]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/sha/asm/sha1-586.pl
c6c977ab03f4b55199173c34361cdbc253623dab
[thirdparty/openssl.git] / crypto / sha / asm / sha1-586.pl
1 #! /usr/bin/env perl
2 # Copyright 1998-2016 The OpenSSL Project Authors. All Rights Reserved.
3 #
4 # Licensed under the OpenSSL license (the "License"). You may not use
5 # this file except in compliance with the License. You can obtain a copy
6 # in the file LICENSE in the source distribution or at
7 # https://www.openssl.org/source/license.html
8
9
10 # ====================================================================
11 # [Re]written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12 # project. The module is, however, dual licensed under OpenSSL and
13 # CRYPTOGAMS licenses depending on where you obtain it. For further
14 # details see http://www.openssl.org/~appro/cryptogams/.
15 # ====================================================================
16
17 # "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
18 # functions were re-implemented to address P4 performance issue [see
19 # commentary below], and in 2006 the rest was rewritten in order to
20 # gain freedom to liberate licensing terms.
21
22 # January, September 2004.
23 #
24 # It was noted that Intel IA-32 C compiler generates code which
25 # performs ~30% *faster* on P4 CPU than original *hand-coded*
26 # SHA1 assembler implementation. To address this problem (and
27 # prove that humans are still better than machines:-), the
28 # original code was overhauled, which resulted in following
29 # performance changes:
30 #
31 # compared with original compared with Intel cc
32 # assembler impl. generated code
33 # Pentium -16% +48%
34 # PIII/AMD +8% +16%
35 # P4 +85%(!) +45%
36 #
37 # As you can see Pentium came out as looser:-( Yet I reckoned that
38 # improvement on P4 outweights the loss and incorporate this
39 # re-tuned code to 0.9.7 and later.
40 # ----------------------------------------------------------------
41
42 # August 2009.
43 #
44 # George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as
45 # '(c&d) + (b&(c^d))', which allows to accumulate partial results
46 # and lighten "pressure" on scratch registers. This resulted in
47 # >12% performance improvement on contemporary AMD cores (with no
48 # degradation on other CPUs:-). Also, the code was revised to maximize
49 # "distance" between instructions producing input to 'lea' instruction
50 # and the 'lea' instruction itself, which is essential for Intel Atom
51 # core and resulted in ~15% improvement.
52
53 # October 2010.
54 #
55 # Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it
56 # is to offload message schedule denoted by Wt in NIST specification,
57 # or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel,
58 # and in SSE2 context was first explored by Dean Gaudet in 2004, see
59 # http://arctic.org/~dean/crypto/sha1.html. Since then several things
60 # have changed that made it interesting again:
61 #
62 # a) XMM units became faster and wider;
63 # b) instruction set became more versatile;
64 # c) an important observation was made by Max Locktykhin, which made
65 # it possible to reduce amount of instructions required to perform
66 # the operation in question, for further details see
67 # http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/.
68
69 # April 2011.
70 #
71 # Add AVX code path, probably most controversial... The thing is that
72 # switch to AVX alone improves performance by as little as 4% in
73 # comparison to SSSE3 code path. But below result doesn't look like
74 # 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as
75 # pair of µ-ops, and it's the additional µ-ops, two per round, that
76 # make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded
77 # as single µ-op by Sandy Bridge and it's replacing 'ro[rl]' with
78 # equivalent 'sh[rl]d' that is responsible for the impressive 5.1
79 # cycles per processed byte. But 'sh[rl]d' is not something that used
80 # to be fast, nor does it appear to be fast in upcoming Bulldozer
81 # [according to its optimization manual]. Which is why AVX code path
82 # is guarded by *both* AVX and synthetic bit denoting Intel CPUs.
83 # One can argue that it's unfair to AMD, but without 'sh[rl]d' it
84 # makes no sense to keep the AVX code path. If somebody feels that
85 # strongly, it's probably more appropriate to discuss possibility of
86 # using vector rotate XOP on AMD...
87
88 # March 2014.
89 #
90 # Add support for Intel SHA Extensions.
91
92 ######################################################################
93 # Current performance is summarized in following table. Numbers are
94 # CPU clock cycles spent to process single byte (less is better).
95 #
96 # x86 SSSE3 AVX
97 # Pentium 15.7 -
98 # PIII 11.5 -
99 # P4 10.6 -
100 # AMD K8 7.1 -
101 # Core2 7.3 6.0/+22% -
102 # Westmere 7.3 5.5/+33% -
103 # Sandy Bridge 8.8 6.2/+40% 5.1(**)/+73%
104 # Ivy Bridge 7.2 4.8/+51% 4.7(**)/+53%
105 # Haswell 6.5 4.3/+51% 4.1(**)/+58%
106 # Skylake 6.4 4.1/+55% 4.1(**)/+55%
107 # Bulldozer 11.6 6.0/+92%
108 # VIA Nano 10.6 7.5/+41%
109 # Atom 12.5 9.3(*)/+35%
110 # Silvermont 14.5 9.9(*)/+46%
111 # Goldmont 8.8 6.7/+30% 1.7(***)/+415%
112 #
113 # (*) Loop is 1056 instructions long and expected result is ~8.25.
114 # The discrepancy is because of front-end limitations, so
115 # called MS-ROM penalties, and on Silvermont even rotate's
116 # limited parallelism.
117 #
118 # (**) As per above comment, the result is for AVX *plus* sh[rl]d.
119 #
120 # (***) SHAEXT result
121
122 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
123 push(@INC,"${dir}","${dir}../../perlasm");
124 require "x86asm.pl";
125
126 $output=pop;
127 open STDOUT,">$output";
128
129 &asm_init($ARGV[0],$ARGV[$#ARGV] eq "386");
130
131 $xmm=$ymm=0;
132 for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); }
133
134 $ymm=1 if ($xmm &&
135 `$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
136 =~ /GNU assembler version ([2-9]\.[0-9]+)/ &&
137 $1>=2.19); # first version supporting AVX
138
139 $ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32n" &&
140 `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/ &&
141 $1>=2.03); # first version supporting AVX
142
143 $ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32" &&
144 `ml 2>&1` =~ /Version ([0-9]+)\./ &&
145 $1>=10); # first version supporting AVX
146
147 $ymm=1 if ($xmm && !$ymm && `$ENV{CC} -v 2>&1` =~ /(^clang version|based on LLVM) ([3-9]\.[0-9]+)/ &&
148 $2>=3.0); # first version supporting AVX
149
150 $shaext=$xmm; ### set to zero if compiling for 1.0.1
151
152 &external_label("OPENSSL_ia32cap_P") if ($xmm);
153
154
155 $A="eax";
156 $B="ebx";
157 $C="ecx";
158 $D="edx";
159 $E="edi";
160 $T="esi";
161 $tmp1="ebp";
162
163 @V=($A,$B,$C,$D,$E,$T);
164
165 $alt=0; # 1 denotes alternative IALU implementation, which performs
166 # 8% *worse* on P4, same on Westmere and Atom, 2% better on
167 # Sandy Bridge...
168
169 sub BODY_00_15
170 {
171 local($n,$a,$b,$c,$d,$e,$f)=@_;
172
173 &comment("00_15 $n");
174
175 &mov($f,$c); # f to hold F_00_19(b,c,d)
176 if ($n==0) { &mov($tmp1,$a); }
177 else { &mov($a,$tmp1); }
178 &rotl($tmp1,5); # tmp1=ROTATE(a,5)
179 &xor($f,$d);
180 &add($tmp1,$e); # tmp1+=e;
181 &mov($e,&swtmp($n%16)); # e becomes volatile and is loaded
182 # with xi, also note that e becomes
183 # f in next round...
