]> git.ipfire.org Git - thirdparty/openssl.git/blame - crypto/sha/asm/sha1-586.pl
More typo fixes
[thirdparty/openssl.git] / crypto / sha / asm / sha1-586.pl
CommitLineData
6aa36e8e
RS
1#! /usr/bin/env perl
2# Copyright 1998-2016 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License"). You may not use
5# this file except in compliance with the License. You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
500b5a18
AP
9
10# ====================================================================
35c77b73 11# [Re]written by Andy Polyakov <appro@openssl.org> for the OpenSSL
f0f61f6d
AP
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
500b5a18
AP
15# ====================================================================
16
17# "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
18# functions were re-implemented to address P4 performance issue [see
19# commentary below], and in 2006 the rest was rewritten in order to
20# gain freedom to liberate licensing terms.
58964a49 21
c372482c
AP
22# January, September 2004.
23#
30cb9ec7
AP
24# It was noted that Intel IA-32 C compiler generates code which
25# performs ~30% *faster* on P4 CPU than original *hand-coded*
26# SHA1 assembler implementation. To address this problem (and
27# prove that humans are still better than machines:-), the
28# original code was overhauled, which resulted in following
29# performance changes:
30#
31# compared with original compared with Intel cc
32# assembler impl. generated code
c29ef588 33# Pentium -16% +48%
30cb9ec7
AP
34# PIII/AMD +8% +16%
35# P4 +85%(!) +45%
36#
37# As you can see Pentium came out as looser:-( Yet I reckoned that
38# improvement on P4 outweights the loss and incorporate this
39# re-tuned code to 0.9.7 and later.
40# ----------------------------------------------------------------
30cb9ec7
AP
41# <appro@fy.chalmers.se>
42
c372482c
AP
43# August 2009.
44#
45# George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as
46# '(c&d) + (b&(c^d))', which allows to accumulate partial results
47# and lighten "pressure" on scratch registers. This resulted in
48# >12% performance improvement on contemporary AMD cores (with no
49# degradation on other CPUs:-). Also, the code was revised to maximize
50# "distance" between instructions producing input to 'lea' instruction
51# and the 'lea' instruction itself, which is essential for Intel Atom
0c149802
AP
52# core and resulted in ~15% improvement.
53
54# October 2010.
55#
56# Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it
57# is to offload message schedule denoted by Wt in NIST specification,
58# or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel,
59# and in SSE2 context was first explored by Dean Gaudet in 2004, see
60# http://arctic.org/~dean/crypto/sha1.html. Since then several things
61# have changed that made it interesting again:
62#
63# a) XMM units became faster and wider;
64# b) instruction set became more versatile;
65# c) an important observation was made by Max Locktykhin, which made
66# it possible to reduce amount of instructions required to perform
67# the operation in question, for further details see
68# http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/.
69
70# April 2011.
71#
72# Add AVX code path, probably most controversial... The thing is that
73# switch to AVX alone improves performance by as little as 4% in
74# comparison to SSSE3 code path. But below result doesn't look like
75# 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as
053fa39a 76# pair of µ-ops, and it's the additional µ-ops, two per round, that
0c149802 77# make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded
053fa39a 78# as single µ-op by Sandy Bridge and it's replacing 'ro[rl]' with
0c149802
AP
79# equivalent 'sh[rl]d' that is responsible for the impressive 5.1
80# cycles per processed byte. But 'sh[rl]d' is not something that used
81# to be fast, nor does it appear to be fast in upcoming Bulldozer
82# [according to its optimization manual]. Which is why AVX code path
83# is guarded by *both* AVX and synthetic bit denoting Intel CPUs.
84# One can argue that it's unfair to AMD, but without 'sh[rl]d' it
85# makes no sense to keep the AVX code path. If somebody feels that
86# strongly, it's probably more appropriate to discuss possibility of
87# using vector rotate XOP on AMD...
88
619b9466
AP
89# March 2014.
90#
91# Add support for Intel SHA Extensions.
92
0c149802
AP
93######################################################################
94# Current performance is summarized in following table. Numbers are
95# CPU clock cycles spent to process single byte (less is better).
96#
97# x86 SSSE3 AVX
98# Pentium 15.7 -
99# PIII 11.5 -
100# P4 10.6 -
101# AMD K8 7.1 -
35c77b73 102# Core2 7.3 6.0/+22% -
69f45c52 103# Westmere 7.3 5.5/+33% -
35c77b73 104# Sandy Bridge 8.8 6.2/+40% 5.1(**)/+73%
69f45c52 105# Ivy Bridge 7.2 4.8/+51% 4.7(**)/+53%
b217ca63 106# Haswell 6.5 4.3/+51% 4.1(**)/+58%
a30b0522 107# Skylake 6.4 4.1/+55% 4.1(**)/+55%
69f45c52 108# Bulldozer 11.6 6.0/+92%
b217ca63 109# VIA Nano 10.6 7.5/+41%
b59f92e7
AP
110# Atom 12.5 9.3(*)/+35%
111# Silvermont 14.5 9.9(*)/+46%
a30b0522 112# Goldmont 8.8 6.7/+30% 1.7(***)/+415%
0c149802
AP
113#
114# (*) Loop is 1056 instructions long and expected result is ~8.25.
b59f92e7
AP
115# The discrepancy is because of front-end limitations, so
116# called MS-ROM penalties, and on Silvermont even rotate's
117# limited parallelism.
0c149802
AP
118#
119# (**) As per above comment, the result is for AVX *plus* sh[rl]d.
a30b0522
AP
120#
121# (***) SHAEXT result
c372482c 122
f0f61f6d
AP
123$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
124push(@INC,"${dir}","${dir}../../perlasm");
58964a49
RE
125require "x86asm.pl";
126
e87e380a
RL
127$output=pop;
128open STDOUT,">$output";
129
2613c1fa 130&asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386");
58964a49 131
0c149802
AP
132$xmm=$ymm=0;
133for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); }
134
135$ymm=1 if ($xmm &&
afa4b386 136 `$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
0c149802
AP
137 =~ /GNU assembler version ([2-9]\.[0-9]+)/ &&
138 $1>=2.19); # first version supporting AVX
139
609b0852 140$ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32n" &&
0c149802
AP
141 `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/ &&
142 $1>=2.03); # first version supporting AVX
143
367b1264
AP
144$ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32" &&
145 `ml 2>&1` =~ /Version ([0-9]+)\./ &&
146 $1>=10); # first version supporting AVX
147
a356e488
AP
148$ymm=1 if ($xmm && !$ymm && `$ENV{CC} -v 2>&1` =~ /(^clang version|based on LLVM) ([3-9]\.[0-9]+)/ &&
149 $2>=3.0); # first version supporting AVX
ac171925 150
977f32e8
AP
151$shaext=$xmm; ### set to zero if compiling for 1.0.1
152
0c149802
AP
153&external_label("OPENSSL_ia32cap_P") if ($xmm);
154
155
58964a49 156$A="eax";
500b5a18
AP
157$B="ebx";
158$C="ecx";
58964a49
RE
159$D="edx";
160$E="edi";
161$T="esi";
162$tmp1="ebp";
163
500b5a18 164@V=($A,$B,$C,$D,$E,$T);
58964a49 165
0c149802
AP
166$alt=0; # 1 denotes alternative IALU implementation, which performs
167 # 8% *worse* on P4, same on Westmere and Atom, 2% better on
168 # Sandy Bridge...
