]> git.ipfire.org Git - thirdparty/openssl.git/blame - crypto/modes/asm/ghash-x86.pl
Many spelling fixes/typo's corrected.
[thirdparty/openssl.git] / crypto / modes / asm / ghash-x86.pl
CommitLineData
6aa36e8e
RS
1#! /usr/bin/env perl
2# Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License"). You may not use
5# this file except in compliance with the License. You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
e3a510f8
AP
9#
10# ====================================================================
11# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16#
8525950e 17# March, May, June 2010
480cd6ab 18#
c3473126
AP
19# The module implements "4-bit" GCM GHASH function and underlying
20# single multiplication operation in GF(2^128). "4-bit" means that it
21# uses 256 bytes per-key table [+64/128 bytes fixed table]. It has two
5c88dcca
AP
22# code paths: vanilla x86 and vanilla SSE. Former will be executed on
23# 486 and Pentium, latter on all others. SSE GHASH features so called
8525950e
AP
24# "528B" variant of "4-bit" method utilizing additional 256+16 bytes
25# of per-key storage [+512 bytes shared table]. Performance results
26# are for streamed GHASH subroutine and are expressed in cycles per
27# processed byte, less is better:
e3a510f8 28#
5c88dcca 29# gcc 2.95.3(*) SSE assembler x86 assembler
e3a510f8 30#
d52d5ad1
AP
31# Pentium 105/111(**) - 50
32# PIII 68 /75 12.2 24
33# P4 125/125 17.8 84(***)
34# Opteron 66 /70 10.1 30
35# Core2 54 /67 8.4 18
d2e18031
AP
36# Atom 105/105 16.8 53
37# VIA Nano 69 /71 13.0 27
e3a510f8
AP
38#
39# (*) gcc 3.4.x was observed to generate few percent slower code,
480cd6ab 40# which is one of reasons why 2.95.3 results were chosen,
e3a510f8 41# another reason is lack of 3.4.x results for older CPUs;
5c88dcca 42# comparison with SSE results is not completely fair, because C
d52d5ad1
AP
43# results are for vanilla "256B" implementation, while
44# assembler results are for "528B";-)
e3a510f8
AP
45# (**) second number is result for code compiled with -fPIC flag,
46# which is actually more relevant, because assembler code is
47# position-independent;
48# (***) see comment in non-MMX routine for further details;
49#
8525950e 50# To summarize, it's >2-5 times faster than gcc-generated code. To
480cd6ab 51# anchor it to something else SHA1 assembler processes one byte in
5c88dcca
AP
52# ~7 cycles on contemporary x86 cores. As for choice of MMX/SSE
53# in particular, see comment at the end of the file...
e3a510f8 54
c1f092d1
AP
55# May 2010
56#
d52d5ad1 57# Add PCLMULQDQ version performing at 2.10 cycles per processed byte.
c1f092d1
AP
58# The question is how close is it to theoretical limit? The pclmulqdq
59# instruction latency appears to be 14 cycles and there can't be more
60# than 2 of them executing at any given time. This means that single
61# Karatsuba multiplication would take 28 cycles *plus* few cycles for
62# pre- and post-processing. Then multiplication has to be followed by
63# modulo-reduction. Given that aggregated reduction method [see
64# "Carry-less Multiplication and Its Usage for Computing the GCM Mode"
65# white paper by Intel] allows you to perform reduction only once in
66# a while we can assume that asymptotic performance can be estimated
67# as (28+Tmod/Naggr)/16, where Tmod is time to perform reduction
68# and Naggr is the aggregation factor.
69#
70# Before we proceed to this implementation let's have closer look at
71# the best-performing code suggested by Intel in their white paper.
72# By tracing inter-register dependencies Tmod is estimated as ~19
d52d5ad1
AP
73# cycles and Naggr chosen by Intel is 4, resulting in 2.05 cycles per
74# processed byte. As implied, this is quite optimistic estimate,
75# because it does not account for Karatsuba pre- and post-processing,
76# which for a single multiplication is ~5 cycles. Unfortunately Intel
77# does not provide performance data for GHASH alone. But benchmarking
78# AES_GCM_encrypt ripped out of Fig. 15 of the white paper with aadt
79# alone resulted in 2.46 cycles per byte of out 16KB buffer. Note that
80# the result accounts even for pre-computing of degrees of the hash
81# key H, but its portion is negligible at 16KB buffer size.
c1f092d1
AP
82#
83# Moving on to the implementation in question. Tmod is estimated as
84# ~13 cycles and Naggr is 2, giving asymptotic performance of ...
85# 2.16. How is it possible that measured performance is better than
86# optimistic theoretical estimate? There is one thing Intel failed
d52d5ad1
AP
87# to recognize. By serializing GHASH with CTR in same subroutine
88# former's performance is really limited to above (Tmul + Tmod/Naggr)
89# equation. But if GHASH procedure is detached, the modulo-reduction
90# can be interleaved with Naggr-1 multiplications at instruction level
91# and under ideal conditions even disappear from the equation. So that
92# optimistic theoretical estimate for this implementation is ...
93# 28/16=1.75, and not 2.16. Well, it's probably way too optimistic,
94# at least for such small Naggr. I'd argue that (28+Tproc/Naggr),
95# where Tproc is time required for Karatsuba pre- and post-processing,
96# is more realistic estimate. In this case it gives ... 1.91 cycles.
97# Or in other words, depending on how well we can interleave reduction
60250017 98# and one of the two multiplications the performance should be between
d52d5ad1
AP
99# 1.91 and 2.16. As already mentioned, this implementation processes
100# one byte out of 8KB buffer in 2.10 cycles, while x86_64 counterpart
101# - in 2.02. x86_64 performance is better, because larger register
102# bank allows to interleave reduction and multiplication better.
c1f092d1
AP
103#
104# Does it make sense to increase Naggr? To start with it's virtually
105# impossible in 32-bit mode, because of limited register bank
46f4e1be 106# capacity. Otherwise improvement has to be weighed against slower
c1f092d1
AP
107# setup, as well as code size and complexity increase. As even
108# optimistic estimate doesn't promise 30% performance improvement,
109# there are currently no plans to increase Naggr.
1aa8a629 110#
e3713c36
RS
111# Special thanks to David Woodhouse for providing access to a
112# Westmere-based system on behalf of Intel Open Source Technology Centre.
c1f092d1 113
bc5b136c
AP
114# January 2010
115#
116# Tweaked to optimize transitions between integer and FP operations
117# on same XMM register, PCLMULQDQ subroutine was measured to process
118# one byte in 2.07 cycles on Sandy Bridge, and in 2.12 - on Westmere.
119# The minor regression on Westmere is outweighed by ~15% improvement
120# on Sandy Bridge. Strangely enough attempt to modify 64-bit code in
121# similar manner resulted in almost 20% degradation on Sandy Bridge,
122# where original 64-bit code processes one byte in 1.95 cycles.
123
d2e18031
AP
124#####################################################################
125# For reference, AMD Bulldozer processes one byte in 1.98 cycles in
126# 32-bit mode and 1.89 in 64-bit.
127
273a8081
AP
128# February 2013
129#
130# Overhaul: aggregate Karatsuba post-processing, improve ILP in
131# reduction_alg9. Resulting performance is 1.96 cycles per byte on
132# Westmere, 1.95 - on Sandy/Ivy Bridge, 1.76 - on Bulldozer.
133
e3a510f8
AP
134$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
135push(@INC,"${dir}","${dir}../../perlasm");
136require "x86asm.pl";
137
4f0d5f18
RL
138$output=pop;
139open STDOUT,">$output";
140
e195c8a2 141&asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386");
e3a510f8 142
c1f092d1
AP
143$sse2=0;
144for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
e3a510f8 145
c1f092d1 146($Zhh,$Zhl,$Zlh,$Zll) = ("ebp","edx","ecx","ebx");
e3a510f8
AP
147$inp = "edi";
148$Htbl = "esi";
c1f092d1 149\f
e3a510f8
AP
150$unroll = 0; # Affects x86 loop. Folded loop performs ~7% worse
151 # than unrolled, which has to be weighted against
c1f092d1 152 # 2.5x x86-specific code size reduction.
e3a510f8
AP
153
154sub x86_loop {
155 my $off = shift;
156 my $rem = "eax";
157
158 &mov ($Zhh,&DWP(4,$Htbl,$Zll));
159 &mov ($Zhl,&DWP(0,$Htbl,$Zll));
160 &mov ($Zlh,&DWP(12,$Htbl,$Zll));
161 &mov ($Zll,&DWP(8,$Htbl,$Zll));
162 &xor ($rem,$rem); # avoid partial register stalls on PIII
163
164 # shrd practically kills P4, 2.5x deterioration, but P4 has
165 # MMX code-path to execute. shrd runs tad faster [than twice
166 # the shifts, move's and or's] on pre-MMX Pentium (as well as
167 # PIII and Core2), *but* minimizes code size, spares register
168 # and thus allows to fold the loop...