184 &and($f,$b);
185 &rotr($b,2); # b=ROTATE(b,30)
186 &xor($f,$d); # f holds F_00_19(b,c,d)
187 &lea($tmp1,&DWP(0x5a827999,$tmp1,$e)); # tmp1+=K_00_19+xi
188
189 if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round
190 &add($f,$tmp1); } # f+=tmp1
191 else { &add($tmp1,$f); } # f becomes a in next round
192 &mov($tmp1,$a) if ($alt && $n==15);
193 }
194
195 sub BODY_16_19
196 {
197 local($n,$a,$b,$c,$d,$e,$f)=@_;
198
199 &comment("16_19 $n");
200
201 if ($alt) {
202 &xor($c,$d);
203 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
204 &and($tmp1,$c); # tmp1 to hold F_00_19(b,c,d), b&=c^d
205 &xor($f,&swtmp(($n+8)%16));
206 &xor($tmp1,$d); # tmp1=F_00_19(b,c,d)
207 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
208 &rotl($f,1); # f=ROTATE(f,1)
209 &add($e,$tmp1); # e+=F_00_19(b,c,d)
210 &xor($c,$d); # restore $c
211 &mov($tmp1,$a); # b in next round
212 &rotr($b,$n==16?2:7); # b=ROTATE(b,30)
213 &mov(&swtmp($n%16),$f); # xi=f
214 &rotl($a,5); # ROTATE(a,5)
215 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
216 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
217 &add($f,$a); # f+=ROTATE(a,5)
218 } else {
219 &mov($tmp1,$c); # tmp1 to hold F_00_19(b,c,d)
220 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
221 &xor($tmp1,$d);
222 &xor($f,&swtmp(($n+8)%16));
223 &and($tmp1,$b);
224 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
225 &rotl($f,1); # f=ROTATE(f,1)
226 &xor($tmp1,$d); # tmp1=F_00_19(b,c,d)
227 &add($e,$tmp1); # e+=F_00_19(b,c,d)
228 &mov($tmp1,$a);
229 &rotr($b,2); # b=ROTATE(b,30)
230 &mov(&swtmp($n%16),$f); # xi=f
231 &rotl($tmp1,5); # ROTATE(a,5)
232 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
233 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
234 &add($f,$tmp1); # f+=ROTATE(a,5)
235 }
236 }
237
238 sub BODY_20_39
239 {
240 local($n,$a,$b,$c,$d,$e,$f)=@_;
241 local $K=($n<40)?0x6ed9eba1:0xca62c1d6;
242
243 &comment("20_39 $n");
244
245 if ($alt) {
246 &xor($tmp1,$c); # tmp1 to hold F_20_39(b,c,d), b^=c
247 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
248 &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
249 &xor($f,&swtmp(($n+8)%16));
250 &add($e,$tmp1); # e+=F_20_39(b,c,d)
251 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
252 &rotl($f,1); # f=ROTATE(f,1)
253 &mov($tmp1,$a); # b in next round
254 &rotr($b,7); # b=ROTATE(b,30)
255 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
256 &rotl($a,5); # ROTATE(a,5)
257 &xor($b,$c) if($n==39);# warm up for BODY_40_59
258 &and($tmp1,$b) if($n==39);
259 &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY
260 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
261 &add($f,$a); # f+=ROTATE(a,5)
262 &rotr($a,5) if ($n==79);
263 } else {
264 &mov($tmp1,$b); # tmp1 to hold F_20_39(b,c,d)
265 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
266 &xor($tmp1,$c);
267 &xor($f,&swtmp(($n+8)%16));
268 &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
269 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
270 &rotl($f,1); # f=ROTATE(f,1)
271 &add($e,$tmp1); # e+=F_20_39(b,c,d)
272 &rotr($b,2); # b=ROTATE(b,30)
273 &mov($tmp1,$a);
274 &rotl($tmp1,5); # ROTATE(a,5)
275 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
276 &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY
277 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
278 &add($f,$tmp1); # f+=ROTATE(a,5)
279 }
280 }
281
282 sub BODY_40_59
283 {
284 local($n,$a,$b,$c,$d,$e,$f)=@_;
285
286 &comment("40_59 $n");
287
288 if ($alt) {
289 &add($e,$tmp1); # e+=b&(c^d)
290 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
291 &mov($tmp1,$d);
292 &xor($f,&swtmp(($n+8)%16));
293 &xor($c,$d); # restore $c
294 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
295 &rotl($f,1); # f=ROTATE(f,1)
296 &and($tmp1,$c);
297 &rotr($b,7); # b=ROTATE(b,30)
298 &add($e,$tmp1); # e+=c&d
299 &mov($tmp1,$a); # b in next round
300 &mov(&swtmp($n%16),$f); # xi=f
301 &rotl($a,5); # ROTATE(a,5)
302 &xor($b,$c) if ($n<59);
303 &and($tmp1,$b) if ($n<59);# tmp1 to hold F_40_59(b,c,d)
304 &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d))
305 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
306 &add($f,$a); # f+=ROTATE(a,5)
307 } else {
308 &mov($tmp1,$c); # tmp1 to hold F_40_59(b,c,d)
309 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
310 &xor($tmp1,$d);
311 &xor($f,&swtmp(($n+8)%16));
312 &and($tmp1,$b);
313 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
314 &rotl($f,1); # f=ROTATE(f,1)
315 &add($tmp1,$e); # b&(c^d)+=e
316 &rotr($b,2); # b=ROTATE(b,30)
317 &mov($e,$a); # e becomes volatile
318 &rotl($e,5); # ROTATE(a,5)
319 &mov(&swtmp($n%16),$f); # xi=f
320 &lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d))
321 &mov($tmp1,$c);
322 &add($f,$e); # f+=ROTATE(a,5)
323 &and($tmp1,$d);
324 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
325 &add($f,$tmp1); # f+=c&d
326 }
327 }
328
329 &function_begin("sha1_block_data_order");
330 if ($xmm) {
331 &static_label("shaext_shortcut") if ($shaext);
332 &static_label("ssse3_shortcut");
333 &static_label("avx_shortcut") if ($ymm);
334 &static_label("K_XX_XX");
335
336 &call (&label("pic_point")); # make it PIC!
337 &set_label("pic_point");
338 &blindpop($tmp1);
339 &picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point"));
340 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
341
342 &mov ($A,&DWP(0,$T));
343 &mov ($D,&DWP(4,$T));
344 &test ($D,1<<9); # check SSSE3 bit
345 &jz (&label("x86"));
346 &mov ($C,&DWP(8,$T));
347 &test ($A,1<<24); # check FXSR bit
348 &jz (&label("x86"));
349 if ($shaext) {
350 &test ($C,1<<29); # check SHA bit
351 &jnz (&label("shaext_shortcut"));
352 }
353 if ($ymm) {
354 &and ($D,1<<28); # mask AVX bit
355 &and ($A,1<<30); # mask "Intel CPU" bit
356 &or ($A,$D);
357 &cmp ($A,1<<28|1<<30);
358 &je (&label("avx_shortcut"));
359 }
360 &jmp (&label("ssse3_shortcut"));
361 &set_label("x86",16);
362 }
363 &mov($tmp1,&wparam(0)); # SHA_CTX *c
364 &mov($T,&wparam(1)); # const void *input
365 &mov($A,&wparam(2)); # size_t num
366 &stack_push(16+3); # allocate X[16]
367 &shl($A,6);
368 &add($A,$T);
369 &mov(&wparam(2),$A); # pointer beyond the end of input
370 &mov($E,&DWP(16,$tmp1));# pre-load E
371 &jmp(&label("loop"));
372
373 &set_label("loop",16);
374
375 # copy input chunk to X, but reversing byte order!
