]> git.ipfire.org Git - thirdparty/openssl.git/blame - crypto/bn/bn_gcd.c
Run util/openssl-format-source -v -c .
[thirdparty/openssl.git] / crypto / bn / bn_gcd.c
CommitLineData
d02b48c6 1/* crypto/bn/bn_gcd.c */
58964a49 2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
d02b48c6
RE
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
40720ce3 8 *
d02b48c6
RE
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
40720ce3 15 *
d02b48c6
RE
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
40720ce3 22 *
d02b48c6
RE
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
40720ce3 37 * 4. If you include any Windows specific code (or a derivative thereof) from
d02b48c6
RE
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40720ce3 40 *
d02b48c6
RE
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
40720ce3 52 *
d02b48c6
RE
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
dcbd0d74 58/* ====================================================================
7d0d0996 59 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
dcbd0d74
BM
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
40720ce3 66 * notice, this list of conditions and the following disclaimer.
dcbd0d74
BM
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
d02b48c6 111
d02b48c6
RE
112#include "cryptlib.h"
113#include "bn_lcl.h"
114
d02b48c6 115static BIGNUM *euclid(BIGNUM *a, BIGNUM *b);
9b141126 116
cbd48ba6 117int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
40720ce3
MC
118{
119 BIGNUM *a, *b, *t;
120 int ret = 0;
121
122 bn_check_top(in_a);
123 bn_check_top(in_b);
124
125 BN_CTX_start(ctx);
126 a = BN_CTX_get(ctx);
127 b = BN_CTX_get(ctx);
128 if (a == NULL || b == NULL)
129 goto err;
130
131 if (BN_copy(a, in_a) == NULL)
132 goto err;
133 if (BN_copy(b, in_b) == NULL)
134 goto err;
135 a->neg = 0;
136 b->neg = 0;
137
138 if (BN_cmp(a, b) < 0) {
139 t = a;
140 a = b;
141 b = t;
142 }
143 t = euclid(a, b);
144 if (t == NULL)
145 goto err;
146
147 if (BN_copy(r, t) == NULL)
148 goto err;
149 ret = 1;
150 err:
151 BN_CTX_end(ctx);
152 bn_check_top(r);
153 return (ret);
154}
d02b48c6 155
6b691a5c 156static BIGNUM *euclid(BIGNUM *a, BIGNUM *b)
40720ce3
MC
157{
158 BIGNUM *t;
159 int shifts = 0;
160
161 bn_check_top(a);
162 bn_check_top(b);
163
164 /* 0 <= b <= a */
165 while (!BN_is_zero(b)) {
166 /* 0 < b <= a */
167
168 if (BN_is_odd(a)) {
169 if (BN_is_odd(b)) {
170 if (!BN_sub(a, a, b))
171 goto err;
172 if (!BN_rshift1(a, a))
173 goto err;
174 if (BN_cmp(a, b) < 0) {
175 t = a;
176 a = b;
177 b = t;
178 }
179 } else { /* a odd - b even */
180
181 if (!BN_rshift1(b, b))
182 goto err;
183 if (BN_cmp(a, b) < 0) {
184 t = a;
185 a = b;
186 b = t;
187 }
188 }
189 } else { /* a is even */
190
191 if (BN_is_odd(b)) {
192 if (!BN_rshift1(a, a))
193 goto err;
194 if (BN_cmp(a, b) < 0) {
195 t = a;
196 a = b;
197 b = t;
198 }
199 } else { /* a even - b even */
200
201 if (!BN_rshift1(a, a))
202 goto err;
203 if (!BN_rshift1(b, b))
204 goto err;
205 shifts++;
206 }
207 }
208 /* 0 <= b <= a */
209 }
210
211 if (shifts) {
212 if (!BN_lshift(a, a, shifts))
213 goto err;
214 }
215 bn_check_top(a);
216 return (a);
217 err:
218 return (NULL);
219}
dcbd0d74 220
d02b48c6 221/* solves ax == 1 (mod n) */
283aedf4 222static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
40720ce3
MC
223 const BIGNUM *a, const BIGNUM *n,
224 BN_CTX *ctx);
225BIGNUM *BN_mod_inverse(BIGNUM *in, const BIGNUM *a, const BIGNUM *n,
226 BN_CTX *ctx)
227{
228 BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
229 BIGNUM *ret = NULL;
230 int sign;
231
232 if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0)
233 || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) {
234 return BN_mod_inverse_no_branch(in, a, n, ctx);
235 }
236
237 bn_check_top(a);
238 bn_check_top(n);
239
240 BN_CTX_start(ctx);
241 A = BN_CTX_get(ctx);
242 B = BN_CTX_get(ctx);
243 X = BN_CTX_get(ctx);
244 D = BN_CTX_get(ctx);
245 M = BN_CTX_get(ctx);
246 Y = BN_CTX_get(ctx);
247 T = BN_CTX_get(ctx);
248 if (T == NULL)
249 goto err;
250
251 if (in == NULL)
252 R = BN_new();
253 else
254 R = in;
255 if (R == NULL)
256 goto err;
257
258 BN_one(X);
259 BN_zero(Y);
260 if (BN_copy(B, a) == NULL)
261 goto err;
262 if (BN_copy(A, n) == NULL)
263 goto err;
264 A->neg = 0;
265 if (B->neg || (BN_ucmp(B, A) >= 0)) {
266 if (!BN_nnmod(B, B, A, ctx))
267 goto err;
268 }
269 sign = -1;
270 /*-
271 * From B = a mod |n|, A = |n| it follows that
272 *
273 * 0 <= B < A,
274 * -sign*X*a == B (mod |n|),
275 * sign*Y*a == A (mod |n|).
