]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/asm/x86-mont.pl
32daf5c215096ce2521e525da115ef791aa50b88
[thirdparty/openssl.git] / crypto / bn / asm / x86-mont.pl
1 #! /usr/bin/env perl
2 # Copyright 2005-2016 The OpenSSL Project Authors. All Rights Reserved.
3 #
4 # Licensed under the OpenSSL license (the "License"). You may not use
5 # this file except in compliance with the License. You can obtain a copy
6 # in the file LICENSE in the source distribution or at
7 # https://www.openssl.org/source/license.html
8
9
10 # ====================================================================
11 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12 # project. The module is, however, dual licensed under OpenSSL and
13 # CRYPTOGAMS licenses depending on where you obtain it. For further
14 # details see http://www.openssl.org/~appro/cryptogams/.
15 # ====================================================================
16
17 # October 2005
18 #
19 # This is a "teaser" code, as it can be improved in several ways...
20 # First of all non-SSE2 path should be implemented (yes, for now it
21 # performs Montgomery multiplication/convolution only on SSE2-capable
22 # CPUs such as P4, others fall down to original code). Then inner loop
23 # can be unrolled and modulo-scheduled to improve ILP and possibly
24 # moved to 128-bit XMM register bank (though it would require input
25 # rearrangement and/or increase bus bandwidth utilization). Dedicated
26 # squaring procedure should give further performance improvement...
27 # Yet, for being draft, the code improves rsa512 *sign* benchmark by
28 # 110%(!), rsa1024 one - by 70% and rsa4096 - by 20%:-)
29
30 # December 2006
31 #
32 # Modulo-scheduling SSE2 loops results in further 15-20% improvement.
33 # Integer-only code [being equipped with dedicated squaring procedure]
34 # gives ~40% on rsa512 sign benchmark...
35
36 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
37 push(@INC,"${dir}","${dir}../../perlasm");
38 require "x86asm.pl";
39
40 $output = pop;
41 open STDOUT,">$output";
42
43 &asm_init($ARGV[0]);
44
45 $sse2=0;
46 for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
47
48 &external_label("OPENSSL_ia32cap_P") if ($sse2);
49
50 &function_begin("bn_mul_mont");
51
52 $i="edx";
53 $j="ecx";
54 $ap="esi"; $tp="esi"; # overlapping variables!!!
55 $rp="edi"; $bp="edi"; # overlapping variables!!!
56 $np="ebp";
57 $num="ebx";
58
59 $_num=&DWP(4*0,"esp"); # stack top layout
60 $_rp=&DWP(4*1,"esp");
61 $_ap=&DWP(4*2,"esp");
62 $_bp=&DWP(4*3,"esp");
63 $_np=&DWP(4*4,"esp");
64 $_n0=&DWP(4*5,"esp"); $_n0q=&QWP(4*5,"esp");
65 $_sp=&DWP(4*6,"esp");
66 $_bpend=&DWP(4*7,"esp");
67 $frame=32; # size of above frame rounded up to 16n
68
69 &xor ("eax","eax");
70 &mov ("edi",&wparam(5)); # int num
71 &cmp ("edi",4);
72 &jl (&label("just_leave"));
73
74 &lea ("esi",&wparam(0)); # put aside pointer to argument block
75 &lea ("edx",&wparam(1)); # load ap
76 &add ("edi",2); # extra two words on top of tp
77 &neg ("edi");
78 &lea ("ebp",&DWP(-$frame,"esp","edi",4)); # future alloca($frame+4*(num+2))
79 &neg ("edi");
80
81 # minimize cache contention by arraning 2K window between stack
82 # pointer and ap argument [np is also position sensitive vector,
83 # but it's assumed to be near ap, as it's allocated at ~same
84 # time].
85 &mov ("eax","ebp");
86 &sub ("eax","edx");
87 &and ("eax",2047);
88 &sub ("ebp","eax"); # this aligns sp and ap modulo 2048
89
90 &xor ("edx","ebp");
91 &and ("edx",2048);
92 &xor ("edx",2048);
93 &sub ("ebp","edx"); # this splits them apart modulo 4096
94
95 &and ("ebp",-64); # align to cache line
96
97 # An OS-agnostic version of __chkstk.
