]> git.ipfire.org Git - thirdparty/openssl.git/blame - crypto/ec/ecp_nistz256.c
Deprecate the ECDSA and EV_KEY_METHOD functions.
[thirdparty/openssl.git] / crypto / ec / ecp_nistz256.c
CommitLineData
aa6bb135 1/*
3c7d0945 2 * Copyright 2014-2018 The OpenSSL Project Authors. All Rights Reserved.
dcf6e50f 3 * Copyright (c) 2014, Intel Corporation. All Rights Reserved.
eb791696 4 * Copyright (c) 2015, CloudFlare, Inc.
aa6bb135 5 *
a7f182b7 6 * Licensed under the Apache License 2.0 (the "License"). You may not use
aa6bb135
RS
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
dcf6e50f 10 *
eb791696 11 * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1, 3)
dcf6e50f
RS
12 * (1) Intel Corporation, Israel Development Center, Haifa, Israel
13 * (2) University of Haifa, Israel
eb791696 14 * (3) CloudFlare, Inc.
dcf6e50f
RS
15 *
16 * Reference:
17 * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
18 * 256 Bit Primes"
aa6bb135
RS
19 */
20
579422c8
P
21/*
22 * ECDSA low level APIs are deprecated for public use, but still ok for
23 * internal use.
24 */
25#include "internal/deprecated.h"
26
4d3fa06f
AP
27#include <string.h>
28
b39fc560 29#include "internal/cryptlib.h"
25f2138b 30#include "crypto/bn.h"
706457b7 31#include "ec_local.h"
cd420b0b 32#include "internal/refcount.h"
4d3fa06f
AP
33
34#if BN_BITS2 != 64
58d47cf0 35# define TOBN(hi,lo) lo,hi
4d3fa06f 36#else
58d47cf0 37# define TOBN(hi,lo) ((BN_ULONG)hi<<32|lo)
4d3fa06f
AP
38#endif
39
40#if defined(__GNUC__)
58d47cf0 41# define ALIGN32 __attribute((aligned(32)))
4d3fa06f 42#elif defined(_MSC_VER)
58d47cf0 43# define ALIGN32 __declspec(align(32))
4d3fa06f
AP
44#else
45# define ALIGN32
46#endif
47
58d47cf0
AP
48#define ALIGNPTR(p,N) ((unsigned char *)p+N-(size_t)p%N)
49#define P256_LIMBS (256/BN_BITS2)
4d3fa06f
AP
50
51typedef unsigned short u16;
52
53typedef struct {
54 BN_ULONG X[P256_LIMBS];
55 BN_ULONG Y[P256_LIMBS];
56 BN_ULONG Z[P256_LIMBS];
57} P256_POINT;
58
59typedef struct {
60 BN_ULONG X[P256_LIMBS];
61 BN_ULONG Y[P256_LIMBS];
62} P256_POINT_AFFINE;
63
64typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
65
66/* structure for precomputed multiples of the generator */
3aef36ff 67struct nistz256_pre_comp_st {
4d3fa06f
AP
68 const EC_GROUP *group; /* Parent EC_GROUP object */
69 size_t w; /* Window size */
20728adc
AP
70 /*
71 * Constant time access to the X and Y coordinates of the pre-computed,
4d3fa06f 72 * generator multiplies, in the Montgomery domain. Pre-calculated
20728adc
AP
73 * multiplies are stored in affine form.
74 */
4d3fa06f
AP
75 PRECOMP256_ROW *precomp;
76 void *precomp_storage;
2f545ae4 77 CRYPTO_REF_COUNT references;
9b398ef2 78 CRYPTO_RWLOCK *lock;
3aef36ff 79};
4d3fa06f
AP
80
81/* Functions implemented in assembly */
b62b2454
AP
82/*
83 * Most of below mentioned functions *preserve* the property of inputs
84 * being fully reduced, i.e. being in [0, modulus) range. Simply put if
85 * inputs are fully reduced, then output is too. Note that reverse is
86 * not true, in sense that given partially reduced inputs output can be
87 * either, not unlikely reduced. And "most" in first sentence refers to
88 * the fact that given the calculations flow one can tolerate that
89 * addition, 1st function below, produces partially reduced result *if*
90 * multiplications by 2 and 3, which customarily use addition, fully
91 * reduce it. This effectively gives two options: a) addition produces
92 * fully reduced result [as long as inputs are, just like remaining
93 * functions]; b) addition is allowed to produce partially reduced
94 * result, but multiplications by 2 and 3 perform additional reduction
95 * step. Choice between the two can be platform-specific, but it was a)
96 * in all cases so far...
97 */
98/* Modular add: res = a+b mod P */
99void ecp_nistz256_add(BN_ULONG res[P256_LIMBS],
100 const BN_ULONG a[P256_LIMBS],
101 const BN_ULONG b[P256_LIMBS]);
4d3fa06f
AP
102/* Modular mul by 2: res = 2*a mod P */
103void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS],
104 const BN_ULONG a[P256_LIMBS]);
4d3fa06f
AP
105/* Modular mul by 3: res = 3*a mod P */
106void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS],
107 const BN_ULONG a[P256_LIMBS]);
b62b2454
AP
108
109/* Modular div by 2: res = a/2 mod P */
110void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS],
111 const BN_ULONG a[P256_LIMBS]);
20728adc 112/* Modular sub: res = a-b mod P */
4d3fa06f
AP
113void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS],
114 const BN_ULONG a[P256_LIMBS],
115 const BN_ULONG b[P256_LIMBS]);
20728adc 116/* Modular neg: res = -a mod P */
4d3fa06f
AP
117void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]);
118/* Montgomery mul: res = a*b*2^-256 mod P */
119void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],
120 const BN_ULONG a[P256_LIMBS],
121 const BN_ULONG b[P256_LIMBS]);
122/* Montgomery sqr: res = a*a*2^-256 mod P */
123void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS],
124 const BN_ULONG a[P256_LIMBS]);
125/* Convert a number from Montgomery domain, by multiplying with 1 */
126void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS],
127 const BN_ULONG in[P256_LIMBS]);
128/* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/
129void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS],
130 const BN_ULONG in[P256_LIMBS]);
131/* Functions that perform constant time access to the precomputed tables */
58d47cf0 132void ecp_nistz256_scatter_w5(P256_POINT *val,
49b05c7d 133 const P256_POINT *in_t, int idx);
20728adc 134void ecp_nistz256_gather_w5(P256_POINT *val,
49b05c7d 135 const P256_POINT *in_t, int idx);
58d47cf0 136void ecp_nistz256_scatter_w7(P256_POINT_AFFINE *val,
49b05c7d 137 const P256_POINT_AFFINE *in_t, int idx);
58d47cf0 138void ecp_nistz256_gather_w7(P256_POINT_AFFINE *val,
49b05c7d 139 const P256_POINT_AFFINE *in_t, int idx);
4d3fa06f
AP
140
141/* One converted into the Montgomery domain */
142static const BN_ULONG ONE[P256_LIMBS] = {
143 TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
144 TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe)
145};
146
3aef36ff 147static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group);
4d3fa06f
AP
148
149/* Precomputed tables for the default generator */
3ff08e1d 150extern const PRECOMP256_ROW ecp_nistz256_precomputed[37];
4d3fa06f
AP
151
152/* Recode window to a signed digit, see ecp_nistputil.c for details */
153static unsigned int _booth_recode_w5(unsigned int in)
154{
155 unsigned int s, d;
156
157 s = ~((in >> 5) - 1);
158 d = (1 << 6) - in - 1;
159 d = (d & s) | (in & ~s);
160 d = (d >> 1) + (d & 1);
161
162 return (d << 1) + (s & 1);
163}
164
165static unsigned int _booth_recode_w7(unsigned int in)
166{
167 unsigned int s, d;
168
169 s = ~((in >> 7) - 1);
170 d = (1 << 8) - in - 1;
171 d = (d & s) | (in & ~s);
172 d = (d >> 1) + (d & 1);
173
174 return (d << 1) + (s & 1);
175}
176
177static void copy_conditional(BN_ULONG dst[P256_LIMBS],
178 const BN_ULONG src[P256_LIMBS], BN_ULONG move)
179{
5afc296a 180 BN_ULONG mask1 = 0-move;
4d3fa06f
AP
181 BN_ULONG mask2 = ~mask1;
182
183 dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
184 dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
185 dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
186 dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
187 if (P256_LIMBS == 8) {
188 dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
189 dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
190 dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
191 dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
192 }
193}
194
195static BN_ULONG is_zero(BN_ULONG in)
196{
197 in |= (0 - in);
198 in = ~in;
4d3fa06f
AP
199 in >>= BN_BITS2 - 1;
200 return in;
201}
202
203static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS],
204 const BN_ULONG b[P256_LIMBS])
205{
206 BN_ULONG res;
207
208 res = a[0] ^ b[0];
209 res |= a[1] ^ b[1];
210 res |= a[2] ^ b[2];
211 res |= a[3] ^ b[3];
212 if (P256_LIMBS == 8) {
213 res |= a[4] ^ b[4];
214 res |= a[5] ^ b[5];
215 res |= a[6] ^ b[6];
216 res |= a[7] ^ b[7];
217 }
218
219 return is_zero(res);
220}
221
2e929e53 222static BN_ULONG is_one(const BIGNUM *z)
4d3fa06f 223{
2e929e53
AP
224 BN_ULONG res = 0;
225 BN_ULONG *a = bn_get_words(z);
226
227 if (bn_get_top(z) == (P256_LIMBS - P256_LIMBS / 8)) {
228 res = a[0] ^ ONE[0];
229 res |= a[1] ^ ONE[1];
230 res |= a[2] ^ ONE[2];
231 res |= a[3] ^ ONE[3];
232 if (P256_LIMBS == 8) {
233 res |= a[4] ^ ONE[4];
234 res |= a[5] ^ ONE[5];
235 res |= a[6] ^ ONE[6];
236 /*
237 * no check for a[7] (being zero) on 32-bit platforms,
238 * because value of "one" takes only 7 limbs.
