]> git.ipfire.org Git - thirdparty/openssl.git/blame - ssl/s3_cbc.c
DSA: fix the DSA parameter logic in test.
[thirdparty/openssl.git] / ssl / s3_cbc.c
CommitLineData
846e33c7 1/*
39147079 2 * Copyright 2012-2019 The OpenSSL Project Authors. All Rights Reserved.
a693ead6 3 *
2c18d164 4 * Licensed under the Apache License 2.0 (the "License"). You may not use
846e33c7
RS
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
a693ead6
BL
8 */
9
85d843c8 10/*
781aa7ab 11 * MD5 and SHA-1 low level APIs are deprecated for public use, but still ok for
85d843c8
P
12 * internal use.
13 */
14#include "internal/deprecated.h"
15
706457b7
DMSP
16#include "internal/constant_time.h"
17#include "ssl_local.h"
67dc995e 18#include "internal/cryptlib.h"
a693ead6
BL
19
20#include <openssl/md5.h>
21#include <openssl/sha.h>
22
0f113f3e
MC
23/*
24 * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's
25 * length field. (SHA-384/512 have 128-bit length.)
26 */
a693ead6
BL
27#define MAX_HASH_BIT_COUNT_BYTES 16
28
0f113f3e
MC
29/*
30 * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
a693ead6 31 * Currently SHA-384/512 has a 128-byte block size and that's the largest
0f113f3e
MC
32 * supported by TLS.)
33 */
a693ead6
BL
34#define MAX_HASH_BLOCK_SIZE 128
35
0f113f3e
MC
36/*
37 * u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
38 * little-endian order. The value of p is advanced by four.
39 */
32620fe9 40#define u32toLE(n, p) \
0f113f3e
MC
41 (*((p)++)=(unsigned char)(n), \
42 *((p)++)=(unsigned char)(n>>8), \
43 *((p)++)=(unsigned char)(n>>16), \
44 *((p)++)=(unsigned char)(n>>24))
45
46/*
47 * These functions serialize the state of a hash and thus perform the
48 * standard "final" operation without adding the padding and length that such
49 * a function typically does.
50 */
51static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)
52{
53 MD5_CTX *md5 = ctx;
54 u32toLE(md5->A, md_out);
55 u32toLE(md5->B, md_out);
56 u32toLE(md5->C, md_out);
57 u32toLE(md5->D, md_out);
58}
59
60static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)
61{
62 SHA_CTX *sha1 = ctx;
63 l2n(sha1->h0, md_out);
64 l2n(sha1->h1, md_out);
65 l2n(sha1->h2, md_out);
66 l2n(sha1->h3, md_out);
67 l2n(sha1->h4, md_out);
68}
69
0f113f3e
MC
70static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)
71{
72 SHA256_CTX *sha256 = ctx;
73 unsigned i;
74
75 for (i = 0; i < 8; i++) {
76 l2n(sha256->h[i], md_out);
77 }
78}
79
0f113f3e
MC
80static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)
81{
82 SHA512_CTX *sha512 = ctx;
83 unsigned i;
84
85 for (i = 0; i < 8; i++) {
86 l2n8(sha512->h[i], md_out);
87 }
88}
89
474e469b
RS
90#undef LARGEST_DIGEST_CTX
91#define LARGEST_DIGEST_CTX SHA512_CTX
a693ead6 92
0f113f3e
MC
93/*
94 * ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
95 * which ssl3_cbc_digest_record supports.
96 */
a693ead6 97char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
0f113f3e 98{
0f113f3e
MC
99 switch (EVP_MD_CTX_type(ctx)) {
100 case NID_md5:
101 case NID_sha1:
0f113f3e
MC
102 case NID_sha224:
103 case NID_sha256:
0f113f3e
MC
104 case NID_sha384:
105 case NID_sha512:
0f113f3e
MC
106 return 1;
107 default:
108 return 0;
109 }
110}
a693ead6 111
1d97c843
TH
112/*-
113 * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
a693ead6
BL
114 * record.