98 #
99 # Some OSes (Windows) insist on stack being "wired" to
100 # physical memory in strictly sequential manner, i.e. if stack
101 # allocation spans two pages, then reference to farmost one can
102 # be punishable by SEGV. But page walking can do good even on
103 # other OSes, because it guarantees that villain thread hits
104 # the guard page before it can make damage to innocent one...
105 &mov ("eax","esp");
106 &sub ("eax","ebp");
107 &and ("eax",-4096);
108 &mov ("edx","esp"); # saved stack pointer!
109 &lea ("esp",&DWP(0,"ebp","eax"));
110 &mov ("eax",&DWP(0,"esp"));
111 &cmp ("esp","ebp");
112 &ja (&label("page_walk"));
113 &jmp (&label("page_walk_done"));
114
115 &set_label("page_walk",16);
116 &lea ("esp",&DWP(-4096,"esp"));
117 &mov ("eax",&DWP(0,"esp"));
118 &cmp ("esp","ebp");
119 &ja (&label("page_walk"));
120 &set_label("page_walk_done");
121
122 ################################# load argument block...
123 &mov ("eax",&DWP(0*4,"esi"));# BN_ULONG *rp
124 &mov ("ebx",&DWP(1*4,"esi"));# const BN_ULONG *ap
125 &mov ("ecx",&DWP(2*4,"esi"));# const BN_ULONG *bp
126 &mov ("ebp",&DWP(3*4,"esi"));# const BN_ULONG *np
127 &mov ("esi",&DWP(4*4,"esi"));# const BN_ULONG *n0
128 #&mov ("edi",&DWP(5*4,"esi"));# int num
129
130 &mov ("esi",&DWP(0,"esi")); # pull n0[0]
131 &mov ($_rp,"eax"); # ... save a copy of argument block
132 &mov ($_ap,"ebx");
133 &mov ($_bp,"ecx");
134 &mov ($_np,"ebp");
135 &mov ($_n0,"esi");
136 &lea ($num,&DWP(-3,"edi")); # num=num-1 to assist modulo-scheduling
137 #&mov ($_num,$num); # redundant as $num is not reused
138 &mov ($_sp,"edx"); # saved stack pointer!
139 \f
140 if($sse2) {
141 $acc0="mm0"; # mmx register bank layout
142 $acc1="mm1";
143 $car0="mm2";
144 $car1="mm3";
145 $mul0="mm4";
146 $mul1="mm5";
147 $temp="mm6";
148 $mask="mm7";
149
150 &picmeup("eax","OPENSSL_ia32cap_P");
151 &bt (&DWP(0,"eax"),26);
152 &jnc (&label("non_sse2"));
153
154 &mov ("eax",-1);
155 &movd ($mask,"eax"); # mask 32 lower bits
156
157 &mov ($ap,$_ap); # load input pointers
158 &mov ($bp,$_bp);
159 &mov ($np,$_np);
160
161 &xor ($i,$i); # i=0
162 &xor ($j,$j); # j=0
163
164 &movd ($mul0,&DWP(0,$bp)); # bp[0]
165 &movd ($mul1,&DWP(0,$ap)); # ap[0]
166 &movd ($car1,&DWP(0,$np)); # np[0]
167
168 &pmuludq($mul1,$mul0); # ap[0]*bp[0]
169 &movq ($car0,$mul1);
170 &movq ($acc0,$mul1); # I wish movd worked for
171 &pand ($acc0,$mask); # inter-register transfers
172
173 &pmuludq($mul1,$_n0q); # *=n0
174
175 &pmuludq($car1,$mul1); # "t[0]"*np[0]*n0
176 &paddq ($car1,$acc0);
177
178 &movd ($acc1,&DWP(4,$np)); # np[1]
179 &movd ($acc0,&DWP(4,$ap)); # ap[1]
180
181 &psrlq ($car0,32);
182 &psrlq ($car1,32);
