]> git.ipfire.org Git - thirdparty/openssl.git/blame - providers/common/kdfs/scrypt.c
Move KDFs to the provider.
[thirdparty/openssl.git] / providers / common / kdfs / scrypt.c
CommitLineData
cefa762e 1/*
c4d3c19b 2 * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved.
cefa762e 3 *
7bb803e8 4 * Licensed under the Apache License 2.0 (the "License"). You may not use
cefa762e
JB
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10#include <stdlib.h>
5a285add 11#include <stdarg.h>
cefa762e 12#include <string.h>
cefa762e 13#include <openssl/evp.h>
5a285add
DM
14#include <openssl/kdf.h>
15#include <openssl/err.h>
cefa762e 16#include "internal/evp_int.h"
5a285add
DM
17#include "internal/numbers.h"
18#include "kdf_local.h"
cefa762e 19
402f26e6
JB
20#ifndef OPENSSL_NO_SCRYPT
21
5a285add
DM
22static void kdf_scrypt_reset(EVP_KDF_IMPL *impl);
23static void kdf_scrypt_init(EVP_KDF_IMPL *impl);
cefa762e 24static int atou64(const char *nptr, uint64_t *result);
5a285add
DM
25static int scrypt_alg(const char *pass, size_t passlen,
26 const unsigned char *salt, size_t saltlen,
27 uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
28 unsigned char *key, size_t keylen);
cefa762e 29
5a285add 30struct evp_kdf_impl_st {
cefa762e
JB
31 unsigned char *pass;
32 size_t pass_len;
33 unsigned char *salt;
34 size_t salt_len;
5a285add
DM
35 uint64_t N;
36 uint32_t r, p;
cefa762e 37 uint64_t maxmem_bytes;
5a285add 38};
cefa762e
JB
39
40/* Custom uint64_t parser since we do not have strtoull */
41static int atou64(const char *nptr, uint64_t *result)
42{
43 uint64_t value = 0;
44
45 while (*nptr) {
46 unsigned int digit;
47 uint64_t new_value;
48
49 if ((*nptr < '0') || (*nptr > '9')) {
50 return 0;
51 }
52 digit = (unsigned int)(*nptr - '0');
53 new_value = (value * 10) + digit;
54 if ((new_value < digit) || ((new_value - digit) / 10 != value)) {
55 /* Overflow */
56 return 0;
57 }
58 value = new_value;
59 nptr++;
60 }
61 *result = value;
62 return 1;
63}
64
5a285add 65static EVP_KDF_IMPL *kdf_scrypt_new(void)
cefa762e 66{
5a285add 67 EVP_KDF_IMPL *impl;
cefa762e 68
5a285add
DM
69 impl = OPENSSL_zalloc(sizeof(*impl));
70 if (impl == NULL) {
71 KDFerr(KDF_F_KDF_SCRYPT_NEW, ERR_R_MALLOC_FAILURE);
72 return NULL;
3484236d 73 }
5a285add
DM
74 kdf_scrypt_init(impl);
75 return impl;
76}
cefa762e 77
5a285add
DM
78static void kdf_scrypt_free(EVP_KDF_IMPL *impl)
79{
80 kdf_scrypt_reset(impl);
81 OPENSSL_free(impl);
cefa762e
JB
82}
83
5a285add 84static void kdf_scrypt_reset(EVP_KDF_IMPL *impl)
cefa762e 85{
5a285add
DM
86 OPENSSL_free(impl->salt);
87 OPENSSL_clear_free(impl->pass, impl->pass_len);
88 memset(impl, 0, sizeof(*impl));
89 kdf_scrypt_init(impl);
90}
cefa762e 91
5a285add
DM
92static void kdf_scrypt_init(EVP_KDF_IMPL *impl)
93{
94 /* Default values are the most conservative recommendation given in the
95 * original paper of C. Percival. Derivation uses roughly 1 GiB of memory
96 * for this parameter choice (approx. 128 * r * N * p bytes).