239 */
240 }
241 res = is_zero(res);
4d3fa06f
AP
242 }
243
2e929e53 244 return res;
4d3fa06f
AP
245}
246
f3b3d7f0
RS
247/*
248 * For reference, this macro is used only when new ecp_nistz256 assembly
249 * module is being developed. For example, configure with
250 * -DECP_NISTZ256_REFERENCE_IMPLEMENTATION and implement only functions
251 * performing simplest arithmetic operations on 256-bit vectors. Then
252 * work on implementation of higher-level functions performing point
253 * operations. Then remove ECP_NISTZ256_REFERENCE_IMPLEMENTATION
254 * and never define it again. (The correct macro denoting presence of
255 * ecp_nistz256 module is ECP_NISTZ256_ASM.)
256 */
4d3fa06f 257#ifndef ECP_NISTZ256_REFERENCE_IMPLEMENTATION
58d47cf0
AP
258void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);
259void ecp_nistz256_point_add(P256_POINT *r,
260 const P256_POINT *a, const P256_POINT *b);
261void ecp_nistz256_point_add_affine(P256_POINT *r,
262 const P256_POINT *a,
263 const P256_POINT_AFFINE *b);
4d3fa06f
AP
264#else
265/* Point double: r = 2*a */
58d47cf0 266static void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a)
4d3fa06f
AP
267{
268 BN_ULONG S[P256_LIMBS];
269 BN_ULONG M[P256_LIMBS];
270 BN_ULONG Zsqr[P256_LIMBS];
271 BN_ULONG tmp0[P256_LIMBS];
272
273 const BN_ULONG *in_x = a->X;
274 const BN_ULONG *in_y = a->Y;
275 const BN_ULONG *in_z = a->Z;
276
277 BN_ULONG *res_x = r->X;
278 BN_ULONG *res_y = r->Y;
279 BN_ULONG *res_z = r->Z;
280
281 ecp_nistz256_mul_by_2(S, in_y);
282
283 ecp_nistz256_sqr_mont(Zsqr, in_z);
284
285 ecp_nistz256_sqr_mont(S, S);
286
287 ecp_nistz256_mul_mont(res_z, in_z, in_y);
288 ecp_nistz256_mul_by_2(res_z, res_z);
289
290 ecp_nistz256_add(M, in_x, Zsqr);
291 ecp_nistz256_sub(Zsqr, in_x, Zsqr);
292
293 ecp_nistz256_sqr_mont(res_y, S);
294 ecp_nistz256_div_by_2(res_y, res_y);
295
296 ecp_nistz256_mul_mont(M, M, Zsqr);
297 ecp_nistz256_mul_by_3(M, M);
298
299 ecp_nistz256_mul_mont(S, S, in_x);
300 ecp_nistz256_mul_by_2(tmp0, S);
301
302 ecp_nistz256_sqr_mont(res_x, M);
303
304 ecp_nistz256_sub(res_x, res_x, tmp0);
305 ecp_nistz256_sub(S, S, res_x);
306
307 ecp_nistz256_mul_mont(S, S, M);
308 ecp_nistz256_sub(res_y, S, res_y);
309}
310
311/* Point addition: r = a+b */
20728adc
AP
312static void ecp_nistz256_point_add(P256_POINT *r,
313 const P256_POINT *a, const P256_POINT *b)
4d3fa06f
AP
314{
315 BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
316 BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS];
317 BN_ULONG Z1sqr[P256_LIMBS];
318 BN_ULONG Z2sqr[P256_LIMBS];
319 BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
320 BN_ULONG Hsqr[P256_LIMBS];
321 BN_ULONG Rsqr[P256_LIMBS];
322 BN_ULONG Hcub[P256_LIMBS];
323
324 BN_ULONG res_x[P256_LIMBS];
325 BN_ULONG res_y[P256_LIMBS];
326 BN_ULONG res_z[P256_LIMBS];
327
328 BN_ULONG in1infty, in2infty;
329
330 const BN_ULONG *in1_x = a->X;
331 const BN_ULONG *in1_y = a->Y;
332 const BN_ULONG *in1_z = a->Z;
333
334 const BN_ULONG *in2_x = b->X;
335 const BN_ULONG *in2_y = b->Y;
336 const BN_ULONG *in2_z = b->Z;
337
e3057a57
AP
338 /*
339 * Infinity in encoded as (,,0)
340 */
341 in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
4d3fa06f 342 if (P256_LIMBS == 8)
e3057a57 343 in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
4d3fa06f 344
e3057a57 345 in2infty = (in2_z[0] | in2_z[1] | in2_z[2] | in2_z[3]);
4d3fa06f 346 if (P256_LIMBS == 8)
e3057a57 347 in2infty |= (in2_z[4] | in2_z[5] | in2_z[6] | in2_z[7]);
4d3fa06f
AP
348
349 in1infty = is_zero(in1infty);
350 in2infty = is_zero(in2infty);
351
352 ecp_nistz256_sqr_mont(Z2sqr, in2_z); /* Z2^2 */
353 ecp_nistz256_sqr_mont(Z1sqr, in1_z); /* Z1^2 */
354
355 ecp_nistz256_mul_mont(S1, Z2sqr, in2_z); /* S1 = Z2^3 */
356 ecp_nistz256_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */
357
358 ecp_nistz256_mul_mont(S1, S1, in1_y); /* S1 = Y1*Z2^3 */
359 ecp_nistz256_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */
360 ecp_nistz256_sub(R, S2, S1); /* R = S2 - S1 */
361
362 ecp_nistz256_mul_mont(U1, in1_x, Z2sqr); /* U1 = X1*Z2^2 */
363 ecp_nistz256_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */
364 ecp_nistz256_sub(H, U2, U1); /* H = U2 - U1 */
365
20728adc 366 /*
45a40538
BE
367 * The formulae are incorrect if the points are equal so we check for
368 * this and do doubling if this happens.
369 *
370 * Points here are in Jacobian projective coordinates (Xi, Yi, Zi)
371 * that are bound to the affine coordinates (xi, yi) by the following
372 * equations:
373 * - xi = Xi / (Zi)^2
374 * - y1 = Yi / (Zi)^3
375 *
376 * For the sake of optimization, the algorithm operates over
377 * intermediate variables U1, U2 and S1, S2 that are derived from
378 * the projective coordinates:
379 * - U1 = X1 * (Z2)^2 ; U2 = X2 * (Z1)^2
380 * - S1 = Y1 * (Z2)^3 ; S2 = Y2 * (Z1)^3
381 *
382 * It is easy to prove that is_equal(U1, U2) implies that the affine
383 * x-coordinates are equal, or either point is at infinity.
384 * Likewise is_equal(S1, S2) implies that the affine y-coordinates are
385 * equal, or either point is at infinity.
386 *
387 * The special case of either point being the point at infinity (Z1 or Z2
388 * is zero), is handled separately later on in this function, so we avoid
389 * jumping to point_double here in those special cases.
390 *
391 * When both points are inverse of each other, we know that the affine
392 * x-coordinates are equal, and the y-coordinates have different sign.
393 * Therefore since U1 = U2, we know H = 0, and therefore Z3 = H*Z1*Z2
394 * will equal 0, thus the result is infinity, if we simply let this
395 * function continue normally.
396 *
397 * We use bitwise operations to avoid potential side-channels introduced by
398 * the short-circuiting behaviour of boolean operators.
20728adc 399 */
45a40538
BE
400 if (is_equal(U1, U2) & ~in1infty & ~in2infty & is_equal(S1, S2)) {
401 /*
402 * This is obviously not constant-time but it should never happen during
403 * single point multiplication, so there is no timing leak for ECDH or
404 * ECDSA signing.
