]> git.ipfire.org Git - thirdparty/linux.git/blob - tools/testing/selftests/kvm/lib/x86_64/processor.c
selftests: kvm: fix state save/load on processors without XSAVE
[thirdparty/linux.git] / tools / testing / selftests / kvm / lib / x86_64 / processor.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * tools/testing/selftests/kvm/lib/x86_64/processor.c
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7
8 #define _GNU_SOURCE /* for program_invocation_name */
9
10 #include "test_util.h"
11 #include "kvm_util.h"
12 #include "../kvm_util_internal.h"
13 #include "processor.h"
14
15 /* Minimum physical address used for virtual translation tables. */
16 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
17
18 /* Virtual translation table structure declarations */
19 struct pageMapL4Entry {
20 uint64_t present:1;
21 uint64_t writable:1;
22 uint64_t user:1;
23 uint64_t write_through:1;
24 uint64_t cache_disable:1;
25 uint64_t accessed:1;
26 uint64_t ignored_06:1;
27 uint64_t page_size:1;
28 uint64_t ignored_11_08:4;
29 uint64_t address:40;
30 uint64_t ignored_62_52:11;
31 uint64_t execute_disable:1;
32 };
33
34 struct pageDirectoryPointerEntry {
35 uint64_t present:1;
36 uint64_t writable:1;
37 uint64_t user:1;
38 uint64_t write_through:1;
39 uint64_t cache_disable:1;
40 uint64_t accessed:1;
41 uint64_t ignored_06:1;
42 uint64_t page_size:1;
43 uint64_t ignored_11_08:4;
44 uint64_t address:40;
45 uint64_t ignored_62_52:11;
46 uint64_t execute_disable:1;
47 };
48
49 struct pageDirectoryEntry {
50 uint64_t present:1;
51 uint64_t writable:1;
52 uint64_t user:1;
53 uint64_t write_through:1;
54 uint64_t cache_disable:1;
55 uint64_t accessed:1;
56 uint64_t ignored_06:1;
57 uint64_t page_size:1;
58 uint64_t ignored_11_08:4;
59 uint64_t address:40;
60 uint64_t ignored_62_52:11;
61 uint64_t execute_disable:1;
62 };
63
64 struct pageTableEntry {
65 uint64_t present:1;
66 uint64_t writable:1;
67 uint64_t user:1;
68 uint64_t write_through:1;
69 uint64_t cache_disable:1;
70 uint64_t accessed:1;
71 uint64_t dirty:1;
72 uint64_t reserved_07:1;
73 uint64_t global:1;
74 uint64_t ignored_11_09:3;
75 uint64_t address:40;
76 uint64_t ignored_62_52:11;
77 uint64_t execute_disable:1;
78 };
79
80 /* Register Dump
81 *
82 * Input Args:
83 * indent - Left margin indent amount
84 * regs - register
85 *
86 * Output Args:
87 * stream - Output FILE stream
88 *
89 * Return: None
90 *
91 * Dumps the state of the registers given by regs, to the FILE stream
92 * given by steam.
93 */
94 void regs_dump(FILE *stream, struct kvm_regs *regs,
95 uint8_t indent)
96 {
97 fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
98 "rcx: 0x%.16llx rdx: 0x%.16llx\n",
99 indent, "",
100 regs->rax, regs->rbx, regs->rcx, regs->rdx);
101 fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
102 "rsp: 0x%.16llx rbp: 0x%.16llx\n",
103 indent, "",
104 regs->rsi, regs->rdi, regs->rsp, regs->rbp);
105 fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx "
106 "r10: 0x%.16llx r11: 0x%.16llx\n",
107 indent, "",
108 regs->r8, regs->r9, regs->r10, regs->r11);
109 fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
110 "r14: 0x%.16llx r15: 0x%.16llx\n",
111 indent, "",
112 regs->r12, regs->r13, regs->r14, regs->r15);
113 fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
114 indent, "",
115 regs->rip, regs->rflags);
116 }
117
118 /* Segment Dump
119 *
120 * Input Args:
121 * indent - Left margin indent amount
122 * segment - KVM segment
123 *
124 * Output Args:
125 * stream - Output FILE stream
126 *
127 * Return: None
128 *
129 * Dumps the state of the KVM segment given by segment, to the FILE stream
130 * given by steam.
131 */
132 static void segment_dump(FILE *stream, struct kvm_segment *segment,
133 uint8_t indent)
134 {
135 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
136 "selector: 0x%.4x type: 0x%.2x\n",
137 indent, "", segment->base, segment->limit,
138 segment->selector, segment->type);
139 fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
140 "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
141 indent, "", segment->present, segment->dpl,
142 segment->db, segment->s, segment->l);
143 fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
144 "unusable: 0x%.2x padding: 0x%.2x\n",
145 indent, "", segment->g, segment->avl,
146 segment->unusable, segment->padding);
147 }
148
149 /* dtable Dump
150 *
151 * Input Args:
152 * indent - Left margin indent amount
153 * dtable - KVM dtable
154 *
155 * Output Args:
156 * stream - Output FILE stream
157 *
158 * Return: None
159 *
160 * Dumps the state of the KVM dtable given by dtable, to the FILE stream
161 * given by steam.
