]> git.ipfire.org Git - thirdparty/openssl.git/blame - crypto/bn/bn_lcl.h
Move & split opensslconf.h.in
[thirdparty/openssl.git] / crypto / bn / bn_lcl.h
CommitLineData
d02b48c6 1/* crypto/bn/bn_lcl.h */
58964a49 2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
d02b48c6
RE
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
0f113f3e 8 *
d02b48c6
RE
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
0f113f3e 15 *
d02b48c6
RE
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
0f113f3e 22 *
d02b48c6
RE
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
0f113f3e 37 * 4. If you include any Windows specific code (or a derivative thereof) from
d02b48c6
RE
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
0f113f3e 40 *
d02b48c6
RE
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
0f113f3e 52 *
d02b48c6
RE
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
dc434bbc
BM
58/* ====================================================================
59 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
0f113f3e 66 * notice, this list of conditions and the following disclaimer.
dc434bbc
BM
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
d02b48c6
RE
111
112#ifndef HEADER_BN_LCL_H
0f113f3e 113# define HEADER_BN_LCL_H
d02b48c6 114
dc193c9c 115# include "internal/bn_conf.h"
0f113f3e 116# include "internal/bn_int.h"
d02b48c6
RE
117
118#ifdef __cplusplus
119extern "C" {
120#endif
121
1d97c843
TH
122/*-
123 * Bignum consistency macros
02a62d1a
MC
124 * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from
125 * bignum data after direct manipulations on the data. There is also an
126 * "internal" macro, bn_check_top(), for verifying that there are no leading
127 * zeroes. Unfortunately, some auditing is required due to the fact that
128 * bn_fix_top() has become an overabused duct-tape because bignum data is
129 * occasionally passed around in an inconsistent state. So the following
130 * changes have been made to sort this out;
131 * - bn_fix_top()s implementation has been moved to bn_correct_top()
132 * - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and
133 * bn_check_top() is as before.
134 * - if BN_DEBUG *is* defined;
135 * - bn_check_top() tries to pollute unused words even if the bignum 'top' is
136 * consistent. (ed: only if BN_DEBUG_RAND is defined)
137 * - bn_fix_top() maps to bn_check_top() rather than "fixing" anything.
138 * The idea is to have debug builds flag up inconsistent bignums when they
139 * occur. If that occurs in a bn_fix_top(), we examine the code in question; if
140 * the use of bn_fix_top() was appropriate (ie. it follows directly after code
141 * that manipulates the bignum) it is converted to bn_correct_top(), and if it
142 * was not appropriate, we convert it permanently to bn_check_top() and track
143 * down the cause of the bug. Eventually, no internal code should be using the
144 * bn_fix_top() macro. External applications and libraries should try this with
145 * their own code too, both in terms of building against the openssl headers
146 * with BN_DEBUG defined *and* linking with a version of OpenSSL built with it
147 * defined. This not only improves external code, it provides more test
148 * coverage for openssl's own code.