183
184 &inc ($j); # j++
185 &set_label("1st",16);
186 &pmuludq($acc0,$mul0); # ap[j]*bp[0]
187 &pmuludq($acc1,$mul1); # np[j]*m1
188 &paddq ($car0,$acc0); # +=c0
189 &paddq ($car1,$acc1); # +=c1
190
191 &movq ($acc0,$car0);
192 &pand ($acc0,$mask);
193 &movd ($acc1,&DWP(4,$np,$j,4)); # np[j+1]
194 &paddq ($car1,$acc0); # +=ap[j]*bp[0];
195 &movd ($acc0,&DWP(4,$ap,$j,4)); # ap[j+1]
196 &psrlq ($car0,32);
197 &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[j-1]=
198 &psrlq ($car1,32);
199
200 &lea ($j,&DWP(1,$j));
201 &cmp ($j,$num);
202 &jl (&label("1st"));
203
204 &pmuludq($acc0,$mul0); # ap[num-1]*bp[0]
205 &pmuludq($acc1,$mul1); # np[num-1]*m1
206 &paddq ($car0,$acc0); # +=c0
207 &paddq ($car1,$acc1); # +=c1
208
209 &movq ($acc0,$car0);
210 &pand ($acc0,$mask);
211 &paddq ($car1,$acc0); # +=ap[num-1]*bp[0];
212 &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[num-2]=
213
214 &psrlq ($car0,32);
215 &psrlq ($car1,32);
216
217 &paddq ($car1,$car0);
218 &movq (&QWP($frame,"esp",$num,4),$car1); # tp[num].tp[num-1]
219 \f
220 &inc ($i); # i++
221 &set_label("outer");
222 &xor ($j,$j); # j=0
223
224 &movd ($mul0,&DWP(0,$bp,$i,4)); # bp[i]
225 &movd ($mul1,&DWP(0,$ap)); # ap[0]
226 &movd ($temp,&DWP($frame,"esp")); # tp[0]
227 &movd ($car1,&DWP(0,$np)); # np[0]
228 &pmuludq($mul1,$mul0); # ap[0]*bp[i]
229
230 &paddq ($mul1,$temp); # +=tp[0]
231 &movq ($acc0,$mul1);
232 &movq ($car0,$mul1);
233 &pand ($acc0,$mask);
234
235 &pmuludq($mul1,$_n0q); # *=n0
236
237 &pmuludq($car1,$mul1);
238 &paddq ($car1,$acc0);
239
240 &movd ($temp,&DWP($frame+4,"esp")); # tp[1]
241 &movd ($acc1,&DWP(4,$np)); # np[1]
242 &movd ($acc0,&DWP(4,$ap)); # ap[1]
243
244 &psrlq ($car0,32);
245 &psrlq ($car1,32);
246 &paddq ($car0,$temp); # +=tp[1]
247
248 &inc ($j); # j++
249 &dec ($num);
250 &set_label("inner");
251 &pmuludq($acc0,$mul0); # ap[j]*bp[i]
252 &pmuludq($acc1,$mul1); # np[j]*m1
253 &paddq ($car0,$acc0); # +=c0
254 &paddq ($car1,$acc1); # +=c1
255
256 &movq ($acc0,$car0);
257 &movd ($temp,&DWP($frame+4,"esp",$j,4));# tp[j+1]
258 &pand ($acc0,$mask);
259 &movd ($acc1,&DWP(4,$np,$j,4)); # np[j+1]
260 &paddq ($car1,$acc0); # +=ap[j]*bp[i]+tp[j]
261 &movd ($acc0,&DWP(4,$ap,$j,4)); # ap[j+1]
262 &psrlq ($car0,32);
263 &movd (&DWP($frame-4,"esp",$j,4),$car1);# tp[j-1]=
264 &psrlq ($car1,32);
265 &paddq ($car0,$temp); # +=tp[j+1]
266
267 &dec ($num);
268 &lea ($j,&DWP(1,$j)); # j++
269 &jnz (&label("inner"));
270
271 &mov ($num,$j);
272 &pmuludq($acc0,$mul0); # ap[num-1]*bp[i]
273 &pmuludq($acc1,$mul1); # np[num-1]*m1
274 &paddq ($car0,$acc0); # +=c0
275 &paddq ($car1,$acc1); # +=c1
276
277 &movq ($acc0,$car0);
278 &pand ($acc0,$mask);
