]> git.ipfire.org Git - thirdparty/openssl.git/blame - crypto/modes/siv128.c
Move the public SIV mode functions from public headers to internal ones
[thirdparty/openssl.git] / crypto / modes / siv128.c
CommitLineData
b1ceb439
TS
1/*
2 * Copyright 2018 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10#include <string.h>
11#include <stdlib.h>
12#include <openssl/crypto.h>
743694a6 13#include "internal/modes_int.h"
b1ceb439
TS
14#include "modes_lcl.h"
15
16#ifndef OPENSSL_NO_SIV
17
18__owur static ossl_inline uint32_t rotl8(uint32_t x)
19{
20 return (x << 8) | (x >> 24);
21}
22
23__owur static ossl_inline uint32_t rotr8(uint32_t x)
24{
25 return (x >> 8) | (x << 24);
26}
27
28__owur static ossl_inline uint64_t byteswap8(uint64_t x)
29{
30 uint32_t high = (uint32_t)(x >> 32);
31 uint32_t low = (uint32_t)x;
32
33 high = (rotl8(high) & 0x00ff00ff) | (rotr8(high) & 0xff00ff00);
34 low = (rotl8(low) & 0x00ff00ff) | (rotr8(low) & 0xff00ff00);
35 return ((uint64_t)low) << 32 | (uint64_t)high;
36}
37
38__owur static ossl_inline uint64_t siv128_getword(SIV_BLOCK const *b, size_t i)
39{
40 const union {
41 long one;
42 char little;
43 } is_endian = { 1 };
44
45 if (is_endian.little)
46 return byteswap8(b->word[i]);
47 return b->word[i];
48}
49
50static ossl_inline void siv128_putword(SIV_BLOCK *b, size_t i, uint64_t x)
51{
52 const union {
53 long one;
54 char little;
55 } is_endian = { 1 };
56
57 if (is_endian.little)
58 b->word[i] = byteswap8(x);
59 else
60 b->word[i] = x;
61}
62
63static ossl_inline void siv128_xorblock(SIV_BLOCK *x,
64 SIV_BLOCK const *y)
65{
66 x->word[0] ^= y->word[0];
67 x->word[1] ^= y->word[1];
68}
69
70/*
71 * Doubles |b|, which is 16 bytes representing an element
72 * of GF(2**128) modulo the irreducible polynomial
73 * x**128 + x**7 + x**2 + x + 1.
74 * Assumes two's-complement arithmetic
75 */
76static ossl_inline void siv128_dbl(SIV_BLOCK *b)
77{
78 uint64_t high = siv128_getword(b, 0);
79 uint64_t low = siv128_getword(b, 1);
80 uint64_t high_carry = high & (((uint64_t)1) << 63);
81 uint64_t low_carry = low & (((uint64_t)1) << 63);
82 int64_t low_mask = -((int64_t)(high_carry >> 63)) & 0x87;
83 uint64_t high_mask = low_carry >> 63;
84
85 high = (high << 1) | high_mask;
86 low = (low << 1) ^ (uint64_t)low_mask;
87 siv128_putword(b, 0, high);
88 siv128_putword(b, 1, low);
89}
90
91__owur static ossl_inline int siv128_do_s2v_p(SIV128_CONTEXT *ctx, SIV_BLOCK *out,
92 unsigned char const* in, size_t len)
93{
94 SIV_BLOCK t;
95 size_t out_len = sizeof(out->byte);
be5fc053
KR
96 EVP_MAC_CTX *mac_ctx;
97 int ret = 0;
b1ceb439 98
be5fc053
KR
99 mac_ctx = EVP_MAC_CTX_dup(ctx->mac_ctx_init);
100 if (mac_ctx == NULL)
b1ceb439
TS
101 return 0;
102
103 if (len >= SIV_LEN) {
be5fc053
KR
104 if (!EVP_MAC_update(mac_ctx, in, len - SIV_LEN))
105 goto err;
b1ceb439
TS
106 memcpy(&t, in + (len-SIV_LEN), SIV_LEN);
107 siv128_xorblock(&t, &ctx->d);
be5fc053
KR
108 if (!EVP_MAC_update(mac_ctx, t.byte, SIV_LEN))
109 goto err;
b1ceb439
TS
110 } else {
111 memset(&t, 0, sizeof(t));
112 memcpy(&t, in, len);