376 for ($i=0; $i<16; $i+=4)
377 {
378 &mov($A,&DWP(4*($i+0),$T));
379 &mov($B,&DWP(4*($i+1),$T));
380 &mov($C,&DWP(4*($i+2),$T));
381 &mov($D,&DWP(4*($i+3),$T));
382 &bswap($A);
383 &bswap($B);
384 &bswap($C);
385 &bswap($D);
386 &mov(&swtmp($i+0),$A);
387 &mov(&swtmp($i+1),$B);
388 &mov(&swtmp($i+2),$C);
389 &mov(&swtmp($i+3),$D);
390 }
391 &mov(&wparam(1),$T); # redundant in 1st spin
392
393 &mov($A,&DWP(0,$tmp1)); # load SHA_CTX
394 &mov($B,&DWP(4,$tmp1));
395 &mov($C,&DWP(8,$tmp1));
396 &mov($D,&DWP(12,$tmp1));
397 # E is pre-loaded
398
399 for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
400 for(;$i<20;$i++) { &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
401 for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
402 for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
403 for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
404
405 (($V[5] eq $D) and ($V[0] eq $E)) or die; # double-check
406
407 &mov($tmp1,&wparam(0)); # re-load SHA_CTX*
408 &mov($D,&wparam(1)); # D is last "T" and is discarded
409
410 &add($E,&DWP(0,$tmp1)); # E is last "A"...
411 &add($T,&DWP(4,$tmp1));
412 &add($A,&DWP(8,$tmp1));
413 &add($B,&DWP(12,$tmp1));
414 &add($C,&DWP(16,$tmp1));
415
416 &mov(&DWP(0,$tmp1),$E); # update SHA_CTX
417 &add($D,64); # advance input pointer
418 &mov(&DWP(4,$tmp1),$T);
419 &cmp($D,&wparam(2)); # have we reached the end yet?
420 &mov(&DWP(8,$tmp1),$A);
421 &mov($E,$C); # C is last "E" which needs to be "pre-loaded"
422 &mov(&DWP(12,$tmp1),$B);
423 &mov($T,$D); # input pointer
424 &mov(&DWP(16,$tmp1),$C);
425 &jb(&label("loop"));
426
427 &stack_pop(16+3);
428 &function_end("sha1_block_data_order");
429
430 if ($xmm) {
431 if ($shaext) {
432 ######################################################################
433 # Intel SHA Extensions implementation of SHA1 update function.
434 #
435 my ($ctx,$inp,$num)=("edi","esi","ecx");
436 my ($ABCD,$E,$E_,$BSWAP)=map("xmm$_",(0..3));
437 my @MSG=map("xmm$_",(4..7));
438
439 sub sha1rnds4 {
440 my ($dst,$src,$imm)=@_;
441 if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/)
442 { &data_byte(0x0f,0x3a,0xcc,0xc0|($1<<3)|$2,$imm); }
443 }
444 sub sha1op38 {
445 my ($opcodelet,$dst,$src)=@_;
446 if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/)
447 { &data_byte(0x0f,0x38,$opcodelet,0xc0|($1<<3)|$2); }
448 }
449 sub sha1nexte { sha1op38(0xc8,@_); }
450 sub sha1msg1 { sha1op38(0xc9,@_); }
451 sub sha1msg2 { sha1op38(0xca,@_); }
452
453 &function_begin("_sha1_block_data_order_shaext");
454 &call (&label("pic_point")); # make it PIC!
455 &set_label("pic_point");
456 &blindpop($tmp1);
457 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
458 &set_label("shaext_shortcut");
459 &mov ($ctx,&wparam(0));
460 &mov ("ebx","esp");
461 &mov ($inp,&wparam(1));
462 &mov ($num,&wparam(2));
463 &sub ("esp",32);
464
465 &movdqu ($ABCD,&QWP(0,$ctx));
466 &movd ($E,&DWP(16,$ctx));
467 &and ("esp",-32);
468 &movdqa ($BSWAP,&QWP(0x50,$tmp1)); # byte-n-word swap
469
470 &movdqu (@MSG[0],&QWP(0,$inp));
471 &pshufd ($ABCD,$ABCD,0b00011011); # flip word order
472 &movdqu (@MSG[1],&QWP(0x10,$inp));
473 &pshufd ($E,$E,0b00011011); # flip word order
474 &movdqu (@MSG[2],&QWP(0x20,$inp));
475 &pshufb (@MSG[0],$BSWAP);
476 &movdqu (@MSG[3],&QWP(0x30,$inp));
477 &pshufb (@MSG[1],$BSWAP);
478 &pshufb (@MSG[2],$BSWAP);
479 &pshufb (@MSG[3],$BSWAP);
480 &jmp (&label("loop_shaext"));
481
482 &set_label("loop_shaext",16);
483 &dec ($num);
484 &lea ("eax",&DWP(0x40,$inp));
485 &movdqa (&QWP(0,"esp"),$E); # offload $E
486 &paddd ($E,@MSG[0]);
487 &cmovne ($inp,"eax");
488 &movdqa (&QWP(16,"esp"),$ABCD); # offload $ABCD
489
490 for($i=0;$i<20-4;$i+=2) {
491 &sha1msg1 (@MSG[0],@MSG[1]);
492 &movdqa ($E_,$ABCD);
493 &sha1rnds4 ($ABCD,$E,int($i/5)); # 0-3...
494 &sha1nexte ($E_,@MSG[1]);
495 &pxor (@MSG[0],@MSG[2]);
496 &sha1msg1 (@MSG[1],@MSG[2]);
497 &sha1msg2 (@MSG[0],@MSG[3]);
498
499 &movdqa ($E,$ABCD);
500 &sha1rnds4 ($ABCD,$E_,int(($i+1)/5));
501 &sha1nexte ($E,@MSG[2]);
502 &pxor (@MSG[1],@MSG[3]);
503 &sha1msg2 (@MSG[1],@MSG[0]);
504
505 push(@MSG,shift(@MSG)); push(@MSG,shift(@MSG));
506 }
507 &movdqu (@MSG[0],&QWP(0,$inp));
508 &movdqa ($E_,$ABCD);
509 &sha1rnds4 ($ABCD,$E,3); # 64-67
510 &sha1nexte ($E_,@MSG[1]);
511 &movdqu (@MSG[1],&QWP(0x10,$inp));
512 &pshufb (@MSG[0],$BSWAP);
513
514 &movdqa ($E,$ABCD);
515 &sha1rnds4 ($ABCD,$E_,3); # 68-71
516 &sha1nexte ($E,@MSG[2]);
517 &movdqu (@MSG[2],&QWP(0x20,$inp));
518 &pshufb (@MSG[1],$BSWAP);
519
520 &movdqa ($E_,$ABCD);
521 &sha1rnds4 ($ABCD,$E,3); # 72-75
522 &sha1nexte ($E_,@MSG[3]);
523 &movdqu (@MSG[3],&QWP(0x30,$inp));
524 &pshufb (@MSG[2],$BSWAP);
525
526 &movdqa ($E,$ABCD);
527 &sha1rnds4 ($ABCD,$E_,3); # 76-79
528 &movdqa ($E_,&QWP(0,"esp"));
529 &pshufb (@MSG[3],$BSWAP);
530 &sha1nexte ($E,$E_);
531 &paddd ($ABCD,&QWP(16,"esp"));
532
533 &jnz (&label("loop_shaext"));
534
535 &pshufd ($ABCD,$ABCD,0b00011011);
536 &pshufd ($E,$E,0b00011011);
537 &movdqu (&QWP(0,$ctx),$ABCD)
538 &movd (&DWP(16,$ctx),$E);
539 &mov ("esp","ebx");
540 &function_end("_sha1_block_data_order_shaext");
541 }
542 ######################################################################
543 # The SSSE3 implementation.
544 #
545 # %xmm[0-7] are used as ring @X[] buffer containing quadruples of last
546 # 32 elements of the message schedule or Xupdate outputs. First 4
547 # quadruples are simply byte-swapped input, next 4 are calculated
548 # according to method originally suggested by Dean Gaudet (modulo
549 # being implemented in SSSE3). Once 8 quadruples or 32 elements are
550 # collected, it switches to routine proposed by Max Locktyukhin.