169 if (!$unroll) {
170 my $cnt = $inp;
171 &mov ($cnt,15);
172 &jmp (&label("x86_loop"));
173 &set_label("x86_loop",16);
174 for($i=1;$i<=2;$i++) {
175 &mov (&LB($rem),&LB($Zll));
176 &shrd ($Zll,$Zlh,4);
177 &and (&LB($rem),0xf);
178 &shrd ($Zlh,$Zhl,4);
179 &shrd ($Zhl,$Zhh,4);
180 &shr ($Zhh,4);
181 &xor ($Zhh,&DWP($off+16,"esp",$rem,4));
182
183 &mov (&LB($rem),&BP($off,"esp",$cnt));
184 if ($i&1) {
185 &and (&LB($rem),0xf0);
186 } else {
187 &shl (&LB($rem),4);
188 }
189
190 &xor ($Zll,&DWP(8,$Htbl,$rem));
191 &xor ($Zlh,&DWP(12,$Htbl,$rem));
192 &xor ($Zhl,&DWP(0,$Htbl,$rem));
193 &xor ($Zhh,&DWP(4,$Htbl,$rem));
194
195 if ($i&1) {
196 &dec ($cnt);
197 &js (&label("x86_break"));
198 } else {
199 &jmp (&label("x86_loop"));
200 }
201 }
202 &set_label("x86_break",16);
203 } else {
204 for($i=1;$i<32;$i++) {
205 &comment($i);
206 &mov (&LB($rem),&LB($Zll));
207 &shrd ($Zll,$Zlh,4);
208 &and (&LB($rem),0xf);
209 &shrd ($Zlh,$Zhl,4);
210 &shrd ($Zhl,$Zhh,4);
211 &shr ($Zhh,4);
212 &xor ($Zhh,&DWP($off+16,"esp",$rem,4));
213
214 if ($i&1) {
215 &mov (&LB($rem),&BP($off+15-($i>>1),"esp"));
216 &and (&LB($rem),0xf0);
217 } else {
218 &mov (&LB($rem),&BP($off+15-($i>>1),"esp"));
219 &shl (&LB($rem),4);
220 }
221
222 &xor ($Zll,&DWP(8,$Htbl,$rem));
223 &xor ($Zlh,&DWP(12,$Htbl,$rem));
224 &xor ($Zhl,&DWP(0,$Htbl,$rem));
225 &xor ($Zhh,&DWP(4,$Htbl,$rem));
226 }
227 }
228 &bswap ($Zll);
229 &bswap ($Zlh);
230 &bswap ($Zhl);
231 if (!$x86only) {
232 &bswap ($Zhh);
233 } else {
234 &mov ("eax",$Zhh);
235 &bswap ("eax");
236 &mov ($Zhh,"eax");
237 }
238}
239
240if ($unroll) {
241 &function_begin_B("_x86_gmult_4bit_inner");
242 &x86_loop(4);
243 &ret ();
244 &function_end_B("_x86_gmult_4bit_inner");
245}
246
c1f092d1
AP
247sub deposit_rem_4bit {
248 my $bias = shift;
e3a510f8 249
c1f092d1
AP
250 &mov (&DWP($bias+0, "esp"),0x0000<<16);
251 &mov (&DWP($bias+4, "esp"),0x1C20<<16);
252 &mov (&DWP($bias+8, "esp"),0x3840<<16);
253 &mov (&DWP($bias+12,"esp"),0x2460<<16);
254 &mov (&DWP($bias+16,"esp"),0x7080<<16);
255 &mov (&DWP($bias+20,"esp"),0x6CA0<<16);
256 &mov (&DWP($bias+24,"esp"),0x48C0<<16);
257 &mov (&DWP($bias+28,"esp"),0x54E0<<16);
258 &mov (&DWP($bias+32,"esp"),0xE100<<16);
259 &mov (&DWP($bias+36,"esp"),0xFD20<<16);
260 &mov (&DWP($bias+40,"esp"),0xD940<<16);
261 &mov (&DWP($bias+44,"esp"),0xC560<<16);
262 &mov (&DWP($bias+48,"esp"),0x9180<<16);
263 &mov (&DWP($bias+52,"esp"),0x8DA0<<16);
264 &mov (&DWP($bias+56,"esp"),0xA9C0<<16);
265 &mov (&DWP($bias+60,"esp"),0xB5E0<<16);
266}
267\f
268$suffix = $x86only ? "" : "_x86";
e3a510f8 269
c1f092d1 270&function_begin("gcm_gmult_4bit".$suffix);
e3a510f8
AP
271 &stack_push(16+4+1); # +1 for stack alignment
272 &mov ($inp,&wparam(0)); # load Xi
273 &mov ($Htbl,&wparam(1)); # load Htable
274
275 &mov ($Zhh,&DWP(0,$inp)); # load Xi[16]
276 &mov ($Zhl,&DWP(4,$inp));
277 &mov ($Zlh,&DWP(8,$inp));
278 &mov ($Zll,&DWP(12,$inp));
279
280 &deposit_rem_4bit(16);
281
282 &mov (&DWP(0,"esp"),$Zhh); # copy Xi[16] on stack
283 &mov (&DWP(4,"esp"),$Zhl);
284 &mov (&DWP(8,"esp"),$Zlh);
285 &mov (&DWP(12,"esp"),$Zll);
286 &shr ($Zll,20);
287 &and ($Zll,0xf0);
288
289 if ($unroll) {
290 &call ("_x86_gmult_4bit_inner");
291 } else {
292 &x86_loop(0);
293 &mov ($inp,&wparam(0));
294 }
295
296 &mov (&DWP(12,$inp),$Zll);
297 &mov (&DWP(8,$inp),$Zlh);
298 &mov (&DWP(4,$inp),$Zhl);
299 &mov (&DWP(0,$inp),$Zhh);
300 &stack_pop(16+4+1);
c1f092d1
AP
301&function_end("gcm_gmult_4bit".$suffix);
302
303&function_begin("gcm_ghash_4bit".$suffix);
304 &stack_push(16+4+1); # +1 for 64-bit alignment
305 &mov ($Zll,&wparam(0)); # load Xi
306 &mov ($Htbl,&wparam(1)); # load Htable
307 &mov ($inp,&wparam(2)); # load in
308 &mov ("ecx",&wparam(3)); # load len
309 &add ("ecx",$inp);
310 &mov (&wparam(3),"ecx");
311
312 &mov ($Zhh,&DWP(0,$Zll)); # load Xi[16]
313 &mov ($Zhl,&DWP(4,$Zll));
314 &mov ($Zlh,&DWP(8,$Zll));
315 &mov ($Zll,&DWP(12,$Zll));
316
317 &deposit_rem_4bit(16);
318
319 &set_label("x86_outer_loop",16);
320 &xor ($Zll,&DWP(12,$inp)); # xor with input
321 &xor ($Zlh,&DWP(8,$inp));
322 &xor ($Zhl,&DWP(4,$inp));
323 &xor ($Zhh,&DWP(0,$inp));
324 &mov (&DWP(12,"esp"),$Zll); # dump it on stack
325 &mov (&DWP(8,"esp"),$Zlh);
326 &mov (&DWP(4,"esp"),$Zhl);
327 &mov (&DWP(0,"esp"),$Zhh);
328
329 &shr ($Zll,20);
330 &and ($Zll,0xf0);
331
332 if ($unroll) {
333 &call ("_x86_gmult_4bit_inner");
334 } else {
335 &x86_loop(0);
336 &mov ($inp,&wparam(2));
337 }
338 &lea ($inp,&DWP(16,$inp));
339 &cmp ($inp,&wparam(3));
340 &mov (&wparam(2),$inp) if (!$unroll);
341 &jb (&label("x86_outer_loop"));
342
343 &mov ($inp,&wparam(0)); # load Xi
344 &mov (&DWP(12,$inp),$Zll);
345 &mov (&DWP(8,$inp),$Zlh);
346 &mov (&DWP(4,$inp),$Zhl);
347 &mov (&DWP(0,$inp),$Zhh);
348 &stack_pop(16+4+1);
349&function_end("gcm_ghash_4bit".$suffix);
350\f
351if (!$x86only) {{{
352
353&static_label("rem_4bit");
354
98909c1d 355if (!$sse2) {{ # pure-MMX "May" version...