169
58964a49
RE
170sub BODY_00_15
171 {
500b5a18 172 local($n,$a,$b,$c,$d,$e,$f)=@_;
58964a49 173
58964a49
RE
174 &comment("00_15 $n");
175
c29ef588
AP
176 &mov($f,$c); # f to hold F_00_19(b,c,d)
177 if ($n==0) { &mov($tmp1,$a); }
178 else { &mov($a,$tmp1); }
30cb9ec7
AP
179 &rotl($tmp1,5); # tmp1=ROTATE(a,5)
180 &xor($f,$d);
500b5a18 181 &add($tmp1,$e); # tmp1+=e;
c372482c 182 &mov($e,&swtmp($n%16)); # e becomes volatile and is loaded
500b5a18
AP
183 # with xi, also note that e becomes
184 # f in next round...
c372482c 185 &and($f,$b);
c29ef588 186 &rotr($b,2); # b=ROTATE(b,30)
c372482c
AP
187 &xor($f,$d); # f holds F_00_19(b,c,d)
188 &lea($tmp1,&DWP(0x5a827999,$tmp1,$e)); # tmp1+=K_00_19+xi
c29ef588 189
c372482c
AP
190 if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round
191 &add($f,$tmp1); } # f+=tmp1
500b5a18 192 else { &add($tmp1,$f); } # f becomes a in next round
0c149802 193 &mov($tmp1,$a) if ($alt && $n==15);
58964a49
RE
194 }
195
196sub BODY_16_19
197 {
500b5a18 198 local($n,$a,$b,$c,$d,$e,$f)=@_;
58964a49 199
58964a49
RE
200 &comment("16_19 $n");
201
0c149802
AP
202if ($alt) {
203 &xor($c,$d);
204 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
205 &and($tmp1,$c); # tmp1 to hold F_00_19(b,c,d), b&=c^d
206 &xor($f,&swtmp(($n+8)%16));
207 &xor($tmp1,$d); # tmp1=F_00_19(b,c,d)
208 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
209 &rotl($f,1); # f=ROTATE(f,1)
210 &add($e,$tmp1); # e+=F_00_19(b,c,d)
211 &xor($c,$d); # restore $c
212 &mov($tmp1,$a); # b in next round
213 &rotr($b,$n==16?2:7); # b=ROTATE(b,30)
214 &mov(&swtmp($n%16),$f); # xi=f
215 &rotl($a,5); # ROTATE(a,5)
216 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
217 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
218 &add($f,$a); # f+=ROTATE(a,5)
219} else {
c372482c
AP
220 &mov($tmp1,$c); # tmp1 to hold F_00_19(b,c,d)
221 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
222 &xor($tmp1,$d);
223 &xor($f,&swtmp(($n+8)%16));
224 &and($tmp1,$b);
500b5a18
AP
225 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
226 &rotl($f,1); # f=ROTATE(f,1)
c29ef588 227 &xor($tmp1,$d); # tmp1=F_00_19(b,c,d)
c372482c
AP
228 &add($e,$tmp1); # e+=F_00_19(b,c,d)
229 &mov($tmp1,$a);
230 &rotr($b,2); # b=ROTATE(b,30)
231 &mov(&swtmp($n%16),$f); # xi=f
232 &rotl($tmp1,5); # ROTATE(a,5)
233 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
234 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
235 &add($f,$tmp1); # f+=ROTATE(a,5)
0c149802 236}
58964a49
RE
237 }
238
239sub BODY_20_39
240 {
500b5a18
AP
241 local($n,$a,$b,$c,$d,$e,$f)=@_;
242 local $K=($n<40)?0x6ed9eba1:0xca62c1d6;
58964a49
RE
243
244 &comment("20_39 $n");
58964a49 245
0c149802
AP
246if ($alt) {
247 &xor($tmp1,$c); # tmp1 to hold F_20_39(b,c,d), b^=c
248 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
249 &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
250 &xor($f,&swtmp(($n+8)%16));
251 &add($e,$tmp1); # e+=F_20_39(b,c,d)
252 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
253 &rotl($f,1); # f=ROTATE(f,1)
254 &mov($tmp1,$a); # b in next round
255 &rotr($b,7); # b=ROTATE(b,30)
256 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
257 &rotl($a,5); # ROTATE(a,5)
258 &xor($b,$c) if($n==39);# warm up for BODY_40_59
259 &and($tmp1,$b) if($n==39);
260 &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY
261 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
262 &add($f,$a); # f+=ROTATE(a,5)
263 &rotr($a,5) if ($n==79);
264} else {
c29ef588 265 &mov($tmp1,$b); # tmp1 to hold F_20_39(b,c,d)
c372482c 266 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
c29ef588 267 &xor($tmp1,$c);
500b5a18 268 &xor($f,&swtmp(($n+8)%16));
c29ef588 269 &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
500b5a18 270 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
30cb9ec7 271 &rotl($f,1); # f=ROTATE(f,1)
c372482c
AP
272 &add($e,$tmp1); # e+=F_20_39(b,c,d)
273 &rotr($b,2); # b=ROTATE(b,30)
274 &mov($tmp1,$a);
275 &rotl($tmp1,5); # ROTATE(a,5)
276 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
277 &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY
278 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
279 &add($f,$tmp1); # f+=ROTATE(a,5)
0c149802 280}
58964a49
RE
281 }
282
283sub BODY_40_59
284 {
500b5a18 285 local($n,$a,$b,$c,$d,$e,$f)=@_;
58964a49
RE
286
287 &comment("40_59 $n");
58964a49 288
0c149802
AP
289if ($alt) {
290 &add($e,$tmp1); # e+=b&(c^d)
291 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
292 &mov($tmp1,$d);
293 &xor($f,&swtmp(($n+8)%16));
294 &xor($c,$d); # restore $c
295 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
296 &rotl($f,1); # f=ROTATE(f,1)
297 &and($tmp1,$c);
298 &rotr($b,7); # b=ROTATE(b,30)
299 &add($e,$tmp1); # e+=c&d
300 &mov($tmp1,$a); # b in next round
301 &mov(&swtmp($n%16),$f); # xi=f
302 &rotl($a,5); # ROTATE(a,5)
303 &xor($b,$c) if ($n<59);
304 &and($tmp1,$b) if ($n<59);# tmp1 to hold F_40_59(b,c,d)
305 &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d))
306 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
307 &add($f,$a); # f+=ROTATE(a,5)
308} else {
c372482c
AP
309 &mov($tmp1,$c); # tmp1 to hold F_40_59(b,c,d)
310 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
311 &xor($tmp1,$d);
312 &xor($f,&swtmp(($n+8)%16));
313 &and($tmp1,$b);
314 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
30cb9ec7 315 &rotl($f,1); # f=ROTATE(f,1)
c372482c 316 &add($tmp1,$e); # b&(c^d)+=e
30cb9ec7 317 &rotr($b,2); # b=ROTATE(b,30)
c372482c
AP
318 &mov($e,$a); # e becomes volatile
319 &rotl($e,5); # ROTATE(a,5)
320 &mov(&swtmp($n%16),$f); # xi=f
321 &lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d))
322 &mov($tmp1,$c);
c29ef588 323 &add($f,$e); # f+=ROTATE(a,5)
c372482c
AP
324 &and($tmp1,$d);
325 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
326 &add($f,$tmp1); # f+=c&d
0c149802 327}
58964a49
RE
328 }
329
87facba3 330&function_begin("sha1_block_data_order");
0c149802 331if ($xmm) {
977f32e8 332 &static_label("shaext_shortcut") if ($shaext);
0c149802
AP
333 &static_label("ssse3_shortcut");
334 &static_label("avx_shortcut") if ($ymm);
335 &static_label("K_XX_XX");
336
337 &call (&label("pic_point")); # make it PIC!
338 &set_label("pic_point");
339 &blindpop($tmp1);
340 &picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point"));
341 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
342
343 &mov ($A,&DWP(0,$T));
344 &mov ($D,&DWP(4,$T));
345 &test ($D,1<<9); # check SSSE3 bit
346 &jz (&label("x86"));
619b9466 347 &mov ($C,&DWP(8,$T));
0c149802
AP
348 &test ($A,1<<24); # check FXSR bit
349 &jz (&label("x86"));
977f32e8
AP
350 if ($shaext) {
351 &test ($C,1<<29); # check SHA bit
352 &jnz (&label("shaext_shortcut"));
353 }
0c149802
AP
354 if ($ymm) {
355 &and ($D,1<<28); # mask AVX bit
356 &and ($A,1<<30); # mask "Intel CPU" bit
357 &or ($A,$D);
358 &cmp ($A,1<<28|1<<30);
359 &je (&label("avx_shortcut"));
360 }
361 &jmp (&label("ssse3_shortcut"));
362 &set_label("x86",16);
363}
500b5a18
AP
364 &mov($tmp1,&wparam(0)); # SHA_CTX *c
365 &mov($T,&wparam(1)); # const void *input
366 &mov($A,&wparam(2)); # size_t num
0c149802 367 &stack_push(16+3); # allocate X[16]
500b5a18
AP
368 &shl($A,6);
369 &add($A,$T);
370 &mov(&wparam(2),$A); # pointer beyond the end of input
371 &mov($E,&DWP(16,$tmp1));# pre-load E
0c149802 372 &jmp(&label("loop"));
58964a49 373
0c149802 374&set_label("loop",16);
500b5a18
AP
375
376 # copy input chunk to X, but reversing byte order!