551 #
552 # Calculations inevitably require temporary reqisters, and there are
553 # no %xmm registers left to spare. For this reason part of the ring
554 # buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring
555 # buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] -
556 # X[-5], and X[4] - X[-4]...
557 #
558 # Another notable optimization is aggressive stack frame compression
559 # aiming to minimize amount of 9-byte instructions...
560 #
561 # Yet another notable optimization is "jumping" $B variable. It means
562 # that there is no register permanently allocated for $B value. This
563 # allowed to eliminate one instruction from body_20_39...
564 #
565 my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded
566 my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
567 my @V=($A,$B,$C,$D,$E);
568 my $j=0; # hash round
569 my $rx=0;
570 my @T=($T,$tmp1);
571 my $inp;
572
573 my $_rol=sub { &rol(@_) };
574 my $_ror=sub { &ror(@_) };
575
576 &function_begin("_sha1_block_data_order_ssse3");
577 &call (&label("pic_point")); # make it PIC!
578 &set_label("pic_point");
579 &blindpop($tmp1);
580 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
581 &set_label("ssse3_shortcut");
582
583 &movdqa (@X[3],&QWP(0,$tmp1)); # K_00_19
584 &movdqa (@X[4],&QWP(16,$tmp1)); # K_20_39
585 &movdqa (@X[5],&QWP(32,$tmp1)); # K_40_59
586 &movdqa (@X[6],&QWP(48,$tmp1)); # K_60_79
587 &movdqa (@X[2],&QWP(64,$tmp1)); # pbswap mask
588
589 &mov ($E,&wparam(0)); # load argument block
590 &mov ($inp=@T[1],&wparam(1));
591 &mov ($D,&wparam(2));
592 &mov (@T[0],"esp");
593
594 # stack frame layout
595 #
596 # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area
597 # X[4]+K X[5]+K X[6]+K X[7]+K
598 # X[8]+K X[9]+K X[10]+K X[11]+K
599 # X[12]+K X[13]+K X[14]+K X[15]+K
600 #
601 # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area
602 # X[4] X[5] X[6] X[7]
603 # X[8] X[9] X[10] X[11] # even borrowed for K_00_19
604 #
605 # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants
606 # K_40_59 K_40_59 K_40_59 K_40_59
607 # K_60_79 K_60_79 K_60_79 K_60_79
608 # K_00_19 K_00_19 K_00_19 K_00_19
609 # pbswap mask
610 #
611 # +192 ctx # argument block
612 # +196 inp
613 # +200 end
614 # +204 esp
615 &sub ("esp",208);
616 &and ("esp",-64);
617
618 &movdqa (&QWP(112+0,"esp"),@X[4]); # copy constants
619 &movdqa (&QWP(112+16,"esp"),@X[5]);
620 &movdqa (&QWP(112+32,"esp"),@X[6]);
621 &shl ($D,6); # len*64
622 &movdqa (&QWP(112+48,"esp"),@X[3]);
623 &add ($D,$inp); # end of input
624 &movdqa (&QWP(112+64,"esp"),@X[2]);
625 &add ($inp,64);
626 &mov (&DWP(192+0,"esp"),$E); # save argument block
627 &mov (&DWP(192+4,"esp"),$inp);
628 &mov (&DWP(192+8,"esp"),$D);
629 &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp
630
631 &mov ($A,&DWP(0,$E)); # load context
632 &mov ($B,&DWP(4,$E));
633 &mov ($C,&DWP(8,$E));
634 &mov ($D,&DWP(12,$E));
635 &mov ($E,&DWP(16,$E));
636 &mov (@T[0],$B); # magic seed
637
638 &movdqu (@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3]
639 &movdqu (@X[-3&7],&QWP(-48,$inp));
640 &movdqu (@X[-2&7],&QWP(-32,$inp));
641 &movdqu (@X[-1&7],&QWP(-16,$inp));
642 &pshufb (@X[-4&7],@X[2]); # byte swap
643 &pshufb (@X[-3&7],@X[2]);
644 &pshufb (@X[-2&7],@X[2]);
645 &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
646 &pshufb (@X[-1&7],@X[2]);
647 &paddd (@X[-4&7],@X[3]); # add K_00_19
648 &paddd (@X[-3&7],@X[3]);
649 &paddd (@X[-2&7],@X[3]);
650 &movdqa (&QWP(0,"esp"),@X[-4&7]); # X[]+K xfer to IALU
651 &psubd (@X[-4&7],@X[3]); # restore X[]
652 &movdqa (&QWP(0+16,"esp"),@X[-3&7]);
653 &psubd (@X[-3&7],@X[3]);
654 &movdqa (&QWP(0+32,"esp"),@X[-2&7]);
655 &mov (@T[1],$C);
656 &psubd (@X[-2&7],@X[3]);
657 &xor (@T[1],$D);
658 &pshufd (@X[0],@X[-4&7],0xee); # was &movdqa (@X[0],@X[-3&7]);
659 &and (@T[0],@T[1]);
660 &jmp (&label("loop"));
661
662 ######################################################################
663 # SSE instruction sequence is first broken to groups of independent
664 # instructions, independent in respect to their inputs and shifter
665 # (not all architectures have more than one). Then IALU instructions
666 # are "knitted in" between the SSE groups. Distance is maintained for
667 # SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer
668 # [which allegedly also implements SSSE3]...
669 #
670 # Temporary registers usage. X[2] is volatile at the entry and at the
671 # end is restored from backtrace ring buffer. X[3] is expected to
672 # contain current K_XX_XX constant and is used to calculate X[-1]+K
673 # from previous round, it becomes volatile the moment the value is
674 # saved to stack for transfer to IALU. X[4] becomes volatile whenever
675 # X[-4] is accumulated and offloaded to backtrace ring buffer, at the
676 # end it is loaded with next K_XX_XX [which becomes X[3] in next
677 # round]...