162 */
163 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
164 uint8_t indent)
165 {
166 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
167 "padding: 0x%.4x 0x%.4x 0x%.4x\n",
168 indent, "", dtable->base, dtable->limit,
169 dtable->padding[0], dtable->padding[1], dtable->padding[2]);
170 }
171
172 /* System Register Dump
173 *
174 * Input Args:
175 * indent - Left margin indent amount
176 * sregs - System registers
177 *
178 * Output Args:
179 * stream - Output FILE stream
180 *
181 * Return: None
182 *
183 * Dumps the state of the system registers given by sregs, to the FILE stream
184 * given by steam.
185 */
186 void sregs_dump(FILE *stream, struct kvm_sregs *sregs,
187 uint8_t indent)
188 {
189 unsigned int i;
190
191 fprintf(stream, "%*scs:\n", indent, "");
192 segment_dump(stream, &sregs->cs, indent + 2);
193 fprintf(stream, "%*sds:\n", indent, "");
194 segment_dump(stream, &sregs->ds, indent + 2);
195 fprintf(stream, "%*ses:\n", indent, "");
196 segment_dump(stream, &sregs->es, indent + 2);
197 fprintf(stream, "%*sfs:\n", indent, "");
198 segment_dump(stream, &sregs->fs, indent + 2);
199 fprintf(stream, "%*sgs:\n", indent, "");
200 segment_dump(stream, &sregs->gs, indent + 2);
201 fprintf(stream, "%*sss:\n", indent, "");
202 segment_dump(stream, &sregs->ss, indent + 2);
203 fprintf(stream, "%*str:\n", indent, "");
204 segment_dump(stream, &sregs->tr, indent + 2);
205 fprintf(stream, "%*sldt:\n", indent, "");
206 segment_dump(stream, &sregs->ldt, indent + 2);
207
208 fprintf(stream, "%*sgdt:\n", indent, "");
209 dtable_dump(stream, &sregs->gdt, indent + 2);
210 fprintf(stream, "%*sidt:\n", indent, "");
211 dtable_dump(stream, &sregs->idt, indent + 2);
212
213 fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
214 "cr3: 0x%.16llx cr4: 0x%.16llx\n",
215 indent, "",
216 sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
217 fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
218 "apic_base: 0x%.16llx\n",
219 indent, "",
220 sregs->cr8, sregs->efer, sregs->apic_base);
221
222 fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
223 for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
224 fprintf(stream, "%*s%.16llx\n", indent + 2, "",
225 sregs->interrupt_bitmap[i]);
226 }
227 }
228
229 void virt_pgd_alloc(struct kvm_vm *vm, uint32_t pgd_memslot)
230 {
231 TEST_ASSERT(vm->mode == VM_MODE_P52V48_4K, "Attempt to use "
232 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
233
234 /* If needed, create page map l4 table. */
235 if (!vm->pgd_created) {
236 vm_paddr_t paddr = vm_phy_page_alloc(vm,
237 KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot);
238 vm->pgd = paddr;
239 vm->pgd_created = true;
240 }
241 }
242
243 /* VM Virtual Page Map
244 *
245 * Input Args:
246 * vm - Virtual Machine
247 * vaddr - VM Virtual Address
248 * paddr - VM Physical Address
249 * pgd_memslot - Memory region slot for new virtual translation tables
250 *
251 * Output Args: None
252 *
253 * Return: None
254 *
255 * Within the VM given by vm, creates a virtual translation for the page
256 * starting at vaddr to the page starting at paddr.