149 */
150
0f113f3e 151# ifdef BN_DEBUG
02a62d1a
MC
152
153/* We only need assert() when debugging */
0f113f3e 154# include <assert.h>
02a62d1a 155
0f113f3e 156# ifdef BN_DEBUG_RAND
02a62d1a 157/* To avoid "make update" cvs wars due to BN_DEBUG, use some tricks */
0f113f3e
MC
158# ifndef RAND_pseudo_bytes
159int RAND_pseudo_bytes(unsigned char *buf, int num);
160# define BN_DEBUG_TRIX
161# endif
162# define bn_pollute(a) \
163 do { \
164 const BIGNUM *_bnum1 = (a); \
165 if(_bnum1->top < _bnum1->dmax) { \
166 unsigned char _tmp_char; \
167 /* We cast away const without the compiler knowing, any \
168 * *genuinely* constant variables that aren't mutable \
169 * wouldn't be constructed with top!=dmax. */ \
170 BN_ULONG *_not_const; \
16f8d4eb 171 memcpy(&_not_const, &_bnum1->d, sizeof(_not_const)); \
266483d2 172 RAND_bytes(&_tmp_char, 1); /* Debug only - safe to ignore error return */\
16f8d4eb
RS
173 memset(_not_const + _bnum1->top, _tmp_char, \
174 sizeof(*_not_const) * (_bnum1->dmax - _bnum1->top)); \
0f113f3e
MC
175 } \
176 } while(0)
177# ifdef BN_DEBUG_TRIX
178# undef RAND_pseudo_bytes
179# endif
180# else
181# define bn_pollute(a)
182# endif
183# define bn_check_top(a) \
184 do { \
185 const BIGNUM *_bnum2 = (a); \
186 if (_bnum2 != NULL) { \
187 assert((_bnum2->top == 0) || \
188 (_bnum2->d[_bnum2->top - 1] != 0)); \
189 bn_pollute(_bnum2); \
190 } \
191 } while(0)
192
193# define bn_fix_top(a) bn_check_top(a)
194
195# define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits+BN_BITS2-1))/BN_BITS2)
196# define bn_wcheck_size(bn, words) \
197 do { \
198 const BIGNUM *_bnum2 = (bn); \
199 assert((words) <= (_bnum2)->dmax && (words) >= (_bnum2)->top); \
200 /* avoid unused variable warning with NDEBUG */ \
201 (void)(_bnum2); \
202 } while(0)
203
204# else /* !BN_DEBUG */
205
206# define bn_pollute(a)
207# define bn_check_top(a)
208# define bn_fix_top(a) bn_correct_top(a)
209# define bn_check_size(bn, bits)
210# define bn_wcheck_size(bn, words)
211
212# endif
213
214BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
215 BN_ULONG w);
02a62d1a 216BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w);
0f113f3e 217void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num);
02a62d1a 218BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
0f113f3e
MC
219BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
220 int num);
221BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
222 int num);
223
224struct bignum_st {
225 BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit
226 * chunks. */
227 int top; /* Index of last used d +1. */
228 /* The next are internal book keeping for bn_expand. */
229 int dmax; /* Size of the d array. */
230 int neg; /* one if the number is negative */
231 int flags;
232};
19391879
MC
233
234/* Used for montgomery multiplication */
0f113f3e
MC
235struct bn_mont_ctx_st {
236 int ri; /* number of bits in R */
237 BIGNUM RR; /* used to convert to montgomery form */
238 BIGNUM N; /* The modulus */
239 BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1 (Ni is only
240 * stored for bignum algorithm) */
241 BN_ULONG n0[2]; /* least significant word(s) of Ni; (type
242 * changed with 0.9.9, was "BN_ULONG n0;"
243 * before) */
244 int flags;
245};
246
247/*
248 * Used for reciprocal division/mod functions It cannot be shared between
249 * threads
19391879 250 */
0f113f3e
MC
251struct bn_recp_ctx_st {
252 BIGNUM N; /* the divisor */
253 BIGNUM Nr; /* the reciprocal */
254 int num_bits;
255 int shift;
256 int flags;
257};
19391879
MC
258
259/* Used for slow "generation" functions. */
0f113f3e
MC
260struct bn_gencb_st {
261 unsigned int ver; /* To handle binary (in)compatibility */
262 void *arg; /* callback-specific data */
263 union {
264 /* if(ver==1) - handles old style callbacks */
265 void (*cb_1) (int, int, void *);
266 /* if(ver==2) - new callback style */
267 int (*cb_2) (int, int, BN_GENCB *);
268 } cb;
269};
19391879 270
1d97c843 271/*-
dc434bbc
BM
272 * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions
273 *
274 *
275 * For window size 'w' (w >= 2) and a random 'b' bits exponent,
276 * the number of multiplications is a constant plus on average
277 *
278 * 2^(w-1) + (b-w)/(w+1);
279 *
280 * here 2^(w-1) is for precomputing the table (we actually need
281 * entries only for windows that have the lowest bit set), and
282 * (b-w)/(w+1) is an approximation for the expected number of
283 * w-bit windows, not counting the first one.