678 #
679 sub Xupdate_ssse3_16_31() # recall that $Xi starts with 4
680 { use integer;
681 my $body = shift;
682 my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
683 my ($a,$b,$c,$d,$e);
684
685 eval(shift(@insns)); # ror
686 eval(shift(@insns));
687 eval(shift(@insns));
688 &punpcklqdq(@X[0],@X[-3&7]); # compose "X[-14]" in "X[0]", was &palignr(@X[0],@X[-4&7],8);
689 &movdqa (@X[2],@X[-1&7]);
690 eval(shift(@insns));
691 eval(shift(@insns));
692
693 &paddd (@X[3],@X[-1&7]);
694 &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
695 eval(shift(@insns)); # rol
696 eval(shift(@insns));
697 &psrldq (@X[2],4); # "X[-3]", 3 dwords
698 eval(shift(@insns));
699 eval(shift(@insns));
700 &pxor (@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
701 eval(shift(@insns));
702 eval(shift(@insns)); # ror
703
704 &pxor (@X[2],@X[-2&7]); # "X[-3]"^"X[-8]"
705 eval(shift(@insns));
706 eval(shift(@insns));
707 eval(shift(@insns));
708
709 &pxor (@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]"
710 eval(shift(@insns));
711 eval(shift(@insns)); # rol
712 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
713 eval(shift(@insns));
714 eval(shift(@insns));
715
716 &movdqa (@X[4],@X[0]);
717 eval(shift(@insns));
718 eval(shift(@insns));
719 eval(shift(@insns)); # ror
720 &movdqa (@X[2],@X[0]);
721 eval(shift(@insns));
722
723 &pslldq (@X[4],12); # "X[0]"<<96, extract one dword
724 &paddd (@X[0],@X[0]);
725 eval(shift(@insns));
726 eval(shift(@insns));
727
728 &psrld (@X[2],31);
729 eval(shift(@insns));
730 eval(shift(@insns)); # rol
731 &movdqa (@X[3],@X[4]);
732 eval(shift(@insns));
733 eval(shift(@insns));
734 eval(shift(@insns));
735
736 &psrld (@X[4],30);
737 eval(shift(@insns));
738 eval(shift(@insns)); # ror
739 &por (@X[0],@X[2]); # "X[0]"<<<=1
740 eval(shift(@insns));
741 &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer
742 eval(shift(@insns));
743 eval(shift(@insns));
744
745 &pslld (@X[3],2);
746 eval(shift(@insns));
747 eval(shift(@insns)); # rol
748 &pxor (@X[0],@X[4]);
749 &movdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX
750 eval(shift(@insns));
751 eval(shift(@insns));
752
753 &pxor (@X[0],@X[3]); # "X[0]"^=("X[0]"<<96)<<<2
754 &pshufd (@X[1],@X[-3&7],0xee) if ($Xi<7); # was &movdqa (@X[1],@X[-2&7])
755 &pshufd (@X[3],@X[-1&7],0xee) if ($Xi==7);
756 eval(shift(@insns));
757 eval(shift(@insns));
758
759 foreach (@insns) { eval; } # remaining instructions [if any]
760
761 $Xi++; push(@X,shift(@X)); # "rotate" X[]
762 }
763
764 sub Xupdate_ssse3_32_79()
765 { use integer;
766 my $body = shift;
767 my @insns = (&$body,&$body,&$body,&$body); # 32 to 44 instructions
768 my ($a,$b,$c,$d,$e);
769
770 eval(shift(@insns)); # body_20_39
771 &pxor (@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
772 &punpcklqdq(@X[2],@X[-1&7]); # compose "X[-6]", was &palignr(@X[2],@X[-2&7],8)
773 eval(shift(@insns));
774 eval(shift(@insns));
775 eval(shift(@insns)); # rol
776
777 &pxor (@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
778 &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer
779 eval(shift(@insns));
780 eval(shift(@insns));
781 eval(shift(@insns)) if (@insns[0] =~ /_rol/);
782 if ($Xi%5) {
783 &movdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX...
784 } else { # ... or load next one
785 &movdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
786 }
787 eval(shift(@insns)); # ror
788 &paddd (@X[3],@X[-1&7]);
789 eval(shift(@insns));
790
791 &pxor (@X[0],@X[2]); # "X[0]"^="X[-6]"
792 eval(shift(@insns)); # body_20_39
793 eval(shift(@insns));
794 eval(shift(@insns));
795 eval(shift(@insns)); # rol
796
797 &movdqa (@X[2],@X[0]);
798 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
799 eval(shift(@insns));
800 eval(shift(@insns));
801 eval(shift(@insns)); # ror
802 eval(shift(@insns));
803 eval(shift(@insns)) if (@insns[0] =~ /_rol/);
804
805 &pslld (@X[0],2);
806 eval(shift(@insns)); # body_20_39
807 eval(shift(@insns));
808 &psrld (@X[2],30);
809 eval(shift(@insns));
810 eval(shift(@insns)); # rol
811 eval(shift(@insns));
812 eval(shift(@insns));
813 eval(shift(@insns)); # ror
814 eval(shift(@insns));
815 eval(shift(@insns)) if (@insns[1] =~ /_rol/);
816 eval(shift(@insns)) if (@insns[0] =~ /_rol/);
817
818 &por (@X[0],@X[2]); # "X[0]"<<<=2
819 eval(shift(@insns)); # body_20_39
820 eval(shift(@insns));
821 &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer
822 eval(shift(@insns));
823 eval(shift(@insns)); # rol
824 eval(shift(@insns));
825 eval(shift(@insns));
826 eval(shift(@insns)); # ror
827 &pshufd (@X[3],@X[-1],0xee) if ($Xi<19); # was &movdqa (@X[3],@X[0])
828 eval(shift(@insns));
829
830 foreach (@insns) { eval; } # remaining instructions
831
832 $Xi++; push(@X,shift(@X)); # "rotate" X[]
833 }
834
835 sub Xuplast_ssse3_80()
836 { use integer;
837 my $body = shift;
838 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
839 my ($a,$b,$c,$d,$e);
840
841 eval(shift(@insns));
842 eval(shift(@insns));
843 eval(shift(@insns));
844 eval(shift(@insns));
845 eval(shift(@insns));
846 eval(shift(@insns));
847 eval(shift(@insns));
848 &paddd (@X[3],@X[-1&7]);
849 eval(shift(@insns));
850 eval(shift(@insns));
851 eval(shift(@insns));
852 eval(shift(@insns));
853
854 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU
855
856 foreach (@insns) { eval; } # remaining instructions
857
858 &mov ($inp=@T[1],&DWP(192+4,"esp"));
859 &cmp ($inp,&DWP(192+8,"esp"));
860 &je (&label("done"));
861
862 &movdqa (@X[3],&QWP(112+48,"esp")); # K_00_19
863 &movdqa (@X[2],&QWP(112+64,"esp")); # pbswap mask
864 &movdqu (@X[-4&7],&QWP(0,$inp)); # load input
865 &movdqu (@X[-3&7],&QWP(16,$inp));
866 &movdqu (@X[-2&7],&QWP(32,$inp));
867 &movdqu (@X[-1&7],&QWP(48,$inp));
868 &add ($inp,64);
869 &pshufb (@X[-4&7],@X[2]); # byte swap
870 &mov (&DWP(192+4,"esp"),$inp);
871 &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
872
873 $Xi=0;
874 }
875
876 sub Xloop_ssse3()
877 { use integer;
878 my $body = shift;
879 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
880 my ($a,$b,$c,$d,$e);
881
882 eval(shift(@insns));
883 eval(shift(@insns));
884 eval(shift(@insns));
885 eval(shift(@insns));
886 eval(shift(@insns));
887 eval(shift(@insns));
888 eval(shift(@insns));
889 &pshufb (@X[($Xi-3)&7],@X[2]);
890 eval(shift(@insns));
891 eval(shift(@insns));
892 eval(shift(@insns));
893 eval(shift(@insns));
894 &paddd (@X[($Xi-4)&7],@X[3]);
895 eval(shift(@insns));
896 eval(shift(@insns));
897 eval(shift(@insns));
898 eval(shift(@insns));
899 &movdqa (&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]); # X[]+K xfer to IALU
900 eval(shift(@insns));
901 eval(shift(@insns));
902 eval(shift(@insns));
903 eval(shift(@insns));
904 &psubd (@X[($Xi-4)&7],@X[3]);
905
906 foreach (@insns) { eval; }
907 $Xi++;
908 }
909
910 sub Xtail_ssse3()
911 { use integer;
912 my $body = shift;
913 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
914 my ($a,$b,$c,$d,$e);
915
916 foreach (@insns) { eval; }
917 }
918
919 sub body_00_19 () { # ((c^d)&b)^d
920 # on start @T[0]=(c^d)&b
921 return &body_20_39() if ($rx==19); $rx++;
922 (
923 '($a,$b,$c,$d,$e)=@V;'.
924 '&$_ror ($b,$j?7:2);', # $b>>>2
925 '&xor (@T[0],$d);',
926 '&mov (@T[1],$a);', # $b in next round
927
928 '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer
929 '&xor ($b,$c);', # $c^$d for next round
930
931 '&$_rol ($a,5);',
932 '&add ($e,@T[0]);',
933 '&and (@T[1],$b);', # ($b&($c^$d)) for next round
934
935 '&xor ($b,$c);', # restore $b
936 '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
937 );
938 }
939
940 sub body_20_39 () { # b^d^c
941 # on entry @T[0]=b^d
942 return &body_40_59() if ($rx==39); $rx++;
943 (
944 '($a,$b,$c,$d,$e)=@V;'.
945 '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer
946 '&xor (@T[0],$d) if($j==19);'.