257 */
258 void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
259 uint32_t pgd_memslot)
260 {
261 uint16_t index[4];
262 struct pageMapL4Entry *pml4e;
263
264 TEST_ASSERT(vm->mode == VM_MODE_P52V48_4K, "Attempt to use "
265 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
266
267 TEST_ASSERT((vaddr % vm->page_size) == 0,
268 "Virtual address not on page boundary,\n"
269 " vaddr: 0x%lx vm->page_size: 0x%x",
270 vaddr, vm->page_size);
271 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
272 (vaddr >> vm->page_shift)),
273 "Invalid virtual address, vaddr: 0x%lx",
274 vaddr);
275 TEST_ASSERT((paddr % vm->page_size) == 0,
276 "Physical address not on page boundary,\n"
277 " paddr: 0x%lx vm->page_size: 0x%x",
278 paddr, vm->page_size);
279 TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
280 "Physical address beyond beyond maximum supported,\n"
281 " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
282 paddr, vm->max_gfn, vm->page_size);
283
284 index[0] = (vaddr >> 12) & 0x1ffu;
285 index[1] = (vaddr >> 21) & 0x1ffu;
286 index[2] = (vaddr >> 30) & 0x1ffu;
287 index[3] = (vaddr >> 39) & 0x1ffu;
288
289 /* Allocate page directory pointer table if not present. */
290 pml4e = addr_gpa2hva(vm, vm->pgd);
291 if (!pml4e[index[3]].present) {
292 pml4e[index[3]].address = vm_phy_page_alloc(vm,
293 KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot)
294 >> vm->page_shift;
295 pml4e[index[3]].writable = true;
296 pml4e[index[3]].present = true;
297 }
298
299 /* Allocate page directory table if not present. */
300 struct pageDirectoryPointerEntry *pdpe;
301 pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size);
302 if (!pdpe[index[2]].present) {
303 pdpe[index[2]].address = vm_phy_page_alloc(vm,
304 KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot)
305 >> vm->page_shift;
306 pdpe[index[2]].writable = true;
307 pdpe[index[2]].present = true;
308 }
309
310 /* Allocate page table if not present. */
311 struct pageDirectoryEntry *pde;
312 pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size);
313 if (!pde[index[1]].present) {
314 pde[index[1]].address = vm_phy_page_alloc(vm,
315 KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot)
316 >> vm->page_shift;
317 pde[index[1]].writable = true;
318 pde[index[1]].present = true;
319 }
320
321 /* Fill in page table entry. */
322 struct pageTableEntry *pte;
323 pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size);
324 pte[index[0]].address = paddr >> vm->page_shift;
325 pte[index[0]].writable = true;
326 pte[index[0]].present = 1;
327 }
328
329 /* Virtual Translation Tables Dump
330 *
331 * Input Args:
332 * vm - Virtual Machine
333 * indent - Left margin indent amount
334 *
335 * Output Args:
336 * stream - Output FILE stream
337 *
338 * Return: None
339 *
340 * Dumps to the FILE stream given by stream, the contents of all the
341 * virtual translation tables for the VM given by vm.
342 */
343 void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
344 {
345 struct pageMapL4Entry *pml4e, *pml4e_start;
346 struct pageDirectoryPointerEntry *pdpe, *pdpe_start;
347 struct pageDirectoryEntry *pde, *pde_start;
348 struct pageTableEntry *pte, *pte_start;
349
350 if (!vm->pgd_created)
351 return;
352
353 fprintf(stream, "%*s "
354 " no\n", indent, "");
355 fprintf(stream, "%*s index hvaddr gpaddr "
356 "addr w exec dirty\n",
357 indent, "");
358 pml4e_start = (struct pageMapL4Entry *) addr_gpa2hva(vm,
359 vm->pgd);
360 for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
361 pml4e = &pml4e_start[n1];
362 if (!pml4e->present)
363 continue;
364 fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10lx %u "
365 " %u\n",
366 indent, "",
367 pml4e - pml4e_start, pml4e,
368 addr_hva2gpa(vm, pml4e), (uint64_t) pml4e->address,
369 pml4e->writable, pml4e->execute_disable);
370
371 pdpe_start = addr_gpa2hva(vm, pml4e->address
372 * vm->page_size);
373 for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
374 pdpe = &pdpe_start[n2];
375 if (!pdpe->present)
376 continue;
377 fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10lx "
378 "%u %u\n",
379 indent, "",
380 pdpe - pdpe_start, pdpe,
381 addr_hva2gpa(vm, pdpe),
382 (uint64_t) pdpe->address, pdpe->writable,
383 pdpe->execute_disable);
384
385 pde_start = addr_gpa2hva(vm,
386 pdpe->address * vm->page_size);
387 for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
388 pde = &pde_start[n3];
389 if (!pde->present)
390 continue;
391 fprintf(stream, "%*spde 0x%-3zx %p "
392 "0x%-12lx 0x%-10lx %u %u\n",
393 indent, "", pde - pde_start, pde,
394 addr_hva2gpa(vm, pde),
395 (uint64_t) pde->address, pde->writable,
396 pde->execute_disable);
397
398 pte_start = addr_gpa2hva(vm,
399 pde->address * vm->page_size);
400 for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
401 pte = &pte_start[n4];
402 if (!pte->present)
403 continue;
404 fprintf(stream, "%*spte 0x%-3zx %p "
405 "0x%-12lx 0x%-10lx %u %u "
406 " %u 0x%-10lx\n",
407 indent, "",
408 pte - pte_start, pte,
409 addr_hva2gpa(vm, pte),
410 (uint64_t) pte->address,
411 pte->writable,
412 pte->execute_disable,
413 pte->dirty,
414 ((uint64_t) n1 << 27)
415 | ((uint64_t) n2 << 18)
416 | ((uint64_t) n3 << 9)
417 | ((uint64_t) n4));
418 }
419 }
420 }
421 }
422 }
423
424 /* Set Unusable Segment
425 *
426 * Input Args: None
427 *
428 * Output Args:
429 * segp - Pointer to segment register
430 *
431 * Return: None
432 *
433 * Sets the segment register pointed to by segp to an unusable state.