405 */
406 ecp_nistz256_point_double(r, a);
407 return;
4d3fa06f
AP
408 }
409
410 ecp_nistz256_sqr_mont(Rsqr, R); /* R^2 */
411 ecp_nistz256_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */
412 ecp_nistz256_sqr_mont(Hsqr, H); /* H^2 */
413 ecp_nistz256_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */
414 ecp_nistz256_mul_mont(Hcub, Hsqr, H); /* H^3 */
415
416 ecp_nistz256_mul_mont(U2, U1, Hsqr); /* U1*H^2 */
417 ecp_nistz256_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */
418
419 ecp_nistz256_sub(res_x, Rsqr, Hsqr);
420 ecp_nistz256_sub(res_x, res_x, Hcub);
421
422 ecp_nistz256_sub(res_y, U2, res_x);
423
424 ecp_nistz256_mul_mont(S2, S1, Hcub);
425 ecp_nistz256_mul_mont(res_y, R, res_y);
426 ecp_nistz256_sub(res_y, res_y, S2);
427
428 copy_conditional(res_x, in2_x, in1infty);
429 copy_conditional(res_y, in2_y, in1infty);
430 copy_conditional(res_z, in2_z, in1infty);
431
432 copy_conditional(res_x, in1_x, in2infty);
433 copy_conditional(res_y, in1_y, in2infty);
434 copy_conditional(res_z, in1_z, in2infty);
435
436 memcpy(r->X, res_x, sizeof(res_x));
437 memcpy(r->Y, res_y, sizeof(res_y));
438 memcpy(r->Z, res_z, sizeof(res_z));
439}
440
441/* Point addition when b is known to be affine: r = a+b */
58d47cf0
AP
442static void ecp_nistz256_point_add_affine(P256_POINT *r,
443 const P256_POINT *a,
444 const P256_POINT_AFFINE *b)
4d3fa06f
AP
445{
446 BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
447 BN_ULONG Z1sqr[P256_LIMBS];
448 BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
449 BN_ULONG Hsqr[P256_LIMBS];
450 BN_ULONG Rsqr[P256_LIMBS];
451 BN_ULONG Hcub[P256_LIMBS];
452
453 BN_ULONG res_x[P256_LIMBS];
454 BN_ULONG res_y[P256_LIMBS];
455 BN_ULONG res_z[P256_LIMBS];
456
457 BN_ULONG in1infty, in2infty;
458
459 const BN_ULONG *in1_x = a->X;
460 const BN_ULONG *in1_y = a->Y;
461 const BN_ULONG *in1_z = a->Z;
462
463 const BN_ULONG *in2_x = b->X;
464 const BN_ULONG *in2_y = b->Y;
465
20728adc 466 /*
e3057a57 467 * Infinity in encoded as (,,0)
20728adc 468 */
e3057a57 469 in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
4d3fa06f 470 if (P256_LIMBS == 8)
e3057a57 471 in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
4d3fa06f 472
e3057a57
AP
473 /*
474 * In affine representation we encode infinity as (0,0), which is
475 * not on the curve, so it is OK
476 */
58d47cf0
AP
477 in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] |
478 in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]);
4d3fa06f 479 if (P256_LIMBS == 8)
58d47cf0
AP
480 in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] |
481 in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]);
4d3fa06f
AP
482
483 in1infty = is_zero(in1infty);
484 in2infty = is_zero(in2infty);
485
486 ecp_nistz256_sqr_mont(Z1sqr, in1_z); /* Z1^2 */
487
488 ecp_nistz256_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */
489 ecp_nistz256_sub(H, U2, in1_x); /* H = U2 - U1 */
490
491 ecp_nistz256_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */
492
493 ecp_nistz256_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */
494
495 ecp_nistz256_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */
496 ecp_nistz256_sub(R, S2, in1_y); /* R = S2 - S1 */
497
498 ecp_nistz256_sqr_mont(Hsqr, H); /* H^2 */
499 ecp_nistz256_sqr_mont(Rsqr, R); /* R^2 */
500 ecp_nistz256_mul_mont(Hcub, Hsqr, H); /* H^3 */
501
502 ecp_nistz256_mul_mont(U2, in1_x, Hsqr); /* U1*H^2 */
503 ecp_nistz256_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */
504
505 ecp_nistz256_sub(res_x, Rsqr, Hsqr);
506 ecp_nistz256_sub(res_x, res_x, Hcub);
507 ecp_nistz256_sub(H, U2, res_x);
508
509 ecp_nistz256_mul_mont(S2, in1_y, Hcub);
510 ecp_nistz256_mul_mont(H, H, R);
511 ecp_nistz256_sub(res_y, H, S2);
512
513 copy_conditional(res_x, in2_x, in1infty);
514 copy_conditional(res_x, in1_x, in2infty);
515
516 copy_conditional(res_y, in2_y, in1infty);
517 copy_conditional(res_y, in1_y, in2infty);
518
519 copy_conditional(res_z, ONE, in1infty);
520 copy_conditional(res_z, in1_z, in2infty);
521
522 memcpy(r->X, res_x, sizeof(res_x));
523 memcpy(r->Y, res_y, sizeof(res_y));
524 memcpy(r->Z, res_z, sizeof(res_z));
525}
526#endif
527
528/* r = in^-1 mod p */
529static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],
530 const BN_ULONG in[P256_LIMBS])
531{
20728adc
AP
532 /*
533 * The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff
534 * ffffffff ffffffff We use FLT and used poly-2 as exponent
535 */
4d3fa06f
AP
536 BN_ULONG p2[P256_LIMBS];
537 BN_ULONG p4[P256_LIMBS];
538 BN_ULONG p8[P256_LIMBS];
539 BN_ULONG p16[P256_LIMBS];
540 BN_ULONG p32[P256_LIMBS];
541 BN_ULONG res[P256_LIMBS];
542 int i;
543
544 ecp_nistz256_sqr_mont(res, in);
545 ecp_nistz256_mul_mont(p2, res, in); /* 3*p */
546
547 ecp_nistz256_sqr_mont(res, p2);
548 ecp_nistz256_sqr_mont(res, res);
549 ecp_nistz256_mul_mont(p4, res, p2); /* f*p */
550
551 ecp_nistz256_sqr_mont(res, p4);
552 ecp_nistz256_sqr_mont(res, res);
553 ecp_nistz256_sqr_mont(res, res);
554 ecp_nistz256_sqr_mont(res, res);
555 ecp_nistz256_mul_mont(p8, res, p4); /* ff*p */
556
557 ecp_nistz256_sqr_mont(res, p8);
558 for (i = 0; i < 7; i++)
559 ecp_nistz256_sqr_mont(res, res);
560 ecp_nistz256_mul_mont(p16, res, p8); /* ffff*p */
561
562 ecp_nistz256_sqr_mont(res, p16);
563 for (i = 0; i < 15; i++)
564 ecp_nistz256_sqr_mont(res, res);
565 ecp_nistz256_mul_mont(p32, res, p16); /* ffffffff*p */
566
567 ecp_nistz256_sqr_mont(res, p32);
568 for (i = 0; i < 31; i++)
569 ecp_nistz256_sqr_mont(res, res);
570 ecp_nistz256_mul_mont(res, res, in);
571
572 for (i = 0; i < 32 * 4; i++)
573 ecp_nistz256_sqr_mont(res, res);
574 ecp_nistz256_mul_mont(res, res, p32);
575
576 for (i = 0; i < 32; i++)
577 ecp_nistz256_sqr_mont(res, res);
578 ecp_nistz256_mul_mont(res, res, p32);
579
580 for (i = 0; i < 16; i++)
581 ecp_nistz256_sqr_mont(res, res);
582 ecp_nistz256_mul_mont(res, res, p16);
583
584 for (i = 0; i < 8; i++)
585 ecp_nistz256_sqr_mont(res, res);
586 ecp_nistz256_mul_mont(res, res, p8);
587
588 ecp_nistz256_sqr_mont(res, res);
589 ecp_nistz256_sqr_mont(res, res);
590 ecp_nistz256_sqr_mont(res, res);
591 ecp_nistz256_sqr_mont(res, res);
592 ecp_nistz256_mul_mont(res, res, p4);
593
594 ecp_nistz256_sqr_mont(res, res);
595 ecp_nistz256_sqr_mont(res, res);
596 ecp_nistz256_mul_mont(res, res, p2);
597
598 ecp_nistz256_sqr_mont(res, res);
599 ecp_nistz256_sqr_mont(res, res);
600 ecp_nistz256_mul_mont(res, res, in);
601
602 memcpy(r, res, sizeof(res));
603}
604
20728adc
AP
605/*
606 * ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and
607 * returns one if it fits. Otherwise it returns zero.
608 */
5956b110
EK
609__owur static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],
610 const BIGNUM *in)
4d3fa06f 611{
5784a521 612 return bn_copy_words(out, in, P256_LIMBS);
4d3fa06f
AP
613}
614
615/* r = sum(scalar[i]*point[i]) */
5956b110
EK
616__owur static int ecp_nistz256_windowed_mul(const EC_GROUP *group,
617 P256_POINT *r,
618 const BIGNUM **scalar,
619 const EC_POINT **point,
620 size_t num, BN_CTX *ctx)
4d3fa06f 621{
5afc296a 622 size_t i;
a4d5269e 623 int j, ret = 0;
49b05c7d 624 unsigned int idx;
4d3fa06f
AP
625 unsigned char (*p_str)[33] = NULL;
626 const unsigned int window_size = 5;
627 const unsigned int mask = (1 << (window_size + 1)) - 1;
628 unsigned int wvalue;
20728adc 629 P256_POINT *temp; /* place for 5 temporary points */
4d3fa06f 630 const BIGNUM **scalars = NULL;
20728adc 631 P256_POINT (*table)[16] = NULL;
4d3fa06f
AP
632 void *table_storage = NULL;
633
5afc296a
AP
634 if ((num * 16 + 6) > OPENSSL_MALLOC_MAX_NELEMS(P256_POINT)
635 || (table_storage =
636 OPENSSL_malloc((num * 16 + 5) * sizeof(P256_POINT) + 64)) == NULL
4d3fa06f
AP
637 || (p_str =
638 OPENSSL_malloc(num * 33 * sizeof(unsigned char))) == NULL
639 || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL) {
be07ae9b 640 ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_MALLOC_FAILURE);
4d3fa06f 641 goto err;
4d3fa06f
AP
642 }
643
3ff08e1d 644 table = (void *)ALIGNPTR(table_storage, 64);
20728adc 645 temp = (P256_POINT *)(table + num);
3ff08e1d 646
4d3fa06f
AP
647 for (i = 0; i < num; i++) {
648 P256_POINT *row = table[i];
649
c028254b 650 /* This is an unusual input, we don't guarantee constant-timeness. */
4d3fa06f
AP
651 if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) {
652 BIGNUM *mod;
653
654 if ((mod = BN_CTX_get(ctx)) == NULL)
655 goto err;
5784a521 656 if (!BN_nnmod(mod, scalar[i], group->order, ctx)) {
be07ae9b 657 ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_BN_LIB);
4d3fa06f
AP
658 goto err;
659 }
660 scalars[i] = mod;
661 } else
662 scalars[i] = scalar[i];
663
5784a521
MC
664 for (j = 0; j < bn_get_top(scalars[i]) * BN_BYTES; j += BN_BYTES) {
665 BN_ULONG d = bn_get_words(scalars[i])[j / BN_BYTES];
4d3fa06f 666
5afc296a
AP
667 p_str[i][j + 0] = (unsigned char)d;
668 p_str[i][j + 1] = (unsigned char)(d >> 8);
669 p_str[i][j + 2] = (unsigned char)(d >> 16);
670 p_str[i][j + 3] = (unsigned char)(d >>= 24);
4d3fa06f
AP
671 if (BN_BYTES == 8) {
672 d >>= 8;
5afc296a
AP
673 p_str[i][j + 4] = (unsigned char)d;
674 p_str[i][j + 5] = (unsigned char)(d >> 8);
675 p_str[i][j + 6] = (unsigned char)(d >> 16);
676 p_str[i][j + 7] = (unsigned char)(d >> 24);
4d3fa06f
AP
677 }
678 }
679 for (; j < 33; j++)
680 p_str[i][j] = 0;
681
5784a521
MC
682 if (!ecp_nistz256_bignum_to_field_elem(temp[0].X, point[i]->X)
683 || !ecp_nistz256_bignum_to_field_elem(temp[0].Y, point[i]->Y)
684 || !ecp_nistz256_bignum_to_field_elem(temp[0].Z, point[i]->Z)) {
58d47cf0
AP
685 ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL,
686 EC_R_COORDINATES_OUT_OF_RANGE);
4d3fa06f
AP
687 goto err;
688 }
689
20728adc 690 /*
dccd20d1
F
691 * row[0] is implicitly (0,0,0) (the point at infinity), therefore it
692 * is not stored. All other values are actually stored with an offset
693 * of -1 in table.