115 *
116 * ctx: the EVP_MD_CTX from which we take the hash function.
117 * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
118 * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
119 * md_out_size: if non-NULL, the number of output bytes is written here.
120 * header: the 13-byte, TLS record header.
478b50cf 121 * data: the record data itself, less any preceding explicit IV.
a693ead6
BL
122 * data_plus_mac_size: the secret, reported length of the data and MAC
123 * once the padding has been removed.
124 * data_plus_mac_plus_padding_size: the public length of the whole
125 * record, including padding.
126 * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
127 *
128 * On entry: by virtue of having been through one of the remove_padding
129 * functions, above, we know that data_plus_mac_size is large enough to contain
130 * a padding byte and MAC. (If the padding was invalid, it might contain the
0f113f3e 131 * padding too. )
5f3d93e4 132 * Returns 1 on success or 0 on error
1d97c843 133 */
5f3d93e4 134int ssl3_cbc_digest_record(const EVP_MD_CTX *ctx,
a230b26e
EK
135 unsigned char *md_out,
136 size_t *md_out_size,
137 const unsigned char header[13],
138 const unsigned char *data,
139 size_t data_plus_mac_size,
140 size_t data_plus_mac_plus_padding_size,
141 const unsigned char *mac_secret,
d0e7c31d 142 size_t mac_secret_length, char is_sslv3)
0f113f3e
MC
143{
144 union {
39147079 145 OSSL_UNION_ALIGN;
0f113f3e
MC
146 unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
147 } md_state;
148 void (*md_final_raw) (void *ctx, unsigned char *md_out);
149 void (*md_transform) (void *ctx, const unsigned char *block);
d0e7c31d
MC
150 size_t md_size, md_block_size = 64;
151 size_t sslv3_pad_length = 40, header_length, variance_blocks,
0f113f3e
MC
152 len, max_mac_bytes, num_blocks,
153 num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
d0e7c31d 154 size_t bits; /* at most 18 bits */
0f113f3e
MC
155 unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
156 /* hmac_pad is the masked HMAC key. */
157 unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
158 unsigned char first_block[MAX_HASH_BLOCK_SIZE];
159 unsigned char mac_out[EVP_MAX_MD_SIZE];
d0e7c31d
MC
160 size_t i, j;
161 unsigned md_out_size_u;
6e59a892 162 EVP_MD_CTX *md_ctx = NULL;
0f113f3e
MC
163 /*
164 * mdLengthSize is the number of bytes in the length field that
165 * terminates * the hash.
166 */
d0e7c31d 167 size_t md_length_size = 8;
0f113f3e
MC
168 char length_is_big_endian = 1;
169 int ret;
170
171 /*
172 * This is a, hopefully redundant, check that allows us to forget about
173 * many possible overflows later in this function.