279 &paddq ($car1,$acc0); # +=ap[num-1]*bp[i]+tp[num-1]
280 &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[num-2]=
281 &psrlq ($car0,32);
282 &psrlq ($car1,32);
283
284 &movd ($temp,&DWP($frame+4,"esp",$num,4)); # += tp[num]
285 &paddq ($car1,$car0);
286 &paddq ($car1,$temp);
287 &movq (&QWP($frame,"esp",$num,4),$car1); # tp[num].tp[num-1]
288
289 &lea ($i,&DWP(1,$i)); # i++
290 &cmp ($i,$num);
291 &jle (&label("outer"));
292
293 &emms (); # done with mmx bank
294 &jmp (&label("common_tail"));
295
296 &set_label("non_sse2",16);
297 }
298 \f
299 if (0) {
300 &mov ("esp",$_sp);
301 &xor ("eax","eax"); # signal "not fast enough [yet]"
302 &jmp (&label("just_leave"));
303 # While the below code provides competitive performance for
304 # all key lengths on modern Intel cores, it's still more
305 # than 10% slower for 4096-bit key elsewhere:-( "Competitive"
306 # means compared to the original integer-only assembler.
307 # 512-bit RSA sign is better by ~40%, but that's about all
308 # one can say about all CPUs...
309 } else {
310 $inp="esi"; # integer path uses these registers differently
311 $word="edi";
312 $carry="ebp";
313
314 &mov ($inp,$_ap);
315 &lea ($carry,&DWP(1,$num));
316 &mov ($word,$_bp);
317 &xor ($j,$j); # j=0
318 &mov ("edx",$inp);
319 &and ($carry,1); # see if num is even
320 &sub ("edx",$word); # see if ap==bp
321 &lea ("eax",&DWP(4,$word,$num,4)); # &bp[num]
322 &or ($carry,"edx");
323 &mov ($word,&DWP(0,$word)); # bp[0]
324 &jz (&label("bn_sqr_mont"));
325 &mov ($_bpend,"eax");
326 &mov ("eax",&DWP(0,$inp));
327 &xor ("edx","edx");
328
329 &set_label("mull",16);
330 &mov ($carry,"edx");
331 &mul ($word); # ap[j]*bp[0]
332 &add ($carry,"eax");
333 &lea ($j,&DWP(1,$j));
334 &adc ("edx",0);
335 &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j+1]
336 &cmp ($j,$num);
337 &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]=
338 &jl (&label("mull"));
339
340 &mov ($carry,"edx");
341 &mul ($word); # ap[num-1]*bp[0]
342 &mov ($word,$_n0);
343 &add ("eax",$carry);
344 &mov ($inp,$_np);
345 &adc ("edx",0);
346 &imul ($word,&DWP($frame,"esp")); # n0*tp[0]
347
348 &mov (&DWP($frame,"esp",$num,4),"eax"); # tp[num-1]=
349 &xor ($j,$j);
350 &mov (&DWP($frame+4,"esp",$num,4),"edx"); # tp[num]=
351 &mov (&DWP($frame+8,"esp",$num,4),$j); # tp[num+1]=
352
353 &mov ("eax",&DWP(0,$inp)); # np[0]
354 &mul ($word); # np[0]*m
355 &add ("eax",&DWP($frame,"esp")); # +=tp[0]
356 &mov ("eax",&DWP(4,$inp)); # np[1]
357 &adc ("edx",0);
358 &inc ($j);
359
360 &jmp (&label("2ndmadd"));
361 \f\f
362 &set_label("1stmadd",16);
363 &mov ($carry,"edx");
364 &mul ($word); # ap[j]*bp[i]