3ff08e1d
AP
694 */
695
696 ecp_nistz256_scatter_w5 (row, &temp[0], 1);
697 ecp_nistz256_point_double(&temp[1], &temp[0]); /*1+1=2 */
698 ecp_nistz256_scatter_w5 (row, &temp[1], 2);
699 ecp_nistz256_point_add (&temp[2], &temp[1], &temp[0]); /*2+1=3 */
700 ecp_nistz256_scatter_w5 (row, &temp[2], 3);
701 ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*2=4 */
702 ecp_nistz256_scatter_w5 (row, &temp[1], 4);
703 ecp_nistz256_point_double(&temp[2], &temp[2]); /*2*3=6 */
704 ecp_nistz256_scatter_w5 (row, &temp[2], 6);
705 ecp_nistz256_point_add (&temp[3], &temp[1], &temp[0]); /*4+1=5 */
706 ecp_nistz256_scatter_w5 (row, &temp[3], 5);
707 ecp_nistz256_point_add (&temp[4], &temp[2], &temp[0]); /*6+1=7 */
708 ecp_nistz256_scatter_w5 (row, &temp[4], 7);
709 ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*4=8 */
710 ecp_nistz256_scatter_w5 (row, &temp[1], 8);
711 ecp_nistz256_point_double(&temp[2], &temp[2]); /*2*6=12 */
712 ecp_nistz256_scatter_w5 (row, &temp[2], 12);
713 ecp_nistz256_point_double(&temp[3], &temp[3]); /*2*5=10 */
714 ecp_nistz256_scatter_w5 (row, &temp[3], 10);
715 ecp_nistz256_point_double(&temp[4], &temp[4]); /*2*7=14 */
716 ecp_nistz256_scatter_w5 (row, &temp[4], 14);
717 ecp_nistz256_point_add (&temp[2], &temp[2], &temp[0]); /*12+1=13*/
718 ecp_nistz256_scatter_w5 (row, &temp[2], 13);
719 ecp_nistz256_point_add (&temp[3], &temp[3], &temp[0]); /*10+1=11*/
720 ecp_nistz256_scatter_w5 (row, &temp[3], 11);
721 ecp_nistz256_point_add (&temp[4], &temp[4], &temp[0]); /*14+1=15*/
722 ecp_nistz256_scatter_w5 (row, &temp[4], 15);
723 ecp_nistz256_point_add (&temp[2], &temp[1], &temp[0]); /*8+1=9 */
724 ecp_nistz256_scatter_w5 (row, &temp[2], 9);
725 ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*8=16 */
726 ecp_nistz256_scatter_w5 (row, &temp[1], 16);
4d3fa06f
AP
727 }
728
49b05c7d 729 idx = 255;
4d3fa06f 730
49b05c7d
RS
731 wvalue = p_str[0][(idx - 1) / 8];
732 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
4d3fa06f 733
3ff08e1d
AP
734 /*
735 * We gather to temp[0], because we know it's position relative
736 * to table
737 */
738 ecp_nistz256_gather_w5(&temp[0], table[0], _booth_recode_w5(wvalue) >> 1);
739 memcpy(r, &temp[0], sizeof(temp[0]));
4d3fa06f 740
49b05c7d
RS
741 while (idx >= 5) {
742 for (i = (idx == 255 ? 1 : 0); i < num; i++) {
743 unsigned int off = (idx - 1) / 8;
4d3fa06f
AP
744
745 wvalue = p_str[i][off] | p_str[i][off + 1] << 8;
49b05c7d 746 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
4d3fa06f
AP
747
748 wvalue = _booth_recode_w5(wvalue);
749
3ff08e1d 750 ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
4d3fa06f 751
3ff08e1d
AP
752 ecp_nistz256_neg(temp[1].Y, temp[0].Y);
753 copy_conditional(temp[0].Y, temp[1].Y, (wvalue & 1));
4d3fa06f 754
3ff08e1d 755 ecp_nistz256_point_add(r, r, &temp[0]);
4d3fa06f
AP
756 }
757
49b05c7d 758 idx -= window_size;
4d3fa06f
AP
759
760 ecp_nistz256_point_double(r, r);
761 ecp_nistz256_point_double(r, r);
762 ecp_nistz256_point_double(r, r);
763 ecp_nistz256_point_double(r, r);
764 ecp_nistz256_point_double(r, r);
765 }
766
767 /* Final window */
768 for (i = 0; i < num; i++) {
769 wvalue = p_str[i][0];
770 wvalue = (wvalue << 1) & mask;
771
772 wvalue = _booth_recode_w5(wvalue);
773
3ff08e1d 774 ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
4d3fa06f 775
3ff08e1d
AP
776 ecp_nistz256_neg(temp[1].Y, temp[0].Y);
777 copy_conditional(temp[0].Y, temp[1].Y, wvalue & 1);
4d3fa06f 778
3ff08e1d 779 ecp_nistz256_point_add(r, r, &temp[0]);
4d3fa06f
AP
780 }
781
a4d5269e 782 ret = 1;
58d47cf0 783 err:
b548a1f1
RS
784 OPENSSL_free(table_storage);
785 OPENSSL_free(p_str);
786 OPENSSL_free(scalars);
a4d5269e 787 return ret;
4d3fa06f
AP
788}
789
790/* Coordinates of G, for which we have precomputed tables */
f44903a4 791static const BN_ULONG def_xG[P256_LIMBS] = {
4d3fa06f
AP
792 TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601),
793 TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6)
794};
795
f44903a4 796static const BN_ULONG def_yG[P256_LIMBS] = {
4d3fa06f
AP
797 TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c),
798 TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85)
799};
800
20728adc
AP
801/*
802 * ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256
803 * generator.
804 */
58d47cf0 805static int ecp_nistz256_is_affine_G(const EC_POINT *generator)
4d3fa06f 806{
5784a521
MC
807 return (bn_get_top(generator->X) == P256_LIMBS) &&
808 (bn_get_top(generator->Y) == P256_LIMBS) &&
5784a521
MC
809 is_equal(bn_get_words(generator->X), def_xG) &&
810 is_equal(bn_get_words(generator->Y), def_yG) &&
2e929e53 811 is_one(generator->Z);
4d3fa06f
AP
812}
813
5956b110 814__owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)
4d3fa06f 815{
20728adc
AP
816 /*
817 * We precompute a table for a Booth encoded exponent (wNAF) based
4d3fa06f 818 * computation. Each table holds 64 values for safe access, with an
20728adc
AP
819 * implicit value of infinity at index zero. We use window of size 7, and
820 * therefore require ceil(256/7) = 37 tables.
821 */
be2e334f 822 const BIGNUM *order;
4d3fa06f
AP
823 EC_POINT *P = NULL, *T = NULL;
824 const EC_POINT *generator;
3aef36ff 825 NISTZ256_PRE_COMP *pre_comp;
53dd4ddf 826 BN_CTX *new_ctx = NULL;
4d3fa06f
AP
827 int i, j, k, ret = 0;
828 size_t w;
829
830 PRECOMP256_ROW *preComputedTable = NULL;
831 unsigned char *precomp_storage = NULL;
832
3aef36ff 833 /* if there is an old NISTZ256_PRE_COMP object, throw it away */
2c52ac9b 834 EC_pre_comp_free(group);
4d3fa06f
AP
835 generator = EC_GROUP_get0_generator(group);
836 if (generator == NULL) {
be07ae9b 837 ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNDEFINED_GENERATOR);
4d3fa06f
AP
838 return 0;
839 }
840
841 if (ecp_nistz256_is_affine_G(generator)) {
20728adc
AP
842 /*
843 * No need to calculate tables for the standard generator because we
844 * have them statically.
845 */
4d3fa06f
AP
846 return 1;
847 }
848
be07ae9b 849 if ((pre_comp = ecp_nistz256_pre_comp_new(group)) == NULL)
4d3fa06f
AP
850 return 0;
851
852 if (ctx == NULL) {
a9612d6c 853 ctx = new_ctx = BN_CTX_new_ex(group->libctx);
4d3fa06f
AP
854 if (ctx == NULL)
855 goto err;
856 }
857
858 BN_CTX_start(ctx);
4d3fa06f 859
be2e334f 860 order = EC_GROUP_get0_order(group);
4d3fa06f
AP
861 if (order == NULL)
862 goto err;
863
4d3fa06f 864 if (BN_is_zero(order)) {
be07ae9b 865 ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNKNOWN_ORDER);
4d3fa06f
AP
866 goto err;
867 }
868
869 w = 7;
870
871 if ((precomp_storage =
872 OPENSSL_malloc(37 * 64 * sizeof(P256_POINT_AFFINE) + 64)) == NULL) {
be07ae9b 873 ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, ERR_R_MALLOC_FAILURE);
4d3fa06f 874 goto err;
4d3fa06f
AP
875 }
876
3ff08e1d
AP
877 preComputedTable = (void *)ALIGNPTR(precomp_storage, 64);
878
4d3fa06f
AP
879 P = EC_POINT_new(group);
880 T = EC_POINT_new(group);
53dd4ddf
EK
881 if (P == NULL || T == NULL)
882 goto err;
4d3fa06f 883
20728adc
AP
884 /*
885 * The zero entry is implicitly infinity, and we skip it, storing other
886 * values with -1 offset.
