]> git.ipfire.org Git - thirdparty/linux.git/blob - net/tls/tls_main.c
Merge branch 'for-linus-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad...
[thirdparty/linux.git] / net / tls / tls_main.c
1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42
43 #include <net/tls.h>
44
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 MODULE_ALIAS_TCP_ULP("tls");
49
50 enum {
51 TLSV4,
52 TLSV6,
53 TLS_NUM_PROTS,
54 };
55
56 static struct proto *saved_tcpv6_prot;
57 static DEFINE_MUTEX(tcpv6_prot_mutex);
58 static struct proto *saved_tcpv4_prot;
59 static DEFINE_MUTEX(tcpv4_prot_mutex);
60 static LIST_HEAD(device_list);
61 static DEFINE_SPINLOCK(device_spinlock);
62 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
63 static struct proto_ops tls_sw_proto_ops;
64 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
65 struct proto *base);
66
67 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
68 {
69 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
70
71 sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
72 }
73
74 int wait_on_pending_writer(struct sock *sk, long *timeo)
75 {
76 int rc = 0;
77 DEFINE_WAIT_FUNC(wait, woken_wake_function);
78
79 add_wait_queue(sk_sleep(sk), &wait);
80 while (1) {
81 if (!*timeo) {
82 rc = -EAGAIN;
83 break;
84 }
85
86 if (signal_pending(current)) {
87 rc = sock_intr_errno(*timeo);
88 break;
89 }
90
91 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
92 break;
93 }
94 remove_wait_queue(sk_sleep(sk), &wait);
95 return rc;
96 }
97
98 int tls_push_sg(struct sock *sk,
99 struct tls_context *ctx,
100 struct scatterlist *sg,
101 u16 first_offset,
102 int flags)
103 {
104 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
105 int ret = 0;
106 struct page *p;
107 size_t size;
108 int offset = first_offset;
109
110 size = sg->length - offset;
111 offset += sg->offset;
112
113 ctx->in_tcp_sendpages = true;
114 while (1) {
115 if (sg_is_last(sg))
116 sendpage_flags = flags;
117
118 /* is sending application-limited? */
119 tcp_rate_check_app_limited(sk);
120 p = sg_page(sg);
121 retry:
122 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
123
124 if (ret != size) {
125 if (ret > 0) {
126 offset += ret;
127 size -= ret;
128 goto retry;
129 }
130
131 offset -= sg->offset;
132 ctx->partially_sent_offset = offset;
133 ctx->partially_sent_record = (void *)sg;
134 ctx->in_tcp_sendpages = false;
135 return ret;
136 }
137
138 put_page(p);
139 sk_mem_uncharge(sk, sg->length);
140 sg = sg_next(sg);
141 if (!sg)
142 break;
143
144 offset = sg->offset;
145 size = sg->length;
146 }
147
148 ctx->in_tcp_sendpages = false;
149
150 return 0;
151 }
152
153 static int tls_handle_open_record(struct sock *sk, int flags)
154 {
155 struct tls_context *ctx = tls_get_ctx(sk);
156
157 if (tls_is_pending_open_record(ctx))
158 return ctx->push_pending_record(sk, flags);
159
160 return 0;
161 }
162
163 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
164 unsigned char *record_type)
165 {
166 struct cmsghdr *cmsg;
167 int rc = -EINVAL;
168
169 for_each_cmsghdr(cmsg, msg) {
170 if (!CMSG_OK(msg, cmsg))
171 return -EINVAL;
172 if (cmsg->cmsg_level != SOL_TLS)
173 continue;
174
175 switch (cmsg->cmsg_type) {
176 case TLS_SET_RECORD_TYPE:
177 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
178 return -EINVAL;
179
180 if (msg->msg_flags & MSG_MORE)
181 return -EINVAL;
182
183 rc = tls_handle_open_record(sk, msg->msg_flags);
184 if (rc)
185 return rc;
186
187 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
188 rc = 0;
189 break;
190 default:
191 return -EINVAL;
192 }
193 }
194
195 return rc;
196 }
197
198 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
199 int flags)
200 {
201 struct scatterlist *sg;
202 u16 offset;
203
204 sg = ctx->partially_sent_record;
205 offset = ctx->partially_sent_offset;
206
207 ctx->partially_sent_record = NULL;
208 return tls_push_sg(sk, ctx, sg, offset, flags);
209 }
210
211 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
212 {
213 struct scatterlist *sg;
214
215 sg = ctx->partially_sent_record;
216 if (!sg)
217 return false;
218
219 while (1) {
220 put_page(sg_page(sg));
221 sk_mem_uncharge(sk, sg->length);
222
223 if (sg_is_last(sg))
224 break;
225 sg++;
226 }
227 ctx->partially_sent_record = NULL;
228 return true;
229 }
230
231 static void tls_write_space(struct sock *sk)
232 {
233 struct tls_context *ctx = tls_get_ctx(sk);
234
235 /* If in_tcp_sendpages call lower protocol write space handler
236 * to ensure we wake up any waiting operations there. For example
237 * if do_tcp_sendpages where to call sk_wait_event.