377 for ($i=0; $i<16; $i+=4)
69fb1c3f 378 {
500b5a18
AP
379 &mov($A,&DWP(4*($i+0),$T));
380 &mov($B,&DWP(4*($i+1),$T));
381 &mov($C,&DWP(4*($i+2),$T));
382 &mov($D,&DWP(4*($i+3),$T));
383 &bswap($A);
384 &bswap($B);
385 &bswap($C);
386 &bswap($D);
69fb1c3f 387 &mov(&swtmp($i+0),$A);
500b5a18
AP
388 &mov(&swtmp($i+1),$B);
389 &mov(&swtmp($i+2),$C);
390 &mov(&swtmp($i+3),$D);
391 }
392 &mov(&wparam(1),$T); # redundant in 1st spin
393
394 &mov($A,&DWP(0,$tmp1)); # load SHA_CTX
395 &mov($B,&DWP(4,$tmp1));
396 &mov($C,&DWP(8,$tmp1));
397 &mov($D,&DWP(12,$tmp1));
398 # E is pre-loaded
399
500b5a18
AP
400 for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
401 for(;$i<20;$i++) { &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
402 for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
403 for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
404 for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
405
406 (($V[5] eq $D) and ($V[0] eq $E)) or die; # double-check
407
408 &mov($tmp1,&wparam(0)); # re-load SHA_CTX*
409 &mov($D,&wparam(1)); # D is last "T" and is discarded
410
411 &add($E,&DWP(0,$tmp1)); # E is last "A"...
412 &add($T,&DWP(4,$tmp1));
413 &add($A,&DWP(8,$tmp1));
414 &add($B,&DWP(12,$tmp1));
415 &add($C,&DWP(16,$tmp1));
416
417 &mov(&DWP(0,$tmp1),$E); # update SHA_CTX
418 &add($D,64); # advance input pointer
419 &mov(&DWP(4,$tmp1),$T);
420 &cmp($D,&wparam(2)); # have we reached the end yet?
421 &mov(&DWP(8,$tmp1),$A);
422 &mov($E,$C); # C is last "E" which needs to be "pre-loaded"
423 &mov(&DWP(12,$tmp1),$B);
424 &mov($T,$D); # input pointer
425 &mov(&DWP(16,$tmp1),$C);
426 &jb(&label("loop"));
427
0c149802 428 &stack_pop(16+3);
c5f17d45 429&function_end("sha1_block_data_order");
0c149802
AP
430
431if ($xmm) {
977f32e8 432if ($shaext) {
619b9466
AP
433######################################################################
434# Intel SHA Extensions implementation of SHA1 update function.
435#
436my ($ctx,$inp,$num)=("edi","esi","ecx");
437my ($ABCD,$E,$E_,$BSWAP)=map("xmm$_",(0..3));
438my @MSG=map("xmm$_",(4..7));
439
440sub sha1rnds4 {
441 my ($dst,$src,$imm)=@_;
442 if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/)
443 { &data_byte(0x0f,0x3a,0xcc,0xc0|($1<<3)|$2,$imm); }
444}
445sub sha1op38 {
446 my ($opcodelet,$dst,$src)=@_;
447 if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/)
448 { &data_byte(0x0f,0x38,$opcodelet,0xc0|($1<<3)|$2); }
449}
450sub sha1nexte { sha1op38(0xc8,@_); }
451sub sha1msg1 { sha1op38(0xc9,@_); }
452sub sha1msg2 { sha1op38(0xca,@_); }
453
454&function_begin("_sha1_block_data_order_shaext");
455 &call (&label("pic_point")); # make it PIC!
456 &set_label("pic_point");
457 &blindpop($tmp1);
458 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
459&set_label("shaext_shortcut");
460 &mov ($ctx,&wparam(0));
461 &mov ("ebx","esp");
462 &mov ($inp,&wparam(1));
463 &mov ($num,&wparam(2));
464 &sub ("esp",32);
465
466 &movdqu ($ABCD,&QWP(0,$ctx));
3372c4ff 467 &movd ($E,&DWP(16,$ctx));
619b9466
AP
468 &and ("esp",-32);
469 &movdqa ($BSWAP,&QWP(0x50,$tmp1)); # byte-n-word swap
470
471 &movdqu (@MSG[0],&QWP(0,$inp));
472 &pshufd ($ABCD,$ABCD,0b00011011); # flip word order
473 &movdqu (@MSG[1],&QWP(0x10,$inp));
474 &pshufd ($E,$E,0b00011011); # flip word order
475 &movdqu (@MSG[2],&QWP(0x20,$inp));
476 &pshufb (@MSG[0],$BSWAP);
477 &movdqu (@MSG[3],&QWP(0x30,$inp));
478 &pshufb (@MSG[1],$BSWAP);
479 &pshufb (@MSG[2],$BSWAP);
480 &pshufb (@MSG[3],$BSWAP);
481 &jmp (&label("loop_shaext"));
482
483&set_label("loop_shaext",16);
484 &dec ($num);
485 &lea ("eax",&DWP(0x40,$inp));
486 &movdqa (&QWP(0,"esp"),$E); # offload $E
487 &paddd ($E,@MSG[0]);
488 &cmovne ($inp,"eax");
489 &movdqa (&QWP(16,"esp"),$ABCD); # offload $ABCD
490
491for($i=0;$i<20-4;$i+=2) {
492 &sha1msg1 (@MSG[0],@MSG[1]);
493 &movdqa ($E_,$ABCD);
494 &sha1rnds4 ($ABCD,$E,int($i/5)); # 0-3...
495 &sha1nexte ($E_,@MSG[1]);
496 &pxor (@MSG[0],@MSG[2]);
497 &sha1msg1 (@MSG[1],@MSG[2]);
498 &sha1msg2 (@MSG[0],@MSG[3]);
499
500 &movdqa ($E,$ABCD);
501 &sha1rnds4 ($ABCD,$E_,int(($i+1)/5));
502 &sha1nexte ($E,@MSG[2]);
503 &pxor (@MSG[1],@MSG[3]);
504 &sha1msg2 (@MSG[1],@MSG[0]);
505
506 push(@MSG,shift(@MSG)); push(@MSG,shift(@MSG));
507}
508 &movdqu (@MSG[0],&QWP(0,$inp));
509 &movdqa ($E_,$ABCD);
510 &sha1rnds4 ($ABCD,$E,3); # 64-67
511 &sha1nexte ($E_,@MSG[1]);
512 &movdqu (@MSG[1],&QWP(0x10,$inp));
513 &pshufb (@MSG[0],$BSWAP);
514
515 &movdqa ($E,$ABCD);
516 &sha1rnds4 ($ABCD,$E_,3); # 68-71
517 &sha1nexte ($E,@MSG[2]);
518 &movdqu (@MSG[2],&QWP(0x20,$inp));
519 &pshufb (@MSG[1],$BSWAP);
520
521 &movdqa ($E_,$ABCD);
522 &sha1rnds4 ($ABCD,$E,3); # 72-75
523 &sha1nexte ($E_,@MSG[3]);
524 &movdqu (@MSG[3],&QWP(0x30,$inp));
525 &pshufb (@MSG[2],$BSWAP);
526
527 &movdqa ($E,$ABCD);
528 &sha1rnds4 ($ABCD,$E_,3); # 76-79
529 &movdqa ($E_,&QWP(0,"esp"));
530 &pshufb (@MSG[3],$BSWAP);
531 &sha1nexte ($E,$E_);
532 &paddd ($ABCD,&QWP(16,"esp"));
533
534 &jnz (&label("loop_shaext"));
535
536 &pshufd ($ABCD,$ABCD,0b00011011);
537 &pshufd ($E,$E,0b00011011);
538 &movdqu (&QWP(0,$ctx),$ABCD)
539 &movd (&DWP(16,$ctx),$E);
540 &mov ("esp","ebx");
541&function_end("_sha1_block_data_order_shaext");
542}
0c149802
AP
543######################################################################
544# The SSSE3 implementation.