887 */
53dd4ddf
EK
888 if (!EC_POINT_copy(T, generator))
889 goto err;
4d3fa06f
AP
890
891 for (k = 0; k < 64; k++) {
53dd4ddf
EK
892 if (!EC_POINT_copy(P, T))
893 goto err;
4d3fa06f 894 for (j = 0; j < 37; j++) {
3ff08e1d 895 P256_POINT_AFFINE temp;
20728adc 896 /*
6038354c 897 * It would be faster to use EC_POINTs_make_affine and
20728adc
AP
898 * make multiple points affine at the same time.
899 */
6038354c
EK
900 if (!EC_POINT_make_affine(group, P, ctx))
901 goto err;
902 if (!ecp_nistz256_bignum_to_field_elem(temp.X, P->X) ||
903 !ecp_nistz256_bignum_to_field_elem(temp.Y, P->Y)) {
904 ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE,
905 EC_R_COORDINATES_OUT_OF_RANGE);
906 goto err;
907 }
3ff08e1d 908 ecp_nistz256_scatter_w7(preComputedTable[j], &temp, k);
6038354c
EK
909 for (i = 0; i < 7; i++) {
910 if (!EC_POINT_dbl(group, P, P, ctx))
911 goto err;
912 }
4d3fa06f 913 }
6038354c
EK
914 if (!EC_POINT_add(group, T, T, generator, ctx))
915 goto err;
4d3fa06f
AP
916 }
917
918 pre_comp->group = group;
919 pre_comp->w = w;
920 pre_comp->precomp = preComputedTable;
921 pre_comp->precomp_storage = precomp_storage;
4d3fa06f 922 precomp_storage = NULL;
3aef36ff 923 SETPRECOMP(group, nistz256, pre_comp);
4d3fa06f 924 pre_comp = NULL;
4d3fa06f
AP
925 ret = 1;
926
58d47cf0 927 err:
ce1415ed 928 BN_CTX_end(ctx);
53dd4ddf
EK
929 BN_CTX_free(new_ctx);
930
3aef36ff 931 EC_nistz256_pre_comp_free(pre_comp);
b548a1f1 932 OPENSSL_free(precomp_storage);
8fdc3734
RS
933 EC_POINT_free(P);
934 EC_POINT_free(T);
4d3fa06f
AP
935 return ret;
936}
937
938/*
939 * Note that by default ECP_NISTZ256_AVX2 is undefined. While it's great
940 * code processing 4 points in parallel, corresponding serial operation
941 * is several times slower, because it uses 29x29=58-bit multiplication
942 * as opposite to 64x64=128-bit in integer-only scalar case. As result
943 * it doesn't provide *significant* performance improvement. Note that
944 * just defining ECP_NISTZ256_AVX2 is not sufficient to make it work,
945 * you'd need to compile even asm/ecp_nistz256-avx.pl module.
946 */
947#if defined(ECP_NISTZ256_AVX2)
3ff08e1d 948# if !(defined(__x86_64) || defined(__x86_64__) || \
eb791696 949 defined(_M_AMD64) || defined(_M_X64)) || \
4d3fa06f
AP
950 !(defined(__GNUC__) || defined(_MSC_VER)) /* this is for ALIGN32 */
951# undef ECP_NISTZ256_AVX2
952# else
953/* Constant time access, loading four values, from four consecutive tables */
58d47cf0
AP
954void ecp_nistz256_avx2_multi_gather_w7(void *result, const void *in,
955 int index0, int index1, int index2,
956 int index3);
4d3fa06f
AP
957void ecp_nistz256_avx2_transpose_convert(void *RESULTx4, const void *in);
958void ecp_nistz256_avx2_convert_transpose_back(void *result, const void *Ax4);
959void ecp_nistz256_avx2_point_add_affine_x4(void *RESULTx4, const void *Ax4,
960 const void *Bx4);
961void ecp_nistz256_avx2_point_add_affines_x4(void *RESULTx4, const void *Ax4,
962 const void *Bx4);
963void ecp_nistz256_avx2_to_mont(void *RESULTx4, const void *Ax4);
964void ecp_nistz256_avx2_from_mont(void *RESULTx4, const void *Ax4);
965void ecp_nistz256_avx2_set1(void *RESULTx4);
966int ecp_nistz_avx2_eligible(void);
967
968static void booth_recode_w7(unsigned char *sign,
969 unsigned char *digit, unsigned char in)
970{
971 unsigned char s, d;
972
973 s = ~((in >> 7) - 1);
974 d = (1 << 8) - in - 1;
975 d = (d & s) | (in & ~s);
976 d = (d >> 1) + (d & 1);
977
978 *sign = s & 1;
979 *digit = d;
980}
981
20728adc
AP
982/*
983 * ecp_nistz256_avx2_mul_g performs multiplication by G, using only the
4d3fa06f 984 * precomputed table. It does 4 affine point additions in parallel,
20728adc
AP
985 * significantly speeding up point multiplication for a fixed value.
986 */
58d47cf0 987static void ecp_nistz256_avx2_mul_g(P256_POINT *r,
4d3fa06f 988 unsigned char p_str[33],
58d47cf0 989 const P256_POINT_AFFINE(*preComputedTable)[64])
4d3fa06f
AP
990{
991 const unsigned int window_size = 7;
992 const unsigned int mask = (1 << (window_size + 1)) - 1;
993 unsigned int wvalue;
994 /* Using 4 windows at a time */
995 unsigned char sign0, digit0;
996 unsigned char sign1, digit1;
997 unsigned char sign2, digit2;
998 unsigned char sign3, digit3;
49b05c7d 999 unsigned int idx = 0;
4d3fa06f
AP
1000 BN_ULONG tmp[P256_LIMBS];
1001 int i;
1002
1003 ALIGN32 BN_ULONG aX4[4 * 9 * 3] = { 0 };
1004 ALIGN32 BN_ULONG bX4[4 * 9 * 2] = { 0 };
3ff08e1d
AP
1005 ALIGN32 P256_POINT_AFFINE point_arr[4];
1006 ALIGN32 P256_POINT res_point_arr[4];
4d3fa06f
AP
1007
1008 /* Initial four windows */
1009 wvalue = *((u16 *) & p_str[0]);
1010 wvalue = (wvalue << 1) & mask;
49b05c7d 1011 idx += window_size;
4d3fa06f 1012 booth_recode_w7(&sign0, &digit0, wvalue);
49b05c7d
RS
1013 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1014 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1015 idx += window_size;
4d3fa06f 1016 booth_recode_w7(&sign1, &digit1, wvalue);
49b05c7d
RS
1017 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1018 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1019 idx += window_size;
4d3fa06f 1020 booth_recode_w7(&sign2, &digit2, wvalue);
49b05c7d
RS
1021 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1022 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1023 idx += window_size;
4d3fa06f
AP
1024 booth_recode_w7(&sign3, &digit3, wvalue);
1025
3ff08e1d 1026 ecp_nistz256_avx2_multi_gather_w7(point_arr, preComputedTable[0],
4d3fa06f
AP
1027 digit0, digit1, digit2, digit3);
1028
1029 ecp_nistz256_neg(tmp, point_arr[0].Y);
1030 copy_conditional(point_arr[0].Y, tmp, sign0);
1031 ecp_nistz256_neg(tmp, point_arr[1].Y);
1032 copy_conditional(point_arr[1].Y, tmp, sign1);
1033 ecp_nistz256_neg(tmp, point_arr[2].Y);
1034 copy_conditional(point_arr[2].Y, tmp, sign2);
1035 ecp_nistz256_neg(tmp, point_arr[3].Y);
1036 copy_conditional(point_arr[3].Y, tmp, sign3);
1037
1038 ecp_nistz256_avx2_transpose_convert(aX4, point_arr);
1039 ecp_nistz256_avx2_to_mont(aX4, aX4);
1040 ecp_nistz256_avx2_to_mont(&aX4[4 * 9], &aX4[4 * 9]);
1041 ecp_nistz256_avx2_set1(&aX4[4 * 9 * 2]);
1042
49b05c7d
RS
1043 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1044 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1045 idx += window_size;
4d3fa06f 1046 booth_recode_w7(&sign0, &digit0, wvalue);
49b05c7d
RS
1047 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1048 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1049 idx += window_size;
4d3fa06f 1050 booth_recode_w7(&sign1, &digit1, wvalue);
49b05c7d
RS
1051 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1052 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1053 idx += window_size;
4d3fa06f 1054 booth_recode_w7(&sign2, &digit2, wvalue);
49b05c7d
RS
1055 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1056 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1057 idx += window_size;
4d3fa06f
AP
1058 booth_recode_w7(&sign3, &digit3, wvalue);
1059
3ff08e1d 1060 ecp_nistz256_avx2_multi_gather_w7(point_arr, preComputedTable[4 * 1],
4d3fa06f
AP
1061 digit0, digit1, digit2, digit3);
1062
1063 ecp_nistz256_neg(tmp, point_arr[0].Y);
1064 copy_conditional(point_arr[0].Y, tmp, sign0);
1065 ecp_nistz256_neg(tmp, point_arr[1].Y);
1066 copy_conditional(point_arr[1].Y, tmp, sign1);
1067 ecp_nistz256_neg(tmp, point_arr[2].Y);
1068 copy_conditional(point_arr[2].Y, tmp, sign2);
1069 ecp_nistz256_neg(tmp, point_arr[3].Y);
1070 copy_conditional(point_arr[3].Y, tmp, sign3);
1071
1072 ecp_nistz256_avx2_transpose_convert(bX4, point_arr);
1073 ecp_nistz256_avx2_to_mont(bX4, bX4);
1074 ecp_nistz256_avx2_to_mont(&bX4[4 * 9], &bX4[4 * 9]);
1075 /* Optimized when both inputs are affine */