434 */
435 static void kvm_seg_set_unusable(struct kvm_segment *segp)
436 {
437 memset(segp, 0, sizeof(*segp));
438 segp->unusable = true;
439 }
440
441 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
442 {
443 void *gdt = addr_gva2hva(vm, vm->gdt);
444 struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
445
446 desc->limit0 = segp->limit & 0xFFFF;
447 desc->base0 = segp->base & 0xFFFF;
448 desc->base1 = segp->base >> 16;
449 desc->s = segp->s;
450 desc->type = segp->type;
451 desc->dpl = segp->dpl;
452 desc->p = segp->present;
453 desc->limit1 = segp->limit >> 16;
454 desc->l = segp->l;
455 desc->db = segp->db;
456 desc->g = segp->g;
457 desc->base2 = segp->base >> 24;
458 if (!segp->s)
459 desc->base3 = segp->base >> 32;
460 }
461
462
463 /* Set Long Mode Flat Kernel Code Segment
464 *
465 * Input Args:
466 * vm - VM whose GDT is being filled, or NULL to only write segp
467 * selector - selector value
468 *
469 * Output Args:
470 * segp - Pointer to KVM segment
471 *
472 * Return: None
473 *
474 * Sets up the KVM segment pointed to by segp, to be a code segment
475 * with the selector value given by selector.
476 */
477 static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector,
478 struct kvm_segment *segp)
479 {
480 memset(segp, 0, sizeof(*segp));
481 segp->selector = selector;
482 segp->limit = 0xFFFFFFFFu;
483 segp->s = 0x1; /* kTypeCodeData */
484 segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
485 * | kFlagCodeReadable
486 */
487 segp->g = true;
488 segp->l = true;
489 segp->present = 1;
490 if (vm)
491 kvm_seg_fill_gdt_64bit(vm, segp);
492 }
493
494 /* Set Long Mode Flat Kernel Data Segment
495 *
496 * Input Args:
497 * vm - VM whose GDT is being filled, or NULL to only write segp
498 * selector - selector value
499 *
500 * Output Args:
501 * segp - Pointer to KVM segment
502 *
503 * Return: None
504 *
505 * Sets up the KVM segment pointed to by segp, to be a data segment
506 * with the selector value given by selector.
507 */
508 static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector,
509 struct kvm_segment *segp)
510 {
511 memset(segp, 0, sizeof(*segp));
512 segp->selector = selector;
513 segp->limit = 0xFFFFFFFFu;
514 segp->s = 0x1; /* kTypeCodeData */
515 segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
516 * | kFlagDataWritable
517 */
518 segp->g = true;
519 segp->present = true;
520 if (vm)
521 kvm_seg_fill_gdt_64bit(vm, segp);
522 }
523
524 /* Address Guest Virtual to Guest Physical
525 *
526 * Input Args:
527 * vm - Virtual Machine
528 * gpa - VM virtual address
529 *
530 * Output Args: None
531 *
532 * Return:
533 * Equivalent VM physical address
534 *
535 * Translates the VM virtual address given by gva to a VM physical
536 * address and then locates the memory region containing the VM
537 * physical address, within the VM given by vm. When found, the host
538 * virtual address providing the memory to the vm physical address is returned.
539 * A TEST_ASSERT failure occurs if no region containing translated
540 * VM virtual address exists.
