]> git.ipfire.org Git - thirdparty/openssl.git/blame - crypto/bn/bn_rsa_fips186_4.c
Add BN_check_prime()
[thirdparty/openssl.git] / crypto / bn / bn_rsa_fips186_4.c
CommitLineData
8240d5fa
SL
1/*
2 * Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved.
4 *
5 * Licensed under the OpenSSL license (the "License"). You may not use
6 * this file except in compliance with the License. You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 */
10
11/*
12 * According to NIST SP800-131A "Transitioning the use of cryptographic
13 * algorithms and key lengths" Generation of 1024 bit RSA keys are no longer
14 * allowed for signatures (Table 2) or key transport (Table 5). In the code
15 * below any attempt to generate 1024 bit RSA keys will result in an error (Note
16 * that digital signature verification can still use deprecated 1024 bit keys).
17 *
18 * Also see FIPS1402IG A.14
19 * FIPS 186-4 relies on the use of the auxiliary primes p1, p2, q1 and q2 that
20 * must be generated before the module generates the RSA primes p and q.
21 * Table B.1 in FIPS 186-4 specifies, for RSA modulus lengths of 2048 and
22 * 3072 bits only, the min/max total length of the auxiliary primes.
23 * When implementing the RSA signature generation algorithm
24 * with other approved RSA modulus sizes, the vendor shall use the limitations
25 * from Table B.1 that apply to the longest RSA modulus shown in Table B.1 of
26 * FIPS 186-4 whose length does not exceed that of the implementation's RSA
27 * modulus. In particular, when generating the primes for the 4096-bit RSA
28 * modulus the limitations stated for the 3072-bit modulus shall apply.
29 */
30#include <stdio.h>
31#include <openssl/bn.h>
706457b7 32#include "bn_local.h"
25f2138b 33#include "crypto/bn.h"
8240d5fa
SL
34
35/*
36 * FIPS 186-4 Table B.1. "Min length of auxiliary primes p1, p2, q1, q2".
37 *
38 * Params:
39 * nbits The key size in bits.
40 * Returns:
41 * The minimum size of the auxiliary primes or 0 if nbits is invalid.
42 */
43static int bn_rsa_fips186_4_aux_prime_min_size(int nbits)
44{
45 if (nbits >= 3072)
46 return 171;
47 if (nbits == 2048)
48 return 141;
49 return 0;
50}
51
52/*
53 * FIPS 186-4 Table B.1 "Maximum length of len(p1) + len(p2) and
54 * len(q1) + len(q2) for p,q Probable Primes".
55 *
56 * Params:
57 * nbits The key size in bits.
58 * Returns:
59 * The maximum length or 0 if nbits is invalid.
60 */
61static int bn_rsa_fips186_4_aux_prime_max_sum_size_for_prob_primes(int nbits)
62{
63 if (nbits >= 3072)
64 return 1518;
65 if (nbits == 2048)
66 return 1007;
67 return 0;
68}
69
8240d5fa
SL
70/*
71 * Find the first odd integer that is a probable prime.
72 *
73 * See section FIPS 186-4 B.3.6 (Steps 4.2/5.2).
74 *
75 * Params:
76 * Xp1 The passed in starting point to find a probably prime.
77 * p1 The returned probable prime (first odd integer >= Xp1)
78 * ctx A BN_CTX object.
79 * cb An optional BIGNUM callback.
80 * Returns: 1 on success otherwise it returns 0.
81 */
82static int bn_rsa_fips186_4_find_aux_prob_prime(const BIGNUM *Xp1,
83 BIGNUM *p1, BN_CTX *ctx,
84 BN_GENCB *cb)
85{
86 int ret = 0;
87 int i = 0;
8240d5fa 88
42619397 89 if (BN_copy(p1, Xp1) == NULL)
8240d5fa
SL
90 return 0;
91
92 /* Find the first odd number >= Xp1 that is probably prime */
93 for(;;) {
94 i++;
95 BN_GENCB_call(cb, 0, i);
96 /* MR test with trial division */
42619397 97 if (BN_check_prime(p1, ctx, cb))
8240d5fa
SL
98 break;
99 /* Get next odd number */
100 if (!BN_add_word(p1, 2))
101 goto err;
102 }
103 BN_GENCB_call(cb, 2, i);
104 ret = 1;
105err:
106 return ret;
107}
108
109/*
110 * Generate a probable prime (p or q).
111 *
112 * See FIPS 186-4 B.3.6 (Steps 4 & 5)
113 *
114 * Params:
115 * p The returned probable prime.