174 */
380a522f
MC
175 if (!ossl_assert(data_plus_mac_plus_padding_size < 1024 * 1024))
176 return 0;
0f113f3e
MC
177
178 switch (EVP_MD_CTX_type(ctx)) {
179 case NID_md5:
5f3d93e4
MC
180 if (MD5_Init((MD5_CTX *)md_state.c) <= 0)
181 return 0;
0f113f3e
MC
182 md_final_raw = tls1_md5_final_raw;
183 md_transform =
184 (void (*)(void *ctx, const unsigned char *block))MD5_Transform;
185 md_size = 16;
186 sslv3_pad_length = 48;
187 length_is_big_endian = 0;
188 break;
189 case NID_sha1:
5f3d93e4
MC
190 if (SHA1_Init((SHA_CTX *)md_state.c) <= 0)
191 return 0;
0f113f3e
MC
192 md_final_raw = tls1_sha1_final_raw;
193 md_transform =
194 (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;
195 md_size = 20;
196 break;
0f113f3e 197 case NID_sha224:
5f3d93e4
MC
198 if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0)
199 return 0;
0f113f3e
MC
200 md_final_raw = tls1_sha256_final_raw;
201 md_transform =
202 (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
203 md_size = 224 / 8;
204 break;
205 case NID_sha256:
5f3d93e4
MC
206 if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0)
207 return 0;
0f113f3e
MC
208 md_final_raw = tls1_sha256_final_raw;
209 md_transform =
210 (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
211 md_size = 32;
212 break;
0f113f3e 213 case NID_sha384:
5f3d93e4
MC
214 if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0)
215 return 0;
0f113f3e
MC
216 md_final_raw = tls1_sha512_final_raw;
217 md_transform =
218 (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
219 md_size = 384 / 8;
220 md_block_size = 128;
221 md_length_size = 16;
222 break;
223 case NID_sha512:
5f3d93e4
MC
224 if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0)
225 return 0;
0f113f3e
MC
226 md_final_raw = tls1_sha512_final_raw;
227 md_transform =
228 (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
229 md_size = 64;
230 md_block_size = 128;
231 md_length_size = 16;
232 break;
0f113f3e
MC
233 default:
234 /*
235 * ssl3_cbc_record_digest_supported should have been called first to
236 * check that the hash function is supported.
237 */
b77f3ed1 238 if (md_out_size != NULL)
5c649375 239 *md_out_size = 0;
b77f3ed1 240 return ossl_assert(0);
0f113f3e
MC
241 }
242
b77f3ed1
MC
243 if (!ossl_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES)
244 || !ossl_assert(md_block_size <= MAX_HASH_BLOCK_SIZE)
245 || !ossl_assert(md_size <= EVP_MAX_MD_SIZE))
380a522f 246 return 0;
0f113f3e
MC
247
248 header_length = 13;
249 if (is_sslv3) {
250 header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence
251 * number */ +
252 1 /* record type */ +
253 2 /* record length */ ;
254 }
255
256 /*
257 * variance_blocks is the number of blocks of the hash that we have to
258 * calculate in constant time because they could be altered by the
259 * padding value. In SSLv3, the padding must be minimal so the end of
260 * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively
261 * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes
262 * of hash termination (0x80 + 64-bit length) don't fit in the final
263 * block, we say that the final two blocks can vary based on the padding.
264 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
cb8164b0 265 * required to be minimal. Therefore we say that the final |variance_blocks|
266 * blocks can
0f113f3e
MC
267 * vary based on the padding. Later in the function, if the message is
268 * short and there obviously cannot be this many blocks then
269 * variance_blocks can be reduced.
270 */
cb8164b0 271 variance_blocks = is_sslv3 ? 2 : ( ((255 + 1 + md_size + md_block_size - 1) / md_block_size) + 1);
0f113f3e
MC
272 /*
273 * From now on we're dealing with the MAC, which conceptually has 13
274 * bytes of `header' before the start of the data (TLS) or 71/75 bytes
275 * (SSLv3)
276 */
277 len = data_plus_mac_plus_padding_size + header_length;
278 /*
279 * max_mac_bytes contains the maximum bytes of bytes in the MAC,
280 * including * |header|, assuming that there's no padding.
281 */
282 max_mac_bytes = len - md_size - 1;
283 /* num_blocks is the maximum number of hash blocks. */
284 num_blocks =
285 (max_mac_bytes + 1 + md_length_size + md_block_size -
286 1) / md_block_size;
287 /*
288 * In order to calculate the MAC in constant time we have to handle the
289 * final blocks specially because the padding value could cause the end
290 * to appear somewhere in the final |variance_blocks| blocks and we can't
291 * leak where. However, |num_starting_blocks| worth of data can be hashed
292 * right away because no padding value can affect whether they are
293 * plaintext.
294 */
295 num_starting_blocks = 0;
296 /*
297 * k is the starting byte offset into the conceptual header||data where
298 * we start processing.
299 */
300 k = 0;
301 /*
302 * mac_end_offset is the index just past the end of the data to be MACed.