8525950e
AP
356
357$S=12; # shift factor for rem_4bit
358
07e29c12
AP
359&function_begin_B("_mmx_gmult_4bit_inner");
360# MMX version performs 3.5 times better on P4 (see comment in non-MMX
361# routine for further details), 100% better on Opteron, ~70% better
362# on Core2 and PIII... In other words effort is considered to be well
363# spent... Since initial release the loop was unrolled in order to
364# "liberate" register previously used as loop counter. Instead it's
365# used to optimize critical path in 'Z.hi ^= rem_4bit[Z.lo&0xf]'.
366# The path involves move of Z.lo from MMX to integer register,
367# effective address calculation and finally merge of value to Z.hi.
368# Reference to rem_4bit is scheduled so late that I had to >>4
369# rem_4bit elements. This resulted in 20-45% procent improvement
053fa39a 370# on contemporary µ-archs.
07e29c12
AP
371{
372 my $cnt;
373 my $rem_4bit = "eax";
374 my @rem = ($Zhh,$Zll);
c1f092d1
AP
375 my $nhi = $Zhl;
376 my $nlo = $Zlh;
c1f092d1
AP
377
378 my ($Zlo,$Zhi) = ("mm0","mm1");
379 my $tmp = "mm2";
380
381 &xor ($nlo,$nlo); # avoid partial register stalls on PIII
382 &mov ($nhi,$Zll);
383 &mov (&LB($nlo),&LB($nhi));
c1f092d1
AP
384 &shl (&LB($nlo),4);
385 &and ($nhi,0xf0);
386 &movq ($Zlo,&QWP(8,$Htbl,$nlo));
387 &movq ($Zhi,&QWP(0,$Htbl,$nlo));
07e29c12
AP
388 &movd ($rem[0],$Zlo);
389
390 for ($cnt=28;$cnt>=-2;$cnt--) {
391 my $odd = $cnt&1;
392 my $nix = $odd ? $nlo : $nhi;
393
394 &shl (&LB($nlo),4) if ($odd);
395 &psrlq ($Zlo,4);
396 &movq ($tmp,$Zhi);
397 &psrlq ($Zhi,4);
398 &pxor ($Zlo,&QWP(8,$Htbl,$nix));
399 &mov (&LB($nlo),&BP($cnt/2,$inp)) if (!$odd && $cnt>=0);
400 &psllq ($tmp,60);
401 &and ($nhi,0xf0) if ($odd);
402 &pxor ($Zhi,&QWP(0,$rem_4bit,$rem[1],8)) if ($cnt<28);
403 &and ($rem[0],0xf);
404 &pxor ($Zhi,&QWP(0,$Htbl,$nix));
405 &mov ($nhi,$nlo) if (!$odd && $cnt>=0);
406 &movd ($rem[1],$Zlo);
407 &pxor ($Zlo,$tmp);
408
409 push (@rem,shift(@rem)); # "rotate" registers
410 }
c1f092d1 411
07e29c12 412 &mov ($inp,&DWP(4,$rem_4bit,$rem[1],8)); # last rem_4bit[rem]
c1f092d1
AP
413
414 &psrlq ($Zlo,32); # lower part of Zlo is already there
415 &movd ($Zhl,$Zhi);
416 &psrlq ($Zhi,32);
417 &movd ($Zlh,$Zlo);
418 &movd ($Zhh,$Zhi);
07e29c12 419 &shl ($inp,4); # compensate for rem_4bit[i] being >>4
c1f092d1
AP
420
421 &bswap ($Zll);
422 &bswap ($Zhl);
423 &bswap ($Zlh);
07e29c12 424 &xor ($Zhh,$inp);
c1f092d1 425 &bswap ($Zhh);
07e29c12
AP
426
427 &ret ();
c1f092d1 428}
07e29c12 429&function_end_B("_mmx_gmult_4bit_inner");
c1f092d1
AP
430
431&function_begin("gcm_gmult_4bit_mmx");
432 &mov ($inp,&wparam(0)); # load Xi
433 &mov ($Htbl,&wparam(1)); # load Htable
e3a510f8 434
e3a510f8
AP
435 &call (&label("pic_point"));
436 &set_label("pic_point");
437 &blindpop("eax");
e3a510f8
AP
438 &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
439
c1f092d1
AP
440 &movz ($Zll,&BP(15,$inp));
441
07e29c12 442 &call ("_mmx_gmult_4bit_inner");
c1f092d1 443
07e29c12 444 &mov ($inp,&wparam(0)); # load Xi
c1f092d1
AP
445 &emms ();
446 &mov (&DWP(12,$inp),$Zll);
447 &mov (&DWP(4,$inp),$Zhl);
448 &mov (&DWP(8,$inp),$Zlh);
449 &mov (&DWP(0,$inp),$Zhh);
450&function_end("gcm_gmult_4bit_mmx");
451\f
452# Streamed version performs 20% better on P4, 7% on Opteron,
453# 10% on Core2 and PIII...
454&function_begin("gcm_ghash_4bit_mmx");
4f39edbf
AP
455 &mov ($Zhh,&wparam(0)); # load Xi
456 &mov ($Htbl,&wparam(1)); # load Htable
457 &mov ($inp,&wparam(2)); # load in
458 &mov ($Zlh,&wparam(3)); # load len
c1f092d1
AP
459
460 &call (&label("pic_point"));
461 &set_label("pic_point");
462 &blindpop("eax");
463 &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
464
e3a510f8 465 &add ($Zlh,$inp);
4f39edbf 466 &mov (&wparam(3),$Zlh); # len to point at the end of input
e3a510f8 467 &stack_push(4+1); # +1 for stack alignment
c1f092d1 468
e3a510f8
AP
469 &mov ($Zll,&DWP(12,$Zhh)); # load Xi[16]
470 &mov ($Zhl,&DWP(4,$Zhh));
471 &mov ($Zlh,&DWP(8,$Zhh));
472 &mov ($Zhh,&DWP(0,$Zhh));
c1f092d1 473 &jmp (&label("mmx_outer_loop"));
e3a510f8
AP
474
475 &set_label("mmx_outer_loop",16);
476 &xor ($Zll,&DWP(12,$inp));
477 &xor ($Zhl,&DWP(4,$inp));
478 &xor ($Zlh,&DWP(8,$inp));
479 &xor ($Zhh,&DWP(0,$inp));
07e29c12 480 &mov (&wparam(2),$inp);
e3a510f8
AP
481 &mov (&DWP(12,"esp"),$Zll);
482 &mov (&DWP(4,"esp"),$Zhl);
483 &mov (&DWP(8,"esp"),$Zlh);
484 &mov (&DWP(0,"esp"),$Zhh);
485
07e29c12 486 &mov ($inp,"esp");
e3a510f8
AP
487 &shr ($Zll,24);
488
07e29c12 489 &call ("_mmx_gmult_4bit_inner");
e3a510f8 490
07e29c12 491 &mov ($inp,&wparam(2));
e3a510f8 492 &lea ($inp,&DWP(16,$inp));
4f39edbf 493 &cmp ($inp,&wparam(3));
e3a510f8
AP
494 &jb (&label("mmx_outer_loop"));
495
4f39edbf 496 &mov ($inp,&wparam(0)); # load Xi
e3a510f8
AP
497 &emms ();
498 &mov (&DWP(12,$inp),$Zll);
499 &mov (&DWP(4,$inp),$Zhl);
500 &mov (&DWP(8,$inp),$Zlh);
501 &mov (&DWP(0,$inp),$Zhh);
502
503 &stack_pop(4+1);
c1f092d1
AP
504&function_end("gcm_ghash_4bit_mmx");
505\f
8525950e 506}} else {{ # "June" MMX version...
04e2b793
AP
507 # ... has slower "April" gcm_gmult_4bit_mmx with folded
508 # loop. This is done to conserve code size...