284 *
285 * Thus we should use
286 *
287 * w >= 6 if b > 671
288 * w = 5 if 671 > b > 239
289 * w = 4 if 239 > b > 79
290 * w = 3 if 79 > b > 23
291 * w <= 2 if 23 > b
292 *
293 * (with draws in between). Very small exponents are often selected
294 * with low Hamming weight, so we use w = 1 for b <= 23.
295 */
b0700d2c 296# define BN_window_bits_for_exponent_size(b) \
0f113f3e
MC
297 ((b) > 671 ? 6 : \
298 (b) > 239 ? 5 : \
299 (b) > 79 ? 4 : \
300 (b) > 23 ? 3 : 1)
dc434bbc 301
0f113f3e
MC
302/*
303 * BN_mod_exp_mont_conttime is based on the assumption that the L1 data cache
304 * line width of the target processor is at least the following value.
46a64376 305 */
0f113f3e
MC
306# define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH ( 64 )
307# define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
46a64376 308
0f113f3e
MC
309/*
310 * Window sizes optimized for fixed window size modular exponentiation
311 * algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of
312 * BN_mode_exp_mont_consttime, the maximum size of the window must not exceed
313 * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are
314 * defined for cache line sizes of 32 and 64, cache line sizes where
315 * log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be
316 * used on processors that have a 128 byte or greater cache line size.
46a64376 317 */
0f113f3e 318# if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
46a64376
BM
319
320# define BN_window_bits_for_ctime_exponent_size(b) \
0f113f3e
MC
321 ((b) > 937 ? 6 : \
322 (b) > 306 ? 5 : \
323 (b) > 89 ? 4 : \
324 (b) > 22 ? 3 : 1)
325# define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)
46a64376 326
0f113f3e 327# elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
46a64376
BM
328
329# define BN_window_bits_for_ctime_exponent_size(b) \
0f113f3e
MC
330 ((b) > 306 ? 5 : \
331 (b) > 89 ? 4 : \
332 (b) > 22 ? 3 : 1)
333# define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)
46a64376 334
0f113f3e 335# endif
46a64376 336
dfeab068
RE
337/* Pentium pro 16,16,16,32,64 */
338/* Alpha 16,16,16,16.64 */
0f113f3e
MC
339# define BN_MULL_SIZE_NORMAL (16)/* 32 */
340# define BN_MUL_RECURSIVE_SIZE_NORMAL (16)/* 32 less than */
341# define BN_SQR_RECURSIVE_SIZE_NORMAL (16)/* 32 */
342# define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL (32)/* 32 */
343# define BN_MONT_CTX_SET_SIZE_WORD (64)/* 32 */
344
345/*
346 * 2011-02-22 SMS. In various places, a size_t variable or a type cast to
347 * size_t was used to perform integer-only operations on pointers. This
348 * failed on VMS with 64-bit pointers (CC /POINTER_SIZE = 64) because size_t
349 * is still only 32 bits. What's needed in these cases is an integer type
350 * with the same size as a pointer, which size_t is not certain to be. The
351 * only fix here is VMS-specific.
8d00f342 352 */
0f113f3e
MC
353# if defined(OPENSSL_SYS_VMS)
354# if __INITIAL_POINTER_SIZE == 64
355# define PTR_SIZE_INT long long
356# else /* __INITIAL_POINTER_SIZE == 64 */
357# define PTR_SIZE_INT int
358# endif /* __INITIAL_POINTER_SIZE == 64 [else] */
359# elif !defined(PTR_SIZE_INT) /* defined(OPENSSL_SYS_VMS) */
360# define PTR_SIZE_INT size_t
361# endif /* defined(OPENSSL_SYS_VMS) [else] */
362
363# if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC)
fb81ac5e
AP
364/*
365 * BN_UMULT_HIGH section.