365 &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j]
366 &lea ($j,&DWP(1,$j));
367 &adc ("edx",0);
368 &add ($carry,"eax");
369 &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j+1]
370 &adc ("edx",0);
371 &cmp ($j,$num);
372 &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]=
373 &jl (&label("1stmadd"));
374
375 &mov ($carry,"edx");
376 &mul ($word); # ap[num-1]*bp[i]
377 &add ("eax",&DWP($frame,"esp",$num,4)); # +=tp[num-1]
378 &mov ($word,$_n0);
379 &adc ("edx",0);
380 &mov ($inp,$_np);
381 &add ($carry,"eax");
382 &adc ("edx",0);
383 &imul ($word,&DWP($frame,"esp")); # n0*tp[0]
384
385 &xor ($j,$j);
386 &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num]
387 &mov (&DWP($frame,"esp",$num,4),$carry); # tp[num-1]=
388 &adc ($j,0);
389 &mov ("eax",&DWP(0,$inp)); # np[0]
390 &mov (&DWP($frame+4,"esp",$num,4),"edx"); # tp[num]=
391 &mov (&DWP($frame+8,"esp",$num,4),$j); # tp[num+1]=
392
393 &mul ($word); # np[0]*m
394 &add ("eax",&DWP($frame,"esp")); # +=tp[0]
395 &mov ("eax",&DWP(4,$inp)); # np[1]
396 &adc ("edx",0);
397 &mov ($j,1);
398 \f
399 &set_label("2ndmadd",16);
400 &mov ($carry,"edx");
401 &mul ($word); # np[j]*m
402 &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j]
403 &lea ($j,&DWP(1,$j));
404 &adc ("edx",0);
405 &add ($carry,"eax");
406 &mov ("eax",&DWP(0,$inp,$j,4)); # np[j+1]
407 &adc ("edx",0);
408 &cmp ($j,$num);
409 &mov (&DWP($frame-8,"esp",$j,4),$carry); # tp[j-1]=
410 &jl (&label("2ndmadd"));
411
412 &mov ($carry,"edx");
413 &mul ($word); # np[j]*m
414 &add ($carry,&DWP($frame,"esp",$num,4)); # +=tp[num-1]
415 &adc ("edx",0);
416 &add ($carry,"eax");
417 &adc ("edx",0);
418 &mov (&DWP($frame-4,"esp",$num,4),$carry); # tp[num-2]=
419
420 &xor ("eax","eax");
421 &mov ($j,$_bp); # &bp[i]
422 &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num]
423 &adc ("eax",&DWP($frame+8,"esp",$num,4)); # +=tp[num+1]
424 &lea ($j,&DWP(4,$j));
425 &mov (&DWP($frame,"esp",$num,4),"edx"); # tp[num-1]=
426 &cmp ($j,$_bpend);
427 &mov (&DWP($frame+4,"esp",$num,4),"eax"); # tp[num]=
428 &je (&label("common_tail"));
429
430 &mov ($word,&DWP(0,$j)); # bp[i+1]
431 &mov ($inp,$_ap);
432 &mov ($_bp,$j); # &bp[++i]
433 &xor ($j,$j);
434 &xor ("edx","edx");
435 &mov ("eax",&DWP(0,$inp));
436 &jmp (&label("1stmadd"));
437 \f
438 &set_label("bn_sqr_mont",16);
439 $sbit=$num;
440 &mov ($_num,$num);
441 &mov ($_bp,$j); # i=0
442
443 &mov ("eax",$word); # ap[0]
444 &mul ($word); # ap[0]*ap[0]
445 &mov (&DWP($frame,"esp"),"eax"); # tp[0]=
446 &mov ($sbit,"edx");
447 &shr ("edx",1);
448 &and ($sbit,1);
449 &inc ($j);
450 &set_label("sqr",16);
451 &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j]