97 */
98 impl->N = 1 << 20;
99 impl->r = 8;
100 impl->p = 1;
101 impl->maxmem_bytes = 1025 * 1024 * 1024;
cefa762e
JB
102}
103
5a285add
DM
104static int scrypt_set_membuf(unsigned char **buffer, size_t *buflen,
105 const unsigned char *new_buffer,
106 size_t new_buflen)
cefa762e
JB
107{
108 if (new_buffer == NULL)
109 return 1;
110
5a285add 111 OPENSSL_clear_free(*buffer, *buflen);
cefa762e
JB
112
113 if (new_buflen > 0) {
114 *buffer = OPENSSL_memdup(new_buffer, new_buflen);
115 } else {
116 *buffer = OPENSSL_malloc(1);
117 }
3484236d 118 if (*buffer == NULL) {
5a285add 119 KDFerr(KDF_F_SCRYPT_SET_MEMBUF, ERR_R_MALLOC_FAILURE);
cefa762e 120 return 0;
3484236d 121 }
cefa762e
JB
122
123 *buflen = new_buflen;
124 return 1;
125}
126
127static int is_power_of_two(uint64_t value)
128{
129 return (value != 0) && ((value & (value - 1)) == 0);
130}
131
5a285add 132static int kdf_scrypt_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args)
cefa762e 133{
cefa762e 134 uint64_t u64_value;
5a285add
DM
135 uint32_t value;
136 const unsigned char *p;
137 size_t len;
138
139 switch (cmd) {
140 case EVP_KDF_CTRL_SET_PASS:
141 p = va_arg(args, const unsigned char *);
142 len = va_arg(args, size_t);
143 return scrypt_set_membuf(&impl->pass, &impl->pass_len, p, len);
144
145 case EVP_KDF_CTRL_SET_SALT:
146 p = va_arg(args, const unsigned char *);
147 len = va_arg(args, size_t);
148 return scrypt_set_membuf(&impl->salt, &impl->salt_len, p, len);
149
150 case EVP_KDF_CTRL_SET_SCRYPT_N:
151 u64_value = va_arg(args, uint64_t);
cefa762e
JB
152 if ((u64_value <= 1) || !is_power_of_two(u64_value))
153 return 0;
5a285add
DM
154
155 impl->N = u64_value;
cefa762e
JB
156 return 1;
157
5a285add
DM
158 case EVP_KDF_CTRL_SET_SCRYPT_R:
159 value = va_arg(args, uint32_t);
160 if (value < 1)
cefa762e 161 return 0;
5a285add
DM
162
163 impl->r = value;
cefa762e
JB
164 return 1;
165
5a285add
DM
166 case EVP_KDF_CTRL_SET_SCRYPT_P:
167 value = va_arg(args, uint32_t);
168 if (value < 1)
cefa762e 169 return 0;
5a285add
DM
170
171 impl->p = value;
cefa762e
JB
172 return 1;
173
5a285add
DM
174 case EVP_KDF_CTRL_SET_MAXMEM_BYTES:
175 u64_value = va_arg(args, uint64_t);
cefa762e
JB
176 if (u64_value < 1)
177 return 0;
5a285add
DM
178
179 impl->maxmem_bytes = u64_value;
cefa762e
JB
180 return 1;
181
182 default:
183 return -2;
5a285add
DM
184 }
185}
186
187static int kdf_scrypt_ctrl_uint32(EVP_KDF_IMPL *impl, int cmd,
188 const char *value)
189{
190 int int_value = atoi(value);
cefa762e 191
5a285add
DM
192 if (int_value < 0 || (uint64_t)int_value > UINT32_MAX) {
193 KDFerr(KDF_F_KDF_SCRYPT_CTRL_UINT32, KDF_R_VALUE_ERROR);
194 return 0;
cefa762e 195 }
5a285add 196 return call_ctrl(kdf_scrypt_ctrl, impl, cmd, (uint32_t)int_value);
cefa762e
JB
197}
198
5a285add
DM