113 t.byte[len] = 0x80;
114 siv128_dbl(&ctx->d);
115 siv128_xorblock(&t, &ctx->d);
be5fc053
KR
116 if (!EVP_MAC_update(mac_ctx, t.byte, SIV_LEN))
117 goto err;
b1ceb439 118 }
be5fc053 119 if (!EVP_MAC_final(mac_ctx, out->byte, &out_len)
b1ceb439 120 || out_len != SIV_LEN)
be5fc053
KR
121 goto err;
122
123 ret = 1;
124
125err:
126 EVP_MAC_CTX_free(mac_ctx);
127 return ret;
b1ceb439
TS
128}
129
130
131__owur static ossl_inline int siv128_do_encrypt(EVP_CIPHER_CTX *ctx, unsigned char *out,
132 unsigned char const *in, size_t len,
133 SIV_BLOCK *icv)
134{
135 int out_len = (int)len;
136
137 if (!EVP_CipherInit_ex(ctx, NULL, NULL, NULL, icv->byte, 1))
138 return 0;
139 return EVP_EncryptUpdate(ctx, out, &out_len, in, out_len);
140}
141
142/*
143 * Create a new SIV128_CONTEXT
144 */
145SIV128_CONTEXT *CRYPTO_siv128_new(const unsigned char *key, int klen, EVP_CIPHER* cbc, EVP_CIPHER* ctr)
146{
147 SIV128_CONTEXT *ctx;
148 int ret;
149
150 if ((ctx = OPENSSL_malloc(sizeof(*ctx))) != NULL) {
151 ret = CRYPTO_siv128_init(ctx, key, klen, cbc, ctr);
152 if (ret)
153 return ctx;
154 OPENSSL_free(ctx);
155 }
156
157 return NULL;
158}
159
160/*
161 * Initialise an existing SIV128_CONTEXT
162 */
163int CRYPTO_siv128_init(SIV128_CONTEXT *ctx, const unsigned char *key, int klen,
164 const EVP_CIPHER* cbc, const EVP_CIPHER* ctr)
165{
166 static const unsigned char zero[SIV_LEN] = { 0 };
167 size_t out_len = SIV_LEN;
be5fc053 168 EVP_MAC_CTX *mac_ctx = NULL;
b1ceb439
TS
169
170 memset(&ctx->d, 0, sizeof(ctx->d));
171 ctx->cipher_ctx = NULL;
9a3b5b76 172 ctx->mac_ctx_init = NULL;
b1ceb439
TS
173
174 if (key == NULL || cbc == NULL || ctr == NULL
175 || (ctx->cipher_ctx = EVP_CIPHER_CTX_new()) == NULL
9a3b5b76 176 || (ctx->mac_ctx_init = EVP_MAC_CTX_new_id(EVP_MAC_CMAC)) == NULL
17838470
MC
177 || EVP_MAC_ctrl(ctx->mac_ctx_init, EVP_MAC_CTRL_SET_CIPHER, cbc) <= 0
178 || EVP_MAC_ctrl(ctx->mac_ctx_init, EVP_MAC_CTRL_SET_KEY, key, klen) <= 0
b1ceb439 179 || !EVP_EncryptInit_ex(ctx->cipher_ctx, ctr, NULL, key + klen, NULL)
be5fc053
KR
180 || (mac_ctx = EVP_MAC_CTX_dup(ctx->mac_ctx_init)) == NULL
181 || !EVP_MAC_update(mac_ctx, zero, sizeof(zero))
182 || !EVP_MAC_final(mac_ctx, ctx->d.byte, &out_len)) {
b1ceb439 183 EVP_CIPHER_CTX_free(ctx->cipher_ctx);
9a3b5b76 184 EVP_MAC_CTX_free(ctx->mac_ctx_init);
be5fc053 185 EVP_MAC_CTX_free(mac_ctx);
b1ceb439
TS
186 return 0;
187 }
be5fc053 188 EVP_MAC_CTX_free(mac_ctx);
b1ceb439
TS
189
190 ctx->final_ret = -1;
191 ctx->crypto_ok = 1;
192
193 return 1;
194}
195
196/*
197 * Copy an SIV128_CONTEXT object
198 */
199int CRYPTO_siv128_copy_ctx(SIV128_CONTEXT *dest, SIV128_CONTEXT *src)
200{
201 memcpy(&dest->d, &src->d, sizeof(src->d));
202 if (!EVP_CIPHER_CTX_copy(dest->cipher_ctx, src->cipher_ctx))
203 return 0;
be5fc053
KR
204 EVP_MAC_CTX_free(dest->mac_ctx_init);
205 dest->mac_ctx_init = EVP_MAC_CTX_dup(src->mac_ctx_init);
206 if (dest->mac_ctx_init == NULL)
b1ceb439 207 return 0;
b1ceb439
TS
208 return 1;
209}
210
211/*
212 * Provide any AAD. This can be called multiple times.