8525950e
AP
509$S=16; # shift factor for rem_4bit
510
511sub mmx_loop() {
512# MMX version performs 2.8 times better on P4 (see comment in non-MMX
513# routine for further details), 40% better on Opteron and Core2, 50%
514# better on PIII... In other words effort is considered to be well
515# spent...
516 my $inp = shift;
517 my $rem_4bit = shift;
518 my $cnt = $Zhh;
519 my $nhi = $Zhl;
520 my $nlo = $Zlh;
521 my $rem = $Zll;
522
523 my ($Zlo,$Zhi) = ("mm0","mm1");
524 my $tmp = "mm2";
525
526 &xor ($nlo,$nlo); # avoid partial register stalls on PIII
527 &mov ($nhi,$Zll);
528 &mov (&LB($nlo),&LB($nhi));
529 &mov ($cnt,14);
530 &shl (&LB($nlo),4);
531 &and ($nhi,0xf0);
532 &movq ($Zlo,&QWP(8,$Htbl,$nlo));
533 &movq ($Zhi,&QWP(0,$Htbl,$nlo));
534 &movd ($rem,$Zlo);
535 &jmp (&label("mmx_loop"));
536
537 &set_label("mmx_loop",16);
538 &psrlq ($Zlo,4);
539 &and ($rem,0xf);
540 &movq ($tmp,$Zhi);
541 &psrlq ($Zhi,4);
542 &pxor ($Zlo,&QWP(8,$Htbl,$nhi));
543 &mov (&LB($nlo),&BP(0,$inp,$cnt));
544 &psllq ($tmp,60);
545 &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
546 &dec ($cnt);
547 &movd ($rem,$Zlo);
548 &pxor ($Zhi,&QWP(0,$Htbl,$nhi));
549 &mov ($nhi,$nlo);
550 &pxor ($Zlo,$tmp);
551 &js (&label("mmx_break"));
552
553 &shl (&LB($nlo),4);
554 &and ($rem,0xf);
555 &psrlq ($Zlo,4);
556 &and ($nhi,0xf0);
557 &movq ($tmp,$Zhi);
558 &psrlq ($Zhi,4);
559 &pxor ($Zlo,&QWP(8,$Htbl,$nlo));
560 &psllq ($tmp,60);
561 &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
562 &movd ($rem,$Zlo);
563 &pxor ($Zhi,&QWP(0,$Htbl,$nlo));
564 &pxor ($Zlo,$tmp);
565 &jmp (&label("mmx_loop"));
566
567 &set_label("mmx_break",16);
568 &shl (&LB($nlo),4);
569 &and ($rem,0xf);
570 &psrlq ($Zlo,4);
571 &and ($nhi,0xf0);
572 &movq ($tmp,$Zhi);
573 &psrlq ($Zhi,4);
574 &pxor ($Zlo,&QWP(8,$Htbl,$nlo));
575 &psllq ($tmp,60);
576 &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
577 &movd ($rem,$Zlo);
578 &pxor ($Zhi,&QWP(0,$Htbl,$nlo));
579 &pxor ($Zlo,$tmp);
580
581 &psrlq ($Zlo,4);
582 &and ($rem,0xf);
583 &movq ($tmp,$Zhi);
584 &psrlq ($Zhi,4);
585 &pxor ($Zlo,&QWP(8,$Htbl,$nhi));
586 &psllq ($tmp,60);
587 &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
588 &movd ($rem,$Zlo);
589 &pxor ($Zhi,&QWP(0,$Htbl,$nhi));
590 &pxor ($Zlo,$tmp);
591
592 &psrlq ($Zlo,32); # lower part of Zlo is already there
593 &movd ($Zhl,$Zhi);
594 &psrlq ($Zhi,32);
595 &movd ($Zlh,$Zlo);
596 &movd ($Zhh,$Zhi);
597
598 &bswap ($Zll);
599 &bswap ($Zhl);
600 &bswap ($Zlh);
601 &bswap ($Zhh);
602}
603
604&function_begin("gcm_gmult_4bit_mmx");
605 &mov ($inp,&wparam(0)); # load Xi
606 &mov ($Htbl,&wparam(1)); # load Htable
607
608 &call (&label("pic_point"));
609 &set_label("pic_point");
610 &blindpop("eax");
611 &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
612
613 &movz ($Zll,&BP(15,$inp));
614
615 &mmx_loop($inp,"eax");
616
617 &emms ();
618 &mov (&DWP(12,$inp),$Zll);
619 &mov (&DWP(4,$inp),$Zhl);
620 &mov (&DWP(8,$inp),$Zlh);
621 &mov (&DWP(0,$inp),$Zhh);
622&function_end("gcm_gmult_4bit_mmx");
623\f
624######################################################################
625# Below subroutine is "528B" variant of "4-bit" GCM GHASH function
626# (see gcm128.c for details). It provides further 20-40% performance
04e2b793 627# improvement over above mentioned "May" version.
8525950e
AP
628
629&static_label("rem_8bit");
630
631&function_begin("gcm_ghash_4bit_mmx");
632{ my ($Zlo,$Zhi) = ("mm7","mm6");
633 my $rem_8bit = "esi";
634 my $Htbl = "ebx";
635
636 # parameter block
637 &mov ("eax",&wparam(0)); # Xi
638 &mov ("ebx",&wparam(1)); # Htable
639 &mov ("ecx",&wparam(2)); # inp
640 &mov ("edx",&wparam(3)); # len
641 &mov ("ebp","esp"); # original %esp
642 &call (&label("pic_point"));
643 &set_label ("pic_point");
644 &blindpop ($rem_8bit);
645 &lea ($rem_8bit,&DWP(&label("rem_8bit")."-".&label("pic_point"),$rem_8bit));
646
647 &sub ("esp",512+16+16); # allocate stack frame...
648 &and ("esp",-64); # ...and align it
649 &sub ("esp",16); # place for (u8)(H[]<<4)
650
651 &add ("edx","ecx"); # pointer to the end of input
652 &mov (&DWP(528+16+0,"esp"),"eax"); # save Xi
653 &mov (&DWP(528+16+8,"esp"),"edx"); # save inp+len
654 &mov (&DWP(528+16+12,"esp"),"ebp"); # save original %esp
655
656 { my @lo = ("mm0","mm1","mm2");
657 my @hi = ("mm3","mm4","mm5");
658 my @tmp = ("mm6","mm7");
f9c5e5d9 659 my ($off1,$off2,$i) = (0,0,);
8525950e
AP
660
661 &add ($Htbl,128); # optimize for size
662 &lea ("edi",&DWP(16+128,"esp"));
663 &lea ("ebp",&DWP(16+256+128,"esp"));
664
665 # decompose Htable (low and high parts are kept separately),
04e2b793 666 # generate Htable[]>>4, (u8)(Htable[]<<4), save to stack...