199static int kdf_scrypt_ctrl_uint64(EVP_KDF_IMPL *impl, int cmd,
200 const char *value)
cefa762e 201{
5a285add 202 uint64_t u64_value;
cefa762e 203
5a285add
DM
204 if (!atou64(value, &u64_value)) {
205 KDFerr(KDF_F_KDF_SCRYPT_CTRL_UINT64, KDF_R_VALUE_ERROR);
cefa762e
JB
206 return 0;
207 }
5a285add 208 return call_ctrl(kdf_scrypt_ctrl, impl, cmd, u64_value);
cefa762e
JB
209}
210
5a285add
DM
211static int kdf_scrypt_ctrl_str(EVP_KDF_IMPL *impl, const char *type,
212 const char *value)
cefa762e
JB
213{
214 if (value == NULL) {
5a285add 215 KDFerr(KDF_F_KDF_SCRYPT_CTRL_STR, KDF_R_VALUE_MISSING);
cefa762e
JB
216 return 0;
217 }
218
219 if (strcmp(type, "pass") == 0)
5a285add
DM
220 return kdf_str2ctrl(impl, kdf_scrypt_ctrl, EVP_KDF_CTRL_SET_PASS,
221 value);
cefa762e
JB
222
223 if (strcmp(type, "hexpass") == 0)
5a285add
DM
224 return kdf_hex2ctrl(impl, kdf_scrypt_ctrl, EVP_KDF_CTRL_SET_PASS,
225 value);
cefa762e
JB
226
227 if (strcmp(type, "salt") == 0)
5a285add
DM
228 return kdf_str2ctrl(impl, kdf_scrypt_ctrl, EVP_KDF_CTRL_SET_SALT,
229 value);
cefa762e
JB
230
231 if (strcmp(type, "hexsalt") == 0)
5a285add
DM
232 return kdf_hex2ctrl(impl, kdf_scrypt_ctrl, EVP_KDF_CTRL_SET_SALT,
233 value);
cefa762e
JB
234
235 if (strcmp(type, "N") == 0)
5a285add 236 return kdf_scrypt_ctrl_uint64(impl, EVP_KDF_CTRL_SET_SCRYPT_N, value);
cefa762e
JB
237
238 if (strcmp(type, "r") == 0)
5a285add 239 return kdf_scrypt_ctrl_uint32(impl, EVP_KDF_CTRL_SET_SCRYPT_R, value);
cefa762e
JB
240
241 if (strcmp(type, "p") == 0)
5a285add 242 return kdf_scrypt_ctrl_uint32(impl, EVP_KDF_CTRL_SET_SCRYPT_P, value);
cefa762e
JB
243
244 if (strcmp(type, "maxmem_bytes") == 0)
5a285add
DM
245 return kdf_scrypt_ctrl_uint64(impl, EVP_KDF_CTRL_SET_MAXMEM_BYTES,
246 value);
cefa762e 247
cefa762e
JB
248 return -2;
249}
250
5a285add
DM
251static int kdf_scrypt_derive(EVP_KDF_IMPL *impl, unsigned char *key,
252 size_t keylen)
cefa762e 253{
5a285add
DM
254 if (impl->pass == NULL) {
255 KDFerr(KDF_F_KDF_SCRYPT_DERIVE, KDF_R_MISSING_PASS);
cefa762e
JB
256 return 0;
257 }
258
5a285add
DM
259 if (impl->salt == NULL) {
260 KDFerr(KDF_F_KDF_SCRYPT_DERIVE, KDF_R_MISSING_SALT);
cefa762e
JB
261 return 0;
262 }
263
5a285add
DM
264 return scrypt_alg((char *)impl->pass, impl->pass_len, impl->salt,
265 impl->salt_len, impl->N, impl->r, impl->p,
266 impl->maxmem_bytes, key, keylen);
267}
268
d2ba8123 269const EVP_KDF scrypt_kdf_meth = {
5a285add
DM
270 EVP_KDF_SCRYPT,
271 kdf_scrypt_new,
272 kdf_scrypt_free,
273 kdf_scrypt_reset,
274 kdf_scrypt_ctrl,
275 kdf_scrypt_ctrl_str,
276 NULL,
277 kdf_scrypt_derive
278};
279
280#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
281static void salsa208_word_specification(uint32_t inout[16])
282{
283 int i;
284 uint32_t x[16];
285
286 memcpy(x, inout, sizeof(x));