366 *
367 * No, I'm not trying to overwhelm you when stating that the
368 * product of N-bit numbers is 2*N bits wide:-) No, I don't expect
369 * you to be impressed when I say that if the compiler doesn't
370 * support 2*N integer type, then you have to replace every N*N
371 * multiplication with 4 (N/2)*(N/2) accompanied by some shifts
372 * and additions which unavoidably results in severe performance
373 * penalties. Of course provided that the hardware is capable of
374 * producing 2*N result... That's when you normally start
375 * considering assembler implementation. However! It should be
376 * pointed out that some CPUs (most notably Alpha, PowerPC and
377 * upcoming IA-64 family:-) provide *separate* instruction
378 * calculating the upper half of the product placing the result
379 * into a general purpose register. Now *if* the compiler supports
380 * inline assembler, then it's not impossible to implement the
381 * "bignum" routines (and have the compiler optimize 'em)
382 * exhibiting "native" performance in C. That's what BN_UMULT_HIGH
383 * macro is about:-)
384 *
0f113f3e 385 * <appro@fy.chalmers.se>
fb81ac5e 386 */
0f113f3e
MC
387# if defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
388# if defined(__DECC)
389# include <c_asm.h>
390# define BN_UMULT_HIGH(a,b) (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b))
391# elif defined(__GNUC__) && __GNUC__>=2
392# define BN_UMULT_HIGH(a,b) ({ \
393 register BN_ULONG ret; \
394 asm ("umulh %1,%2,%0" \
395 : "=r"(ret) \
396 : "r"(a), "r"(b)); \
397 ret; })
398# endif /* compiler */
399# elif defined(_ARCH_PPC) && defined(__64BIT__) && defined(SIXTY_FOUR_BIT_LONG)
400# if defined(__GNUC__) && __GNUC__>=2
401# define BN_UMULT_HIGH(a,b) ({ \
402 register BN_ULONG ret; \
403 asm ("mulhdu %0,%1,%2" \
404 : "=r"(ret) \
405 : "r"(a), "r"(b)); \
406 ret; })
407# endif /* compiler */
408# elif (defined(__x86_64) || defined(__x86_64__)) && \
122396f2 409 (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
0f113f3e
MC
410# if defined(__GNUC__) && __GNUC__>=2
411# define BN_UMULT_HIGH(a,b) ({ \
412 register BN_ULONG ret,discard; \
413 asm ("mulq %3" \
414 : "=a"(discard),"=d"(ret) \
415 : "a"(a), "g"(b) \
416 : "cc"); \
417 ret; })
418# define BN_UMULT_LOHI(low,high,a,b) \
419 asm ("mulq %3" \
420 : "=a"(low),"=d"(high) \
421 : "a"(a),"g"(b) \
422 : "cc");
423# endif
424# elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT)
425# if defined(_MSC_VER) && _MSC_VER>=1400
426unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b);
427unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b,
428 unsigned __int64 *h);
429# pragma intrinsic(__umulh,_umul128)
430# define BN_UMULT_HIGH(a,b) __umulh((a),(b))
431# define BN_UMULT_LOHI(low,high,a,b) ((low)=_umul128((a),(b),&(high)))
432# endif
433# elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
434# if defined(__GNUC__) && __GNUC__>=2
60c268b2 435# if __GNUC__>4 || (__GNUC__>=4 && __GNUC_MINOR__>=4)
0f113f3e
MC
436 /* "h" constraint is no more since 4.4 */
437# define BN_UMULT_HIGH(a,b) (((__uint128_t)(a)*(b))>>64)
438# define BN_UMULT_LOHI(low,high,a,b) ({ \
439 __uint128_t ret=(__uint128_t)(a)*(b); \
440 (high)=ret>>64; (low)=ret; })
441# else
442# define BN_UMULT_HIGH(a,b) ({ \
443 register BN_ULONG ret; \
444 asm ("dmultu %1,%2" \
445 : "=h"(ret) \
446 : "r"(a), "r"(b) : "l"); \