8525950e
AP
667 for ($i=0;$i<18;$i++) {
668
669 &mov ("edx",&DWP(16*$i+8-128,$Htbl)) if ($i<16);
670 &movq ($lo[0],&QWP(16*$i+8-128,$Htbl)) if ($i<16);
671 &psllq ($tmp[1],60) if ($i>1);
672 &movq ($hi[0],&QWP(16*$i+0-128,$Htbl)) if ($i<16);
673 &por ($lo[2],$tmp[1]) if ($i>1);
674 &movq (&QWP($off1-128,"edi"),$lo[1]) if ($i>0 && $i<17);
675 &psrlq ($lo[1],4) if ($i>0 && $i<17);
676 &movq (&QWP($off1,"edi"),$hi[1]) if ($i>0 && $i<17);
677 &movq ($tmp[0],$hi[1]) if ($i>0 && $i<17);
678 &movq (&QWP($off2-128,"ebp"),$lo[2]) if ($i>1);
679 &psrlq ($hi[1],4) if ($i>0 && $i<17);
680 &movq (&QWP($off2,"ebp"),$hi[2]) if ($i>1);
681 &shl ("edx",4) if ($i<16);
682 &mov (&BP($i,"esp"),&LB("edx")) if ($i<16);
683
684 unshift (@lo,pop(@lo)); # "rotate" registers
685 unshift (@hi,pop(@hi));
686 unshift (@tmp,pop(@tmp));
687 $off1 += 8 if ($i>0);
688 $off2 += 8 if ($i>1);
689 }
690 }
691
692 &movq ($Zhi,&QWP(0,"eax"));
693 &mov ("ebx",&DWP(8,"eax"));
694 &mov ("edx",&DWP(12,"eax")); # load Xi
695
696&set_label("outer",16);
697 { my $nlo = "eax";
698 my $dat = "edx";
699 my @nhi = ("edi","ebp");
700 my @rem = ("ebx","ecx");
701 my @red = ("mm0","mm1","mm2");
702 my $tmp = "mm3";
703
04e2b793 704 &xor ($dat,&DWP(12,"ecx")); # merge input data
8525950e
AP
705 &xor ("ebx",&DWP(8,"ecx"));
706 &pxor ($Zhi,&QWP(0,"ecx"));
707 &lea ("ecx",&DWP(16,"ecx")); # inp+=16
708 #&mov (&DWP(528+12,"esp"),$dat); # save inp^Xi
709 &mov (&DWP(528+8,"esp"),"ebx");
710 &movq (&QWP(528+0,"esp"),$Zhi);
711 &mov (&DWP(528+16+4,"esp"),"ecx"); # save inp
712
713 &xor ($nlo,$nlo);
714 &rol ($dat,8);
715 &mov (&LB($nlo),&LB($dat));
716 &mov ($nhi[1],$nlo);
717 &and (&LB($nlo),0x0f);
718 &shr ($nhi[1],4);
719 &pxor ($red[0],$red[0]);
04e2b793 720 &rol ($dat,8); # next byte
8525950e
AP
721 &pxor ($red[1],$red[1]);
722 &pxor ($red[2],$red[2]);
723
60250017 724 # Just like in "May" version modulo-schedule for critical path in
04e2b793
AP
725 # 'Z.hi ^= rem_8bit[Z.lo&0xff^((u8)H[nhi]<<4)]<<48'. Final 'pxor'
726 # is scheduled so late that rem_8bit[] has to be shifted *right*
727 # by 16, which is why last argument to pinsrw is 2, which
728 # corresponds to <<32=<<48>>16...
8525950e
AP
729 for ($j=11,$i=0;$i<15;$i++) {
730
731 if ($i>0) {
732 &pxor ($Zlo,&QWP(16,"esp",$nlo,8)); # Z^=H[nlo]
733 &rol ($dat,8); # next byte
734 &pxor ($Zhi,&QWP(16+128,"esp",$nlo,8));
735
736 &pxor ($Zlo,$tmp);
737 &pxor ($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
04e2b793 738 &xor (&LB($rem[1]),&BP(0,"esp",$nhi[0])); # rem^(H[nhi]<<4)
8525950e
AP
739 } else {
740 &movq ($Zlo,&QWP(16,"esp",$nlo,8));
741 &movq ($Zhi,&QWP(16+128,"esp",$nlo,8));
742 }
743
744 &mov (&LB($nlo),&LB($dat));
04e2b793 745 &mov ($dat,&DWP(528+$j,"esp")) if (--$j%4==0);
8525950e
AP
746
747 &movd ($rem[0],$Zlo);
04e2b793
AP
748 &movz ($rem[1],&LB($rem[1])) if ($i>0);
749 &psrlq ($Zlo,8); # Z>>=8
8525950e
AP
750
751 &movq ($tmp,$Zhi);
752 &mov ($nhi[0],$nlo);
753 &psrlq ($Zhi,8);
754
755 &pxor ($Zlo,&QWP(16+256+0,"esp",$nhi[1],8)); # Z^=H[nhi]>>4
756 &and (&LB($nlo),0x0f);
757 &psllq ($tmp,56);
758
759 &pxor ($Zhi,$red[1]) if ($i>1);
760 &shr ($nhi[0],4);
761 &pinsrw ($red[0],&WP(0,$rem_8bit,$rem[1],2),2) if ($i>0);
762
763 unshift (@red,pop(@red)); # "rotate" registers
764 unshift (@rem,pop(@rem));
765 unshift (@nhi,pop(@nhi));
766 }
767
768 &pxor ($Zlo,&QWP(16,"esp",$nlo,8)); # Z^=H[nlo]
769 &pxor ($Zhi,&QWP(16+128,"esp",$nlo,8));
04e2b793 770 &xor (&LB($rem[1]),&BP(0,"esp",$nhi[0])); # rem^(H[nhi]<<4)
8525950e
AP
771
772 &pxor ($Zlo,$tmp);
773 &pxor ($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
774 &movz ($rem[1],&LB($rem[1]));
775
776 &pxor ($red[2],$red[2]); # clear 2nd word
777 &psllq ($red[1],4);
778
779 &movd ($rem[0],$Zlo);
04e2b793 780 &psrlq ($Zlo,4); # Z>>=4
8525950e
AP
781
782 &movq ($tmp,$Zhi);
783 &psrlq ($Zhi,4);
04e2b793 784 &shl ($rem[0],4); # rem<<4
8525950e
AP
785
786 &pxor ($Zlo,&QWP(16,"esp",$nhi[1],8)); # Z^=H[nhi]
787 &psllq ($tmp,60);
788 &movz ($rem[0],&LB($rem[0]));
789
790 &pxor ($Zlo,$tmp);
791 &pxor ($Zhi,&QWP(16+128,"esp",$nhi[1],8));
792
793 &pinsrw ($red[0],&WP(0,$rem_8bit,$rem[1],2),2);
794 &pxor ($Zhi,$red[1]);
795
796 &movd ($dat,$Zlo);
04e2b793 797 &pinsrw ($red[2],&WP(0,$rem_8bit,$rem[0],2),3); # last is <<48
8525950e 798
04e2b793 799 &psllq ($red[0],12); # correct by <<16>>4
8525950e
AP
800 &pxor ($Zhi,$red[0]);
801 &psrlq ($Zlo,32);
802 &pxor ($Zhi,$red[2]);
803
804 &mov ("ecx",&DWP(528+16+4,"esp")); # restore inp
805 &movd ("ebx",$Zlo);
806 &movq ($tmp,$Zhi); # 01234567
807 &psllw ($Zhi,8); # 1.3.5.7.
808 &psrlw ($tmp,8); # .0.2.4.6
809 &por ($Zhi,$tmp); # 10325476
810 &bswap ($dat);
811 &pshufw ($Zhi,$Zhi,0b00011011); # 76543210
812 &bswap ("ebx");
609b0852 813
8525950e
AP
814 &cmp ("ecx",&DWP(528+16+8,"esp")); # are we done?
815 &jne (&label("outer"));
816 }
817
818 &mov ("eax",&DWP(528+16+0,"esp")); # restore Xi
819 &mov (&DWP(12,"eax"),"edx");
820 &mov (&DWP(8,"eax"),"ebx");
821 &movq (&QWP(0,"eax"),$Zhi);
822
823 &mov ("esp",&DWP(528+16+12,"esp")); # restore original %esp
824 &emms ();
825}
826&function_end("gcm_ghash_4bit_mmx");
827}}
828\f
c1f092d1
AP
829if ($sse2) {{
830######################################################################
831# PCLMULQDQ version.
832
833$Xip="eax";
834$Htbl="edx";
835$const="ecx";
836$inp="esi";
837$len="ebx";
838
839($Xi,$Xhi)=("xmm0","xmm1"); $Hkey="xmm2";
840($T1,$T2,$T3)=("xmm3","xmm4","xmm5");
841($Xn,$Xhn)=("xmm6","xmm7");
842
843&static_label("bswap");
844
845sub clmul64x64_T2 { # minimal "register" pressure
273a8081 846my ($Xhi,$Xi,$Hkey,$HK)=@_;
c1f092d1
AP
847
848 &movdqa ($Xhi,$Xi); #
849 &pshufd ($T1,$Xi,0b01001110);
273a8081 850 &pshufd ($T2,$Hkey,0b01001110) if (!defined($HK));
c1f092d1 851 &pxor ($T1,$Xi); #
273a8081
AP
852 &pxor ($T2,$Hkey) if (!defined($HK));
853 $HK=$T2 if (!defined($HK));
c1f092d1
AP
854
855 &pclmulqdq ($Xi,$Hkey,0x00); #######
856 &pclmulqdq ($Xhi,$Hkey,0x11); #######
273a8081 857 &pclmulqdq ($T1,$HK,0x00); #######
bc5b136c
AP
858 &xorps ($T1,$Xi); #
859 &xorps ($T1,$Xhi); #
c1f092d1
AP
860
861 &movdqa ($T2,$T1); #
862 &psrldq ($T1,8);
863 &pslldq ($T2,8); #
864 &pxor ($Xhi,$T1);
865 &pxor ($Xi,$T2); #
866}
e3a510f8 867
c1f092d1
AP
868sub clmul64x64_T3 {
869# Even though this subroutine offers visually better ILP, it
870# was empirically found to be a tad slower than above version.