287 for (i = 8; i > 0; i -= 2) {
288 x[4] ^= R(x[0] + x[12], 7);
289 x[8] ^= R(x[4] + x[0], 9);
290 x[12] ^= R(x[8] + x[4], 13);
291 x[0] ^= R(x[12] + x[8], 18);
292 x[9] ^= R(x[5] + x[1], 7);
293 x[13] ^= R(x[9] + x[5], 9);
294 x[1] ^= R(x[13] + x[9], 13);
295 x[5] ^= R(x[1] + x[13], 18);
296 x[14] ^= R(x[10] + x[6], 7);
297 x[2] ^= R(x[14] + x[10], 9);
298 x[6] ^= R(x[2] + x[14], 13);
299 x[10] ^= R(x[6] + x[2], 18);
300 x[3] ^= R(x[15] + x[11], 7);
301 x[7] ^= R(x[3] + x[15], 9);
302 x[11] ^= R(x[7] + x[3], 13);
303 x[15] ^= R(x[11] + x[7], 18);
304 x[1] ^= R(x[0] + x[3], 7);
305 x[2] ^= R(x[1] + x[0], 9);
306 x[3] ^= R(x[2] + x[1], 13);
307 x[0] ^= R(x[3] + x[2], 18);
308 x[6] ^= R(x[5] + x[4], 7);
309 x[7] ^= R(x[6] + x[5], 9);
310 x[4] ^= R(x[7] + x[6], 13);
311 x[5] ^= R(x[4] + x[7], 18);
312 x[11] ^= R(x[10] + x[9], 7);
313 x[8] ^= R(x[11] + x[10], 9);
314 x[9] ^= R(x[8] + x[11], 13);
315 x[10] ^= R(x[9] + x[8], 18);
316 x[12] ^= R(x[15] + x[14], 7);
317 x[13] ^= R(x[12] + x[15], 9);
318 x[14] ^= R(x[13] + x[12], 13);
319 x[15] ^= R(x[14] + x[13], 18);
320 }
321 for (i = 0; i < 16; ++i)
322 inout[i] += x[i];
323 OPENSSL_cleanse(x, sizeof(x));
324}
325
326static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r)
327{
328 uint64_t i, j;
329 uint32_t X[16], *pB;
330
331 memcpy(X, B + (r * 2 - 1) * 16, sizeof(X));
332 pB = B;
333 for (i = 0; i < r * 2; i++) {
334 for (j = 0; j < 16; j++)
335 X[j] ^= *pB++;
336 salsa208_word_specification(X);
337 memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X));
338 }
339 OPENSSL_cleanse(X, sizeof(X));
340}
341
342static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N,
343 uint32_t *X, uint32_t *T, uint32_t *V)
344{
345 unsigned char *pB;
346 uint32_t *pV;
347 uint64_t i, k;
348
349 /* Convert from little endian input */
350 for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) {
351 *pV = *pB++;
352 *pV |= *pB++ << 8;
353 *pV |= *pB++ << 16;
354 *pV |= (uint32_t)*pB++ << 24;
355 }
356
357 for (i = 1; i < N; i++, pV += 32 * r)
358 scryptBlockMix(pV, pV - 32 * r, r);
359
360 scryptBlockMix(X, V + (N - 1) * 32 * r, r);
361
362 for (i = 0; i < N; i++) {
363 uint32_t j;
364 j = X[16 * (2 * r - 1)] % N;
365 pV = V + 32 * r * j;
366 for (k = 0; k < 32 * r; k++)
367 T[k] = X[k] ^ *pV++;
368 scryptBlockMix(X, T, r);
369 }
370 /* Convert output to little endian */
371 for (i = 0, pB = B; i < 32 * r; i++) {
372 uint32_t xtmp = X[i];
373 *pB++ = xtmp & 0xff;
374 *pB++ = (xtmp >> 8) & 0xff;
375 *pB++ = (xtmp >> 16) & 0xff;
376 *pB++ = (xtmp >> 24) & 0xff;
377 }
cefa762e
JB
378}
379
5a285add
DM
380#ifndef SIZE_MAX
381# define SIZE_MAX ((size_t)-1)
382#endif
cefa762e 383
5a285add
DM
384/*
385 * Maximum power of two that will fit in uint64_t: this should work on
386 * most (all?) platforms.