545#
546# %xmm[0-7] are used as ring @X[] buffer containing quadruples of last
547# 32 elements of the message schedule or Xupdate outputs. First 4
548# quadruples are simply byte-swapped input, next 4 are calculated
549# according to method originally suggested by Dean Gaudet (modulo
550# being implemented in SSSE3). Once 8 quadruples or 32 elements are
551# collected, it switches to routine proposed by Max Locktyukhin.
552#
553# Calculations inevitably require temporary reqisters, and there are
554# no %xmm registers left to spare. For this reason part of the ring
555# buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring
556# buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] -
557# X[-5], and X[4] - X[-4]...
558#
559# Another notable optimization is aggressive stack frame compression
560# aiming to minimize amount of 9-byte instructions...
561#
562# Yet another notable optimization is "jumping" $B variable. It means
563# that there is no register permanently allocated for $B value. This
564# allowed to eliminate one instruction from body_20_39...
565#
566my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded
567my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
568my @V=($A,$B,$C,$D,$E);
569my $j=0; # hash round
35c77b73 570my $rx=0;
0c149802
AP
571my @T=($T,$tmp1);
572my $inp;
573
574my $_rol=sub { &rol(@_) };
575my $_ror=sub { &ror(@_) };
576
577&function_begin("_sha1_block_data_order_ssse3");
578 &call (&label("pic_point")); # make it PIC!
579 &set_label("pic_point");
580 &blindpop($tmp1);
581 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
582&set_label("ssse3_shortcut");
583
584 &movdqa (@X[3],&QWP(0,$tmp1)); # K_00_19
585 &movdqa (@X[4],&QWP(16,$tmp1)); # K_20_39
586 &movdqa (@X[5],&QWP(32,$tmp1)); # K_40_59
587 &movdqa (@X[6],&QWP(48,$tmp1)); # K_60_79
588 &movdqa (@X[2],&QWP(64,$tmp1)); # pbswap mask
589
590 &mov ($E,&wparam(0)); # load argument block
591 &mov ($inp=@T[1],&wparam(1));
592 &mov ($D,&wparam(2));
593 &mov (@T[0],"esp");
594
595 # stack frame layout
596 #
597 # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area
598 # X[4]+K X[5]+K X[6]+K X[7]+K
599 # X[8]+K X[9]+K X[10]+K X[11]+K
600 # X[12]+K X[13]+K X[14]+K X[15]+K
601 #
602 # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area
603 # X[4] X[5] X[6] X[7]
604 # X[8] X[9] X[10] X[11] # even borrowed for K_00_19
605 #
606 # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants
607 # K_40_59 K_40_59 K_40_59 K_40_59
608 # K_60_79 K_60_79 K_60_79 K_60_79
609 # K_00_19 K_00_19 K_00_19 K_00_19
610 # pbswap mask
611 #
612 # +192 ctx # argument block
613 # +196 inp
614 # +200 end
615 # +204 esp
616 &sub ("esp",208);
617 &and ("esp",-64);
618
619 &movdqa (&QWP(112+0,"esp"),@X[4]); # copy constants
620 &movdqa (&QWP(112+16,"esp"),@X[5]);
621 &movdqa (&QWP(112+32,"esp"),@X[6]);
622 &shl ($D,6); # len*64
623 &movdqa (&QWP(112+48,"esp"),@X[3]);
624 &add ($D,$inp); # end of input
625 &movdqa (&QWP(112+64,"esp"),@X[2]);
626 &add ($inp,64);
627 &mov (&DWP(192+0,"esp"),$E); # save argument block
628 &mov (&DWP(192+4,"esp"),$inp);
629 &mov (&DWP(192+8,"esp"),$D);
630 &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp
631
632 &mov ($A,&DWP(0,$E)); # load context
633 &mov ($B,&DWP(4,$E));
634 &mov ($C,&DWP(8,$E));
635 &mov ($D,&DWP(12,$E));
636 &mov ($E,&DWP(16,$E));
637 &mov (@T[0],$B); # magic seed
638
639 &movdqu (@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3]
640 &movdqu (@X[-3&7],&QWP(-48,$inp));
641 &movdqu (@X[-2&7],&QWP(-32,$inp));
642 &movdqu (@X[-1&7],&QWP(-16,$inp));
643 &pshufb (@X[-4&7],@X[2]); # byte swap
644 &pshufb (@X[-3&7],@X[2]);
645 &pshufb (@X[-2&7],@X[2]);
646 &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
647 &pshufb (@X[-1&7],@X[2]);
648 &paddd (@X[-4&7],@X[3]); # add K_00_19
649 &paddd (@X[-3&7],@X[3]);
650 &paddd (@X[-2&7],@X[3]);
651 &movdqa (&QWP(0,"esp"),@X[-4&7]); # X[]+K xfer to IALU
652 &psubd (@X[-4&7],@X[3]); # restore X[]
653 &movdqa (&QWP(0+16,"esp"),@X[-3&7]);
654 &psubd (@X[-3&7],@X[3]);
655 &movdqa (&QWP(0+32,"esp"),@X[-2&7]);
35c77b73 656 &mov (@T[1],$C);
0c149802 657 &psubd (@X[-2&7],@X[3]);
35c77b73 658 &xor (@T[1],$D);
b217ca63 659 &pshufd (@X[0],@X[-4&7],0xee); # was &movdqa (@X[0],@X[-3&7]);
35c77b73 660 &and (@T[0],@T[1]);
0c149802
AP
661 &jmp (&label("loop"));
662
663######################################################################
69687aa8 664# SSE instruction sequence is first broken to groups of independent
0c149802
AP
665# instructions, independent in respect to their inputs and shifter
666# (not all architectures have more than one). Then IALU instructions
667# are "knitted in" between the SSE groups. Distance is maintained for
668# SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer
669# [which allegedly also implements SSSE3]...
670#
671# Temporary registers usage. X[2] is volatile at the entry and at the
672# end is restored from backtrace ring buffer. X[3] is expected to
69687aa8 673# contain current K_XX_XX constant and is used to calculate X[-1]+K
0c149802
AP
674# from previous round, it becomes volatile the moment the value is
675# saved to stack for transfer to IALU. X[4] becomes volatile whenever
676# X[-4] is accumulated and offloaded to backtrace ring buffer, at the
677# end it is loaded with next K_XX_XX [which becomes X[3] in next
678# round]...