116 * Xpout An optionally returned random number used during generation of p.
117 * p1, p2 The returned auxiliary primes. If NULL they are not returned.
118 * Xp An optional passed in value (that is random number used during
119 * generation of p).
120 * Xp1, Xp2 Optional passed in values that are normally generated
121 * internally. Used to find p1, p2.
122 * nlen The bit length of the modulus (the key size).
123 * e The public exponent.
124 * ctx A BN_CTX object.
125 * cb An optional BIGNUM callback.
126 * Returns: 1 on success otherwise it returns 0.
127 */
128int bn_rsa_fips186_4_gen_prob_primes(BIGNUM *p, BIGNUM *Xpout,
129 BIGNUM *p1, BIGNUM *p2,
130 const BIGNUM *Xp, const BIGNUM *Xp1,
131 const BIGNUM *Xp2, int nlen,
132 const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb)
133{
134 int ret = 0;
135 BIGNUM *p1i = NULL, *p2i = NULL, *Xp1i = NULL, *Xp2i = NULL;
136 int bitlen;
137
138 if (p == NULL || Xpout == NULL)
139 return 0;
140
141 BN_CTX_start(ctx);
142
143 p1i = (p1 != NULL) ? p1 : BN_CTX_get(ctx);
144 p2i = (p2 != NULL) ? p2 : BN_CTX_get(ctx);
145 Xp1i = (Xp1 != NULL) ? (BIGNUM *)Xp1 : BN_CTX_get(ctx);
146 Xp2i = (Xp2 != NULL) ? (BIGNUM *)Xp2 : BN_CTX_get(ctx);
147 if (p1i == NULL || p2i == NULL || Xp1i == NULL || Xp2i == NULL)
148 goto err;
149
150 bitlen = bn_rsa_fips186_4_aux_prime_min_size(nlen);
151 if (bitlen == 0)
152 goto err;
153
154 /* (Steps 4.1/5.1): Randomly generate Xp1 if it is not passed in */
155 if (Xp1 == NULL) {
156 /* Set the top and bottom bits to make it odd and the correct size */
2934be91
MC
157 if (!BN_priv_rand_ex(Xp1i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD,
158 ctx))
8240d5fa
SL
159 goto err;
160 }
161 /* (Steps 4.1/5.1): Randomly generate Xp2 if it is not passed in */
162 if (Xp2 == NULL) {
163 /* Set the top and bottom bits to make it odd and the correct size */
2934be91
MC
164 if (!BN_priv_rand_ex(Xp2i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD,
165 ctx))
8240d5fa
SL
166 goto err;
167 }
168
169 /* (Steps 4.2/5.2) - find first auxiliary probable primes */
170 if (!bn_rsa_fips186_4_find_aux_prob_prime(Xp1i, p1i, ctx, cb)
171 || !bn_rsa_fips186_4_find_aux_prob_prime(Xp2i, p2i, ctx, cb))
172 goto err;
173 /* (Table B.1) auxiliary prime Max length check */
174 if ((BN_num_bits(p1i) + BN_num_bits(p2i)) >=
175 bn_rsa_fips186_4_aux_prime_max_sum_size_for_prob_primes(nlen))
176 goto err;
177 /* (Steps 4.3/5.3) - generate prime */
178 if (!bn_rsa_fips186_4_derive_prime(p, Xpout, Xp, p1i, p2i, nlen, e, ctx, cb))
179 goto err;
180 ret = 1;
181err:
182 /* Zeroize any internally generated values that are not returned */
183 if (p1 == NULL)
184 BN_clear(p1i);
185 if (p2 == NULL)
186 BN_clear(p2i);
187 if (Xp1 == NULL)
188 BN_clear(Xp1i);
189 if (Xp2 == NULL)
190 BN_clear(Xp2i);
191 BN_CTX_end(ctx);
192 return ret;
193}
194
195/*
196 * Constructs a probable prime (a candidate for p or q) using 2 auxiliary
197 * prime numbers and the Chinese Remainder Theorem.
198 *
199 * See FIPS 186-4 C.9 "Compute a Probable Prime Factor Based on Auxiliary
200 * Primes". Used by FIPS 186-4 B.3.6 Section (4.3) for p and Section (5.3) for q.
201 *
202 * Params:
203 * Y The returned prime factor (private_prime_factor) of the modulus n.
204 * X The returned random number used during generation of the prime factor.
205 * Xin An optional passed in value for X used for testing purposes.
206 * r1 An auxiliary prime.
207 * r2 An auxiliary prime.