387 */
cefa762e 388
5a285add 389#define LOG2_UINT64_MAX (sizeof(uint64_t) * 8 - 1)
cefa762e 390
5a285add
DM
391/*
392 * Maximum value of p * r:
393 * p <= ((2^32-1) * hLen) / MFLen =>
394 * p <= ((2^32-1) * 32) / (128 * r) =>
395 * p * r <= (2^30-1)
396 */
cefa762e 397
5a285add 398#define SCRYPT_PR_MAX ((1 << 30) - 1)
cefa762e 399
5a285add
DM
400static int scrypt_alg(const char *pass, size_t passlen,
401 const unsigned char *salt, size_t saltlen,
402 uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
403 unsigned char *key, size_t keylen)
404{
405 int rv = 0;
406 unsigned char *B;
407 uint32_t *X, *V, *T;
408 uint64_t i, Blen, Vlen;
409
410 /* Sanity check parameters */
411 /* initial check, r,p must be non zero, N >= 2 and a power of 2 */
412 if (r == 0 || p == 0 || N < 2 || (N & (N - 1)))
413 return 0;
414 /* Check p * r < SCRYPT_PR_MAX avoiding overflow */
415 if (p > SCRYPT_PR_MAX / r) {
416 EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED);
417 return 0;
418 }
cefa762e 419
5a285add
DM
420 /*
421 * Need to check N: if 2^(128 * r / 8) overflows limit this is
422 * automatically satisfied since N <= UINT64_MAX.
423 */
cefa762e 424
5a285add
DM
425 if (16 * r <= LOG2_UINT64_MAX) {
426 if (N >= (((uint64_t)1) << (16 * r))) {
427 EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED);
428 return 0;
429 }
430 }
cefa762e 431
5a285add
DM
432 /* Memory checks: check total allocated buffer size fits in uint64_t */
433
434 /*
435 * B size in section 5 step 1.S
436 * Note: we know p * 128 * r < UINT64_MAX because we already checked
437 * p * r < SCRYPT_PR_MAX
438 */
439 Blen = p * 128 * r;
440 /*
441 * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would
442 * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.]
443 */
444 if (Blen > INT_MAX) {
445 EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED);
446 return 0;
447 }
448
449 /*
450 * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t
451 * This is combined size V, X and T (section 4)
452 */
453 i = UINT64_MAX / (32 * sizeof(uint32_t));
454 if (N + 2 > i / r) {
455 EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED);
456 return 0;
457 }
458 Vlen = 32 * r * (N + 2) * sizeof(uint32_t);
459
460 /* check total allocated size fits in uint64_t */
461 if (Blen > UINT64_MAX - Vlen) {
462 EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED);
463 return 0;
464 }
465
466 /* Check that the maximum memory doesn't exceed a size_t limits */
467 if (maxmem > SIZE_MAX)
468 maxmem = SIZE_MAX;
469
470 if (Blen + Vlen > maxmem) {
471 EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED);
472 return 0;
473 }
474
475 /* If no key return to indicate parameters are OK */
476 if (key == NULL)
477 return 1;
478
479 B = OPENSSL_malloc((size_t)(Blen + Vlen));
480 if (B == NULL) {
481 EVPerr(EVP_F_SCRYPT_ALG, ERR_R_MALLOC_FAILURE);
482 return 0;
483 }
484 X = (uint32_t *)(B + Blen);
485 T = X + 32 * r;
486 V = T + 32 * r;
487 if (PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, 1, EVP_sha256(),
488 (int)Blen, B) == 0)
489 goto err;
490
491 for (i = 0; i < p; i++)
492 scryptROMix(B + 128 * r * i, r, N, X, T, V);
493
494 if (PKCS5_PBKDF2_HMAC(pass, passlen, B, (int)Blen, 1, EVP_sha256(),
495 keylen, key) == 0)
496 goto err;
497 rv = 1;
498 err:
499 if (rv == 0)
500 EVPerr(EVP_F_SCRYPT_ALG, EVP_R_PBKDF2_ERROR);
501
502 OPENSSL_clear_free(B, (size_t)(Blen + Vlen));
503 return rv;
504}
402f26e6
JB
505
506#endif