541 */
542 vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
543 {
544 uint16_t index[4];
545 struct pageMapL4Entry *pml4e;
546 struct pageDirectoryPointerEntry *pdpe;
547 struct pageDirectoryEntry *pde;
548 struct pageTableEntry *pte;
549
550 TEST_ASSERT(vm->mode == VM_MODE_P52V48_4K, "Attempt to use "
551 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
552
553 index[0] = (gva >> 12) & 0x1ffu;
554 index[1] = (gva >> 21) & 0x1ffu;
555 index[2] = (gva >> 30) & 0x1ffu;
556 index[3] = (gva >> 39) & 0x1ffu;
557
558 if (!vm->pgd_created)
559 goto unmapped_gva;
560 pml4e = addr_gpa2hva(vm, vm->pgd);
561 if (!pml4e[index[3]].present)
562 goto unmapped_gva;
563
564 pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size);
565 if (!pdpe[index[2]].present)
566 goto unmapped_gva;
567
568 pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size);
569 if (!pde[index[1]].present)
570 goto unmapped_gva;
571
572 pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size);
573 if (!pte[index[0]].present)
574 goto unmapped_gva;
575
576 return (pte[index[0]].address * vm->page_size) + (gva & 0xfffu);
577
578 unmapped_gva:
579 TEST_ASSERT(false, "No mapping for vm virtual address, "
580 "gva: 0x%lx", gva);
581 exit(EXIT_FAILURE);
582 }
583
584 static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt, int gdt_memslot,
585 int pgd_memslot)
586 {
587 if (!vm->gdt)
588 vm->gdt = vm_vaddr_alloc(vm, getpagesize(),
589 KVM_UTIL_MIN_VADDR, gdt_memslot, pgd_memslot);
590
591 dt->base = vm->gdt;
592 dt->limit = getpagesize();
593 }
594
595 static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp,
596 int selector, int gdt_memslot,
597 int pgd_memslot)
598 {
599 if (!vm->tss)
600 vm->tss = vm_vaddr_alloc(vm, getpagesize(),
601 KVM_UTIL_MIN_VADDR, gdt_memslot, pgd_memslot);
602
603 memset(segp, 0, sizeof(*segp));
604 segp->base = vm->tss;
605 segp->limit = 0x67;
606 segp->selector = selector;
607 segp->type = 0xb;
608 segp->present = 1;
609 kvm_seg_fill_gdt_64bit(vm, segp);
610 }
611
612 static void vcpu_setup(struct kvm_vm *vm, int vcpuid, int pgd_memslot, int gdt_memslot)
613 {
614 struct kvm_sregs sregs;
615
616 /* Set mode specific system register values. */
617 vcpu_sregs_get(vm, vcpuid, &sregs);
618
619 sregs.idt.limit = 0;
620
621 kvm_setup_gdt(vm, &sregs.gdt, gdt_memslot, pgd_memslot);
622
623 switch (vm->mode) {
624 case VM_MODE_P52V48_4K:
625 sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
626 sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
627 sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
628
629 kvm_seg_set_unusable(&sregs.ldt);
630 kvm_seg_set_kernel_code_64bit(vm, 0x8, &sregs.cs);
631 kvm_seg_set_kernel_data_64bit(vm, 0x10, &sregs.ds);
632 kvm_seg_set_kernel_data_64bit(vm, 0x10, &sregs.es);
633 kvm_setup_tss_64bit(vm, &sregs.tr, 0x18, gdt_memslot, pgd_memslot);
634 break;
635
636 default:
637 TEST_ASSERT(false, "Unknown guest mode, mode: 0x%x", vm->mode);
638 }
639
640 sregs.cr3 = vm->pgd;
641 vcpu_sregs_set(vm, vcpuid, &sregs);
642 }
643 /* Adds a vCPU with reasonable defaults (i.e., a stack)
644 *
645 * Input Args:
646 * vcpuid - The id of the VCPU to add to the VM.
647 * guest_code - The vCPU's entry point
648 */
649 void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code)
650 {
651 struct kvm_mp_state mp_state;
652 struct kvm_regs regs;
653 vm_vaddr_t stack_vaddr;
654 stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
655 DEFAULT_GUEST_STACK_VADDR_MIN, 0, 0);
656
657 /* Create VCPU */
658 vm_vcpu_add(vm, vcpuid);
659 vcpu_setup(vm, vcpuid, 0, 0);
660
661 /* Setup guest general purpose registers */
662 vcpu_regs_get(vm, vcpuid, &regs);
663 regs.rflags = regs.rflags | 0x2;
664 regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize());
665 regs.rip = (unsigned long) guest_code;
666 vcpu_regs_set(vm, vcpuid, &regs);
667
668 /* Setup the MP state */
669 mp_state.mp_state = 0;
670 vcpu_set_mp_state(vm, vcpuid, &mp_state);
671 }
672
673 /* Allocate an instance of struct kvm_cpuid2
674 *
675 * Input Args: None
676 *
677 * Output Args: None
678 *
679 * Return: A pointer to the allocated struct. The caller is responsible
680 * for freeing this struct.
681 *
682 * Since kvm_cpuid2 uses a 0-length array to allow a the size of the
683 * array to be decided at allocation time, allocation is slightly
684 * complicated. This function uses a reasonable default length for
685 * the array and performs the appropriate allocation.
686 */
687 static struct kvm_cpuid2 *allocate_kvm_cpuid2(void)
688 {
689 struct kvm_cpuid2 *cpuid;
690 int nent = 100;
691 size_t size;
692
693 size = sizeof(*cpuid);
694 size += nent * sizeof(struct kvm_cpuid_entry2);
695 cpuid = malloc(size);
696 if (!cpuid) {
697 perror("malloc");
698 abort();
699 }
700
701 cpuid->nent = nent;
702
703 return cpuid;
704 }
705
706 /* KVM Supported CPUID Get
707 *
708 * Input Args: None
709 *
710 * Output Args:
711 *
712 * Return: The supported KVM CPUID
713 *
714 * Get the guest CPUID supported by KVM.