871# At least in gcm_ghash_clmul context. But it's just as well,
872# because loop modulo-scheduling is possible only thanks to
873# minimized "register" pressure...
874my ($Xhi,$Xi,$Hkey)=@_;
875
876 &movdqa ($T1,$Xi); #
877 &movdqa ($Xhi,$Xi);
878 &pclmulqdq ($Xi,$Hkey,0x00); #######
879 &pclmulqdq ($Xhi,$Hkey,0x11); #######
880 &pshufd ($T2,$T1,0b01001110); #
881 &pshufd ($T3,$Hkey,0b01001110);
882 &pxor ($T2,$T1); #
883 &pxor ($T3,$Hkey);
884 &pclmulqdq ($T2,$T3,0x00); #######
885 &pxor ($T2,$Xi); #
886 &pxor ($T2,$Xhi); #
887
888 &movdqa ($T3,$T2); #
889 &psrldq ($T2,8);
890 &pslldq ($T3,8); #
891 &pxor ($Xhi,$T2);
892 &pxor ($Xi,$T3); #
893}
894\f
895if (1) { # Algorithm 9 with <<1 twist.
896 # Reduction is shorter and uses only two
897 # temporary registers, which makes it better
898 # candidate for interleaving with 64x64
899 # multiplication. Pre-modulo-scheduled loop
900 # was found to be ~20% faster than Algorithm 5
07e29c12
AP
901 # below. Algorithm 9 was therefore chosen for
902 # further optimization...
c1f092d1 903
273a8081 904sub reduction_alg9 { # 17/11 times faster than Intel version
c1f092d1
AP
905my ($Xhi,$Xi) = @_;
906
907 # 1st phase
273a8081
AP
908 &movdqa ($T2,$Xi); #
909 &movdqa ($T1,$Xi);
910 &psllq ($Xi,5);
911 &pxor ($T1,$Xi); #
c1f092d1
AP
912 &psllq ($Xi,1);
913 &pxor ($Xi,$T1); #
c1f092d1 914 &psllq ($Xi,57); #
273a8081 915 &movdqa ($T1,$Xi); #
c1f092d1 916 &pslldq ($Xi,8);
609b0852 917 &psrldq ($T1,8); #
273a8081
AP
918 &pxor ($Xi,$T2);
919 &pxor ($Xhi,$T1); #
c1f092d1
AP
920
921 # 2nd phase
922 &movdqa ($T2,$Xi);
273a8081
AP
923 &psrlq ($Xi,1);
924 &pxor ($Xhi,$T2); #
925 &pxor ($T2,$Xi);
c1f092d1
AP
926 &psrlq ($Xi,5);
927 &pxor ($Xi,$T2); #
928 &psrlq ($Xi,1); #
273a8081 929 &pxor ($Xi,$Xhi) #
c1f092d1 930}
e3a510f8 931
c1f092d1
AP
932&function_begin_B("gcm_init_clmul");
933 &mov ($Htbl,&wparam(0));
934 &mov ($Xip,&wparam(1));
e3a510f8 935
c1f092d1
AP
936 &call (&label("pic"));
937&set_label("pic");
938 &blindpop ($const);
939 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
e3a510f8 940
c1f092d1
AP
941 &movdqu ($Hkey,&QWP(0,$Xip));
942 &pshufd ($Hkey,$Hkey,0b01001110);# dword swap
e3a510f8 943
c1f092d1
AP
944 # <<1 twist
945 &pshufd ($T2,$Hkey,0b11111111); # broadcast uppermost dword
946 &movdqa ($T1,$Hkey);
947 &psllq ($Hkey,1);
948 &pxor ($T3,$T3); #
949 &psrlq ($T1,63);
950 &pcmpgtd ($T3,$T2); # broadcast carry bit
951 &pslldq ($T1,8);
952 &por ($Hkey,$T1); # H<<=1
e3a510f8 953
c1f092d1
AP
954 # magic reduction
955 &pand ($T3,&QWP(16,$const)); # 0x1c2_polynomial
956 &pxor ($Hkey,$T3); # if(carry) H^=0x1c2_polynomial
e3a510f8 957
c1f092d1
AP
958 # calculate H^2
959 &movdqa ($Xi,$Hkey);
960 &clmul64x64_T2 ($Xhi,$Xi,$Hkey);
961 &reduction_alg9 ($Xhi,$Xi);
e3a510f8 962
273a8081
AP
963 &pshufd ($T1,$Hkey,0b01001110);
964 &pshufd ($T2,$Xi,0b01001110);
965 &pxor ($T1,$Hkey); # Karatsuba pre-processing
c1f092d1 966 &movdqu (&QWP(0,$Htbl),$Hkey); # save H
273a8081 967 &pxor ($T2,$Xi); # Karatsuba pre-processing
c1f092d1 968 &movdqu (&QWP(16,$Htbl),$Xi); # save H^2
273a8081
AP
969 &palignr ($T2,$T1,8); # low part is H.lo^H.hi
970 &movdqu (&QWP(32,$Htbl),$T2); # save Karatsuba "salt"
c1f092d1
AP
971
972 &ret ();
973&function_end_B("gcm_init_clmul");
974
975&function_begin_B("gcm_gmult_clmul");
976 &mov ($Xip,&wparam(0));
977 &mov ($Htbl,&wparam(1));
978
979 &call (&label("pic"));
980&set_label("pic");
981 &blindpop ($const);
982 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
983
984 &movdqu ($Xi,&QWP(0,$Xip));
985 &movdqa ($T3,&QWP(0,$const));
bc5b136c 986 &movups ($Hkey,&QWP(0,$Htbl));
c1f092d1 987 &pshufb ($Xi,$T3);
273a8081 988 &movups ($T2,&QWP(32,$Htbl));
c1f092d1 989
273a8081 990 &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$T2);
c1f092d1
AP
991 &reduction_alg9 ($Xhi,$Xi);
992
993 &pshufb ($Xi,$T3);
994 &movdqu (&QWP(0,$Xip),$Xi);
995
996 &ret ();
997&function_end_B("gcm_gmult_clmul");
998
999&function_begin("gcm_ghash_clmul");
1000 &mov ($Xip,&wparam(0));
1001 &mov ($Htbl,&wparam(1));
1002 &mov ($inp,&wparam(2));
1003 &mov ($len,&wparam(3));
1004
1005 &call (&label("pic"));
1006&set_label("pic");
1007 &blindpop ($const);
1008 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1009
1010 &movdqu ($Xi,&QWP(0,$Xip));
1011 &movdqa ($T3,&QWP(0,$const));
1012 &movdqu ($Hkey,&QWP(0,$Htbl));
1013 &pshufb ($Xi,$T3);
1014
1015 &sub ($len,0x10);
1016 &jz (&label("odd_tail"));
1017
1018 #######
1019 # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
1020 # [(H*Ii+1) + (H*Xi+1)] mod P =
1021 # [(H*Ii+1) + H^2*(Ii+Xi)] mod P
1022 #
1023 &movdqu ($T1,&QWP(0,$inp)); # Ii
1024 &movdqu ($Xn,&QWP(16,$inp)); # Ii+1
1025 &pshufb ($T1,$T3);
1026 &pshufb ($Xn,$T3);
273a8081 1027 &movdqu ($T3,&QWP(32,$Htbl));
c1f092d1
AP
1028 &pxor ($Xi,$T1); # Ii+Xi
1029
273a8081
AP
1030 &pshufd ($T1,$Xn,0b01001110); # H*Ii+1
1031 &movdqa ($Xhn,$Xn);
1032 &pxor ($T1,$Xn); #
98e143f1 1033 &lea ($inp,&DWP(32,$inp)); # i+=2
273a8081
AP
1034
1035 &pclmulqdq ($Xn,$Hkey,0x00); #######
1036 &pclmulqdq ($Xhn,$Hkey,0x11); #######
273a8081 1037 &pclmulqdq ($T1,$T3,0x00); #######
98e143f1
AP
1038 &movups ($Hkey,&QWP(16,$Htbl)); # load H^2
1039 &nop ();
c1f092d1 1040
c1f092d1
AP
1041 &sub ($len,0x20);
1042 &jbe (&label("even_tail"));
273a8081 1043 &jmp (&label("mod_loop"));
c1f092d1 1044
273a8081
AP
1045&set_label("mod_loop",32);
1046 &pshufd ($T2,$Xi,0b01001110); # H^2*(Ii+Xi)
1047 &movdqa ($Xhi,$Xi);
1048 &pxor ($T2,$Xi); #
98e143f1 1049 &nop ();
c1f092d1 1050
273a8081
AP
1051 &pclmulqdq ($Xi,$Hkey,0x00); #######
1052 &pclmulqdq ($Xhi,$Hkey,0x11); #######
273a8081 1053 &pclmulqdq ($T2,$T3,0x10); #######
98e143f1 1054 &movups ($Hkey,&QWP(0,$Htbl)); # load H
c1f092d1 1055
273a8081 1056 &xorps ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
98e143f1 1057 &movdqa ($T3,&QWP(0,$const));
273a8081
AP
1058 &xorps ($Xhi,$Xhn);
1059 &movdqu ($Xhn,&QWP(0,$inp)); # Ii
1060 &pxor ($T1,$Xi); # aggregated Karatsuba post-processing
1061 &movdqu ($Xn,&QWP(16,$inp)); # Ii+1
1062 &pxor ($T1,$Xhi); #
c1f092d1 1063
273a8081 1064 &pshufb ($Xhn,$T3);