213 * Per RFC5297, the last piece of associated data
214 * is the nonce, but it's not treated special
215 */
216int CRYPTO_siv128_aad(SIV128_CONTEXT *ctx, const unsigned char *aad,
217 size_t len)
218{
9a3b5b76 219 SIV_BLOCK mac_out;
b1ceb439 220 size_t out_len = SIV_LEN;
be5fc053 221 EVP_MAC_CTX *mac_ctx;
b1ceb439
TS
222
223 siv128_dbl(&ctx->d);
224
be5fc053
KR
225 mac_ctx = EVP_MAC_CTX_dup(ctx->mac_ctx_init);
226 if (mac_ctx == NULL
227 || !EVP_MAC_update(mac_ctx, aad, len)
228 || !EVP_MAC_final(mac_ctx, mac_out.byte, &out_len)
229 || out_len != SIV_LEN) {
230 EVP_MAC_CTX_free(mac_ctx);
b1ceb439 231 return 0;
be5fc053
KR
232 }
233 EVP_MAC_CTX_free(mac_ctx);
b1ceb439 234
9a3b5b76 235 siv128_xorblock(&ctx->d, &mac_out);
b1ceb439
TS
236
237 return 1;
b1ceb439
TS
238}
239
240/*
241 * Provide any data to be encrypted. This can be called once.
242 */
243int CRYPTO_siv128_encrypt(SIV128_CONTEXT *ctx,
244 const unsigned char *in, unsigned char *out,
245 size_t len)
246{
247 SIV_BLOCK q;
248
249 /* can only do one crypto operation */
250 if (ctx->crypto_ok == 0)
251 return 0;
252 ctx->crypto_ok--;
253
254 if (!siv128_do_s2v_p(ctx, &q, in, len))
255 return 0;
256
257 memcpy(ctx->tag.byte, &q, SIV_LEN);
258 q.byte[8] &= 0x7f;
259 q.byte[12] &= 0x7f;
260
261 if (!siv128_do_encrypt(ctx->cipher_ctx, out, in, len, &q))
262 return 0;
263 ctx->final_ret = 0;
264 return len;
265}
266
267/*
268 * Provide any data to be decrypted. This can be called once.
269 */
270int CRYPTO_siv128_decrypt(SIV128_CONTEXT *ctx,
271 const unsigned char *in, unsigned char *out,
272 size_t len)
273{
274 unsigned char* p;
275 SIV_BLOCK t, q;
276 int i;
277
278 /* can only do one crypto operation */
279 if (ctx->crypto_ok == 0)
280 return 0;
281 ctx->crypto_ok--;
282
283 memcpy(&q, ctx->tag.byte, SIV_LEN);
284 q.byte[8] &= 0x7f;
285 q.byte[12] &= 0x7f;
286
287 if (!siv128_do_encrypt(ctx->cipher_ctx, out, in, len, &q)
288 || !siv128_do_s2v_p(ctx, &t, out, len))
289 return 0;
290
291 p = ctx->tag.byte;
292 for (i = 0; i < SIV_LEN; i++)
293 t.byte[i] ^= p[i];
294
295 if ((t.word[0] | t.word[1]) != 0) {
296 OPENSSL_cleanse(out, len);
297 return 0;
298 }
299 ctx->final_ret = 0;
300 return len;
301}
302
303/*
304 * Return the already calculated final result.
305 */
306int CRYPTO_siv128_finish(SIV128_CONTEXT *ctx)
307{
308 return ctx->final_ret;
309}
310
311/*
312 * Set the tag
313 */
314int CRYPTO_siv128_set_tag(SIV128_CONTEXT *ctx, const unsigned char *tag, size_t len)
315{
316 if (len != SIV_LEN)
317 return 0;
318
319 /* Copy the tag from the supplied buffer */
320 memcpy(ctx->tag.byte, tag, len);
321 return 1;
322}
323
324/*
325 * Retrieve the calculated tag
326 */
327int CRYPTO_siv128_get_tag(SIV128_CONTEXT *ctx, unsigned char *tag, size_t len)
328{
329 if (len != SIV_LEN)
330 return 0;
331
332 /* Copy the tag into the supplied buffer */
333 memcpy(tag, ctx->tag.byte, len);
334 return 1;
335}
336
337/*
338 * Release all resources
339 */
340int CRYPTO_siv128_cleanup(SIV128_CONTEXT *ctx)
341{
342 if (ctx != NULL) {
343 EVP_CIPHER_CTX_free(ctx->cipher_ctx);
344 ctx->cipher_ctx = NULL;
9a3b5b76
TS
345 EVP_MAC_CTX_free(ctx->mac_ctx_init);
346 ctx->mac_ctx_init = NULL;
b1ceb439
TS
347 OPENSSL_cleanse(&ctx->d, sizeof(ctx->d));
348 OPENSSL_cleanse(&ctx->tag, sizeof(ctx->tag));
349 ctx->final_ret = -1;
350 ctx->crypto_ok = 1;
351 }
352 return 1;
353}
354
355int CRYPTO_siv128_speed(SIV128_CONTEXT *ctx, int arg)
356{
357 ctx->crypto_ok = (arg == 1) ? -1 : 1;
358 return 1;
359}
360
361#endif /* OPENSSL_NO_SIV */