452 &mov ($carry,"edx");
453 &mul ($word); # ap[j]*ap[0]
454 &add ("eax",$carry);
455 &lea ($j,&DWP(1,$j));
456 &adc ("edx",0);
457 &lea ($carry,&DWP(0,$sbit,"eax",2));
458 &shr ("eax",31);
459 &cmp ($j,$_num);
460 &mov ($sbit,"eax");
461 &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]=
462 &jl (&label("sqr"));
463
464 &mov ("eax",&DWP(0,$inp,$j,4)); # ap[num-1]
465 &mov ($carry,"edx");
466 &mul ($word); # ap[num-1]*ap[0]
467 &add ("eax",$carry);
468 &mov ($word,$_n0);
469 &adc ("edx",0);
470 &mov ($inp,$_np);
471 &lea ($carry,&DWP(0,$sbit,"eax",2));
472 &imul ($word,&DWP($frame,"esp")); # n0*tp[0]
473 &shr ("eax",31);
474 &mov (&DWP($frame,"esp",$j,4),$carry); # tp[num-1]=
475
476 &lea ($carry,&DWP(0,"eax","edx",2));
477 &mov ("eax",&DWP(0,$inp)); # np[0]
478 &shr ("edx",31);
479 &mov (&DWP($frame+4,"esp",$j,4),$carry); # tp[num]=
480 &mov (&DWP($frame+8,"esp",$j,4),"edx"); # tp[num+1]=
481
482 &mul ($word); # np[0]*m
483 &add ("eax",&DWP($frame,"esp")); # +=tp[0]
484 &mov ($num,$j);
485 &adc ("edx",0);
486 &mov ("eax",&DWP(4,$inp)); # np[1]
487 &mov ($j,1);
488 \f\f
489 &set_label("3rdmadd",16);
490 &mov ($carry,"edx");
491 &mul ($word); # np[j]*m
492 &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j]
493 &adc ("edx",0);
494 &add ($carry,"eax");
495 &mov ("eax",&DWP(4,$inp,$j,4)); # np[j+1]
496 &adc ("edx",0);
497 &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j-1]=
498
499 &mov ($carry,"edx");
500 &mul ($word); # np[j+1]*m
501 &add ($carry,&DWP($frame+4,"esp",$j,4)); # +=tp[j+1]
502 &lea ($j,&DWP(2,$j));
503 &adc ("edx",0);
504 &add ($carry,"eax");
505 &mov ("eax",&DWP(0,$inp,$j,4)); # np[j+2]
506 &adc ("edx",0);
507 &cmp ($j,$num);
508 &mov (&DWP($frame-8,"esp",$j,4),$carry); # tp[j]=
509 &jl (&label("3rdmadd"));
510
511 &mov ($carry,"edx");
512 &mul ($word); # np[j]*m
513 &add ($carry,&DWP($frame,"esp",$num,4)); # +=tp[num-1]
514 &adc ("edx",0);
515 &add ($carry,"eax");
516 &adc ("edx",0);
517 &mov (&DWP($frame-4,"esp",$num,4),$carry); # tp[num-2]=
518
519 &mov ($j,$_bp); # i
520 &xor ("eax","eax");
521 &mov ($inp,$_ap);
522 &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num]
523 &adc ("eax",&DWP($frame+8,"esp",$num,4)); # +=tp[num+1]
524 &mov (&DWP($frame,"esp",$num,4),"edx"); # tp[num-1]=
525 &cmp ($j,$num);
526 &mov (&DWP($frame+4,"esp",$num,4),"eax"); # tp[num]=
527 &je (&label("common_tail"));
528 \f
529 &mov ($word,&DWP(4,$inp,$j,4)); # ap[i]
530 &lea ($j,&DWP(1,$j));
531 &mov ("eax",$word);
532 &mov ($_bp,$j); # ++i
533 &mul ($word); # ap[i]*ap[i]
534 &add ("eax",&DWP($frame,"esp",$j,4)); # +=tp[i]
535 &adc ("edx",0);
536 &mov (&DWP($frame,"esp",$j,4),"eax"); # tp[i]=