679#
69687aa8 680sub Xupdate_ssse3_16_31() # recall that $Xi starts with 4
0c149802
AP
681{ use integer;
682 my $body = shift;
683 my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
684 my ($a,$b,$c,$d,$e);
685
b217ca63 686 eval(shift(@insns)); # ror
0c149802
AP
687 eval(shift(@insns));
688 eval(shift(@insns));
b217ca63 689 &punpcklqdq(@X[0],@X[-3&7]); # compose "X[-14]" in "X[0]", was &palignr(@X[0],@X[-4&7],8);
0c149802
AP
690 &movdqa (@X[2],@X[-1&7]);
691 eval(shift(@insns));
692 eval(shift(@insns));
693
694 &paddd (@X[3],@X[-1&7]);
695 &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
b217ca63 696 eval(shift(@insns)); # rol
0c149802
AP
697 eval(shift(@insns));
698 &psrldq (@X[2],4); # "X[-3]", 3 dwords
699 eval(shift(@insns));
700 eval(shift(@insns));
701 &pxor (@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
702 eval(shift(@insns));
b217ca63 703 eval(shift(@insns)); # ror
0c149802
AP
704
705 &pxor (@X[2],@X[-2&7]); # "X[-3]"^"X[-8]"
706 eval(shift(@insns));
707 eval(shift(@insns));
708 eval(shift(@insns));
0c149802
AP
709
710 &pxor (@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]"
711 eval(shift(@insns));
b217ca63 712 eval(shift(@insns)); # rol
0c149802
AP
713 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
714 eval(shift(@insns));
715 eval(shift(@insns));
716
717 &movdqa (@X[4],@X[0]);
0c149802
AP
718 eval(shift(@insns));
719 eval(shift(@insns));
b217ca63
AP
720 eval(shift(@insns)); # ror
721 &movdqa (@X[2],@X[0]);
0c149802
AP
722 eval(shift(@insns));
723
724 &pslldq (@X[4],12); # "X[0]"<<96, extract one dword
725 &paddd (@X[0],@X[0]);
726 eval(shift(@insns));
727 eval(shift(@insns));
0c149802
AP
728
729 &psrld (@X[2],31);
730 eval(shift(@insns));
b217ca63 731 eval(shift(@insns)); # rol
0c149802
AP
732 &movdqa (@X[3],@X[4]);
733 eval(shift(@insns));
734 eval(shift(@insns));
b217ca63 735 eval(shift(@insns));
0c149802
AP
736
737 &psrld (@X[4],30);
0c149802 738 eval(shift(@insns));
b217ca63
AP
739 eval(shift(@insns)); # ror
740 &por (@X[0],@X[2]); # "X[0]"<<<=1
0c149802
AP
741 eval(shift(@insns));
742 &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer
743 eval(shift(@insns));
744 eval(shift(@insns));
745
746 &pslld (@X[3],2);
0c149802 747 eval(shift(@insns));
b217ca63
AP
748 eval(shift(@insns)); # rol
749 &pxor (@X[0],@X[4]);
0c149802
AP
750 &movdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX
751 eval(shift(@insns));
752 eval(shift(@insns));
753
754 &pxor (@X[0],@X[3]); # "X[0]"^=("X[0]"<<96)<<<2
b217ca63
AP
755 &pshufd (@X[1],@X[-3&7],0xee) if ($Xi<7); # was &movdqa (@X[1],@X[-2&7])
756 &pshufd (@X[3],@X[-1&7],0xee) if ($Xi==7);
0c149802
AP
757 eval(shift(@insns));
758 eval(shift(@insns));
759
760 foreach (@insns) { eval; } # remaining instructions [if any]
761
762 $Xi++; push(@X,shift(@X)); # "rotate" X[]
763}
764
765sub Xupdate_ssse3_32_79()
766{ use integer;
767 my $body = shift;
69f45c52 768 my @insns = (&$body,&$body,&$body,&$body); # 32 to 44 instructions
0c149802
AP
769 my ($a,$b,$c,$d,$e);
770
0c149802
AP
771 eval(shift(@insns)); # body_20_39
772 &pxor (@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
b217ca63 773 &punpcklqdq(@X[2],@X[-1&7]); # compose "X[-6]", was &palignr(@X[2],@X[-2&7],8)
0c149802
AP
774 eval(shift(@insns));
775 eval(shift(@insns));
776 eval(shift(@insns)); # rol
777
778 &pxor (@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
779 &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer
780 eval(shift(@insns));
781 eval(shift(@insns));
b217ca63 782 eval(shift(@insns)) if (@insns[0] =~ /_rol/);
0c149802
AP
783 if ($Xi%5) {
784 &movdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX...
785 } else { # ... or load next one
786 &movdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
787 }
0c149802 788 eval(shift(@insns)); # ror
b217ca63 789 &paddd (@X[3],@X[-1&7]);
0c149802
AP
790 eval(shift(@insns));
791
792 &pxor (@X[0],@X[2]); # "X[0]"^="X[-6]"
793 eval(shift(@insns)); # body_20_39
794 eval(shift(@insns));
795 eval(shift(@insns));
796 eval(shift(@insns)); # rol
797
798 &movdqa (@X[2],@X[0]);
799 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
800 eval(shift(@insns));
801 eval(shift(@insns));
802 eval(shift(@insns)); # ror
803 eval(shift(@insns));
b217ca63 804 eval(shift(@insns)) if (@insns[0] =~ /_rol/);
0c149802
AP
805
806 &pslld (@X[0],2);
807 eval(shift(@insns)); # body_20_39
808 eval(shift(@insns));
809 &psrld (@X[2],30);
810 eval(shift(@insns));
811 eval(shift(@insns)); # rol
812 eval(shift(@insns));
813 eval(shift(@insns));
814 eval(shift(@insns)); # ror
815 eval(shift(@insns));
b217ca63
AP
816 eval(shift(@insns)) if (@insns[1] =~ /_rol/);
817 eval(shift(@insns)) if (@insns[0] =~ /_rol/);
0c149802
AP
818
819 &por (@X[0],@X[2]); # "X[0]"<<<=2
820 eval(shift(@insns)); # body_20_39
821 eval(shift(@insns));
822 &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer
823 eval(shift(@insns));
824 eval(shift(@insns)); # rol
825 eval(shift(@insns));
826 eval(shift(@insns));
827 eval(shift(@insns)); # ror
b217ca63 828 &pshufd (@X[3],@X[-1],0xee) if ($Xi<19); # was &movdqa (@X[3],@X[0])
0c149802
AP
829 eval(shift(@insns));
830
831 foreach (@insns) { eval; } # remaining instructions
832
833 $Xi++; push(@X,shift(@X)); # "rotate" X[]
834}
835
836sub Xuplast_ssse3_80()
837{ use integer;
838 my $body = shift;
839 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
840 my ($a,$b,$c,$d,$e);
841
b217ca63
AP
842 eval(shift(@insns));
843 eval(shift(@insns));
844 eval(shift(@insns));
845 eval(shift(@insns));
846 eval(shift(@insns));
847 eval(shift(@insns));
0c149802
AP
848 eval(shift(@insns));
849 &paddd (@X[3],@X[-1&7]);
850 eval(shift(@insns));
851 eval(shift(@insns));
852 eval(shift(@insns));
853 eval(shift(@insns));
854
855 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU
856
857 foreach (@insns) { eval; } # remaining instructions
858
859 &mov ($inp=@T[1],&DWP(192+4,"esp"));
860 &cmp ($inp,&DWP(192+8,"esp"));
861 &je (&label("done"));
862
863 &movdqa (@X[3],&QWP(112+48,"esp")); # K_00_19
864 &movdqa (@X[2],&QWP(112+64,"esp")); # pbswap mask
865 &movdqu (@X[-4&7],&QWP(0,$inp)); # load input
866 &movdqu (@X[-3&7],&QWP(16,$inp));
867 &movdqu (@X[-2&7],&QWP(32,$inp));
868 &movdqu (@X[-1&7],&QWP(48,$inp));
869 &add ($inp,64);
870 &pshufb (@X[-4&7],@X[2]); # byte swap
871 &mov (&DWP(192+4,"esp"),$inp);
872 &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
873
874 $Xi=0;
875}
876
877sub Xloop_ssse3()
878{ use integer;
879 my $body = shift;
880 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
881 my ($a,$b,$c,$d,$e);
882
883 eval(shift(@insns));
884 eval(shift(@insns));
b217ca63
AP
885 eval(shift(@insns));
886 eval(shift(@insns));
887 eval(shift(@insns));
888 eval(shift(@insns));
889 eval(shift(@insns));
0c149802
AP
890 &pshufb (@X[($Xi-3)&7],@X[2]);
891 eval(shift(@insns));
892 eval(shift(@insns));
b217ca63
AP
893 eval(shift(@insns));
894 eval(shift(@insns));
0c149802
AP
895 &paddd (@X[($Xi-4)&7],@X[3]);
896 eval(shift(@insns));
897 eval(shift(@insns));
898 eval(shift(@insns));
899 eval(shift(@insns));
900 &movdqa (&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]); # X[]+K xfer to IALU
901 eval(shift(@insns));
902 eval(shift(@insns));
b217ca63
AP
903 eval(shift(@insns));
904 eval(shift(@insns));
0c149802
AP
905 &psubd (@X[($Xi-4)&7],@X[3]);
906
907 foreach (@insns) { eval; }
908 $Xi++;
909}
910
911sub Xtail_ssse3()
912{ use integer;
913 my $body = shift;
914 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
915 my ($a,$b,$c,$d,$e);
916
917 foreach (@insns) { eval; }
918}
919
35c77b73
AP
920sub body_00_19 () { # ((c^d)&b)^d
921 # on start @T[0]=(c^d)&b
922 return &body_20_39() if ($rx==19); $rx++;
0c149802
AP
923 (
924 '($a,$b,$c,$d,$e)=@V;'.
