls_sw_strparser_arm(sk, ctx);
546 }
547
548 if (tx)
549 ctx->tx_conf = conf;
550 else
551 ctx->rx_conf = conf;
552 update_sk_prot(sk, ctx);
553 if (tx) {
554 ctx->sk_write_space = sk->sk_write_space;
555 sk->sk_write_space = tls_write_space;
556 } else {
557 sk->sk_socket->ops = &tls_sw_proto_ops;
558 }
559 goto out;
560
561 err_crypto_info:
562 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
563 out:
564 return rc;
565 }
566
567 static int do_tls_setsockopt(struct sock *sk, int optname,
568 char __user *optval, unsigned int optlen)
569 {
570 int rc = 0;
571
572 switch (optname) {
573 case TLS_TX:
574 case TLS_RX:
575 lock_sock(sk);
576 rc = do_tls_setsockopt_conf(sk, optval, optlen,
577 optname == TLS_TX);
578 release_sock(sk);
579 break;
580 default:
581 rc = -ENOPROTOOPT;
582 break;
583 }
584 return rc;
585 }
586
587 static int tls_setsockopt(struct sock *sk, int level, int optname,
588 char __user *optval, unsigned int optlen)
589 {
590 struct tls_context *ctx = tls_get_ctx(sk);
591
592 if (level != SOL_TLS)
593 return ctx->setsockopt(sk, level, optname, optval, optlen);
594
595 return do_tls_setsockopt(sk, optname, optval, optlen);
596 }
597
598 static struct tls_context *create_ctx(struct sock *sk)
599 {
600 struct inet_connection_sock *icsk = inet_csk(sk);
601 struct tls_context *ctx;
602
603 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
604 if (!ctx)
605 return NULL;
606
607 icsk->icsk_ulp_data = ctx;
608 ctx->setsockopt = sk->sk_prot->setsockopt;
609 ctx->getsockopt = sk->sk_prot->getsockopt;
610 ctx->sk_proto_close = sk->sk_prot->close;
611 return ctx;
612 }
613
614 static void tls_build_proto(struct sock *sk)
615 {
616 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
617
618 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
619 if (ip_ver == TLSV6 &&
620 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
621 mutex_lock(&tcpv6_prot_mutex);
622 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
623 build_protos(tls_prots[TLSV6], sk->sk_prot);
624 smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
625 }
626 mutex_unlock(&tcpv6_prot_mutex);
627 }
628
629 if (ip_ver == TLSV4 &&
630 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
631 mutex_lock(&tcpv4_prot_mutex);
632 if (likely(sk->sk_prot != saved_tcpv4_prot)) {
633 build_protos(tls_prots[TLSV4], sk->sk_prot);
634 smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
635 }
636 mutex_unlock(&tcpv4_prot_mutex);
637 }
638 }
639
640 static void tls_hw_sk_destruct(struct sock *sk)
641 {
642 struct tls_context *ctx = tls_get_ctx(sk);
643 struct inet_connection_sock *icsk = inet_csk(sk);
644
645 ctx->sk_destruct(sk);
646 /* Free ctx */
647 tls_ctx_free(ctx);
648 icsk->icsk_ulp_data = NULL;
649 }
650
651 static int tls_hw_prot(struct sock *sk)
652 {
653 struct tls_context *ctx;
654 struct tls_device *dev;
655 int rc = 0;
656
657 spin_lock_bh(&device_spinlock);
658 list_for_each_entry(dev, &device_list, dev_list) {
659 if (dev->feature && dev->feature(dev)) {
660 ctx = create_ctx(sk);
661 if (!ctx)
662 goto out;
663
664 spin_unlock_bh(&device_spinlock);
665 tls_build_proto(sk);
666 ctx->hash = sk->sk_prot->hash;
667 ctx->unhash = sk->sk_prot->unhash;
668 ctx->sk_proto_close = sk->sk_prot->close;
669 ctx->sk_destruct = sk->sk_destruct;
670 sk->sk_destruct = tls_hw_sk_destruct;
671 ctx->rx_conf = TLS_HW_RECORD;
672 ctx->tx_conf = TLS_HW_RECORD;
673 update_sk_prot(sk, ctx);
674 spin_lock_bh(&device_spinlock);
675 rc = 1;
676 break;
677 }
678 }
679 out:
680 spin_unlock_bh(&device_spinlock);
681 return rc;
682 }
683
684 static void tls_hw_unhash(struct sock *sk)
685 {
686 struct tls_context *ctx = tls_get_ctx(sk);
687 struct tls_device *dev;
688
689 spin_lock_bh(&device_spinlock);
690 list_for_each_entry(dev, &device_list, dev_list) {
691 if (dev->unhash) {
692 kref_get(&dev->kref);
693 spin_unlock_bh(&device_spinlock);
694 dev->unhash(dev, sk);
695 kref_put(&dev->kref, dev->release);
696 spin_lock_bh(&device_spinlock);
697 }
698 }
699 spin_unlock_bh(&device_spinlock);
700 ctx->unhash(sk);
701 }
702
703 static int tls_hw_hash(struct sock *sk)