98e143f1 1065 &pxor ($T2,$T1); #
c1f092d1 1066
273a8081
AP
1067 &movdqa ($T1,$T2); #
1068 &psrldq ($T2,8);
1069 &pslldq ($T1,8); #
1070 &pxor ($Xhi,$T2);
1071 &pxor ($Xi,$T1); #
1072 &pshufb ($Xn,$T3);
1073 &pxor ($Xhi,$Xhn); # "Ii+Xi", consume early
1074
1075 &movdqa ($Xhn,$Xn); #&clmul64x64_TX ($Xhn,$Xn,$Hkey); H*Ii+1
1076 &movdqa ($T2,$Xi); #&reduction_alg9($Xhi,$Xi); 1st phase
1077 &movdqa ($T1,$Xi);
1078 &psllq ($Xi,5);
1079 &pxor ($T1,$Xi); #
c1f092d1
AP
1080 &psllq ($Xi,1);
1081 &pxor ($Xi,$T1); #
c1f092d1 1082 &pclmulqdq ($Xn,$Hkey,0x00); #######
98e143f1 1083 &movups ($T3,&QWP(32,$Htbl));
c1f092d1 1084 &psllq ($Xi,57); #
273a8081 1085 &movdqa ($T1,$Xi); #
c1f092d1 1086 &pslldq ($Xi,8);
609b0852 1087 &psrldq ($T1,8); #
273a8081
AP
1088 &pxor ($Xi,$T2);
1089 &pxor ($Xhi,$T1); #
1090 &pshufd ($T1,$Xhn,0b01001110);
c1f092d1 1091 &movdqa ($T2,$Xi); # 2nd phase
273a8081
AP
1092 &psrlq ($Xi,1);
1093 &pxor ($T1,$Xhn);
98e143f1 1094 &pxor ($Xhi,$T2); #
273a8081
AP
1095 &pclmulqdq ($Xhn,$Hkey,0x11); #######
1096 &movups ($Hkey,&QWP(16,$Htbl)); # load H^2
273a8081 1097 &pxor ($T2,$Xi);
c1f092d1
AP
1098 &psrlq ($Xi,5);
1099 &pxor ($Xi,$T2); #
1100 &psrlq ($Xi,1); #
273a8081 1101 &pxor ($Xi,$Xhi) #
c1f092d1 1102 &pclmulqdq ($T1,$T3,0x00); #######
c1f092d1
AP
1103
1104 &lea ($inp,&DWP(32,$inp));
1105 &sub ($len,0x20);
1106 &ja (&label("mod_loop"));
1107
1108&set_label("even_tail");
273a8081
AP
1109 &pshufd ($T2,$Xi,0b01001110); # H^2*(Ii+Xi)
1110 &movdqa ($Xhi,$Xi);
1111 &pxor ($T2,$Xi); #
1112
1113 &pclmulqdq ($Xi,$Hkey,0x00); #######
1114 &pclmulqdq ($Xhi,$Hkey,0x11); #######
1115 &pclmulqdq ($T2,$T3,0x10); #######
1116 &movdqa ($T3,&QWP(0,$const));
1117
1118 &xorps ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
1119 &xorps ($Xhi,$Xhn);
1120 &pxor ($T1,$Xi); # aggregated Karatsuba post-processing
1121 &pxor ($T1,$Xhi); #
1122
1123 &pxor ($T2,$T1); #
c1f092d1 1124
273a8081
AP
1125 &movdqa ($T1,$T2); #
1126 &psrldq ($T2,8);
1127 &pslldq ($T1,8); #
1128 &pxor ($Xhi,$T2);
1129 &pxor ($Xi,$T1); #
c1f092d1
AP
1130
1131 &reduction_alg9 ($Xhi,$Xi);
1132
1133 &test ($len,$len);
1134 &jnz (&label("done"));
1135
bc5b136c 1136 &movups ($Hkey,&QWP(0,$Htbl)); # load H
c1f092d1
AP
1137&set_label("odd_tail");
1138 &movdqu ($T1,&QWP(0,$inp)); # Ii
1139 &pshufb ($T1,$T3);
1140 &pxor ($Xi,$T1); # Ii+Xi
1141
1142 &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi)
1143 &reduction_alg9 ($Xhi,$Xi);
1144
1145&set_label("done");
1146 &pshufb ($Xi,$T3);
1147 &movdqu (&QWP(0,$Xip),$Xi);
1148&function_end("gcm_ghash_clmul");
1149\f
60250017 1150} else { # Algorithm 5. Kept for reference purposes.
c1f092d1
AP
1151
1152sub reduction_alg5 { # 19/16 times faster than Intel version
1153my ($Xhi,$Xi)=@_;
1154
1155 # <<1
1156 &movdqa ($T1,$Xi); #
1157 &movdqa ($T2,$Xhi);
1158 &pslld ($Xi,1);
1159 &pslld ($Xhi,1); #
1160 &psrld ($T1,31);
1161 &psrld ($T2,31); #
1162 &movdqa ($T3,$T1);
1163 &pslldq ($T1,4);
1164 &psrldq ($T3,12); #
1165 &pslldq ($T2,4);
1166 &por ($Xhi,$T3); #
1167 &por ($Xi,$T1);
1168 &por ($Xhi,$T2); #
1169
1170 # 1st phase
1171 &movdqa ($T1,$Xi);
1172 &movdqa ($T2,$Xi);
1173 &movdqa ($T3,$Xi); #
1174 &pslld ($T1,31);
1175 &pslld ($T2,30);
1176 &pslld ($Xi,25); #
1177 &pxor ($T1,$T2);
1178 &pxor ($T1,$Xi); #
1179 &movdqa ($T2,$T1); #
1180 &pslldq ($T1,12);
1181 &psrldq ($T2,4); #
1182 &pxor ($T3,$T1);
1183
1184 # 2nd phase
1185 &pxor ($Xhi,$T3); #
1186 &movdqa ($Xi,$T3);
1187 &movdqa ($T1,$T3);
1188 &psrld ($Xi,1); #
1189 &psrld ($T1,2);
1190 &psrld ($T3,7); #
1191 &pxor ($Xi,$T1);
1192 &pxor ($Xhi,$T2);
1193 &pxor ($Xi,$T3); #
1194 &pxor ($Xi,$Xhi); #
e3a510f8
AP
1195}
1196
c1f092d1
AP
1197&function_begin_B("gcm_init_clmul");
1198 &mov ($Htbl,&wparam(0));
1199 &mov ($Xip,&wparam(1));
1200
1201 &call (&label("pic"));
1202&set_label("pic");
1203 &blindpop ($const);
1204 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1205
1206 &movdqu ($Hkey,&QWP(0,$Xip));
1207 &pshufd ($Hkey,$Hkey,0b01001110);# dword swap
1208
1209 # calculate H^2
1210 &movdqa ($Xi,$Hkey);
1211 &clmul64x64_T3 ($Xhi,$Xi,$Hkey);
1212 &reduction_alg5 ($Xhi,$Xi);
1213
1214 &movdqu (&QWP(0,$Htbl),$Hkey); # save H
1215 &movdqu (&QWP(16,$Htbl),$Xi); # save H^2
1216
1217 &ret ();
1218&function_end_B("gcm_init_clmul");
1219
1220&function_begin_B("gcm_gmult_clmul");
1221 &mov ($Xip,&wparam(0));
1222 &mov ($Htbl,&wparam(1));
1223
1224 &call (&label("pic"));
1225&set_label("pic");
1226 &blindpop ($const);
1227 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1228
1229 &movdqu ($Xi,&QWP(0,$Xip));
1230 &movdqa ($Xn,&QWP(0,$const));
1231 &movdqu ($Hkey,&QWP(0,$Htbl));
1232 &pshufb ($Xi,$Xn);
1233
1234 &clmul64x64_T3 ($Xhi,$Xi,$Hkey);
1235 &reduction_alg5 ($Xhi,$Xi);
1236
1237 &pshufb ($Xi,$Xn);
1238 &movdqu (&QWP(0,$Xip),$Xi);
1239
1240 &ret ();
1241&function_end_B("gcm_gmult_clmul");
1242
1243&function_begin("gcm_ghash_clmul");
1244 &mov ($Xip,&wparam(0));
1245 &mov ($Htbl,&wparam(1));
1246 &mov ($inp,&wparam(2));
1247 &mov ($len,&wparam(3));
1248
1249 &call (&label("pic"));
1250&set_label("pic");
1251 &blindpop ($const);
1252 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1253
1254 &movdqu ($Xi,&QWP(0,$Xip));
1255 &movdqa ($T3,&QWP(0,$const));
1256 &movdqu ($Hkey,&QWP(0,$Htbl));
1257 &pshufb ($Xi,$T3);
1258
1259 &sub ($len,0x10);
1260 &jz (&label("odd_tail"));
1261
1262 #######
1263 # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
1264 # [(H*Ii+1) + (H*Xi+1)] mod P =
1265 # [(H*Ii+1) + H^2*(Ii+Xi)] mod P
1266 #
1267 &movdqu ($T1,&QWP(0,$inp)); # Ii
1268 &movdqu ($Xn,&QWP(16,$inp)); # Ii+1
1269 &pshufb ($T1,$T3);
1270 &pshufb ($Xn,$T3);
1271 &pxor ($Xi,$T1); # Ii+Xi
1272
1273 &clmul64x64_T3 ($Xhn,$Xn,$Hkey); # H*Ii+1
1274 &movdqu ($Hkey,&QWP(16,$Htbl)); # load H^2
1275
1276 &sub ($len,0x20);
1277 &lea ($inp,&DWP(32,$inp)); # i+=2
1278 &jbe (&label("even_tail"));
1279
1280&set_label("mod_loop");
1281 &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi)
1282 &movdqu ($Hkey,&QWP(0,$Htbl)); # load H
1283
1284 &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