715 */
716 struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
717 {
718 static struct kvm_cpuid2 *cpuid;
719 int ret;
720 int kvm_fd;
721
722 if (cpuid)
723 return cpuid;
724
725 cpuid = allocate_kvm_cpuid2();
726 kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
727 if (kvm_fd < 0)
728 exit(KSFT_SKIP);
729
730 ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid);
731 TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n",
732 ret, errno);
733
734 close(kvm_fd);
735 return cpuid;
736 }
737
738 /* Locate a cpuid entry.
739 *
740 * Input Args:
741 * cpuid: The cpuid.
742 * function: The function of the cpuid entry to find.
743 *
744 * Output Args: None
745 *
746 * Return: A pointer to the cpuid entry. Never returns NULL.
747 */
748 struct kvm_cpuid_entry2 *
749 kvm_get_supported_cpuid_index(uint32_t function, uint32_t index)
750 {
751 struct kvm_cpuid2 *cpuid;
752 struct kvm_cpuid_entry2 *entry = NULL;
753 int i;
754
755 cpuid = kvm_get_supported_cpuid();
756 for (i = 0; i < cpuid->nent; i++) {
757 if (cpuid->entries[i].function == function &&
758 cpuid->entries[i].index == index) {
759 entry = &cpuid->entries[i];
760 break;
761 }
762 }
763
764 TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).",
765 function, index);
766 return entry;
767 }
768
769 /* VM VCPU CPUID Set
770 *
771 * Input Args:
772 * vm - Virtual Machine
773 * vcpuid - VCPU id
774 * cpuid - The CPUID values to set.
775 *
776 * Output Args: None
777 *
778 * Return: void
779 *
780 * Set the VCPU's CPUID.
781 */
782 void vcpu_set_cpuid(struct kvm_vm *vm,
783 uint32_t vcpuid, struct kvm_cpuid2 *cpuid)
784 {
785 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
786 int rc;
787
788 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
789
790 rc = ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid);
791 TEST_ASSERT(rc == 0, "KVM_SET_CPUID2 failed, rc: %i errno: %i",
792 rc, errno);
793
794 }
795
796 /* Create a VM with reasonable defaults
797 *
798 * Input Args:
799 * vcpuid - The id of the single VCPU to add to the VM.
800 * extra_mem_pages - The size of extra memories to add (this will
801 * decide how much extra space we will need to
802 * setup the page tables using mem slot 0)
803 * guest_code - The vCPU's entry point
804 *
805 * Output Args: None
806 *
807 * Return:
808 * Pointer to opaque structure that describes the created VM.
809 */
810 struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages,
811 void *guest_code)
812 {
813 struct kvm_vm *vm;
814 /*
815 * For x86 the maximum page table size for a memory region
816 * will be when only 4K pages are used. In that case the
817 * total extra size for page tables (for extra N pages) will
818 * be: N/512+N/512^2+N/512^3+... which is definitely smaller
819 * than N/512*2.
820 */
821 uint64_t extra_pg_pages = extra_mem_pages / 512 * 2;
822
823 /* Create VM */
824 vm = vm_create(VM_MODE_DEFAULT,
825 DEFAULT_GUEST_PHY_PAGES + extra_pg_pages,
826 O_RDWR);
827
828 /* Setup guest code */
829 kvm_vm_elf_load(vm, program_invocation_name, 0, 0);
830
831 /* Setup IRQ Chip */
832 vm_create_irqchip(vm);
833
834 /* Add the first vCPU. */
835 vm_vcpu_add_default(vm, vcpuid, guest_code);
836
837 return vm;
838 }
839
840 /* VCPU Get MSR
841 *
842 * Input Args:
843 * vm - Virtual Machine
844 * vcpuid - VCPU ID
845 * msr_index - Index of MSR
846 *
847 * Output Args: None
848 *
849 * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced.
850 *
851 * Get value of MSR for VCPU.
852 */
853 uint64_t vcpu_get_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index)
854 {
855 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
856 struct {
857 struct kvm_msrs header;
858 struct kvm_msr_entry entry;
859 } buffer = {};
860 int r;
861
862 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
863 buffer.header.nmsrs = 1;
864 buffer.entry.index = msr_index;
865 r = ioctl(vcpu->fd, KVM_GET_MSRS, &buffer.header);
866 TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
867 " rc: %i errno: %i", r, errno);
868
869 return buffer.entry.data;
870 }
871
872 /* VCPU Set MSR
873 *
874 * Input Args:
875 * vm - Virtual Machine
876 * vcpuid - VCPU ID
877 * msr_index - Index of MSR
878 * msr_value - New value of MSR
879 *
880 * Output Args: None
881 *
882 * Return: On success, nothing. On failure a TEST_ASSERT is produced.