1076 ecp_nistz256_avx2_point_add_affines_x4(aX4, aX4, bX4);
1077
1078 for (i = 2; i < 9; i++) {
49b05c7d
RS
1079 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1080 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1081 idx += window_size;
4d3fa06f 1082 booth_recode_w7(&sign0, &digit0, wvalue);
49b05c7d
RS
1083 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1084 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1085 idx += window_size;
4d3fa06f 1086 booth_recode_w7(&sign1, &digit1, wvalue);
49b05c7d
RS
1087 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1088 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1089 idx += window_size;
4d3fa06f 1090 booth_recode_w7(&sign2, &digit2, wvalue);
49b05c7d
RS
1091 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1092 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1093 idx += window_size;
4d3fa06f
AP
1094 booth_recode_w7(&sign3, &digit3, wvalue);
1095
3ff08e1d 1096 ecp_nistz256_avx2_multi_gather_w7(point_arr,
4d3fa06f
AP
1097 preComputedTable[4 * i],
1098 digit0, digit1, digit2, digit3);
1099
1100 ecp_nistz256_neg(tmp, point_arr[0].Y);
1101 copy_conditional(point_arr[0].Y, tmp, sign0);
1102 ecp_nistz256_neg(tmp, point_arr[1].Y);
1103 copy_conditional(point_arr[1].Y, tmp, sign1);
1104 ecp_nistz256_neg(tmp, point_arr[2].Y);
1105 copy_conditional(point_arr[2].Y, tmp, sign2);
1106 ecp_nistz256_neg(tmp, point_arr[3].Y);
1107 copy_conditional(point_arr[3].Y, tmp, sign3);
1108
1109 ecp_nistz256_avx2_transpose_convert(bX4, point_arr);
1110 ecp_nistz256_avx2_to_mont(bX4, bX4);
1111 ecp_nistz256_avx2_to_mont(&bX4[4 * 9], &bX4[4 * 9]);
1112
1113 ecp_nistz256_avx2_point_add_affine_x4(aX4, aX4, bX4);
1114 }
1115
1116 ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 0], &aX4[4 * 9 * 0]);
1117 ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 1], &aX4[4 * 9 * 1]);
1118 ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 2], &aX4[4 * 9 * 2]);
1119
1120 ecp_nistz256_avx2_convert_transpose_back(res_point_arr, aX4);
1121 /* Last window is performed serially */
49b05c7d
RS
1122 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1123 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
4d3fa06f 1124 booth_recode_w7(&sign0, &digit0, wvalue);
58d47cf0
AP
1125 ecp_nistz256_gather_w7((P256_POINT_AFFINE *)r,
1126 preComputedTable[36], digit0);
4d3fa06f
AP
1127 ecp_nistz256_neg(tmp, r->Y);
1128 copy_conditional(r->Y, tmp, sign0);
1129 memcpy(r->Z, ONE, sizeof(ONE));
1130 /* Sum the four windows */
1131 ecp_nistz256_point_add(r, r, &res_point_arr[0]);
1132 ecp_nistz256_point_add(r, r, &res_point_arr[1]);
1133 ecp_nistz256_point_add(r, r, &res_point_arr[2]);
1134 ecp_nistz256_point_add(r, r, &res_point_arr[3]);
1135}
1136# endif
1137#endif
1138
5956b110
EK
1139__owur static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group,
1140 const P256_POINT_AFFINE *in,
1141 BN_CTX *ctx)
4d3fa06f 1142{
4d3fa06f
AP
1143 int ret = 0;
1144
8fc4aeb9
AP
1145 if ((ret = bn_set_words(out->X, in->X, P256_LIMBS))
1146 && (ret = bn_set_words(out->Y, in->Y, P256_LIMBS))
1147 && (ret = bn_set_words(out->Z, ONE, P256_LIMBS)))
1148 out->Z_is_one = 1;
4d3fa06f
AP
1149
1150 return ret;
1151}
1152
1153/* r = scalar*G + sum(scalars[i]*points[i]) */
5956b110
EK
1154__owur static int ecp_nistz256_points_mul(const EC_GROUP *group,
1155 EC_POINT *r,
1156 const BIGNUM *scalar,
1157 size_t num,
1158 const EC_POINT *points[],
1159 const BIGNUM *scalars[], BN_CTX *ctx)
4d3fa06f
AP
1160{
1161 int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0;
1162 unsigned char p_str[33] = { 0 };
1163 const PRECOMP256_ROW *preComputedTable = NULL;
3aef36ff 1164 const NISTZ256_PRE_COMP *pre_comp = NULL;
4d3fa06f 1165 const EC_POINT *generator = NULL;
a4d5269e
EK
1166 const BIGNUM **new_scalars = NULL;
1167 const EC_POINT **new_points = NULL;
49b05c7d 1168 unsigned int idx = 0;
4d3fa06f
AP
1169 const unsigned int window_size = 7;
1170 const unsigned int mask = (1 << (window_size + 1)) - 1;
1171 unsigned int wvalue;
1172 ALIGN32 union {
1173 P256_POINT p;
1174 P256_POINT_AFFINE a;
1175 } t, p;
1176 BIGNUM *tmp_scalar;
1177
58d47cf0 1178 if ((num + 1) == 0 || (num + 1) > OPENSSL_MALLOC_MAX_NELEMS(void *)) {
3ff08e1d
AP
1179 ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1180 return 0;
1181 }
1182
e22d2199 1183 BN_CTX_start(ctx);
4d3fa06f
AP
1184
1185 if (scalar) {
1186 generator = EC_GROUP_get0_generator(group);
1187 if (generator == NULL) {
be07ae9b 1188 ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, EC_R_UNDEFINED_GENERATOR);
4d3fa06f
AP
1189 goto err;
1190 }
1191
1192 /* look if we can use precomputed multiples of generator */
3aef36ff 1193 pre_comp = group->pre_comp.nistz256;
4d3fa06f
AP
1194
1195 if (pre_comp) {
20728adc
AP
1196 /*
1197 * If there is a precomputed table for the generator, check that
1198 * it was generated with the same generator.
1199 */
4d3fa06f
AP
1200 EC_POINT *pre_comp_generator = EC_POINT_new(group);
1201 if (pre_comp_generator == NULL)
1202 goto err;
1203
8fc4aeb9 1204 ecp_nistz256_gather_w7(&p.a, pre_comp->precomp[0], 1);
3ff08e1d 1205 if (!ecp_nistz256_set_from_affine(pre_comp_generator,
8fc4aeb9 1206 group, &p.a, ctx)) {
e22d2199 1207 EC_POINT_free(pre_comp_generator);
4d3fa06f 1208 goto err;
e22d2199 1209 }
4d3fa06f
AP
1210
1211 if (0 == EC_POINT_cmp(group, generator, pre_comp_generator, ctx))
1212 preComputedTable = (const PRECOMP256_ROW *)pre_comp->precomp;
1213
1214 EC_POINT_free(pre_comp_generator);
1215 }
1216
1217 if (preComputedTable == NULL && ecp_nistz256_is_affine_G(generator)) {
20728adc
AP
1218 /*
1219 * If there is no precomputed data, but the generator is the
1220 * default, a hardcoded table of precomputed data is used. This
1221 * is because applications, such as Apache, do not use
1222 * EC_KEY_precompute_mult.
1223 */
3ff08e1d 1224 preComputedTable = ecp_nistz256_precomputed;
4d3fa06f
AP
1225 }
1226
1227 if (preComputedTable) {
1228 if ((BN_num_bits(scalar) > 256)
1229 || BN_is_negative(scalar)) {
1230 if ((tmp_scalar = BN_CTX_get(ctx)) == NULL)
1231 goto err;
1232
5784a521 1233 if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
be07ae9b 1234 ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_BN_LIB);
4d3fa06f
AP
1235 goto err;
1236 }
1237 scalar = tmp_scalar;
1238 }
1239
5784a521
MC
1240 for (i = 0; i < bn_get_top(scalar) * BN_BYTES; i += BN_BYTES) {
1241 BN_ULONG d = bn_get_words(scalar)[i / BN_BYTES];
4d3fa06f 1242
5afc296a
AP
1243 p_str[i + 0] = (unsigned char)d;
1244 p_str[i + 1] = (unsigned char)(d >> 8);
1245 p_str[i + 2] = (unsigned char)(d >> 16);
1246 p_str[i + 3] = (unsigned char)(d >>= 24);
4d3fa06f
AP
1247 if (BN_BYTES == 8) {
1248 d >>= 8;
5afc296a
AP
1249 p_str[i + 4] = (unsigned char)d;
1250 p_str[i + 5] = (unsigned char)(d >> 8);
1251 p_str[i + 6] = (unsigned char)(d >> 16);
1252 p_str[i + 7] = (unsigned char)(d >> 24);
4d3fa06f
AP
1253 }
1254 }
1255
1256 for (; i < 33; i++)
1257 p_str[i] = 0;
1258
1259#if defined(ECP_NISTZ256_AVX2)
1260 if (ecp_nistz_avx2_eligible()) {
1261 ecp_nistz256_avx2_mul_g(&p.p, p_str, preComputedTable);
1262 } else
1263#endif
1264 {
e3057a57
AP
1265 BN_ULONG infty;
1266
4d3fa06f
AP
1267 /* First window */
1268 wvalue = (p_str[0] << 1) & mask;
49b05c7d 1269 idx += window_size;
4d3fa06f
AP
1270
1271 wvalue = _booth_recode_w7(wvalue);
1272
58d47cf0
AP
1273 ecp_nistz256_gather_w7(&p.a, preComputedTable[0],
1274 wvalue >> 1);
4d3fa06f
AP
1275
1276 ecp_nistz256_neg(p.p.Z, p.p.Y);
1277 copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
1278
e3057a57
AP
1279 /*
1280 * Since affine infinity is encoded as (0,0) and
1281 * Jacobian ias (,,0), we need to harmonize them
1282 * by assigning "one" or zero to Z.