238 */
239 if (ctx->in_tcp_sendpages) {
240 ctx->sk_write_space(sk);
241 return;
242 }
243
244 #ifdef CONFIG_TLS_DEVICE
245 if (ctx->tx_conf == TLS_HW)
246 tls_device_write_space(sk, ctx);
247 else
248 #endif
249 tls_sw_write_space(sk, ctx);
250
251 ctx->sk_write_space(sk);
252 }
253
254 void tls_ctx_free(struct tls_context *ctx)
255 {
256 if (!ctx)
257 return;
258
259 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
260 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
261 kfree(ctx);
262 }
263
264 static void tls_sk_proto_close(struct sock *sk, long timeout)
265 {
266 struct tls_context *ctx = tls_get_ctx(sk);
267 long timeo = sock_sndtimeo(sk, 0);
268 void (*sk_proto_close)(struct sock *sk, long timeout);
269 bool free_ctx = false;
270
271 lock_sock(sk);
272 sk_proto_close = ctx->sk_proto_close;
273
274 if (ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD)
275 goto skip_tx_cleanup;
276
277 if (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE) {
278 free_ctx = true;
279 goto skip_tx_cleanup;
280 }
281
282 if (unlikely(sk->sk_write_pending) &&
283 !wait_on_pending_writer(sk, &timeo))
284 tls_handle_open_record(sk, 0);
285
286 /* We need these for tls_sw_fallback handling of other packets */
287 if (ctx->tx_conf == TLS_SW) {
288 kfree(ctx->tx.rec_seq);
289 kfree(ctx->tx.iv);
290 tls_sw_free_resources_tx(sk);
291 #ifdef CONFIG_TLS_DEVICE
292 } else if (ctx->tx_conf == TLS_HW) {
293 tls_device_free_resources_tx(sk);
294 #endif
295 }
296
297 if (ctx->rx_conf == TLS_SW)
298 tls_sw_free_resources_rx(sk);
299
300 #ifdef CONFIG_TLS_DEVICE
301 if (ctx->rx_conf == TLS_HW)
302 tls_device_offload_cleanup_rx(sk);
303
304 if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) {
305 #else
306 {
307 #endif
308 tls_ctx_free(ctx);
309 ctx = NULL;
310 }
311
312 skip_tx_cleanup:
313 release_sock(sk);
314 sk_proto_close(sk, timeout);
315 /* free ctx for TLS_HW_RECORD, used by tcp_set_state
316 * for sk->sk_prot->unhash [tls_hw_unhash]
317 */
318 if (free_ctx)
319 tls_ctx_free(ctx);
320 }
321
322 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
323 int __user *optlen)
324 {
325 int rc = 0;
326 struct tls_context *ctx = tls_get_ctx(sk);
327 struct tls_crypto_info *crypto_info;
328 int len;
329
330 if (get_user(len, optlen))
331 return -EFAULT;
332
333 if (!optval || (len < sizeof(*crypto_info))) {
334 rc = -EINVAL;
335 goto out;
336 }
337
338 if (!ctx) {
339 rc = -EBUSY;
340 goto out;
341 }
342
343 /* get user crypto info */
344 crypto_info = &ctx->crypto_send.info;
345
346 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
347 rc = -EBUSY;
348 goto out;
349 }
350
351 if (len == sizeof(*crypto_info)) {
352 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
353 rc = -EFAULT;
354 goto out;
355 }
356
357 switch (crypto_info->cipher_type) {
358 case TLS_CIPHER_AES_GCM_128: {
359 struct tls12_crypto_info_aes_gcm_128 *
360 crypto_info_aes_gcm_128 =
361 container_of(crypto_info,
362 struct tls12_crypto_info_aes_gcm_128,
363 info);
364
365 if (len != sizeof(*crypto_info_aes_gcm_128)) {
366 rc = -EINVAL;
367 goto out;
368 }
369 lock_sock(sk);
370 memcpy(crypto_info_aes_gcm_128->iv,
371 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
372 TLS_CIPHER_AES_GCM_128_IV_SIZE);
373 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
374 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
375 release_sock(sk);
376 if (copy_to_user(optval,
377 crypto_info_aes_gcm_128,
378 sizeof(*crypto_info_aes_gcm_128)))
379 rc = -EFAULT;
380 break;
381 }
382 case TLS_CIPHER_AES_GCM_256: {
383 struct tls12_crypto_info_aes_gcm_256 *
384 crypto_info_aes_gcm_256 =
385 container_of(crypto_info,
386 struct tls12_crypto_info_aes_gcm_256,
387 info);
388
389 if (len != sizeof(*crypto_info_aes_gcm_256)) {
390 rc = -EINVAL;
391 goto out;
392 }
393 lock_sock(sk);
394 memcpy(crypto_info_aes_gcm_256->iv,
395 ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