208 * nlen The desired length of n (the RSA modulus).
209 * e The public exponent.
210 * ctx A BN_CTX object.
211 * cb An optional BIGNUM callback object.
212 * Returns: 1 on success otherwise it returns 0.
213 * Assumptions:
214 * Y, X, r1, r2, e are not NULL.
215 */
216int bn_rsa_fips186_4_derive_prime(BIGNUM *Y, BIGNUM *X, const BIGNUM *Xin,
217 const BIGNUM *r1, const BIGNUM *r2, int nlen,
218 const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb)
219{
220 int ret = 0;
221 int i, imax;
222 int bits = nlen >> 1;
8240d5fa
SL
223 BIGNUM *tmp, *R, *r1r2x2, *y1, *r1x2;
224
8240d5fa
SL
225 BN_CTX_start(ctx);
226
227 R = BN_CTX_get(ctx);
228 tmp = BN_CTX_get(ctx);
229 r1r2x2 = BN_CTX_get(ctx);
230 y1 = BN_CTX_get(ctx);
231 r1x2 = BN_CTX_get(ctx);
232 if (r1x2 == NULL)
233 goto err;
234
235 if (Xin != NULL && BN_copy(X, Xin) == NULL)
236 goto err;
237
238 if (!(BN_lshift1(r1x2, r1)
239 /* (Step 1) GCD(2r1, r2) = 1 */
240 && BN_gcd(tmp, r1x2, r2, ctx)
241 && BN_is_one(tmp)
242 /* (Step 2) R = ((r2^-1 mod 2r1) * r2) - ((2r1^-1 mod r2)*2r1) */
243 && BN_mod_inverse(R, r2, r1x2, ctx)
244 && BN_mul(R, R, r2, ctx) /* R = (r2^-1 mod 2r1) * r2 */
245 && BN_mod_inverse(tmp, r1x2, r2, ctx)
246 && BN_mul(tmp, tmp, r1x2, ctx) /* tmp = (2r1^-1 mod r2)*2r1 */
247 && BN_sub(R, R, tmp)
248 /* Calculate 2r1r2 */
249 && BN_mul(r1r2x2, r1x2, r2, ctx)))
250 goto err;
251 /* Make positive by adding the modulus */
252 if (BN_is_negative(R) && !BN_add(R, R, r1r2x2))
253 goto err;
254
255 imax = 5 * bits; /* max = 5/2 * nbits */
256 for (;;) {
257 if (Xin == NULL) {
258 /*
259 * (Step 3) Choose Random X such that
260 * sqrt(2) * 2^(nlen/2-1) < Random X < (2^(nlen/2)) - 1.
261 *
262 * For the lower bound:
263 * sqrt(2) * 2^(nlen/2 - 1) == sqrt(2)/2 * 2^(nlen/2)
264 * where sqrt(2)/2 = 0.70710678.. = 0.B504FC33F9DE...
265 * so largest number will have B5... as the top byte
266 * Setting the top 2 bits gives 0xC0.
267 */
2934be91
MC
268 if (!BN_priv_rand_ex(X, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY,
269 ctx))
8240d5fa
SL
270 goto end;
271 }
272 /* (Step 4) Y = X + ((R - X) mod 2r1r2) */
273 if (!BN_mod_sub(Y, R, X, r1r2x2, ctx) || !BN_add(Y, Y, X))
274 goto err;
275 /* (Step 5) */
276 i = 0;
277 for (;;) {
278 /* (Step 6) */
279 if (BN_num_bits(Y) > bits) {
280 if (Xin == NULL)
281 break; /* Randomly Generated X so Go back to Step 3 */
282 else
283 goto err; /* X is not random so it will always fail */
284 }
285 BN_GENCB_call(cb, 0, 2);
286
287 /* (Step 7) If GCD(Y-1) == 1 & Y is probably prime then return Y */
288 if (BN_copy(y1, Y) == NULL
289 || !BN_sub_word(y1, 1)
290 || !BN_gcd(tmp, y1, e, ctx))
291 goto err;
42619397 292 if (BN_is_one(tmp) && BN_check_prime(Y, ctx, cb))
8240d5fa
SL
293 goto end;
294 /* (Step 8-10) */
295 if (++i >= imax || !BN_add(Y, Y, r1r2x2))
296 goto err;
297 }
298 }
299end:
300 ret = 1;
301 BN_GENCB_call(cb, 3, 0);
302err:
303 BN_clear(y1);
304 BN_CTX_end(ctx);
305 return ret;
306}