35c77b73
AP
925 '&$_ror ($b,$j?7:2);', # $b>>>2
926 '&xor (@T[0],$d);',
0c149802 927 '&mov (@T[1],$a);', # $b in next round
35c77b73
AP
928
929 '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer
930 '&xor ($b,$c);', # $c^$d for next round
931
0c149802 932 '&$_rol ($a,5);',
35c77b73
AP
933 '&add ($e,@T[0]);',
934 '&and (@T[1],$b);', # ($b&($c^$d)) for next round
935
936 '&xor ($b,$c);', # restore $b
937 '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
0c149802
AP
938 );
939}
940
35c77b73
AP
941sub body_20_39 () { # b^d^c
942 # on entry @T[0]=b^d
943 return &body_40_59() if ($rx==39); $rx++;
0c149802
AP
944 (
945 '($a,$b,$c,$d,$e)=@V;'.
35c77b73
AP
946 '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer
947 '&xor (@T[0],$d) if($j==19);'.
948 '&xor (@T[0],$c) if($j> 19);', # ($b^$d^$c)
0c149802 949 '&mov (@T[1],$a);', # $b in next round
35c77b73 950
0c149802 951 '&$_rol ($a,5);',
35c77b73
AP
952 '&add ($e,@T[0]);',
953 '&xor (@T[1],$c) if ($j< 79);', # $b^$d for next round
954
0c149802 955 '&$_ror ($b,7);', # $b>>>2
35c77b73 956 '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
0c149802
AP
957 );
958}
959
35c77b73
AP
960sub body_40_59 () { # ((b^c)&(c^d))^c
961 # on entry @T[0]=(b^c), (c^=d)
962 $rx++;
0c149802
AP
963 (
964 '($a,$b,$c,$d,$e)=@V;'.
35c77b73
AP
965 '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer
966 '&and (@T[0],$c) if ($j>=40);', # (b^c)&(c^d)
967 '&xor ($c,$d) if ($j>=40);', # restore $c
968
0c149802 969 '&$_ror ($b,7);', # $b>>>2
35c77b73 970 '&mov (@T[1],$a);', # $b for next round
69f45c52 971 '&xor (@T[0],$c);',
35c77b73 972
0c149802
AP
973 '&$_rol ($a,5);',
974 '&add ($e,@T[0]);',
35c77b73
AP
975 '&xor (@T[1],$c) if ($j==59);'.
976 '&xor (@T[1],$b) if ($j< 59);', # b^c for next round
977
978 '&xor ($b,$c) if ($j< 59);', # c^d for next round
979 '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
0c149802
AP
980 );
981}
b217ca63
AP
982######
983sub bodyx_00_19 () { # ((c^d)&b)^d
984 # on start @T[0]=(b&c)^(~b&d), $e+=X[]+K
985 return &bodyx_20_39() if ($rx==19); $rx++;
986 (
987 '($a,$b,$c,$d,$e)=@V;'.
988
989 '&rorx ($b,$b,2) if ($j==0);'. # $b>>>2
990 '&rorx ($b,@T[1],7) if ($j!=0);', # $b>>>2
991 '&lea ($e,&DWP(0,$e,@T[0]));',
992 '&rorx (@T[0],$a,5);',
993
994 '&andn (@T[1],$a,$c);',
995 '&and ($a,$b)',
996 '&add ($d,&DWP(4*(($j+1)&15),"esp"));', # X[]+K xfer
997
998 '&xor (@T[1],$a)',
999 '&add ($e,@T[0]);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
1000 );
1001}
1002
1003sub bodyx_20_39 () { # b^d^c
1004 # on start $b=b^c^d
1005 return &bodyx_40_59() if ($rx==39); $rx++;
1006 (
1007 '($a,$b,$c,$d,$e)=@V;'.
1008
1009 '&add ($e,($j==19?@T[0]:$b))',
1010 '&rorx ($b,@T[1],7);', # $b>>>2
1011 '&rorx (@T[0],$a,5);',
1012
1013 '&xor ($a,$b) if ($j<79);',
1014 '&add ($d,&DWP(4*(($j+1)&15),"esp")) if ($j<79);', # X[]+K xfer
1015 '&xor ($a,$c) if ($j<79);',
1016 '&add ($e,@T[0]);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
1017 );
1018}
1019
1020sub bodyx_40_59 () { # ((b^c)&(c^d))^c
1021 # on start $b=((b^c)&(c^d))^c
1022 return &bodyx_20_39() if ($rx==59); $rx++;
1023 (
1024 '($a,$b,$c,$d,$e)=@V;'.
1025
1026 '&rorx (@T[0],$a,5)',
1027 '&lea ($e,&DWP(0,$e,$b))',
1028 '&rorx ($b,@T[1],7)', # $b>>>2
1029 '&add ($d,&DWP(4*(($j+1)&15),"esp"))', # X[]+K xfer
1030
1031 '&mov (@T[1],$c)',
1032 '&xor ($a,$b)', # b^c for next round
1033 '&xor (@T[1],$b)', # c^d for next round
1034
1035 '&and ($a,@T[1])',
1036 '&add ($e,@T[0])',
1037 '&xor ($a,$b)' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
1038 );
1039}
0c149802
AP
1040
1041&set_label("loop",16);
1042 &Xupdate_ssse3_16_31(\&body_00_19);
1043 &Xupdate_ssse3_16_31(\&body_00_19);
1044 &Xupdate_ssse3_16_31(\&body_00_19);
1045 &Xupdate_ssse3_16_31(\&body_00_19);
1046 &Xupdate_ssse3_32_79(\&body_00_19);
1047 &Xupdate_ssse3_32_79(\&body_20_39);
1048 &Xupdate_ssse3_32_79(\&body_20_39);
1049 &Xupdate_ssse3_32_79(\&body_20_39);
1050 &Xupdate_ssse3_32_79(\&body_20_39);
1051 &Xupdate_ssse3_32_79(\&body_20_39);
1052 &Xupdate_ssse3_32_79(\&body_40_59);
1053 &Xupdate_ssse3_32_79(\&body_40_59);
1054 &Xupdate_ssse3_32_79(\&body_40_59);
1055 &Xupdate_ssse3_32_79(\&body_40_59);
1056 &Xupdate_ssse3_32_79(\&body_40_59);
1057 &Xupdate_ssse3_32_79(\&body_20_39);
1058 &Xuplast_ssse3_80(\&body_20_39); # can jump to "done"
1059
1060 $saved_j=$j; @saved_V=@V;
1061
1062 &Xloop_ssse3(\&body_20_39);
1063 &Xloop_ssse3(\&body_20_39);
1064 &Xloop_ssse3(\&body_20_39);
1065
1066 &mov (@T[1],&DWP(192,"esp")); # update context
1067 &add ($A,&DWP(0,@T[1]));
1068 &add (@T[0],&DWP(4,@T[1])); # $b
1069 &add ($C,&DWP(8,@T[1]));
1070 &mov (&DWP(0,@T[1]),$A);
1071 &add ($D,&DWP(12,@T[1]));
1072 &mov (&DWP(4,@T[1]),@T[0]);
1073 &add ($E,&DWP(16,@T[1]));
1074 &mov (&DWP(8,@T[1]),$C);
35c77b73 1075 &mov ($B,$C);
0c149802 1076 &mov (&DWP(12,@T[1]),$D);
35c77b73 1077 &xor ($B,$D);
0c149802 1078 &mov (&DWP(16,@T[1]),$E);
b217ca63
AP
1079 &mov (@T[1],@T[0]);
1080 &pshufd (@X[0],@X[-4&7],0xee); # was &movdqa (@X[0],@X[-3&7]);
1081 &and (@T[0],$B);
1082 &mov ($B,$T[1]);
0c149802
AP
1083
1084 &jmp (&label("loop"));
1085
1086&set_label("done",16); $j=$saved_j; @V=@saved_V;
1087
1088 &Xtail_ssse3(\&body_20_39);
1089 &Xtail_ssse3(\&body_20_39);
1090 &Xtail_ssse3(\&body_20_39);
1091
1092 &mov (@T[1],&DWP(192,"esp")); # update context
1093 &add ($A,&DWP(0,@T[1]));
1094 &mov ("esp",&DWP(192+12,"esp")); # restore %esp
1095 &add (@T[0],&DWP(4,@T[1])); # $b
1096 &add ($C,&DWP(8,@T[1]));
1097 &mov (&DWP(0,@T[1]),$A);
1098 &add ($D,&DWP(12,@T[1]));
1099 &mov (&DWP(4,@T[1]),@T[0]);
1100 &add ($E,&DWP(16,@T[1]));
1101 &mov (&DWP(8,@T[1]),$C);
1102 &mov (&DWP(12,@T[1]),$D);
1103 &mov (&DWP(16,@T[1]),$E);
1104
1105&function_end("_sha1_block_data_order_ssse3");
1106
35c77b73
AP
1107$rx=0; # reset
1108
0c149802
AP
1109if ($ymm) {
1110my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded
1111my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
1112my @V=($A,$B,$C,$D,$E);
1113my $j=0; # hash round
1114my @T=($T,$tmp1);
1115my $inp;
1116
1117my $_rol=sub { &shld(@_[0],@_) };
1118my $_ror=sub { &shrd(@_[0],@_) };
1119
1120&function_begin("_sha1_block_data_order_avx");
1121 &call (&label("pic_point")); # make it PIC!