396 TLS_CIPHER_AES_GCM_256_IV_SIZE);
397 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
398 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
399 release_sock(sk);
400 if (copy_to_user(optval,
401 crypto_info_aes_gcm_256,
402 sizeof(*crypto_info_aes_gcm_256)))
403 rc = -EFAULT;
404 break;
405 }
406 default:
407 rc = -EINVAL;
408 }
409
410 out:
411 return rc;
412 }
413
414 static int do_tls_getsockopt(struct sock *sk, int optname,
415 char __user *optval, int __user *optlen)
416 {
417 int rc = 0;
418
419 switch (optname) {
420 case TLS_TX:
421 rc = do_tls_getsockopt_tx(sk, optval, optlen);
422 break;
423 default:
424 rc = -ENOPROTOOPT;
425 break;
426 }
427 return rc;
428 }
429
430 static int tls_getsockopt(struct sock *sk, int level, int optname,
431 char __user *optval, int __user *optlen)
432 {
433 struct tls_context *ctx = tls_get_ctx(sk);
434
435 if (level != SOL_TLS)
436 return ctx->getsockopt(sk, level, optname, optval, optlen);
437
438 return do_tls_getsockopt(sk, optname, optval, optlen);
439 }
440
441 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
442 unsigned int optlen, int tx)
443 {
444 struct tls_crypto_info *crypto_info;
445 struct tls_crypto_info *alt_crypto_info;
446 struct tls_context *ctx = tls_get_ctx(sk);
447 size_t optsize;
448 int rc = 0;
449 int conf;
450
451 if (!optval || (optlen < sizeof(*crypto_info))) {
452 rc = -EINVAL;
453 goto out;
454 }
455
456 if (tx) {
457 crypto_info = &ctx->crypto_send.info;
458 alt_crypto_info = &ctx->crypto_recv.info;
459 } else {
460 crypto_info = &ctx->crypto_recv.info;
461 alt_crypto_info = &ctx->crypto_send.info;
462 }
463
464 /* Currently we don't support set crypto info more than one time */
465 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
466 rc = -EBUSY;
467 goto out;
468 }
469
470 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
471 if (rc) {
472 rc = -EFAULT;
473 goto err_crypto_info;
474 }
475
476 /* check version */
477 if (crypto_info->version != TLS_1_2_VERSION &&
478 crypto_info->version != TLS_1_3_VERSION) {
479 rc = -ENOTSUPP;
480 goto err_crypto_info;
481 }
482
483 /* Ensure that TLS version and ciphers are same in both directions */
484 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
485 if (alt_crypto_info->version != crypto_info->version ||
486 alt_crypto_info->cipher_type != crypto_info->cipher_type) {
487 rc = -EINVAL;
488 goto err_crypto_info;
489 }
490 }
491
492 switch (crypto_info->cipher_type) {
493 case TLS_CIPHER_AES_GCM_128:
494 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
495 break;
496 case TLS_CIPHER_AES_GCM_256: {
497 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
498 break;
499 }
500 case TLS_CIPHER_AES_CCM_128:
501 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
502 break;
503 default:
504 rc = -EINVAL;
505 goto err_crypto_info;
506 }
507
508 if (optlen != optsize) {
509 rc = -EINVAL;
510 goto err_crypto_info;
511 }
512
513 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
514 optlen - sizeof(*crypto_info));
515 if (rc) {
516 rc = -EFAULT;
517 goto err_crypto_info;
518 }
519
520 if (tx) {
521 #ifdef CONFIG_TLS_DEVICE
522 rc = tls_set_device_offload(sk, ctx);
523 conf = TLS_HW;
524 if (rc) {
525 #else
526 {
527 #endif
528 rc = tls_set_sw_offload(sk, ctx, 1);
529 conf = TLS_SW;
530 }
531 } else {
532 #ifdef CONFIG_TLS_DEVICE
533 rc = tls_set_device_offload_rx(sk, ctx);
534 conf = TLS_HW;
535 if (rc) {
536 #else
537 {
538 #endif
539 rc = tls_set_sw_offload(sk, ctx, 0);
540 conf = TLS_SW;
541 }
542 }
543
544 if (rc)
545 goto err_crypto_info;
546
547 if (tx)
548 ctx->tx_conf = conf;
549 else
550 ctx->rx_conf = conf;
551 update_sk_prot(sk, ctx);
552 if (tx) {
553 ctx->sk_write_space = sk->sk_write_space;
554 sk->sk_write_space = tls_write_space;
555 } else {
556 sk->sk_socket->ops = &tls_sw_proto_ops;
557 }
558 goto out;
559
560 err_crypto_info:
561 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
562 out:
563 return rc;
564 }
565
566 static int do_tls_setsockopt(struct sock *sk, int optname,
567 char __user *optval, unsigned int optlen)
568 {
569 int rc = 0;
570
571 switch (optname) {
572 case TLS_TX:
573 case TLS_RX:
574 lock_sock(sk);
575 rc = do_tls_setsockopt_conf(sk, optval, optlen,
576 optname == TLS_TX);
577 release_sock(sk);
578 break;
579 default:
580 rc = -ENOPROTOOPT;
581 break;
582 }
583 return rc;
584 }
585
586 static int tls_setsockopt(struct sock *sk, int level, int optname,
587 char __user *optval, unsigned int optlen)
588 {
589 struct tls_context *ctx = tls_get_ctx(sk);
590
591 if (level != SOL_TLS)
592 return ctx->setsockopt(sk, level, optname, optval, optlen);
593
594 return do_tls_setsockopt(sk, optname, optval, optlen);
595 }
596
597 static struct tls_context *create_ctx(struct sock *sk)
598 {
599 struct inet_connection_sock *icsk = inet_csk(sk);
600 struct tls_context *ctx;
601
602 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
603 if (!ctx)
604 return NULL;
605
606 icsk->icsk_ulp_data = ctx;
607 ctx->setsockopt = sk->sk_prot->setsockopt;
608 ctx->getsockopt = sk->sk_prot->getsockopt;
609 ctx->sk_proto_close = sk->sk_prot->close;
610 return ctx;
611 }
612
613 static void tls_build_proto(struct sock *sk)
614 {
615 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
616
617 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
618 if (ip_ver == TLSV6 &&
619 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
620 mutex_lock(&tcpv6_prot_mutex);
621 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
622 build_protos(tls_prots[TLSV6], sk->sk_prot);
623 smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
624 }
625 mutex_unlock(&tcpv6_prot_mutex);
626 }
627
628 if (ip_ver == TLSV4 &&
629 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
630 mutex_lock(&tcpv4_prot_mutex);
631 if (likely(sk->sk_prot != saved_tcpv4_prot)) {
632 build_protos(tls_prots[TLSV4], sk->sk_prot);
633 smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
634 }
635 mutex_unlock(&tcpv4_prot_mutex);
636 }
637 }
638
639 static void tls_hw_sk_destruct(struct sock *sk)
640 {
641 struct tls_context *ctx = tls_get_ctx(sk);
642 struct inet_connection_sock *icsk = inet_csk(sk);
643
644 ctx->sk_destruct(sk);
645 /* Free ctx */
646 tls_ctx_free(ctx);
647 icsk->icsk_ulp_data = NULL;
648 }
649
650 static int tls_hw_prot(struct sock *sk)
651 {
652 struct tls_context *ctx;
653 struct tls_device *dev;
654 int rc = 0;
655
656 spin_lock_bh(&device_spinlock);
657 list_for_each_entry(dev, &device_list, dev_list) {
658 if (dev->feature && dev->feature(dev)) {
659 ctx = create_ctx(sk);
660 if (!ctx)
661 goto out;
662
663 spin_unlock_bh(&device_spinlock);
664 tls_build_proto(sk);
665 ctx->hash = sk->sk_prot->hash;
666 ctx->unhash = sk->sk_prot->unhash;
667 ctx->sk_proto_close = sk->sk_prot->close;
668 ctx->sk_destruct = sk->sk_destruct;
669 sk->sk_destruct = tls_hw_sk_destruct;
670 ctx->rx_conf = TLS_HW_RECORD;
671 ctx->tx_conf = TLS_HW_RECORD;
672 update_sk_prot(sk, ctx);
673 spin_lock_bh(&device_spinlock);
674 rc = 1;
675 break;
676 }
677 }
678 out:
679 spin_unlock_bh(&device_spinlock);
680 return rc;
681 }
682
683 static void tls_hw_unhash(struct sock *sk)
684 {
685 struct tls_context *ctx = tls_get_ctx(sk);
686 struct tls_device *dev;
687
688 spin_lock_bh(&device_spinlock);
689 list_for_each_entry(dev, &device_list, dev_list) {
690 if (dev->unhash) {
691 kref_get(&dev->kref);
692 spin_unlock_bh(&device_spinlock);
693 dev->unhash(dev, sk);
694 kref_put(&dev->kref, dev->release);
695 spin_lock_bh(&device_spinlock);
696 }
697 }
698 spin_unlock_bh(&device_spinlock);
699 ctx->unhash(sk);
700 }
701
702 static int tls_hw_hash(struct sock *sk)
703 {
704 struct tls_context *ctx = tls_get_ctx(sk);
705 struct tls_device *dev;
706 int err;
707
708 err = ctx->hash(sk);
709 spin_lock_bh(&device_spinlock);
710 list_for_each_entry(dev, &device_list, dev_list) {
711 if (dev->hash) {