537 &xor ($carry,$carry);
538 &cmp ($j,$num);
539 &lea ($j,&DWP(1,$j));
540 &je (&label("sqrlast"));
541
542 &mov ($sbit,"edx"); # zaps $num
543 &shr ("edx",1);
544 &and ($sbit,1);
545 &set_label("sqradd",16);
546 &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j]
547 &mov ($carry,"edx");
548 &mul ($word); # ap[j]*ap[i]
549 &add ("eax",$carry);
550 &lea ($carry,&DWP(0,"eax","eax"));
551 &adc ("edx",0);
552 &shr ("eax",31);
553 &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j]
554 &lea ($j,&DWP(1,$j));
555 &adc ("eax",0);
556 &add ($carry,$sbit);
557 &adc ("eax",0);
558 &cmp ($j,$_num);
559 &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]=
560 &mov ($sbit,"eax");
561 &jle (&label("sqradd"));
562
563 &mov ($carry,"edx");
564 &add ("edx","edx");
565 &shr ($carry,31);
566 &add ("edx",$sbit);
567 &adc ($carry,0);
568 &set_label("sqrlast");
569 &mov ($word,$_n0);
570 &mov ($inp,$_np);
571 &imul ($word,&DWP($frame,"esp")); # n0*tp[0]
572
573 &add ("edx",&DWP($frame,"esp",$j,4)); # +=tp[num]
574 &mov ("eax",&DWP(0,$inp)); # np[0]
575 &adc ($carry,0);
576 &mov (&DWP($frame,"esp",$j,4),"edx"); # tp[num]=
577 &mov (&DWP($frame+4,"esp",$j,4),$carry); # tp[num+1]=
578
579 &mul ($word); # np[0]*m
580 &add ("eax",&DWP($frame,"esp")); # +=tp[0]
581 &lea ($num,&DWP(-1,$j));
582 &adc ("edx",0);
583 &mov ($j,1);
584 &mov ("eax",&DWP(4,$inp)); # np[1]
585
586 &jmp (&label("3rdmadd"));
587 }
588 \f
589 &set_label("common_tail",16);
590 &mov ($np,$_np); # load modulus pointer
591 &mov ($rp,$_rp); # load result pointer
592 &lea ($tp,&DWP($frame,"esp")); # [$ap and $bp are zapped]
593
594 &mov ("eax",&DWP(0,$tp)); # tp[0]
595 &mov ($j,$num); # j=num-1
596 &xor ($i,$i); # i=0 and clear CF!
597
598 &set_label("sub",16);
599 &sbb ("eax",&DWP(0,$np,$i,4));
600 &mov (&DWP(0,$rp,$i,4),"eax"); # rp[i]=tp[i]-np[i]
601 &dec ($j); # doesn't affect CF!
602 &mov ("eax",&DWP(4,$tp,$i,4)); # tp[i+1]
603 &lea ($i,&DWP(1,$i)); # i++
604 &jge (&label("sub"));
605
606 &sbb ("eax",0); # handle upmost overflow bit
607 &and ($tp,"eax");
608 &not ("eax");
609 &mov ($np,$rp);
610 &and ($np,"eax");
611 &or ($tp,$np); # tp=carry?tp:rp
612
613 &set_label("copy",16); # copy or in-place refresh
614 &mov ("eax",&DWP(0,$tp,$num,4));
615 &mov (&DWP(0,$rp,$num,4),"eax"); # rp[i]=tp[i]
616 &mov (&DWP($frame,"esp",$num,4),$j); # zap temporary vector
617 &dec ($num);
618 &jge (&label("copy"));
619
620 &mov ("esp",$_sp); # pull saved stack pointer
621 &mov ("eax",1);
622 &set_label("just_leave");
623 &function_end("bn_mul_mont");
624
625 &asciz("Montgomery Multiplication for x86, CRYPTOGAMS by <appro\@openssl.org>");
626
627 &asm_finish();
628
629 close STDOUT;