883 *
884 * Set value of MSR for VCPU.
885 */
886 void vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
887 uint64_t msr_value)
888 {
889 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
890 struct {
891 struct kvm_msrs header;
892 struct kvm_msr_entry entry;
893 } buffer = {};
894 int r;
895
896 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
897 memset(&buffer, 0, sizeof(buffer));
898 buffer.header.nmsrs = 1;
899 buffer.entry.index = msr_index;
900 buffer.entry.data = msr_value;
901 r = ioctl(vcpu->fd, KVM_SET_MSRS, &buffer.header);
902 TEST_ASSERT(r == 1, "KVM_SET_MSRS IOCTL failed,\n"
903 " rc: %i errno: %i", r, errno);
904 }
905
906 /* VM VCPU Args Set
907 *
908 * Input Args:
909 * vm - Virtual Machine
910 * vcpuid - VCPU ID
911 * num - number of arguments
912 * ... - arguments, each of type uint64_t
913 *
914 * Output Args: None
915 *
916 * Return: None
917 *
918 * Sets the first num function input arguments to the values
919 * given as variable args. Each of the variable args is expected to
920 * be of type uint64_t.
921 */
922 void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...)
923 {
924 va_list ap;
925 struct kvm_regs regs;
926
927 TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
928 " num: %u\n",
929 num);
930
931 va_start(ap, num);
932 vcpu_regs_get(vm, vcpuid, &regs);
933
934 if (num >= 1)
935 regs.rdi = va_arg(ap, uint64_t);
936
937 if (num >= 2)
938 regs.rsi = va_arg(ap, uint64_t);
939
940 if (num >= 3)
941 regs.rdx = va_arg(ap, uint64_t);
942
943 if (num >= 4)
944 regs.rcx = va_arg(ap, uint64_t);
945
946 if (num >= 5)
947 regs.r8 = va_arg(ap, uint64_t);
948
949 if (num >= 6)
950 regs.r9 = va_arg(ap, uint64_t);
951
952 vcpu_regs_set(vm, vcpuid, &regs);
953 va_end(ap);
954 }
955
956 /*
957 * VM VCPU Dump
958 *
959 * Input Args:
960 * vm - Virtual Machine
961 * vcpuid - VCPU ID
962 * indent - Left margin indent amount
963 *
964 * Output Args:
965 * stream - Output FILE stream
966 *
967 * Return: None
968 *
969 * Dumps the current state of the VCPU specified by vcpuid, within the VM
970 * given by vm, to the FILE stream given by stream.
971 */
972 void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent)
973 {
974 struct kvm_regs regs;
975 struct kvm_sregs sregs;
976
977 fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid);
978
979 fprintf(stream, "%*sregs:\n", indent + 2, "");
980 vcpu_regs_get(vm, vcpuid, &regs);
981 regs_dump(stream, &regs, indent + 4);
982
983 fprintf(stream, "%*ssregs:\n", indent + 2, "");
984 vcpu_sregs_get(vm, vcpuid, &sregs);
985 sregs_dump(stream, &sregs, indent + 4);
986 }
987
988 struct kvm_x86_state {
989 struct kvm_vcpu_events events;
990 struct kvm_mp_state mp_state;
991 struct kvm_regs regs;
992 struct kvm_xsave xsave;
993 struct kvm_xcrs xcrs;
994 struct kvm_sregs sregs;
995 struct kvm_debugregs debugregs;
996 union {
997 struct kvm_nested_state nested;
998 char nested_[16384];
999 };
1000 struct kvm_msrs msrs;
1001 };
1002
1003 static int kvm_get_num_msrs(struct kvm_vm *vm)
1004 {
1005 struct kvm_msr_list nmsrs;
1006 int r;
1007
1008 nmsrs.nmsrs = 0;
1009 r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
1010 TEST_ASSERT(r == -1 && errno == E2BIG, "Unexpected result from KVM_GET_MSR_INDEX_LIST probe, r: %i",
1011 r);
1012
1013 return nmsrs.nmsrs;
1014 }
1015
1016 struct kvm_x86_state *vcpu_save_state(struct kvm_vm *vm, uint32_t vcpuid)
1017 {
1018 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1019 struct kvm_msr_list *list;
1020 struct kvm_x86_state *state;
1021 int nmsrs, r, i;
1022 static int nested_size = -1;
1023
1024 if (nested_size == -1) {
1025 nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
1026 TEST_ASSERT(nested_size <= sizeof(state->nested_),
1027 "Nested state size too big, %i > %zi",
1028 nested_size, sizeof(state->nested_));
1029 }
1030
1031 /*
1032 * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
1033 * guest state is consistent only after userspace re-enters the
1034 * kernel with KVM_RUN. Complete IO prior to migrating state
1035 * to a new VM.