276 */
277
278 if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048))) {
279 /*
280 * Binary inversion algorithm; requires odd modulus. This is faster
281 * than the general algorithm if the modulus is sufficiently small
282 * (about 400 .. 500 bits on 32-bit sytems, but much more on 64-bit
283 * systems)
284 */
285 int shift;
286
287 while (!BN_is_zero(B)) {
288 /*-
289 * 0 < B < |n|,
290 * 0 < A <= |n|,
291 * (1) -sign*X*a == B (mod |n|),
292 * (2) sign*Y*a == A (mod |n|)
293 */
294
295 /*
296 * Now divide B by the maximum possible power of two in the
297 * integers, and divide X by the same value mod |n|. When we're
298 * done, (1) still holds.
299 */
300 shift = 0;
301 while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */
302 shift++;
303
304 if (BN_is_odd(X)) {
305 if (!BN_uadd(X, X, n))
306 goto err;
307 }
308 /*
309 * now X is even, so we can easily divide it by two
310 */
311 if (!BN_rshift1(X, X))
312 goto err;
313 }
314 if (shift > 0) {
315 if (!BN_rshift(B, B, shift))
316 goto err;
317 }
318
319 /*
320 * Same for A and Y. Afterwards, (2) still holds.
321 */
322 shift = 0;
323 while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */
324 shift++;
325
326 if (BN_is_odd(Y)) {
327 if (!BN_uadd(Y, Y, n))
328 goto err;
329 }
330 /* now Y is even */
331 if (!BN_rshift1(Y, Y))
332 goto err;
333 }
334 if (shift > 0) {
335 if (!BN_rshift(A, A, shift))
336 goto err;
337 }
338
339 /*-
340 * We still have (1) and (2).
341 * Both A and B are odd.
342 * The following computations ensure that
343 *
344 * 0 <= B < |n|,
345 * 0 < A < |n|,
346 * (1) -sign*X*a == B (mod |n|),
347 * (2) sign*Y*a == A (mod |n|),
348 *
349 * and that either A or B is even in the next iteration.
350 */
351 if (BN_ucmp(B, A) >= 0) {
352 /* -sign*(X + Y)*a == B - A (mod |n|) */
353 if (!BN_uadd(X, X, Y))
354 goto err;
355 /*
356 * NB: we could use BN_mod_add_quick(X, X, Y, n), but that
357 * actually makes the algorithm slower
358 */
359 if (!BN_usub(B, B, A))
360 goto err;
361 } else {
362 /* sign*(X + Y)*a == A - B (mod |n|) */
363 if (!BN_uadd(Y, Y, X))
364 goto err;
365 /*
366 * as above, BN_mod_add_quick(Y, Y, X, n) would slow things
367 * down
368 */
369 if (!BN_usub(A, A, B))
370 goto err;
371 }
372 }
373 } else {
374 /* general inversion algorithm */
375
376 while (!BN_is_zero(B)) {
377 BIGNUM *tmp;
378
379 /*-
380 * 0 < B < A,
381 * (*) -sign*X*a == B (mod |n|),
382 * sign*Y*a == A (mod |n|)
383 */
384
385 /* (D, M) := (A/B, A%B) ... */
386 if (BN_num_bits(A) == BN_num_bits(B)) {
387 if (!BN_one(D))
388 goto err;
389 if (!BN_sub(M, A, B))
390 goto err;
391 } else if (BN_num_bits(A) == BN_num_bits(B) + 1) {
392 /* A/B is 1, 2, or 3 */
393 if (!BN_lshift1(T, B))
394 goto err;
395 if (BN_ucmp(A, T) < 0) {
396 /* A < 2*B, so D=1 */
397 if (!BN_one(D))
398 goto err;
399 if (!BN_sub(M, A, B))
400 goto err;
401 } else {
402 /* A >= 2*B, so D=2 or D=3 */
403 if (!BN_sub(M, A, T))
404 goto err;
405 if (!BN_add(D, T, B))
406 goto err; /* use D (:= 3*B) as temp */
407 if (BN_ucmp(A, D) < 0) {
408 /* A < 3*B, so D=2 */
409 if (!BN_set_word(D, 2))
410 goto err;
411 /*
412 * M (= A - 2*B) already has the correct value
413 */
414 } else {
415 /* only D=3 remains */
416 if (!BN_set_word(D, 3))
417 goto err;
418 /*
419 * currently M = A - 2*B, but we need M = A - 3*B
420 */
421 if (!BN_sub(M, M, B))
422 goto err;
423 }
424 }
425 } else {
426 if (!BN_div(D, M, A, B, ctx))
427 goto err;
428 }
429
430 /*-
431 * Now
432 * A = D*B + M;
433 * thus we have
434 * (**) sign*Y*a == D*B + M (mod |n|).