947 '&xor (@T[0],$c) if($j> 19);', # ($b^$d^$c)
948 '&mov (@T[1],$a);', # $b in next round
949
950 '&$_rol ($a,5);',
951 '&add ($e,@T[0]);',
952 '&xor (@T[1],$c) if ($j< 79);', # $b^$d for next round
953
954 '&$_ror ($b,7);', # $b>>>2
955 '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
956 );
957 }
958
959 sub body_40_59 () { # ((b^c)&(c^d))^c
960 # on entry @T[0]=(b^c), (c^=d)
961 $rx++;
962 (
963 '($a,$b,$c,$d,$e)=@V;'.
964 '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer
965 '&and (@T[0],$c) if ($j>=40);', # (b^c)&(c^d)
966 '&xor ($c,$d) if ($j>=40);', # restore $c
967
968 '&$_ror ($b,7);', # $b>>>2
969 '&mov (@T[1],$a);', # $b for next round
970 '&xor (@T[0],$c);',
971
972 '&$_rol ($a,5);',
973 '&add ($e,@T[0]);',
974 '&xor (@T[1],$c) if ($j==59);'.
975 '&xor (@T[1],$b) if ($j< 59);', # b^c for next round
976
977 '&xor ($b,$c) if ($j< 59);', # c^d for next round
978 '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
979 );
980 }
981 ######
982 sub bodyx_00_19 () { # ((c^d)&b)^d
983 # on start @T[0]=(b&c)^(~b&d), $e+=X[]+K
984 return &bodyx_20_39() if ($rx==19); $rx++;
985 (
986 '($a,$b,$c,$d,$e)=@V;'.
987
988 '&rorx ($b,$b,2) if ($j==0);'. # $b>>>2
989 '&rorx ($b,@T[1],7) if ($j!=0);', # $b>>>2
990 '&lea ($e,&DWP(0,$e,@T[0]));',
991 '&rorx (@T[0],$a,5);',
992
993 '&andn (@T[1],$a,$c);',
994 '&and ($a,$b)',
995 '&add ($d,&DWP(4*(($j+1)&15),"esp"));', # X[]+K xfer
996
997 '&xor (@T[1],$a)',
998 '&add ($e,@T[0]);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
999 );
1000 }
1001
1002 sub bodyx_20_39 () { # b^d^c
1003 # on start $b=b^c^d
1004 return &bodyx_40_59() if ($rx==39); $rx++;
1005 (
1006 '($a,$b,$c,$d,$e)=@V;'.
1007
1008 '&add ($e,($j==19?@T[0]:$b))',
1009 '&rorx ($b,@T[1],7);', # $b>>>2
1010 '&rorx (@T[0],$a,5);',
1011
1012 '&xor ($a,$b) if ($j<79);',
1013 '&add ($d,&DWP(4*(($j+1)&15),"esp")) if ($j<79);', # X[]+K xfer
1014 '&xor ($a,$c) if ($j<79);',
1015 '&add ($e,@T[0]);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
1016 );
1017 }
1018
1019 sub bodyx_40_59 () { # ((b^c)&(c^d))^c
1020 # on start $b=((b^c)&(c^d))^c
1021 return &bodyx_20_39() if ($rx==59); $rx++;
1022 (
1023 '($a,$b,$c,$d,$e)=@V;'.
1024
1025 '&rorx (@T[0],$a,5)',
1026 '&lea ($e,&DWP(0,$e,$b))',
1027 '&rorx ($b,@T[1],7)', # $b>>>2
1028 '&add ($d,&DWP(4*(($j+1)&15),"esp"))', # X[]+K xfer
1029
1030 '&mov (@T[1],$c)',
1031 '&xor ($a,$b)', # b^c for next round
1032 '&xor (@T[1],$b)', # c^d for next round
1033
1034 '&and ($a,@T[1])',
1035 '&add ($e,@T[0])',
1036 '&xor ($a,$b)' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
1037 );
1038 }
1039
1040 &set_label("loop",16);
1041 &Xupdate_ssse3_16_31(\&body_00_19);
1042 &Xupdate_ssse3_16_31(\&body_00_19);
1043 &Xupdate_ssse3_16_31(\&body_00_19);
1044 &Xupdate_ssse3_16_31(\&body_00_19);
1045 &Xupdate_ssse3_32_79(\&body_00_19);
1046 &Xupdate_ssse3_32_79(\&body_20_39);
1047 &Xupdate_ssse3_32_79(\&body_20_39);
1048 &Xupdate_ssse3_32_79(\&body_20_39);
1049 &Xupdate_ssse3_32_79(\&body_20_39);
1050 &Xupdate_ssse3_32_79(\&body_20_39);
1051 &Xupdate_ssse3_32_79(\&body_40_59);
1052 &Xupdate_ssse3_32_79(\&body_40_59);
1053 &Xupdate_ssse3_32_79(\&body_40_59);
1054 &Xupdate_ssse3_32_79(\&body_40_59);
1055 &Xupdate_ssse3_32_79(\&body_40_59);
1056 &Xupdate_ssse3_32_79(\&body_20_39);
1057 &Xuplast_ssse3_80(\&body_20_39); # can jump to "done"
1058
1059 $saved_j=$j; @saved_V=@V;
1060
1061 &Xloop_ssse3(\&body_20_39);
1062 &Xloop_ssse3(\&body_20_39);
1063 &Xloop_ssse3(\&body_20_39);
1064
1065 &mov (@T[1],&DWP(192,"esp")); # update context
1066 &add ($A,&DWP(0,@T[1]));
1067 &add (@T[0],&DWP(4,@T[1])); # $b
1068 &add ($C,&DWP(8,@T[1]));
1069 &mov (&DWP(0,@T[1]),$A);
1070 &add ($D,&DWP(12,@T[1]));
1071 &mov (&DWP(4,@T[1]),@T[0]);
1072 &add ($E,&DWP(16,@T[1]));
1073 &mov (&DWP(8,@T[1]),$C);
1074 &mov ($B,$C);
1075 &mov (&DWP(12,@T[1]),$D);
1076 &xor ($B,$D);
1077 &mov (&DWP(16,@T[1]),$E);
1078 &mov (@T[1],@T[0]);
1079 &pshufd (@X[0],@X[-4&7],0xee); # was &movdqa (@X[0],@X[-3&7]);
1080 &and (@T[0],$B);
1081 &mov ($B,$T[1]);
1082
1083 &jmp (&label("loop"));
1084
1085 &set_label("done",16); $j=$saved_j; @V=@saved_V;
1086
1087 &Xtail_ssse3(\&body_20_39);
1088 &Xtail_ssse3(\&body_20_39);
1089 &Xtail_ssse3(\&body_20_39);
1090
1091 &mov (@T[1],&DWP(192,"esp")); # update context
1092 &add ($A,&DWP(0,@T[1]));
1093 &mov ("esp",&DWP(192+12,"esp")); # restore %esp
1094 &add (@T[0],&DWP(4,@T[1])); # $b
1095 &add ($C,&DWP(8,@T[1]));
1096 &mov (&DWP(0,@T[1]),$A);
1097 &add ($D,&DWP(12,@T[1]));
1098 &mov (&DWP(4,@T[1]),@T[0]);
1099 &add ($E,&DWP(16,@T[1]));
1100 &mov (&DWP(8,@T[1]),$C);
1101 &mov (&DWP(12,@T[1]),$D);
1102 &mov (&DWP(16,@T[1]),$E);
1103
1104 &function_end("_sha1_block_data_order_ssse3");
1105
1106 $rx=0; # reset
1107
1108 if ($ymm) {
1109 my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded
1110 my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
1111 my @V=($A,$B,$C,$D,$E);
1112 my $j=0; # hash round
1113 my @T=($T,$tmp1);
1114 my $inp;
1115
1116 my $_rol=sub { &shld(@_[0],@_) };
1117 my $_ror=sub { &shrd(@_[0],@_) };
1118
1119 &function_begin("_sha1_block_data_order_avx");
1120 &call (&label("pic_point")); # make it PIC!