447 ret; })
a58fdc7a 448# define BN_UMULT_LOHI(low,high,a,b)\
0f113f3e
MC
449 asm ("dmultu %2,%3" \
450 : "=l"(low),"=h"(high) \
451 : "r"(a), "r"(b));
a58fdc7a 452# endif
0f113f3e
MC
453# endif
454# elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG)
455# if defined(__GNUC__) && __GNUC__>=2
456# define BN_UMULT_HIGH(a,b) ({ \
457 register BN_ULONG ret; \
458 asm ("umulh %0,%1,%2" \
459 : "=r"(ret) \
460 : "r"(a), "r"(b)); \
461 ret; })
462# endif
463# endif /* cpu */
464# endif /* OPENSSL_NO_ASM */
fb81ac5e 465
d02b48c6
RE
466/*************************************************************
467 * Using the long long type
468 */
0f113f3e
MC
469# define Lw(t) (((BN_ULONG)(t))&BN_MASK2)
470# define Hw(t) (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2)
471
472# ifdef BN_DEBUG_RAND
473# define bn_clear_top2max(a) \
474 { \
475 int ind = (a)->dmax - (a)->top; \
476 BN_ULONG *ftl = &(a)->d[(a)->top-1]; \
477 for (; ind != 0; ind--) \
478 *(++ftl) = 0x0; \
479 }
480# else
481# define bn_clear_top2max(a)
482# endif
483
484# ifdef BN_LLONG
485# define mul_add(r,a,w,c) { \
486 BN_ULLONG t; \
487 t=(BN_ULLONG)w * (a) + (r) + (c); \
488 (r)= Lw(t); \
489 (c)= Hw(t); \
490 }
491
492# define mul(r,a,w,c) { \
493 BN_ULLONG t; \
494 t=(BN_ULLONG)w * (a) + (c); \
495 (r)= Lw(t); \
496 (c)= Hw(t); \
497 }
498
499# define sqr(r0,r1,a) { \
500 BN_ULLONG t; \
501 t=(BN_ULLONG)(a)*(a); \
502 (r0)=Lw(t); \
503 (r1)=Hw(t); \
504 }
505
506# elif defined(BN_UMULT_LOHI)
507# define mul_add(r,a,w,c) { \
508 BN_ULONG high,low,ret,tmp=(a); \
509 ret = (r); \
510 BN_UMULT_LOHI(low,high,w,tmp); \
511 ret += (c); \
512 (c) = (ret<(c))?1:0; \
513 (c) += high; \
514 ret += low; \
515 (c) += (ret<low)?1:0; \
516 (r) = ret; \
517 }
518
519# define mul(r,a,w,c) { \
520 BN_ULONG high,low,ret,ta=(a); \
521 BN_UMULT_LOHI(low,high,w,ta); \
522 ret = low + (c); \
523 (c) = high; \
524 (c) += (ret<low)?1:0; \
525 (r) = ret; \
526 }
527
528# define sqr(r0,r1,a) { \
529 BN_ULONG tmp=(a); \
530 BN_UMULT_LOHI(r0,r1,tmp,tmp); \
531 }
532
533# elif defined(BN_UMULT_HIGH)
534# define mul_add(r,a,w,c) { \
535 BN_ULONG high,low,ret,tmp=(a); \
536 ret = (r); \
537 high= BN_UMULT_HIGH(w,tmp); \
538 ret += (c); \
539 low = (w) * tmp; \
540 (c) = (ret<(c))?1:0; \
541 (c) += high; \
542 ret += low; \
543 (c) += (ret<low)?1:0; \
544 (r) = ret; \
545 }
546
547# define mul(r,a,w,c) { \
548 BN_ULONG high,low,ret,ta=(a); \
549 low = (w) * ta; \
550 high= BN_UMULT_HIGH(w,ta); \
551 ret = low + (c); \
552 (c) = high; \
553 (c) += (ret<low)?1:0; \
554 (r) = ret; \
555 }
556
557# define sqr(r0,r1,a) { \
558 BN_ULONG tmp=(a); \
559 (r0) = tmp * tmp; \
560 (r1) = BN_UMULT_HIGH(tmp,tmp); \
561 }
562
563# else
d02b48c6
RE
564/*************************************************************
565 * No long long type
566 */
567
0f113f3e
MC
568# define LBITS(a) ((a)&BN_MASK2l)
569# define HBITS(a) (((a)>>BN_BITS4)&BN_MASK2l)
570# define L2HBITS(a) (((a)<<BN_BITS4)&BN_MASK2)
d02b48c6 571
0f113f3e
MC
572# define LLBITS(a) ((a)&BN_MASKl)
573# define LHBITS(a) (((a)>>BN_BITS2)&BN_MASKl)
574# define LL2HBITS(a) ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2)
d02b48c6 575
0f113f3e
MC
576# define mul64(l,h,bl,bh) \
577 { \
578 BN_ULONG m,m1,lt,ht; \
d02b48c6 579 \
0f113f3e
MC
580 lt=l; \
581 ht=h; \
582 m =(bh)*(lt); \
583 lt=(bl)*(lt); \
584 m1=(bl)*(ht); \