704 {
705 struct tls_context *ctx = tls_get_ctx(sk);
706 struct tls_device *dev;
707 int err;
708
709 err = ctx->hash(sk);
710 spin_lock_bh(&device_spinlock);
711 list_for_each_entry(dev, &device_list, dev_list) {
712 if (dev->hash) {
713 kref_get(&dev->kref);
714 spin_unlock_bh(&device_spinlock);
715 err |= dev->hash(dev, sk);
716 kref_put(&dev->kref, dev->release);
717 spin_lock_bh(&device_spinlock);
718 }
719 }
720 spin_unlock_bh(&device_spinlock);
721
722 if (err)
723 tls_hw_unhash(sk);
724 return err;
725 }
726
727 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
728 struct proto *base)
729 {
730 prot[TLS_BASE][TLS_BASE] = *base;
731 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
732 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
733 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
734
735 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
736 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
737 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage;
738
739 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
740 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
741 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
742 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
743
744 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
745 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
746 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
747 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
748
749 #ifdef CONFIG_TLS_DEVICE
750 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
751 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
752 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage;
753
754 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
755 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
756 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage;
757
758 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
759
760 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
761
762 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
763 #endif
764
765 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
766 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_hw_hash;
767 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_hw_unhash;
768 }
769
770 static int tls_init(struct sock *sk)
771 {
772 struct tls_context *ctx;
773 int rc = 0;
774
775 if (tls_hw_prot(sk))
776 goto out;
777
778 /* The TLS ulp is currently supported only for TCP sockets
779 * in ESTABLISHED state.
780 * Supporting sockets in LISTEN state will require us
781 * to modify the accept implementation to clone rather then
782 * share the ulp context.
783 */
784 if (sk->sk_state != TCP_ESTABLISHED)
785 return -ENOTSUPP;
786
787 /* allocate tls context */
788 ctx = create_ctx(sk);
789 if (!ctx) {
790 rc = -ENOMEM;
791 goto out;
792 }
793
794 tls_build_proto(sk);
795 ctx->tx_conf = TLS_BASE;
796 ctx->rx_conf = TLS_BASE;
797 update_sk_prot(sk, ctx);
798 out:
799 return rc;
800 }
801
802 void tls_register_device(struct tls_device *device)
803 {
804 spin_lock_bh(&device_spinlock);
805 list_add_tail(&device->dev_list, &device_list);
806 spin_unlock_bh(&device_spinlock);
807 }
808 EXPORT_SYMBOL(tls_register_device);
809
810 void tls_unregister_device(struct tls_device *device)
811 {
812 spin_lock_bh(&device_spinlock);
813 list_del(&device->dev_list);
814 spin_unlock_bh(&device_spinlock);
815 }
816 EXPORT_SYMBOL(tls_unregister_device);
817
818 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
819 .name = "tls",
820 .owner = THIS_MODULE,
821 .init = tls_init,
822 };
823
824 static int __init tls_register(void)
825 {
826 tls_sw_proto_ops = inet_stream_ops;
827 tls_sw_proto_ops.splice_read = tls_sw_splice_read;
828
829 #ifdef CONFIG_TLS_DEVICE
830 tls_device_init();
831 #endif
832 tcp_register_ulp(&tcp_tls_ulp_ops);
833
834 return 0;
835 }
836
837 static void __exit tls_unregister(void)
838 {
839 tcp_unregister_ulp(&tcp_tls_ulp_ops);
840 #ifdef CONFIG_TLS_DEVICE
841 tls_device_cleanup();
842 #endif
843 }
844
845 module_init(tls_register);
846 module_exit(tls_unregister);