1122 &set_label("pic_point");
1123 &blindpop($tmp1);
1124 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
1125&set_label("avx_shortcut");
1126 &vzeroall();
1127
1128 &vmovdqa(@X[3],&QWP(0,$tmp1)); # K_00_19
1129 &vmovdqa(@X[4],&QWP(16,$tmp1)); # K_20_39
1130 &vmovdqa(@X[5],&QWP(32,$tmp1)); # K_40_59
1131 &vmovdqa(@X[6],&QWP(48,$tmp1)); # K_60_79
1132 &vmovdqa(@X[2],&QWP(64,$tmp1)); # pbswap mask
1133
1134 &mov ($E,&wparam(0)); # load argument block
1135 &mov ($inp=@T[1],&wparam(1));
1136 &mov ($D,&wparam(2));
1137 &mov (@T[0],"esp");
1138
1139 # stack frame layout
1140 #
1141 # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area
1142 # X[4]+K X[5]+K X[6]+K X[7]+K
1143 # X[8]+K X[9]+K X[10]+K X[11]+K
1144 # X[12]+K X[13]+K X[14]+K X[15]+K
1145 #
1146 # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area
1147 # X[4] X[5] X[6] X[7]
1148 # X[8] X[9] X[10] X[11] # even borrowed for K_00_19
1149 #
1150 # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants
1151 # K_40_59 K_40_59 K_40_59 K_40_59
1152 # K_60_79 K_60_79 K_60_79 K_60_79
1153 # K_00_19 K_00_19 K_00_19 K_00_19
1154 # pbswap mask
1155 #
1156 # +192 ctx # argument block
1157 # +196 inp
1158 # +200 end
1159 # +204 esp
1160 &sub ("esp",208);
1161 &and ("esp",-64);
1162
1163 &vmovdqa(&QWP(112+0,"esp"),@X[4]); # copy constants
1164 &vmovdqa(&QWP(112+16,"esp"),@X[5]);
1165 &vmovdqa(&QWP(112+32,"esp"),@X[6]);
1166 &shl ($D,6); # len*64
1167 &vmovdqa(&QWP(112+48,"esp"),@X[3]);
1168 &add ($D,$inp); # end of input
1169 &vmovdqa(&QWP(112+64,"esp"),@X[2]);
1170 &add ($inp,64);
1171 &mov (&DWP(192+0,"esp"),$E); # save argument block
1172 &mov (&DWP(192+4,"esp"),$inp);
1173 &mov (&DWP(192+8,"esp"),$D);
1174 &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp
1175
1176 &mov ($A,&DWP(0,$E)); # load context
1177 &mov ($B,&DWP(4,$E));
1178 &mov ($C,&DWP(8,$E));
1179 &mov ($D,&DWP(12,$E));
1180 &mov ($E,&DWP(16,$E));
1181 &mov (@T[0],$B); # magic seed
1182
1183 &vmovdqu(@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3]
1184 &vmovdqu(@X[-3&7],&QWP(-48,$inp));
1185 &vmovdqu(@X[-2&7],&QWP(-32,$inp));
1186 &vmovdqu(@X[-1&7],&QWP(-16,$inp));
1187 &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
1188 &vpshufb(@X[-3&7],@X[-3&7],@X[2]);
1189 &vpshufb(@X[-2&7],@X[-2&7],@X[2]);
1190 &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
1191 &vpshufb(@X[-1&7],@X[-1&7],@X[2]);
1192 &vpaddd (@X[0],@X[-4&7],@X[3]); # add K_00_19
1193 &vpaddd (@X[1],@X[-3&7],@X[3]);
1194 &vpaddd (@X[2],@X[-2&7],@X[3]);
1195 &vmovdqa(&QWP(0,"esp"),@X[0]); # X[]+K xfer to IALU
35c77b73 1196 &mov (@T[1],$C);
0c149802 1197 &vmovdqa(&QWP(0+16,"esp"),@X[1]);
35c77b73 1198 &xor (@T[1],$D);
0c149802 1199 &vmovdqa(&QWP(0+32,"esp"),@X[2]);
35c77b73 1200 &and (@T[0],@T[1]);
0c149802
AP
1201 &jmp (&label("loop"));
1202
69687aa8 1203sub Xupdate_avx_16_31() # recall that $Xi starts with 4
0c149802
AP
1204{ use integer;
1205 my $body = shift;
1206 my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
1207 my ($a,$b,$c,$d,$e);
1208
1209 eval(shift(@insns));
1210 eval(shift(@insns));
1211 &vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]"
1212 eval(shift(@insns));
1213 eval(shift(@insns));
1214
1215 &vpaddd (@X[3],@X[3],@X[-1&7]);
1216 &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
1217 eval(shift(@insns));
1218 eval(shift(@insns));
1219 &vpsrldq(@X[2],@X[-1&7],4); # "X[-3]", 3 dwords
1220 eval(shift(@insns));
1221 eval(shift(@insns));
1222 &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
1223 eval(shift(@insns));
1224 eval(shift(@insns));
1225
1226 &vpxor (@X[2],@X[2],@X[-2&7]); # "X[-3]"^"X[-8]"
1227 eval(shift(@insns));
1228 eval(shift(@insns));
1229 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
1230 eval(shift(@insns));
1231 eval(shift(@insns));
1232
1233 &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]"
1234 eval(shift(@insns));
1235 eval(shift(@insns));
1236 eval(shift(@insns));
1237 eval(shift(@insns));
1238
1239 &vpsrld (@X[2],@X[0],31);
1240 eval(shift(@insns));
1241 eval(shift(@insns));
1242 eval(shift(@insns));
1243 eval(shift(@insns));
1244
1245 &vpslldq(@X[4],@X[0],12); # "X[0]"<<96, extract one dword
1246 &vpaddd (@X[0],@X[0],@X[0]);
1247 eval(shift(@insns));
1248 eval(shift(@insns));
1249 eval(shift(@insns));
1250 eval(shift(@insns));
1251
1252 &vpsrld (@X[3],@X[4],30);
1253 &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=1
1254 eval(shift(@insns));
1255 eval(shift(@insns));
1256 eval(shift(@insns));
1257 eval(shift(@insns));
1258
1259 &vpslld (@X[4],@X[4],2);
1260 &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer
1261 eval(shift(@insns));
1262 eval(shift(@insns));
1263 &vpxor (@X[0],@X[0],@X[3]);
1264 eval(shift(@insns));
1265 eval(shift(@insns));
1266 eval(shift(@insns));
1267 eval(shift(@insns));
1268
1269 &vpxor (@X[0],@X[0],@X[4]); # "X[0]"^=("X[0]"<<96)<<<2
1270 eval(shift(@insns));
1271 eval(shift(@insns));
1272 &vmovdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX
1273 eval(shift(@insns));
1274 eval(shift(@insns));
1275
1276 foreach (@insns) { eval; } # remaining instructions [if any]
1277
1278 $Xi++; push(@X,shift(@X)); # "rotate" X[]
1279}
1280
1281sub Xupdate_avx_32_79()
1282{ use integer;
1283 my $body = shift;
69f45c52 1284 my @insns = (&$body,&$body,&$body,&$body); # 32 to 44 instructions
0c149802
AP
1285 my ($a,$b,$c,$d,$e);
1286
1287 &vpalignr(@X[2],@X[-1&7],@X[-2&7],8); # compose "X[-6]"
1288 &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
1289 eval(shift(@insns)); # body_20_39
1290 eval(shift(@insns));
1291 eval(shift(@insns));
1292 eval(shift(@insns)); # rol
1293
1294 &vpxor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
1295 &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer
1296 eval(shift(@insns));
1297 eval(shift(@insns));
1298 if ($Xi%5) {
1299 &vmovdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX...