303 */
304 mac_end_offset = data_plus_mac_size + header_length - md_size;
305 /*
306 * c is the index of the 0x80 byte in the final hash block that contains
307 * application data.
308 */
309 c = mac_end_offset % md_block_size;
310 /*
311 * index_a is the hash block number that contains the 0x80 terminating
312 * value.
313 */
314 index_a = mac_end_offset / md_block_size;
315 /*
316 * index_b is the hash block number that contains the 64-bit hash length,
317 * in bits.
318 */
319 index_b = (mac_end_offset + md_length_size) / md_block_size;
320 /*
321 * bits is the hash-length in bits. It includes the additional hash block
322 * for the masked HMAC key, or whole of |header| in the case of SSLv3.
323 */
324
325 /*
326 * For SSLv3, if we're going to have any starting blocks then we need at
327 * least two because the header is larger than a single block.
328 */
329 if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
330 num_starting_blocks = num_blocks - variance_blocks;
331 k = md_block_size * num_starting_blocks;
332 }
333
334 bits = 8 * mac_end_offset;
335 if (!is_sslv3) {
336 /*
337 * Compute the initial HMAC block. For SSLv3, the padding and secret
338 * bytes are included in |header| because they take more than a
339 * single block.
340 */
341 bits += 8 * md_block_size;
342 memset(hmac_pad, 0, md_block_size);
380a522f
MC
343 if (!ossl_assert(mac_secret_length <= sizeof(hmac_pad)))
344 return 0;
0f113f3e
MC
345 memcpy(hmac_pad, mac_secret, mac_secret_length);
346 for (i = 0; i < md_block_size; i++)
347 hmac_pad[i] ^= 0x36;
348
349 md_transform(md_state.c, hmac_pad);
350 }
351
352 if (length_is_big_endian) {
353 memset(length_bytes, 0, md_length_size - 4);
354 length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
355 length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
356 length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
357 length_bytes[md_length_size - 1] = (unsigned char)bits;
358 } else {
359 memset(length_bytes, 0, md_length_size);
360 length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
361 length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
362 length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
363 length_bytes[md_length_size - 8] = (unsigned char)bits;
364 }
365
366 if (k > 0) {
367 if (is_sslv3) {
348240c6 368 size_t overhang;
29b0a15a 369
0f113f3e
MC
370 /*
371 * The SSLv3 header is larger than a single block. overhang is
372 * the number of bytes beyond a single block that the header
29b0a15a
MC
373 * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no
374 * ciphersuites in SSLv3 that are not SHA1 or MD5 based and
375 * therefore we can be confident that the header_length will be
376 * greater than |md_block_size|. However we add a sanity check just
377 * in case
0f113f3e 378 */
29b0a15a
MC
379 if (header_length <= md_block_size) {
380 /* Should never happen */
5f3d93e4 381 return 0;
29b0a15a
MC
382 }
383 overhang = header_length - md_block_size;
0f113f3e
MC
384 md_transform(md_state.c, header);
385 memcpy(first_block, header + md_block_size, overhang);
386 memcpy(first_block + overhang, data, md_block_size - overhang);
387 md_transform(md_state.c, first_block);
388 for (i = 1; i < k / md_block_size - 1; i++)
389 md_transform(md_state.c, data + md_block_size * i - overhang);
390 } else {
391 /* k is a multiple of md_block_size. */
392 memcpy(first_block, header, 13);
393 memcpy(first_block + 13, data, md_block_size - 13);
394 md_transform(md_state.c, first_block);
395 for (i = 1; i < k / md_block_size; i++)
396 md_transform(md_state.c, data + md_block_size * i - 13);
397 }
398 }
399
400 memset(mac_out, 0, sizeof(mac_out));
401
402 /*
403 * We now process the final hash blocks. For each block, we construct it
404 * in constant time. If the |i==index_a| then we'll include the 0x80
405 * bytes and zero pad etc. For each block we selectively copy it, in
406 * constant time, to |mac_out|.