585 ht =(bh)*(ht); \
586 m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \
587 ht+=HBITS(m); \
588 m1=L2HBITS(m); \
589 lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \
590 (l)=lt; \
591 (h)=ht; \
592 }
593
594# define sqr64(lo,ho,in) \
595 { \
596 BN_ULONG l,h,m; \
d02b48c6 597 \
0f113f3e
MC
598 h=(in); \
599 l=LBITS(h); \
600 h=HBITS(h); \
601 m =(l)*(h); \
602 l*=l; \
603 h*=h; \
604 h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \
605 m =(m&BN_MASK2l)<<(BN_BITS4+1); \
606 l=(l+m)&BN_MASK2; if (l < m) h++; \
607 (lo)=l; \
608 (ho)=h; \
609 }
610
611# define mul_add(r,a,bl,bh,c) { \
612 BN_ULONG l,h; \
d02b48c6 613 \
0f113f3e
MC
614 h= (a); \
615 l=LBITS(h); \
616 h=HBITS(h); \
617 mul64(l,h,(bl),(bh)); \
d02b48c6 618 \
0f113f3e
MC
619 /* non-multiply part */ \
620 l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
621 (c)=(r); \
622 l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
623 (c)=h&BN_MASK2; \
624 (r)=l; \
625 }
626
627# define mul(r,a,bl,bh,c) { \
628 BN_ULONG l,h; \
d02b48c6 629 \
0f113f3e
MC
630 h= (a); \
631 l=LBITS(h); \
632 h=HBITS(h); \
633 mul64(l,h,(bl),(bh)); \
d02b48c6 634 \
0f113f3e
MC
635 /* non-multiply part */ \
636 l+=(c); if ((l&BN_MASK2) < (c)) h++; \
637 (c)=h&BN_MASK2; \
638 (r)=l&BN_MASK2; \
639 }
640# endif /* !BN_LLONG */
d02b48c6 641
19391879
MC
642void BN_RECP_CTX_init(BN_RECP_CTX *recp);
643void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
644
d59c7c81 645void bn_init(BIGNUM *a);
0f113f3e
MC
646void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb);
647void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
648void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
cbd48ba6 649void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);
0f113f3e
MC
650void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a);
651void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a);
652int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n);
653int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl);
654void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
655 int dna, int dnb, BN_ULONG *t);
656void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
657 int n, int tna, int tnb, BN_ULONG *t);
658void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t);
659void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
660void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
661 BN_ULONG *t);
662void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
663 BN_ULONG *t);
d5c21afd 664BN_ULONG bn_add_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
0f113f3e 665 int cl, int dl);
6343829a 666BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
0f113f3e
MC
667 int cl, int dl);
668int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
669 const BN_ULONG *np, const BN_ULONG *n0, int num);
58964a49 670
879bd6e3 671BIGNUM *int_bn_mod_inverse(BIGNUM *in,
0f113f3e
MC
672 const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
673 int *noinv);
879bd6e3 674
e46a059e 675int bn_probable_prime_dh(BIGNUM *rnd, int bits,
0f113f3e 676 const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx);
982c42cb
FLM
677int bn_probable_prime_dh_retry(BIGNUM *rnd, int bits, BN_CTX *ctx);
678int bn_probable_prime_dh_coprime(BIGNUM *rnd, int bits, BN_CTX *ctx);
e46a059e 679
d02b48c6
RE
680#ifdef __cplusplus
681}
682#endif
683
684#endif