1283 */
1284 infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] |
1285 p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]);
1286 if (P256_LIMBS == 8)
1287 infty |= (p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] |
1288 p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]);
1289
1290 infty = 0 - is_zero(infty);
1291 infty = ~infty;
1292
1293 p.p.Z[0] = ONE[0] & infty;
1294 p.p.Z[1] = ONE[1] & infty;
1295 p.p.Z[2] = ONE[2] & infty;
1296 p.p.Z[3] = ONE[3] & infty;
1297 if (P256_LIMBS == 8) {
1298 p.p.Z[4] = ONE[4] & infty;
1299 p.p.Z[5] = ONE[5] & infty;
1300 p.p.Z[6] = ONE[6] & infty;
1301 p.p.Z[7] = ONE[7] & infty;
1302 }
4d3fa06f
AP
1303
1304 for (i = 1; i < 37; i++) {
49b05c7d 1305 unsigned int off = (idx - 1) / 8;
4d3fa06f 1306 wvalue = p_str[off] | p_str[off + 1] << 8;
49b05c7d
RS
1307 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1308 idx += window_size;
4d3fa06f
AP
1309
1310 wvalue = _booth_recode_w7(wvalue);
1311
3ff08e1d 1312 ecp_nistz256_gather_w7(&t.a,
4d3fa06f
AP
1313 preComputedTable[i], wvalue >> 1);
1314
1315 ecp_nistz256_neg(t.p.Z, t.a.Y);
1316 copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
1317
1318 ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
1319 }
1320 }
1321 } else {
1322 p_is_infinity = 1;
1323 no_precomp_for_generator = 1;
1324 }
1325 } else
1326 p_is_infinity = 1;
1327
1328 if (no_precomp_for_generator) {
20728adc
AP
1329 /*
1330 * Without a precomputed table for the generator, it has to be
1331 * handled like a normal point.
1332 */
4d3fa06f 1333 new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *));
90945fa3 1334 if (new_scalars == NULL) {
be07ae9b 1335 ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
e22d2199 1336 goto err;
4d3fa06f
AP
1337 }
1338
1339 new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *));
90945fa3 1340 if (new_points == NULL) {
be07ae9b 1341 ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
e22d2199 1342 goto err;
4d3fa06f
AP
1343 }
1344
1345 memcpy(new_scalars, scalars, num * sizeof(BIGNUM *));
1346 new_scalars[num] = scalar;
1347 memcpy(new_points, points, num * sizeof(EC_POINT *));
1348 new_points[num] = generator;
1349
1350 scalars = new_scalars;
1351 points = new_points;
1352 num++;
1353 }
1354
1355 if (num) {
1356 P256_POINT *out = &t.p;
1357 if (p_is_infinity)
1358 out = &p.p;
1359
a4d5269e
EK
1360 if (!ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx))
1361 goto err;
4d3fa06f
AP
1362
1363 if (!p_is_infinity)
1364 ecp_nistz256_point_add(&p.p, &p.p, out);
1365 }
1366
c028254b 1367 /* Not constant-time, but we're only operating on the public output. */
e22d2199
EK
1368 if (!bn_set_words(r->X, p.p.X, P256_LIMBS) ||
1369 !bn_set_words(r->Y, p.p.Y, P256_LIMBS) ||
1370 !bn_set_words(r->Z, p.p.Z, P256_LIMBS)) {
1371 goto err;
1372 }
2e929e53 1373 r->Z_is_one = is_one(r->Z) & 1;
4d3fa06f
AP
1374
1375 ret = 1;
1376
e22d2199 1377err:
7b953da4 1378 BN_CTX_end(ctx);
b548a1f1
RS
1379 OPENSSL_free(new_points);
1380 OPENSSL_free(new_scalars);
4d3fa06f
AP
1381 return ret;
1382}
1383
5956b110
EK
1384__owur static int ecp_nistz256_get_affine(const EC_GROUP *group,
1385 const EC_POINT *point,
1386 BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
4d3fa06f
AP
1387{
1388 BN_ULONG z_inv2[P256_LIMBS];
1389 BN_ULONG z_inv3[P256_LIMBS];
1390 BN_ULONG x_aff[P256_LIMBS];
1391 BN_ULONG y_aff[P256_LIMBS];
1392 BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];
e22d2199 1393 BN_ULONG x_ret[P256_LIMBS], y_ret[P256_LIMBS];
4d3fa06f
AP
1394
1395 if (EC_POINT_is_at_infinity(group, point)) {
be07ae9b 1396 ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_POINT_AT_INFINITY);
4d3fa06f
AP
1397 return 0;
1398 }
1399
5784a521
MC
1400 if (!ecp_nistz256_bignum_to_field_elem(point_x, point->X) ||
1401 !ecp_nistz256_bignum_to_field_elem(point_y, point->Y) ||
1402 !ecp_nistz256_bignum_to_field_elem(point_z, point->Z)) {
be07ae9b 1403 ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_COORDINATES_OUT_OF_RANGE);
4d3fa06f
AP
1404 return 0;
1405 }
1406
1407 ecp_nistz256_mod_inverse(z_inv3, point_z);
1408 ecp_nistz256_sqr_mont(z_inv2, z_inv3);
1409 ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);
1410
1411 if (x != NULL) {
e22d2199
EK
1412 ecp_nistz256_from_mont(x_ret, x_aff);
1413 if (!bn_set_words(x, x_ret, P256_LIMBS))
1414 return 0;
4d3fa06f
AP
1415 }
1416
1417 if (y != NULL) {
1418 ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
1419 ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
e22d2199
EK
1420 ecp_nistz256_from_mont(y_ret, y_aff);
1421 if (!bn_set_words(y, y_ret, P256_LIMBS))
1422 return 0;
4d3fa06f
AP
1423 }
1424
1425 return 1;
1426}
1427
3aef36ff 1428static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group)
4d3fa06f 1429{
3aef36ff 1430 NISTZ256_PRE_COMP *ret = NULL;
4d3fa06f
AP
1431
1432 if (!group)
1433 return NULL;
1434
3aef36ff 1435 ret = OPENSSL_zalloc(sizeof(*ret));
4d3fa06f 1436
90945fa3 1437 if (ret == NULL) {
be07ae9b 1438 ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
4d3fa06f
AP
1439 return ret;
1440 }
1441
1442 ret->group = group;
1443 ret->w = 6; /* default */
4d3fa06f 1444 ret->references = 1;
9b398ef2
AG
1445
1446 ret->lock = CRYPTO_THREAD_lock_new();
1447 if (ret->lock == NULL) {
1448 ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1449 OPENSSL_free(ret);
1450 return NULL;
1451 }
4d3fa06f
AP
1452 return ret;
1453}
1454
3aef36ff 1455NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *p)
4d3fa06f 1456{
9b398ef2 1457 int i;
3aef36ff 1458 if (p != NULL)
2f545ae4 1459 CRYPTO_UP_REF(&p->references, &i, p->lock);
3aef36ff 1460 return p;
4d3fa06f
AP
1461}
1462
3aef36ff 1463void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *pre)
4d3fa06f 1464{
9b398ef2
AG
1465 int i;
1466
1467 if (pre == NULL)
4d3fa06f 1468 return;
9b398ef2 1469
2f545ae4 1470 CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
e26f653d 1471 REF_PRINT_COUNT("EC_nistz256", pre);
9b398ef2
AG
1472 if (i > 0)
1473 return;
1474 REF_ASSERT_ISNT(i < 0);
1475
b548a1f1 1476 OPENSSL_free(pre->precomp_storage);
9b398ef2 1477 CRYPTO_THREAD_lock_free(pre->lock);
4d3fa06f
AP
1478 OPENSSL_free(pre);
1479}
1480
4d3fa06f 1481
58d47cf0 1482static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group)
4d3fa06f
AP
1483{
1484 /* There is a hard-coded table for the default generator. */
1485 const EC_POINT *generator = EC_GROUP_get0_generator(group);
3aef36ff 1486
4d3fa06f
AP
1487 if (generator != NULL && ecp_nistz256_is_affine_G(generator)) {
1488 /* There is a hard-coded table for the default generator. */
1489 return 1;
1490 }
1491
3aef36ff 1492 return HAVEPRECOMP(group, nistz256);
4d3fa06f
AP
1493}
1494
eb791696
AP
1495#if defined(__x86_64) || defined(__x86_64__) || \
1496 defined(_M_AMD64) || defined(_M_X64) || \
ab4f2026
AP
1497 defined(__powerpc64__) || defined(_ARCH_PP64) || \
1498 defined(__aarch64__)
eb791696
AP
1499/*
1500 * Montgomery mul modulo Order(P): res = a*b*2^-256 mod Order(P)
1501 */
1502void ecp_nistz256_ord_mul_mont(BN_ULONG res[P256_LIMBS],
1503 const BN_ULONG a[P256_LIMBS],
1504 const BN_ULONG b[P256_LIMBS]);
1505void ecp_nistz256_ord_sqr_mont(BN_ULONG res[P256_LIMBS],
1506 const BN_ULONG a[P256_LIMBS],
15972296 1507 BN_ULONG rep);
eb791696
AP
1508
1509static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r,
792546eb 1510 const BIGNUM *x, BN_CTX *ctx)
eb791696
AP
1511{
1512 /* RR = 2^512 mod ord(p256) */
10bc3409
AP
1513 static const BN_ULONG RR[P256_LIMBS] = {
1514 TOBN(0x83244c95,0xbe79eea2), TOBN(0x4699799c,0x49bd6fa6),
1515 TOBN(0x2845b239,0x2b6bec59), TOBN(0x66e12d94,0xf3d95620)
1516 };
eb791696 1517 /* The constant 1 (unlike ONE that is one in Montgomery representation) */
10bc3409
AP
1518 static const BN_ULONG one[P256_LIMBS] = {
1519 TOBN(0,1), TOBN(0,0), TOBN(0,0), TOBN(0,0)
1520 };
eb791696
AP
1521 /*
1522 * We don't use entry 0 in the table, so we omit it and address
1523 * with -1 offset.