1300 } else { # ... or load next one
1301 &vmovdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
1302 }
1303 &vpaddd (@X[3],@X[3],@X[-1&7]);
1304 eval(shift(@insns)); # ror
1305 eval(shift(@insns));
1306
1307 &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-6]"
1308 eval(shift(@insns)); # body_20_39
1309 eval(shift(@insns));
1310 eval(shift(@insns));
1311 eval(shift(@insns)); # rol
1312
1313 &vpsrld (@X[2],@X[0],30);
1314 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
1315 eval(shift(@insns));
1316 eval(shift(@insns));
1317 eval(shift(@insns)); # ror
1318 eval(shift(@insns));
1319
1320 &vpslld (@X[0],@X[0],2);
1321 eval(shift(@insns)); # body_20_39
1322 eval(shift(@insns));
1323 eval(shift(@insns));
1324 eval(shift(@insns)); # rol
1325 eval(shift(@insns));
1326 eval(shift(@insns));
1327 eval(shift(@insns)); # ror
1328 eval(shift(@insns));
1329
1330 &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=2
1331 eval(shift(@insns)); # body_20_39
1332 eval(shift(@insns));
1333 &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer
1334 eval(shift(@insns));
1335 eval(shift(@insns)); # rol
1336 eval(shift(@insns));
1337 eval(shift(@insns));
1338 eval(shift(@insns)); # ror
1339 eval(shift(@insns));
1340
1341 foreach (@insns) { eval; } # remaining instructions
1342
1343 $Xi++; push(@X,shift(@X)); # "rotate" X[]
1344}
1345
1346sub Xuplast_avx_80()
1347{ use integer;
1348 my $body = shift;
1349 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1350 my ($a,$b,$c,$d,$e);
1351
1352 eval(shift(@insns));
1353 &vpaddd (@X[3],@X[3],@X[-1&7]);
1354 eval(shift(@insns));
1355 eval(shift(@insns));
1356 eval(shift(@insns));
1357 eval(shift(@insns));
1358
1359 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU
1360
1361 foreach (@insns) { eval; } # remaining instructions
1362
1363 &mov ($inp=@T[1],&DWP(192+4,"esp"));
1364 &cmp ($inp,&DWP(192+8,"esp"));
1365 &je (&label("done"));
1366
1367 &vmovdqa(@X[3],&QWP(112+48,"esp")); # K_00_19
1368 &vmovdqa(@X[2],&QWP(112+64,"esp")); # pbswap mask
1369 &vmovdqu(@X[-4&7],&QWP(0,$inp)); # load input
1370 &vmovdqu(@X[-3&7],&QWP(16,$inp));
1371 &vmovdqu(@X[-2&7],&QWP(32,$inp));
1372 &vmovdqu(@X[-1&7],&QWP(48,$inp));
1373 &add ($inp,64);
1374 &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
1375 &mov (&DWP(192+4,"esp"),$inp);
1376 &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
1377
1378 $Xi=0;
1379}
1380
1381sub Xloop_avx()
1382{ use integer;
1383 my $body = shift;
1384 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1385 my ($a,$b,$c,$d,$e);
1386
1387 eval(shift(@insns));
1388 eval(shift(@insns));
1389 &vpshufb (@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
1390 eval(shift(@insns));
1391 eval(shift(@insns));
1392 &vpaddd (@X[$Xi&7],@X[($Xi-4)&7],@X[3]);
1393 eval(shift(@insns));
1394 eval(shift(@insns));
1395 eval(shift(@insns));
1396 eval(shift(@insns));
1397 &vmovdqa (&QWP(0+16*$Xi,"esp"),@X[$Xi&7]); # X[]+K xfer to IALU
1398 eval(shift(@insns));
1399 eval(shift(@insns));
1400
1401 foreach (@insns) { eval; }
1402 $Xi++;
1403}
1404
1405sub Xtail_avx()
1406{ use integer;
1407 my $body = shift;
1408 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1409 my ($a,$b,$c,$d,$e);
1410
1411 foreach (@insns) { eval; }
1412}
1413
1414&set_label("loop",16);
1415 &Xupdate_avx_16_31(\&body_00_19);
1416 &Xupdate_avx_16_31(\&body_00_19);
1417 &Xupdate_avx_16_31(\&body_00_19);
1418 &Xupdate_avx_16_31(\&body_00_19);
1419 &Xupdate_avx_32_79(\&body_00_19);
1420 &Xupdate_avx_32_79(\&body_20_39);
1421 &Xupdate_avx_32_79(\&body_20_39);
1422 &Xupdate_avx_32_79(\&body_20_39);
1423 &Xupdate_avx_32_79(\&body_20_39);
1424 &Xupdate_avx_32_79(\&body_20_39);
1425 &Xupdate_avx_32_79(\&body_40_59);
1426 &Xupdate_avx_32_79(\&body_40_59);
1427 &Xupdate_avx_32_79(\&body_40_59);
1428 &Xupdate_avx_32_79(\&body_40_59);
1429 &Xupdate_avx_32_79(\&body_40_59);
1430 &Xupdate_avx_32_79(\&body_20_39);
1431 &Xuplast_avx_80(\&body_20_39); # can jump to "done"
1432
1433 $saved_j=$j; @saved_V=@V;
1434
1435 &Xloop_avx(\&body_20_39);
1436 &Xloop_avx(\&body_20_39);
1437 &Xloop_avx(\&body_20_39);
1438
1439 &mov (@T[1],&DWP(192,"esp")); # update context
1440 &add ($A,&DWP(0,@T[1]));
1441 &add (@T[0],&DWP(4,@T[1])); # $b
1442 &add ($C,&DWP(8,@T[1]));
1443 &mov (&DWP(0,@T[1]),$A);
1444 &add ($D,&DWP(12,@T[1]));
1445 &mov (&DWP(4,@T[1]),@T[0]);
1446 &add ($E,&DWP(16,@T[1]));
35c77b73 1447 &mov ($B,$C);
0c149802 1448 &mov (&DWP(8,@T[1]),$C);
35c77b73 1449 &xor ($B,$D);
0c149802
AP
1450 &mov (&DWP(12,@T[1]),$D);
1451 &mov (&DWP(16,@T[1]),$E);
b217ca63
AP
1452 &mov (@T[1],@T[0]);
1453 &and (@T[0],$B);
1454 &mov ($B,@T[1]);
0c149802
AP
1455
1456 &jmp (&label("loop"));
1457
1458&set_label("done",16); $j=$saved_j; @V=@saved_V;
1459
1460 &Xtail_avx(\&body_20_39);
1461 &Xtail_avx(\&body_20_39);
1462 &Xtail_avx(\&body_20_39);
1463
1464 &vzeroall();
1465
1466 &mov (@T[1],&DWP(192,"esp")); # update context
1467 &add ($A,&DWP(0,@T[1]));
1468 &mov ("esp",&DWP(192+12,"esp")); # restore %esp
1469 &add (@T[0],&DWP(4,@T[1])); # $b
1470 &add ($C,&DWP(8,@T[1]));
1471 &mov (&DWP(0,@T[1]),$A);
1472 &add ($D,&DWP(12,@T[1]));
1473 &mov (&DWP(4,@T[1]),@T[0]);
1474 &add ($E,&DWP(16,@T[1]));
1475 &mov (&DWP(8,@T[1]),$C);
1476 &mov (&DWP(12,@T[1]),$D);
1477 &mov (&DWP(16,@T[1]),$E);
1478&function_end("_sha1_block_data_order_avx");
1479}
1480&set_label("K_XX_XX",64);
1481&data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999); # K_00_19
1482&data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1); # K_20_39
1483&data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc); # K_40_59
1484&data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6); # K_60_79
1485&data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f); # pbswap mask
619b9466 1486&data_byte(0xf,0xe,0xd,0xc,0xb,0xa,0x9,0x8,0x7,0x6,0x5,0x4,0x3,0x2,0x1,0x0);
0c149802 1487}
f0f61f6d 1488&asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");
58964a49 1489
500b5a18 1490&asm_finish();
e87e380a
RL
1491
1492close STDOUT;