1285 &pxor ($Xhi,$Xhn);
1286
1287 &reduction_alg5 ($Xhi,$Xi);
1288
1289 #######
1290 &movdqa ($T3,&QWP(0,$const));
1291 &movdqu ($T1,&QWP(0,$inp)); # Ii
1292 &movdqu ($Xn,&QWP(16,$inp)); # Ii+1
1293 &pshufb ($T1,$T3);
1294 &pshufb ($Xn,$T3);
1295 &pxor ($Xi,$T1); # Ii+Xi
1296
1297 &clmul64x64_T3 ($Xhn,$Xn,$Hkey); # H*Ii+1
1298 &movdqu ($Hkey,&QWP(16,$Htbl)); # load H^2
1299
1300 &sub ($len,0x20);
1301 &lea ($inp,&DWP(32,$inp));
1302 &ja (&label("mod_loop"));
1303
1304&set_label("even_tail");
1305 &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi)
1306
1307 &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
1308 &pxor ($Xhi,$Xhn);
1309
1310 &reduction_alg5 ($Xhi,$Xi);
1311
1312 &movdqa ($T3,&QWP(0,$const));
1313 &test ($len,$len);
1314 &jnz (&label("done"));
1315
1316 &movdqu ($Hkey,&QWP(0,$Htbl)); # load H
1317&set_label("odd_tail");
1318 &movdqu ($T1,&QWP(0,$inp)); # Ii
1319 &pshufb ($T1,$T3);
1320 &pxor ($Xi,$T1); # Ii+Xi
1321
1322 &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi)
1323 &reduction_alg5 ($Xhi,$Xi);
1324
1325 &movdqa ($T3,&QWP(0,$const));
1326&set_label("done");
1327 &pshufb ($Xi,$T3);
1328 &movdqu (&QWP(0,$Xip),$Xi);
1329&function_end("gcm_ghash_clmul");
1330
1331}
1332\f
1333&set_label("bswap",64);
1334 &data_byte(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
1335 &data_byte(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2); # 0x1c2_polynomial
8525950e
AP
1336&set_label("rem_8bit",64);
1337 &data_short(0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E);
1338 &data_short(0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E);
1339 &data_short(0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E);
1340 &data_short(0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E);
1341 &data_short(0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E);
1342 &data_short(0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E);
1343 &data_short(0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E);
1344 &data_short(0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E);
1345 &data_short(0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE);
1346 &data_short(0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE);
1347 &data_short(0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE);
1348 &data_short(0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE);
1349 &data_short(0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E);
1350 &data_short(0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E);
1351 &data_short(0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE);
1352 &data_short(0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE);
1353 &data_short(0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E);
1354 &data_short(0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E);
1355 &data_short(0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E);
1356 &data_short(0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E);
1357 &data_short(0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E);
1358 &data_short(0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E);
1359 &data_short(0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E);
1360 &data_short(0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E);
1361 &data_short(0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE);
1362 &data_short(0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE);
1363 &data_short(0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE);
1364 &data_short(0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE);
1365 &data_short(0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E);
1366 &data_short(0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E);
1367 &data_short(0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE);
1368 &data_short(0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE);
5c88dcca
AP
1369}} # $sse2
1370
1371&set_label("rem_4bit",64);
1372 &data_word(0,0x0000<<$S,0,0x1C20<<$S,0,0x3840<<$S,0,0x2460<<$S);
1373 &data_word(0,0x7080<<$S,0,0x6CA0<<$S,0,0x48C0<<$S,0,0x54E0<<$S);
1374 &data_word(0,0xE100<<$S,0,0xFD20<<$S,0,0xD940<<$S,0,0xC560<<$S);
1375 &data_word(0,0x9180<<$S,0,0x8DA0<<$S,0,0xA9C0<<$S,0,0xB5E0<<$S);
c1f092d1
AP
1376}}} # !$x86only
1377
e3a510f8
AP
1378&asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>");
1379&asm_finish();
07e29c12 1380
4f0d5f18
RL
1381close STDOUT;
1382
07e29c12
AP
1383# A question was risen about choice of vanilla MMX. Or rather why wasn't
1384# SSE2 chosen instead? In addition to the fact that MMX runs on legacy
1385# CPUs such as PIII, "4-bit" MMX version was observed to provide better
1386# performance than *corresponding* SSE2 one even on contemporary CPUs.
1387# SSE2 results were provided by Peter-Michael Hager. He maintains SSE2
1388# implementation featuring full range of lookup-table sizes, but with
1389# per-invocation lookup table setup. Latter means that table size is
1390# chosen depending on how much data is to be hashed in every given call,
1391# more data - larger table. Best reported result for Core2 is ~4 cycles
04e2b793
AP
1392# per processed byte out of 64KB block. This number accounts even for
1393# 64KB table setup overhead. As discussed in gcm128.c we choose to be
1394# more conservative in respect to lookup table sizes, but how do the
1395# results compare? Minimalistic "256B" MMX version delivers ~11 cycles
1396# on same platform. As also discussed in gcm128.c, next in line "8-bit
1397# Shoup's" or "4KB" method should deliver twice the performance of
1398# "256B" one, in other words not worse than ~6 cycles per byte. It
1399# should be also be noted that in SSE2 case improvement can be "super-
1400# linear," i.e. more than twice, mostly because >>8 maps to single
1401# instruction on SSE2 register. This is unlike "4-bit" case when >>4
1402# maps to same amount of instructions in both MMX and SSE2 cases.
8525950e
AP
1403# Bottom line is that switch to SSE2 is considered to be justifiable
1404# only in case we choose to implement "8-bit" method...