435 */
436
437 tmp = A; /* keep the BIGNUM object, the value does not
438 * matter */
439
440 /* (A, B) := (B, A mod B) ... */
441 A = B;
442 B = M;
443 /* ... so we have 0 <= B < A again */
444
445 /*-
446 * Since the former M is now B and the former B is now A,
447 * (**) translates into
448 * sign*Y*a == D*A + B (mod |n|),
449 * i.e.
450 * sign*Y*a - D*A == B (mod |n|).
451 * Similarly, (*) translates into
452 * -sign*X*a == A (mod |n|).
453 *
454 * Thus,
455 * sign*Y*a + D*sign*X*a == B (mod |n|),
456 * i.e.
457 * sign*(Y + D*X)*a == B (mod |n|).
458 *
459 * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
460 * -sign*X*a == B (mod |n|),
461 * sign*Y*a == A (mod |n|).
462 * Note that X and Y stay non-negative all the time.
463 */
464
465 /*
466 * most of the time D is very small, so we can optimize tmp :=
467 * D*X+Y
468 */
469 if (BN_is_one(D)) {
470 if (!BN_add(tmp, X, Y))
471 goto err;
472 } else {
473 if (BN_is_word(D, 2)) {
474 if (!BN_lshift1(tmp, X))
475 goto err;
476 } else if (BN_is_word(D, 4)) {
477 if (!BN_lshift(tmp, X, 2))
478 goto err;
479 } else if (D->top == 1) {
480 if (!BN_copy(tmp, X))
481 goto err;
482 if (!BN_mul_word(tmp, D->d[0]))
483 goto err;
484 } else {
485 if (!BN_mul(tmp, D, X, ctx))
486 goto err;
487 }
488 if (!BN_add(tmp, tmp, Y))
489 goto err;
490 }
491
492 M = Y; /* keep the BIGNUM object, the value does not
493 * matter */
494 Y = X;
495 X = tmp;
496 sign = -sign;
497 }
498 }
499
500 /*-
501 * The while loop (Euclid's algorithm) ends when
502 * A == gcd(a,n);
503 * we have
504 * sign*Y*a == A (mod |n|),
505 * where Y is non-negative.
506 */
507
508 if (sign < 0) {
509 if (!BN_sub(Y, n, Y))
510 goto err;
511 }
512 /* Now Y*a == A (mod |n|). */
513
514 if (BN_is_one(A)) {
515 /* Y*a == 1 (mod |n|) */
516 if (!Y->neg && BN_ucmp(Y, n) < 0) {
517 if (!BN_copy(R, Y))
518 goto err;
519 } else {
520 if (!BN_nnmod(R, Y, n, ctx))
521 goto err;
522 }
523 } else {
524 BNerr(BN_F_BN_MOD_INVERSE, BN_R_NO_INVERSE);
525 goto err;
526 }
527 ret = R;
528 err:
529 if ((ret == NULL) && (in == NULL))
530 BN_free(R);
531 BN_CTX_end(ctx);
532 bn_check_top(ret);
533 return (ret);
534}
535
536/*
537 * BN_mod_inverse_no_branch is a special version of BN_mod_inverse. It does
538 * not contain branches that may leak sensitive information.