1524 */
1525 BN_ULONG table[15][P256_LIMBS];
1526 BN_ULONG out[P256_LIMBS], t[P256_LIMBS];
1527 int i, ret = 0;
8e403a79
TS
1528 enum {
1529 i_1 = 0, i_10, i_11, i_101, i_111, i_1010, i_1111,
1530 i_10101, i_101010, i_101111, i_x6, i_x8, i_x16, i_x32
1531 };
eb791696
AP
1532
1533 /*
1534 * Catch allocation failure early.
1535 */
1536 if (bn_wexpand(r, P256_LIMBS) == NULL) {
1537 ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, ERR_R_BN_LIB);
1538 goto err;
1539 }
1540
1541 if ((BN_num_bits(x) > 256) || BN_is_negative(x)) {
1542 BIGNUM *tmp;
1543
1544 if ((tmp = BN_CTX_get(ctx)) == NULL
1545 || !BN_nnmod(tmp, x, group->order, ctx)) {
1546 ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, ERR_R_BN_LIB);
1547 goto err;
1548 }
1549 x = tmp;
1550 }
1551
1552 if (!ecp_nistz256_bignum_to_field_elem(t, x)) {
1553 ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, EC_R_COORDINATES_OUT_OF_RANGE);
1554 goto err;
1555 }
1556
1557 ecp_nistz256_ord_mul_mont(table[0], t, RR);
10bc3409
AP
1558#if 0
1559 /*
1560 * Original sparse-then-fixed-window algorithm, retained for reference.
1561 */
eb791696
AP
1562 for (i = 2; i < 16; i += 2) {
1563 ecp_nistz256_ord_sqr_mont(table[i-1], table[i/2-1], 1);
1564 ecp_nistz256_ord_mul_mont(table[i], table[i-1], table[0]);
1565 }
1566
1567 /*
1568 * The top 128bit of the exponent are highly redudndant, so we
1569 * perform an optimized flow
1570 */
1571 ecp_nistz256_ord_sqr_mont(t, table[15-1], 4); /* f0 */
1572 ecp_nistz256_ord_mul_mont(t, t, table[15-1]); /* ff */
1573
1574 ecp_nistz256_ord_sqr_mont(out, t, 8); /* ff00 */
1575 ecp_nistz256_ord_mul_mont(out, out, t); /* ffff */
1576
1577 ecp_nistz256_ord_sqr_mont(t, out, 16); /* ffff0000 */
1578 ecp_nistz256_ord_mul_mont(t, t, out); /* ffffffff */
1579
1580 ecp_nistz256_ord_sqr_mont(out, t, 64); /* ffffffff0000000000000000 */
1581 ecp_nistz256_ord_mul_mont(out, out, t); /* ffffffff00000000ffffffff */
1582
1583 ecp_nistz256_ord_sqr_mont(out, out, 32); /* ffffffff00000000ffffffff00000000 */
1584 ecp_nistz256_ord_mul_mont(out, out, t); /* ffffffff00000000ffffffffffffffff */
1585
1586 /*
10bc3409 1587 * The bottom 128 bit of the exponent are processed with fixed 4-bit window
eb791696
AP
1588 */
1589 for(i = 0; i < 32; i++) {
10bc3409
AP
1590 /* expLo - the low 128 bits of the exponent we use (ord(p256) - 2),
1591 * split into nibbles */
1592 static const unsigned char expLo[32] = {
1593 0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd,0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4,
1594 0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2,0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf
1595 };
1596
eb791696
AP
1597 ecp_nistz256_ord_sqr_mont(out, out, 4);
1598 /* The exponent is public, no need in constant-time access */
1599 ecp_nistz256_ord_mul_mont(out, out, table[expLo[i]-1]);
1600 }
10bc3409
AP
1601#else
1602 /*
1603 * https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
1604 *
1605 * Even though this code path spares 12 squarings, 4.5%, and 13
1606 * multiplications, 25%, on grand scale sign operation is not that
1607 * much faster, not more that 2%...
1608 */
10bc3409
AP
1609
1610 /* pre-calculate powers */
1611 ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);
1612
1613 ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);
1614
1615 ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);
1616
1617 ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);
1618
1619 ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);
1620
1621 ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);
1622
1623 ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
1624 ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);
1625
1626 ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);
1627
1628 ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);
1629
1630 ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);
1631
1632 ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
1633 ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);
1634
1635 ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
1636 ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);
1637
1638 ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
1639 ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);
1640
1641 /* calculations */
1642 ecp_nistz256_ord_sqr_mont(out, table[i_x32], 64);
1643 ecp_nistz256_ord_mul_mont(out, out, table[i_x32]);
1644
1645 for (i = 0; i < 27; i++) {
1646 static const struct { unsigned char p, i; } chain[27] = {
1647 { 32, i_x32 }, { 6, i_101111 }, { 5, i_111 },
1648 { 4, i_11 }, { 5, i_1111 }, { 5, i_10101 },
1649 { 4, i_101 }, { 3, i_101 }, { 3, i_101 },
1650 { 5, i_111 }, { 9, i_101111 }, { 6, i_1111 },
1651 { 2, i_1 }, { 5, i_1 }, { 6, i_1111 },
1652 { 5, i_111 }, { 4, i_111 }, { 5, i_111 },
1653 { 5, i_101 }, { 3, i_11 }, { 10, i_101111 },
1654 { 2, i_11 }, { 5, i_11 }, { 5, i_11 },
1655 { 3, i_1 }, { 7, i_10101 }, { 6, i_1111 }
1656 };
1657
1658 ecp_nistz256_ord_sqr_mont(out, out, chain[i].p);
1659 ecp_nistz256_ord_mul_mont(out, out, table[chain[i].i]);
1660 }
1661#endif
eb791696
AP
1662 ecp_nistz256_ord_mul_mont(out, out, one);
1663
1664 /*
1665 * Can't fail, but check return code to be consistent anyway.
1666 */
1667 if (!bn_set_words(r, out, P256_LIMBS))
1668 goto err;
1669
1670 ret = 1;
1671err:
1672 return ret;
1673}
1674#else
1675# define ecp_nistz256_inv_mod_ord NULL
1676#endif
1677
4d3fa06f
AP
1678const EC_METHOD *EC_GFp_nistz256_method(void)
1679{
1680 static const EC_METHOD ret = {
1681 EC_FLAGS_DEFAULT_OCT,
1682 NID_X9_62_prime_field,
1683 ec_GFp_mont_group_init,
1684 ec_GFp_mont_group_finish,
1685 ec_GFp_mont_group_clear_finish,
1686 ec_GFp_mont_group_copy,
1687 ec_GFp_mont_group_set_curve,
1688 ec_GFp_simple_group_get_curve,
1689 ec_GFp_simple_group_get_degree,
9ff9bccc 1690 ec_group_simple_order_bits,
4d3fa06f
AP
1691 ec_GFp_simple_group_check_discriminant,
1692 ec_GFp_simple_point_init,
1693 ec_GFp_simple_point_finish,
1694 ec_GFp_simple_point_clear_finish,
1695 ec_GFp_simple_point_copy,
1696 ec_GFp_simple_point_set_to_infinity,
1697 ec_GFp_simple_set_Jprojective_coordinates_GFp,
1698 ec_GFp_simple_get_Jprojective_coordinates_GFp,
1699 ec_GFp_simple_point_set_affine_coordinates,
1700 ecp_nistz256_get_affine,
1701 0, 0, 0,
1702 ec_GFp_simple_add,
1703 ec_GFp_simple_dbl,
1704 ec_GFp_simple_invert,
1705 ec_GFp_simple_is_at_infinity,
1706 ec_GFp_simple_is_on_curve,
1707 ec_GFp_simple_cmp,
1708 ec_GFp_simple_make_affine,
1709 ec_GFp_simple_points_make_affine,
1710 ecp_nistz256_points_mul, /* mul */
1711 ecp_nistz256_mult_precompute, /* precompute_mult */
1712 ecp_nistz256_window_have_precompute_mult, /* have_precompute_mult */
1713 ec_GFp_mont_field_mul,
1714 ec_GFp_mont_field_sqr,
1715 0, /* field_div */
e0033efc 1716 ec_GFp_mont_field_inv,
4d3fa06f
AP
1717 ec_GFp_mont_field_encode,
1718 ec_GFp_mont_field_decode,
9ff9bccc
DSH
1719 ec_GFp_mont_field_set_to_one,
1720 ec_key_simple_priv2oct,
1721 ec_key_simple_oct2priv,
1722 0, /* set private */
1723 ec_key_simple_generate_key,
1724 ec_key_simple_check_key,
1725 ec_key_simple_generate_public_key,
1726 0, /* keycopy */
1727 0, /* keyfinish */
eb791696 1728 ecdh_simple_compute_key,
9bf682f6
PS
1729 ecdsa_simple_sign_setup,
1730 ecdsa_simple_sign_sig,
1731 ecdsa_simple_verify_sig,
f667820c 1732 ecp_nistz256_inv_mod_ord, /* can be #define-d NULL */
37124360
NT
1733 0, /* blind_coordinates */
1734 0, /* ladder_pre */
1735 0, /* ladder_step */
1736 0 /* ladder_post */
4d3fa06f
AP
1737 };
1738
1739 return &ret;
1740}