1121 &set_label("pic_point");
1122 &blindpop($tmp1);
1123 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
1124 &set_label("avx_shortcut");
1125 &vzeroall();
1126
1127 &vmovdqa(@X[3],&QWP(0,$tmp1)); # K_00_19
1128 &vmovdqa(@X[4],&QWP(16,$tmp1)); # K_20_39
1129 &vmovdqa(@X[5],&QWP(32,$tmp1)); # K_40_59
1130 &vmovdqa(@X[6],&QWP(48,$tmp1)); # K_60_79
1131 &vmovdqa(@X[2],&QWP(64,$tmp1)); # pbswap mask
1132
1133 &mov ($E,&wparam(0)); # load argument block
1134 &mov ($inp=@T[1],&wparam(1));
1135 &mov ($D,&wparam(2));
1136 &mov (@T[0],"esp");
1137
1138 # stack frame layout
1139 #
1140 # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area
1141 # X[4]+K X[5]+K X[6]+K X[7]+K
1142 # X[8]+K X[9]+K X[10]+K X[11]+K
1143 # X[12]+K X[13]+K X[14]+K X[15]+K
1144 #
1145 # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area
1146 # X[4] X[5] X[6] X[7]
1147 # X[8] X[9] X[10] X[11] # even borrowed for K_00_19
1148 #
1149 # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants
1150 # K_40_59 K_40_59 K_40_59 K_40_59
1151 # K_60_79 K_60_79 K_60_79 K_60_79
1152 # K_00_19 K_00_19 K_00_19 K_00_19
1153 # pbswap mask
1154 #
1155 # +192 ctx # argument block
1156 # +196 inp
1157 # +200 end
1158 # +204 esp
1159 &sub ("esp",208);
1160 &and ("esp",-64);
1161
1162 &vmovdqa(&QWP(112+0,"esp"),@X[4]); # copy constants
1163 &vmovdqa(&QWP(112+16,"esp"),@X[5]);
1164 &vmovdqa(&QWP(112+32,"esp"),@X[6]);
1165 &shl ($D,6); # len*64
1166 &vmovdqa(&QWP(112+48,"esp"),@X[3]);
1167 &add ($D,$inp); # end of input
1168 &vmovdqa(&QWP(112+64,"esp"),@X[2]);
1169 &add ($inp,64);
1170 &mov (&DWP(192+0,"esp"),$E); # save argument block
1171 &mov (&DWP(192+4,"esp"),$inp);
1172 &mov (&DWP(192+8,"esp"),$D);
1173 &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp
1174
1175 &mov ($A,&DWP(0,$E)); # load context
1176 &mov ($B,&DWP(4,$E));
1177 &mov ($C,&DWP(8,$E));
1178 &mov ($D,&DWP(12,$E));
1179 &mov ($E,&DWP(16,$E));
1180 &mov (@T[0],$B); # magic seed
1181
1182 &vmovdqu(@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3]
1183 &vmovdqu(@X[-3&7],&QWP(-48,$inp));
1184 &vmovdqu(@X[-2&7],&QWP(-32,$inp));
1185 &vmovdqu(@X[-1&7],&QWP(-16,$inp));
1186 &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
1187 &vpshufb(@X[-3&7],@X[-3&7],@X[2]);
1188 &vpshufb(@X[-2&7],@X[-2&7],@X[2]);
1189 &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
1190 &vpshufb(@X[-1&7],@X[-1&7],@X[2]);
1191 &vpaddd (@X[0],@X[-4&7],@X[3]); # add K_00_19
1192 &vpaddd (@X[1],@X[-3&7],@X[3]);
1193 &vpaddd (@X[2],@X[-2&7],@X[3]);
1194 &vmovdqa(&QWP(0,"esp"),@X[0]); # X[]+K xfer to IALU
1195 &mov (@T[1],$C);
1196 &vmovdqa(&QWP(0+16,"esp"),@X[1]);
1197 &xor (@T[1],$D);
1198 &vmovdqa(&QWP(0+32,"esp"),@X[2]);
1199 &and (@T[0],@T[1]);
1200 &jmp (&label("loop"));
1201
1202 sub Xupdate_avx_16_31() # recall that $Xi starts with 4
1203 { use integer;
1204 my $body = shift;
1205 my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
1206 my ($a,$b,$c,$d,$e);
1207
1208 eval(shift(@insns));
1209 eval(shift(@insns));
1210 &vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]"
1211 eval(shift(@insns));
1212 eval(shift(@insns));
1213
1214 &vpaddd (@X[3],@X[3],@X[-1&7]);
1215 &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
1216 eval(shift(@insns));
1217 eval(shift(@insns));
1218 &vpsrldq(@X[2],@X[-1&7],4); # "X[-3]", 3 dwords
1219 eval(shift(@insns));
1220 eval(shift(@insns));
1221 &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
1222 eval(shift(@insns));
1223 eval(shift(@insns));
1224
1225 &vpxor (@X[2],@X[2],@X[-2&7]); # "X[-3]"^"X[-8]"
1226 eval(shift(@insns));
1227 eval(shift(@insns));
1228 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
1229 eval(shift(@insns));
1230 eval(shift(@insns));
1231
1232 &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]"
1233 eval(shift(@insns));
1234 eval(shift(@insns));
1235 eval(shift(@insns));
1236 eval(shift(@insns));
1237
1238 &vpsrld (@X[2],@X[0],31);
1239 eval(shift(@insns));
1240 eval(shift(@insns));
1241 eval(shift(@insns));
1242 eval(shift(@insns));
1243
1244 &vpslldq(@X[4],@X[0],12); # "X[0]"<<96, extract one dword
1245 &vpaddd (@X[0],@X[0],@X[0]);
1246 eval(shift(@insns));
1247 eval(shift(@insns));
1248 eval(shift(@insns));
1249 eval(shift(@insns));
1250
1251 &vpsrld (@X[3],@X[4],30);
1252 &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=1
1253 eval(shift(@insns));
1254 eval(shift(@insns));
1255 eval(shift(@insns));
1256 eval(shift(@insns));
1257
1258 &vpslld (@X[4],@X[4],2);
1259 &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer
1260 eval(shift(@insns));
1261 eval(shift(@insns));
1262 &vpxor (@X[0],@X[0],@X[3]);
1263 eval(shift(@insns));
1264 eval(shift(@insns));
1265 eval(shift(@insns));
1266 eval(shift(@insns));
1267
1268 &vpxor (@X[0],@X[0],@X[4]); # "X[0]"^=("X[0]"<<96)<<<2
1269 eval(shift(@insns));
1270 eval(shift(@insns));
1271 &vmovdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX
1272 eval(shift(@insns));
1273 eval(shift(@insns));
1274
1275 foreach (@insns) { eval; } # remaining instructions [if any]
1276
1277 $Xi++; push(@X,shift(@X)); # "rotate" X[]
1278 }
1279
1280 sub Xupdate_avx_32_79()
1281 { use integer;
1282 my $body = shift;
1283 my @insns = (&$body,&$body,&$body,&$body); # 32 to 44 instructions
1284 my ($a,$b,$c,$d,$e);
1285
1286 &vpalignr(@X[2],@X[-1&7],@X[-2&7],8); # compose "X[-6]"
1287 &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
1288 eval(shift(@insns)); # body_20_39
1289 eval(shift(@insns));
1290 eval(shift(@insns));
1291 eval(shift(@insns)); # rol
1292
1293 &vpxor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
1294 &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer
1295 eval(shift(@insns));
1296 eval(shift(@insns));
1297 if ($Xi%5) {
1298 &vmovdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX...