712 kref_get(&dev->kref);
713 spin_unlock_bh(&device_spinlock);
714 err |= dev->hash(dev, sk);
715 kref_put(&dev->kref, dev->release);
716 spin_lock_bh(&device_spinlock);
717 }
718 }
719 spin_unlock_bh(&device_spinlock);
720
721 if (err)
722 tls_hw_unhash(sk);
723 return err;
724 }
725
726 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
727 struct proto *base)
728 {
729 prot[TLS_BASE][TLS_BASE] = *base;
730 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
731 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
732 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
733
734 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
735 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
736 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage;
737
738 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
739 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
740 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
741 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
742
743 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
744 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
745 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
746 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
747
748 #ifdef CONFIG_TLS_DEVICE
749 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
750 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
751 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage;
752
753 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
754 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
755 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage;
756
757 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
758
759 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
760
761 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
762 #endif
763
764 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
765 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_hw_hash;
766 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_hw_unhash;
767 prot[TLS_HW_RECORD][TLS_HW_RECORD].close = tls_sk_proto_close;
768 }
769
770 static int tls_init(struct sock *sk)
771 {
772 struct tls_context *ctx;
773 int rc = 0;
774
775 if (tls_hw_prot(sk))
776 goto out;
777
778 /* The TLS ulp is currently supported only for TCP sockets
779 * in ESTABLISHED state.
780 * Supporting sockets in LISTEN state will require us
781 * to modify the accept implementation to clone rather then
782 * share the ulp context.
783 */
784 if (sk->sk_state != TCP_ESTABLISHED)
785 return -ENOTSUPP;
786
787 /* allocate tls context */
788 ctx = create_ctx(sk);
789 if (!ctx) {
790 rc = -ENOMEM;
791 goto out;
792 }
793
794 tls_build_proto(sk);
795 ctx->tx_conf = TLS_BASE;
796 ctx->rx_conf = TLS_BASE;
797 update_sk_prot(sk, ctx);
798 out:
799 return rc;
800 }
801
802 void tls_register_device(struct tls_device *device)
803 {
804 spin_lock_bh(&device_spinlock);
805 list_add_tail(&device->dev_list, &device_list);
806 spin_unlock_bh(&device_spinlock);
807 }
808 EXPORT_SYMBOL(tls_register_device);
809
810 void tls_unregister_device(struct tls_device *device)
811 {
812 spin_lock_bh(&device_spinlock);
813 list_del(&device->dev_list);
814 spin_unlock_bh(&device_spinlock);
815 }
816 EXPORT_SYMBOL(tls_unregister_device);
817
818 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
819 .name = "tls",
820 .owner = THIS_MODULE,
821 .init = tls_init,
822 };
823
824 static int __init tls_register(void)
825 {
826 tls_sw_proto_ops = inet_stream_ops;
827 tls_sw_proto_ops.splice_read = tls_sw_splice_read;
828
829 #ifdef CONFIG_TLS_DEVICE
830 tls_device_init();
831 #endif
832 tcp_register_ulp(&tcp_tls_ulp_ops);
833
834 return 0;
835 }
836
837 static void __exit tls_unregister(void)
838 {
839 tcp_unregister_ulp(&tcp_tls_ulp_ops);
840 #ifdef CONFIG_TLS_DEVICE
841 tls_device_cleanup();
842 #endif
843 }
844
845 module_init(tls_register);
846 module_exit(tls_unregister);