1036 */
1037 vcpu_run_complete_io(vm, vcpuid);
1038
1039 nmsrs = kvm_get_num_msrs(vm);
1040 list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
1041 list->nmsrs = nmsrs;
1042 r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
1043 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
1044 r);
1045
1046 state = malloc(sizeof(*state) + nmsrs * sizeof(state->msrs.entries[0]));
1047 r = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, &state->events);
1048 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_VCPU_EVENTS, r: %i",
1049 r);
1050
1051 r = ioctl(vcpu->fd, KVM_GET_MP_STATE, &state->mp_state);
1052 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MP_STATE, r: %i",
1053 r);
1054
1055 r = ioctl(vcpu->fd, KVM_GET_REGS, &state->regs);
1056 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_REGS, r: %i",
1057 r);
1058
1059 r = ioctl(vcpu->fd, KVM_GET_XSAVE, &state->xsave);
1060 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XSAVE, r: %i",
1061 r);
1062
1063 if (kvm_check_cap(KVM_CAP_XCRS)) {
1064 r = ioctl(vcpu->fd, KVM_GET_XCRS, &state->xcrs);
1065 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XCRS, r: %i",
1066 r);
1067 }
1068
1069 r = ioctl(vcpu->fd, KVM_GET_SREGS, &state->sregs);
1070 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_SREGS, r: %i",
1071 r);
1072
1073 if (nested_size) {
1074 state->nested.size = sizeof(state->nested_);
1075 r = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, &state->nested);
1076 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_NESTED_STATE, r: %i",
1077 r);
1078 TEST_ASSERT(state->nested.size <= nested_size,
1079 "Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
1080 state->nested.size, nested_size);
1081 } else
1082 state->nested.size = 0;
1083
1084 state->msrs.nmsrs = nmsrs;
1085 for (i = 0; i < nmsrs; i++)
1086 state->msrs.entries[i].index = list->indices[i];
1087 r = ioctl(vcpu->fd, KVM_GET_MSRS, &state->msrs);
1088 TEST_ASSERT(r == nmsrs, "Unexpected result from KVM_GET_MSRS, r: %i (failed at %x)",
1089 r, r == nmsrs ? -1 : list->indices[r]);
1090
1091 r = ioctl(vcpu->fd, KVM_GET_DEBUGREGS, &state->debugregs);
1092 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_DEBUGREGS, r: %i",
1093 r);
1094
1095 free(list);
1096 return state;
1097 }
1098
1099 void vcpu_load_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_x86_state *state)
1100 {
1101 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1102 int r;
1103
1104 r = ioctl(vcpu->fd, KVM_SET_XSAVE, &state->xsave);
1105 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XSAVE, r: %i",
1106 r);
1107
1108 if (kvm_check_cap(KVM_CAP_XCRS)) {
1109 r = ioctl(vcpu->fd, KVM_SET_XCRS, &state->xcrs);
1110 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XCRS, r: %i",
1111 r);
1112 }
1113
1114 r = ioctl(vcpu->fd, KVM_SET_SREGS, &state->sregs);
1115 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_SREGS, r: %i",
1116 r);
1117
1118 r = ioctl(vcpu->fd, KVM_SET_MSRS, &state->msrs);
1119 TEST_ASSERT(r == state->msrs.nmsrs, "Unexpected result from KVM_SET_MSRS, r: %i (failed at %x)",
1120 r, r == state->msrs.nmsrs ? -1 : state->msrs.entries[r].index);
1121
1122 r = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, &state->events);
1123 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_VCPU_EVENTS, r: %i",
1124 r);
1125
1126 r = ioctl(vcpu->fd, KVM_SET_MP_STATE, &state->mp_state);
1127 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_MP_STATE, r: %i",
1128 r);
1129
1130 r = ioctl(vcpu->fd, KVM_SET_DEBUGREGS, &state->debugregs);
1131 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_DEBUGREGS, r: %i",
1132 r);
1133
1134 r = ioctl(vcpu->fd, KVM_SET_REGS, &state->regs);
1135 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_REGS, r: %i",
1136 r);
1137
1138 if (state->nested.size) {
1139 r = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, &state->nested);
1140 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_NESTED_STATE, r: %i",
1141 r);
1142 }
1143 }
1144
1145 bool is_intel_cpu(void)
1146 {
1147 int eax, ebx, ecx, edx;
1148 const uint32_t *chunk;
1149 const int leaf = 0;
1150
1151 __asm__ __volatile__(
1152 "cpuid"
1153 : /* output */ "=a"(eax), "=b"(ebx),
1154 "=c"(ecx), "=d"(edx)
1155 : /* input */ "0"(leaf), "2"(0));
1156
1157 chunk = (const uint32_t *)("GenuineIntel");
1158 return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
1159 }