7cdb8158 539 */
283aedf4 540static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
40720ce3
MC
541 const BIGNUM *a, const BIGNUM *n,
542 BN_CTX *ctx)
543{
544 BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
545 BIGNUM local_A, local_B;
546 BIGNUM *pA, *pB;
547 BIGNUM *ret = NULL;
548 int sign;
549
550 bn_check_top(a);
551 bn_check_top(n);
552
553 BN_CTX_start(ctx);
554 A = BN_CTX_get(ctx);
555 B = BN_CTX_get(ctx);
556 X = BN_CTX_get(ctx);
557 D = BN_CTX_get(ctx);
558 M = BN_CTX_get(ctx);
559 Y = BN_CTX_get(ctx);
560 T = BN_CTX_get(ctx);
561 if (T == NULL)
562 goto err;
563
564 if (in == NULL)
565 R = BN_new();
566 else
567 R = in;
568 if (R == NULL)
569 goto err;
570
571 BN_one(X);
572 BN_zero(Y);
573 if (BN_copy(B, a) == NULL)
574 goto err;
575 if (BN_copy(A, n) == NULL)
576 goto err;
577 A->neg = 0;
578
579 if (B->neg || (BN_ucmp(B, A) >= 0)) {
580 /*
581 * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
582 * BN_div_no_branch will be called eventually.
583 */
584 pB = &local_B;
585 BN_with_flags(pB, B, BN_FLG_CONSTTIME);
586 if (!BN_nnmod(B, pB, A, ctx))
587 goto err;
588 }
589 sign = -1;
590 /*-
591 * From B = a mod |n|, A = |n| it follows that
592 *
593 * 0 <= B < A,
594 * -sign*X*a == B (mod |n|),
595 * sign*Y*a == A (mod |n|).
596 */
597
598 while (!BN_is_zero(B)) {
599 BIGNUM *tmp;
600
601 /*-
602 * 0 < B < A,
603 * (*) -sign*X*a == B (mod |n|),
604 * sign*Y*a == A (mod |n|)
605 */
606
607 /*
608 * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
609 * BN_div_no_branch will be called eventually.
610 */
611 pA = &local_A;
612 BN_with_flags(pA, A, BN_FLG_CONSTTIME);
613
614 /* (D, M) := (A/B, A%B) ... */
615 if (!BN_div(D, M, pA, B, ctx))
616 goto err;
617
618 /*-
619 * Now
620 * A = D*B + M;
621 * thus we have
622 * (**) sign*Y*a == D*B + M (mod |n|).
623 */
624
625 tmp = A; /* keep the BIGNUM object, the value does not
626 * matter */
627
628 /* (A, B) := (B, A mod B) ... */
629 A = B;
630 B = M;
631 /* ... so we have 0 <= B < A again */
632
633 /*-
634 * Since the former M is now B and the former B is now A,
635 * (**) translates into
636 * sign*Y*a == D*A + B (mod |n|),
637 * i.e.
638 * sign*Y*a - D*A == B (mod |n|).
639 * Similarly, (*) translates into
640 * -sign*X*a == A (mod |n|).
641 *
642 * Thus,
643 * sign*Y*a + D*sign*X*a == B (mod |n|),
644 * i.e.
645 * sign*(Y + D*X)*a == B (mod |n|).
646 *
647 * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
648 * -sign*X*a == B (mod |n|),
649 * sign*Y*a == A (mod |n|).
650 * Note that X and Y stay non-negative all the time.
651 */
652
653 if (!BN_mul(tmp, D, X, ctx))
654 goto err;
655 if (!BN_add(tmp, tmp, Y))
656 goto err;
657
658 M = Y; /* keep the BIGNUM object, the value does not
659 * matter */
660 Y = X;
661 X = tmp;
662 sign = -sign;
663 }
664
665 /*-
666 * The while loop (Euclid's algorithm) ends when
667 * A == gcd(a,n);
668 * we have
669 * sign*Y*a == A (mod |n|),
670 * where Y is non-negative.
671 */
672
673 if (sign < 0) {
674 if (!BN_sub(Y, n, Y))
675 goto err;
676 }
677 /* Now Y*a == A (mod |n|). */
678
679 if (BN_is_one(A)) {
680 /* Y*a == 1 (mod |n|) */
681 if (!Y->neg && BN_ucmp(Y, n) < 0) {
682 if (!BN_copy(R, Y))
683 goto err;
684 } else {
685 if (!BN_nnmod(R, Y, n, ctx))
686 goto err;
687 }
688 } else {
689 BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH, BN_R_NO_INVERSE);
690 goto err;
691 }
692 ret = R;
693 err:
694 if ((ret == NULL) && (in == NULL))
695 BN_free(R);
696 BN_CTX_end(ctx);
697 bn_check_top(ret);
698 return (ret);
699}