1299 } else { # ... or load next one
1300 &vmovdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
1301 }
1302 &vpaddd (@X[3],@X[3],@X[-1&7]);
1303 eval(shift(@insns)); # ror
1304 eval(shift(@insns));
1305
1306 &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-6]"
1307 eval(shift(@insns)); # body_20_39
1308 eval(shift(@insns));
1309 eval(shift(@insns));
1310 eval(shift(@insns)); # rol
1311
1312 &vpsrld (@X[2],@X[0],30);
1313 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
1314 eval(shift(@insns));
1315 eval(shift(@insns));
1316 eval(shift(@insns)); # ror
1317 eval(shift(@insns));
1318
1319 &vpslld (@X[0],@X[0],2);
1320 eval(shift(@insns)); # body_20_39
1321 eval(shift(@insns));
1322 eval(shift(@insns));
1323 eval(shift(@insns)); # rol
1324 eval(shift(@insns));
1325 eval(shift(@insns));
1326 eval(shift(@insns)); # ror
1327 eval(shift(@insns));
1328
1329 &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=2
1330 eval(shift(@insns)); # body_20_39
1331 eval(shift(@insns));
1332 &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer
1333 eval(shift(@insns));
1334 eval(shift(@insns)); # rol
1335 eval(shift(@insns));
1336 eval(shift(@insns));
1337 eval(shift(@insns)); # ror
1338 eval(shift(@insns));
1339
1340 foreach (@insns) { eval; } # remaining instructions
1341
1342 $Xi++; push(@X,shift(@X)); # "rotate" X[]
1343 }
1344
1345 sub Xuplast_avx_80()
1346 { use integer;
1347 my $body = shift;
1348 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1349 my ($a,$b,$c,$d,$e);
1350
1351 eval(shift(@insns));
1352 &vpaddd (@X[3],@X[3],@X[-1&7]);
1353 eval(shift(@insns));
1354 eval(shift(@insns));
1355 eval(shift(@insns));
1356 eval(shift(@insns));
1357
1358 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU
1359
1360 foreach (@insns) { eval; } # remaining instructions
1361
1362 &mov ($inp=@T[1],&DWP(192+4,"esp"));
1363 &cmp ($inp,&DWP(192+8,"esp"));
1364 &je (&label("done"));
1365
1366 &vmovdqa(@X[3],&QWP(112+48,"esp")); # K_00_19
1367 &vmovdqa(@X[2],&QWP(112+64,"esp")); # pbswap mask
1368 &vmovdqu(@X[-4&7],&QWP(0,$inp)); # load input
1369 &vmovdqu(@X[-3&7],&QWP(16,$inp));
1370 &vmovdqu(@X[-2&7],&QWP(32,$inp));
1371 &vmovdqu(@X[-1&7],&QWP(48,$inp));
1372 &add ($inp,64);
1373 &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
1374 &mov (&DWP(192+4,"esp"),$inp);
1375 &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
1376
1377 $Xi=0;
1378 }
1379
1380 sub Xloop_avx()
1381 { use integer;
1382 my $body = shift;
1383 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1384 my ($a,$b,$c,$d,$e);
1385
1386 eval(shift(@insns));
1387 eval(shift(@insns));
1388 &vpshufb (@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
1389 eval(shift(@insns));
1390 eval(shift(@insns));
1391 &vpaddd (@X[$Xi&7],@X[($Xi-4)&7],@X[3]);
1392 eval(shift(@insns));
1393 eval(shift(@insns));
1394 eval(shift(@insns));
1395 eval(shift(@insns));
1396 &vmovdqa (&QWP(0+16*$Xi,"esp"),@X[$Xi&7]); # X[]+K xfer to IALU
1397 eval(shift(@insns));
1398 eval(shift(@insns));
1399
1400 foreach (@insns) { eval; }
1401 $Xi++;
1402 }
1403
1404 sub Xtail_avx()
1405 { use integer;
1406 my $body = shift;
1407 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1408 my ($a,$b,$c,$d,$e);
1409
1410 foreach (@insns) { eval; }
1411 }
1412
1413 &set_label("loop",16);
1414 &Xupdate_avx_16_31(\&body_00_19);
1415 &Xupdate_avx_16_31(\&body_00_19);
1416 &Xupdate_avx_16_31(\&body_00_19);
1417 &Xupdate_avx_16_31(\&body_00_19);
1418 &Xupdate_avx_32_79(\&body_00_19);
1419 &Xupdate_avx_32_79(\&body_20_39);
1420 &Xupdate_avx_32_79(\&body_20_39);
1421 &Xupdate_avx_32_79(\&body_20_39);
1422 &Xupdate_avx_32_79(\&body_20_39);
1423 &Xupdate_avx_32_79(\&body_20_39);
1424 &Xupdate_avx_32_79(\&body_40_59);
1425 &Xupdate_avx_32_79(\&body_40_59);
1426 &Xupdate_avx_32_79(\&body_40_59);
1427 &Xupdate_avx_32_79(\&body_40_59);
1428 &Xupdate_avx_32_79(\&body_40_59);
1429 &Xupdate_avx_32_79(\&body_20_39);
1430 &Xuplast_avx_80(\&body_20_39); # can jump to "done"
1431
1432 $saved_j=$j; @saved_V=@V;
1433
1434 &Xloop_avx(\&body_20_39);
1435 &Xloop_avx(\&body_20_39);
1436 &Xloop_avx(\&body_20_39);
1437
1438 &mov (@T[1],&DWP(192,"esp")); # update context
1439 &add ($A,&DWP(0,@T[1]));
1440 &add (@T[0],&DWP(4,@T[1])); # $b
1441 &add ($C,&DWP(8,@T[1]));
1442 &mov (&DWP(0,@T[1]),$A);
1443 &add ($D,&DWP(12,@T[1]));
1444 &mov (&DWP(4,@T[1]),@T[0]);
1445 &add ($E,&DWP(16,@T[1]));
1446 &mov ($B,$C);
1447 &mov (&DWP(8,@T[1]),$C);
1448 &xor ($B,$D);
1449 &mov (&DWP(12,@T[1]),$D);
1450 &mov (&DWP(16,@T[1]),$E);
1451 &mov (@T[1],@T[0]);
1452 &and (@T[0],$B);
1453 &mov ($B,@T[1]);
1454
1455 &jmp (&label("loop"));
1456
1457 &set_label("done",16); $j=$saved_j; @V=@saved_V;
1458
1459 &Xtail_avx(\&body_20_39);
1460 &Xtail_avx(\&body_20_39);
1461 &Xtail_avx(\&body_20_39);
1462
1463 &vzeroall();
1464
1465 &mov (@T[1],&DWP(192,"esp")); # update context
1466 &add ($A,&DWP(0,@T[1]));
1467 &mov ("esp",&DWP(192+12,"esp")); # restore %esp
1468 &add (@T[0],&DWP(4,@T[1])); # $b
1469 &add ($C,&DWP(8,@T[1]));
1470 &mov (&DWP(0,@T[1]),$A);
1471 &add ($D,&DWP(12,@T[1]));
1472 &mov (&DWP(4,@T[1]),@T[0]);
1473 &add ($E,&DWP(16,@T[1]));
1474 &mov (&DWP(8,@T[1]),$C);
1475 &mov (&DWP(12,@T[1]),$D);
1476 &mov (&DWP(16,@T[1]),$E);
1477 &function_end("_sha1_block_data_order_avx");
1478 }
1479 &set_label("K_XX_XX",64);
1480 &data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999); # K_00_19
1481 &data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1); # K_20_39
1482 &data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc); # K_40_59
1483 &data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6); # K_60_79
1484 &data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f); # pbswap mask
1485 &data_byte(0xf,0xe,0xd,0xc,0xb,0xa,0x9,0x8,0x7,0x6,0x5,0x4,0x3,0x2,0x1,0x0);
1486 }
1487 &asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");
1488
1489 &asm_finish();
1490
1491 close STDOUT;