407 */
408 for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;
409 i++) {
410 unsigned char block[MAX_HASH_BLOCK_SIZE];
2688e7a0
MC
411 unsigned char is_block_a = constant_time_eq_8_s(i, index_a);
412 unsigned char is_block_b = constant_time_eq_8_s(i, index_b);
0f113f3e
MC
413 for (j = 0; j < md_block_size; j++) {
414 unsigned char b = 0, is_past_c, is_past_cp1;
415 if (k < header_length)
416 b = header[k];
417 else if (k < data_plus_mac_plus_padding_size + header_length)
418 b = data[k - header_length];
419 k++;
420
2688e7a0
MC
421 is_past_c = is_block_a & constant_time_ge_8_s(j, c);
422 is_past_cp1 = is_block_a & constant_time_ge_8_s(j, c + 1);
0f113f3e
MC
423 /*
424 * If this is the block containing the end of the application
425 * data, and we are at the offset for the 0x80 value, then
426 * overwrite b with 0x80.
427 */
428 b = constant_time_select_8(is_past_c, 0x80, b);
429 /*
3519bae5
XL
430 * If this block contains the end of the application data
431 * and we're past the 0x80 value then just write zero.
0f113f3e
MC
432 */
433 b = b & ~is_past_cp1;
434 /*
435 * If this is index_b (the final block), but not index_a (the end
436 * of the data), then the 64-bit length didn't fit into index_a
437 * and we're having to add an extra block of zeros.
438 */
439 b &= ~is_block_b | is_block_a;
440
441 /*
442 * The final bytes of one of the blocks contains the length.
443 */
444 if (j >= md_block_size - md_length_size) {
445 /* If this is index_b, write a length byte. */
446 b = constant_time_select_8(is_block_b,
447 length_bytes[j -
448 (md_block_size -
449 md_length_size)], b);
450 }
451 block[j] = b;
452 }
453
454 md_transform(md_state.c, block);
455 md_final_raw(md_state.c, block);
456 /* If this is index_b, copy the hash value to |mac_out|. */
457 for (j = 0; j < md_size; j++)
458 mac_out[j] |= block[j] & is_block_b;
459 }
460
bfb0641f 461 md_ctx = EVP_MD_CTX_new();
6e59a892
RL
462 if (md_ctx == NULL)
463 goto err;
464 if (EVP_DigestInit_ex(md_ctx, EVP_MD_CTX_md(ctx), NULL /* engine */ ) <= 0)
5f3d93e4 465 goto err;
0f113f3e
MC
466 if (is_sslv3) {
467 /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
468 memset(hmac_pad, 0x5c, sslv3_pad_length);
469
6e59a892 470 if (EVP_DigestUpdate(md_ctx, mac_secret, mac_secret_length) <= 0
a230b26e
EK
471 || EVP_DigestUpdate(md_ctx, hmac_pad, sslv3_pad_length) <= 0
472 || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
5f3d93e4 473 goto err;
0f113f3e
MC
474 } else {
475 /* Complete the HMAC in the standard manner. */
476 for (i = 0; i < md_block_size; i++)
477 hmac_pad[i] ^= 0x6a;
478
6e59a892 479 if (EVP_DigestUpdate(md_ctx, hmac_pad, md_block_size) <= 0
a230b26e 480 || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
5f3d93e4 481 goto err;
0f113f3e 482 }
d0e7c31d 483 /* TODO(size_t): Convert me */
6e59a892 484 ret = EVP_DigestFinal(md_ctx, md_out, &md_out_size_u);
0f113f3e
MC
485 if (ret && md_out_size)
486 *md_out_size = md_out_size_u;
bfb0641f 487 EVP_MD_CTX_free(md_ctx);
5f3d93e4
MC
488
489 return 1;
a230b26e 490 err:
bfb0641f 491 EVP_MD_CTX_free(md_ctx);
5f3d93e4 492 return 0;
0f113f3e 493}