]> git.ipfire.org Git - thirdparty/openssl.git/blob - include/openssl/bn.h
5c645d58d5f79fb73f9caf6e424926825485d83f
[thirdparty/openssl.git] / include / openssl / bn.h
1 /*
2 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 *
5 * Licensed under the Apache License 2.0 (the "License"). You may not use
6 * this file except in compliance with the License. You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 */
10
11 #ifndef HEADER_BN_H
12 # define HEADER_BN_H
13
14 # include <openssl/e_os2.h>
15 # ifndef OPENSSL_NO_STDIO
16 # include <stdio.h>
17 # endif
18 # include <openssl/opensslconf.h>
19 # include <openssl/ossl_typ.h>
20 # include <openssl/crypto.h>
21 # include <openssl/bnerr.h>
22
23 #ifdef __cplusplus
24 extern "C" {
25 #endif
26
27 /*
28 * 64-bit processor with LP64 ABI
29 */
30 # ifdef SIXTY_FOUR_BIT_LONG
31 # define BN_ULONG unsigned long
32 # define BN_BYTES 8
33 # endif
34
35 /*
36 * 64-bit processor other than LP64 ABI
37 */
38 # ifdef SIXTY_FOUR_BIT
39 # define BN_ULONG unsigned long long
40 # define BN_BYTES 8
41 # endif
42
43 # ifdef THIRTY_TWO_BIT
44 # define BN_ULONG unsigned int
45 # define BN_BYTES 4
46 # endif
47
48 # define BN_BITS2 (BN_BYTES * 8)
49 # define BN_BITS (BN_BITS2 * 2)
50 # define BN_TBIT ((BN_ULONG)1 << (BN_BITS2 - 1))
51
52 # define BN_FLG_MALLOCED 0x01
53 # define BN_FLG_STATIC_DATA 0x02
54
55 /*
56 * avoid leaking exponent information through timing,
57 * BN_mod_exp_mont() will call BN_mod_exp_mont_consttime,
58 * BN_div() will call BN_div_no_branch,
59 * BN_mod_inverse() will call BN_mod_inverse_no_branch.
60 */
61 # define BN_FLG_CONSTTIME 0x04
62 # define BN_FLG_SECURE 0x08
63
64 # if !OPENSSL_API_0_9_8
65 /* deprecated name for the flag */
66 # define BN_FLG_EXP_CONSTTIME BN_FLG_CONSTTIME
67 # define BN_FLG_FREE 0x8000 /* used for debugging */
68 # endif
69
70 void BN_set_flags(BIGNUM *b, int n);
71 int BN_get_flags(const BIGNUM *b, int n);
72
73 /* Values for |top| in BN_rand() */
74 #define BN_RAND_TOP_ANY -1
75 #define BN_RAND_TOP_ONE 0
76 #define BN_RAND_TOP_TWO 1
77
78 /* Values for |bottom| in BN_rand() */
79 #define BN_RAND_BOTTOM_ANY 0
80 #define BN_RAND_BOTTOM_ODD 1
81
82 /*
83 * get a clone of a BIGNUM with changed flags, for *temporary* use only (the
84 * two BIGNUMs cannot be used in parallel!). Also only for *read only* use. The
85 * value |dest| should be a newly allocated BIGNUM obtained via BN_new() that
86 * has not been otherwise initialised or used.
87 */
88 void BN_with_flags(BIGNUM *dest, const BIGNUM *b, int flags);
89
90 /* Wrapper function to make using BN_GENCB easier */
91 int BN_GENCB_call(BN_GENCB *cb, int a, int b);
92
93 BN_GENCB *BN_GENCB_new(void);
94 void BN_GENCB_free(BN_GENCB *cb);
95
96 /* Populate a BN_GENCB structure with an "old"-style callback */
97 void BN_GENCB_set_old(BN_GENCB *gencb, void (*callback) (int, int, void *),
98 void *cb_arg);
99
100 /* Populate a BN_GENCB structure with a "new"-style callback */
101 void BN_GENCB_set(BN_GENCB *gencb, int (*callback) (int, int, BN_GENCB *),
102 void *cb_arg);
103
104 void *BN_GENCB_get_arg(BN_GENCB *cb);
105
106 # define BN_prime_checks 0 /* default: select number of iterations based
107 * on the size of the number */
108
109 /*
110 * BN_prime_checks_for_size() returns the number of Miller-Rabin iterations
111 * that will be done for checking that a random number is probably prime. The
112 * error rate for accepting a composite number as prime depends on the size of
113 * the prime |b|. The error rates used are for calculating an RSA key with 2 primes,
114 * and so the level is what you would expect for a key of double the size of the
115 * prime.
116 *
117 * This table is generated using the algorithm of FIPS PUB 186-4
118 * Digital Signature Standard (DSS), section F.1, page 117.
119 * (https://dx.doi.org/10.6028/NIST.FIPS.186-4)
120 *
121 * The following magma script was used to generate the output:
122 * securitybits:=125;
123 * k:=1024;
124 * for t:=1 to 65 do
125 * for M:=3 to Floor(2*Sqrt(k-1)-1) do
126 * S:=0;
127 * // Sum over m
128 * for m:=3 to M do
129 * s:=0;
130 * // Sum over j
131 * for j:=2 to m do
132 * s+:=(RealField(32)!2)^-(j+(k-1)/j);
133 * end for;
134 * S+:=2^(m-(m-1)*t)*s;
135 * end for;
136 * A:=2^(k-2-M*t);
137 * B:=8*(Pi(RealField(32))^2-6)/3*2^(k-2)*S;
138 * pkt:=2.00743*Log(2)*k*2^-k*(A+B);
139 * seclevel:=Floor(-Log(2,pkt));
140 * if seclevel ge securitybits then
141 * printf "k: %5o, security: %o bits (t: %o, M: %o)\n",k,seclevel,t,M;
142 * break;
143 * end if;
144 * end for;
145 * if seclevel ge securitybits then break; end if;
146 * end for;
147 *
148 * It can be run online at:
149 * http://magma.maths.usyd.edu.au/calc
150 *
151 * And will output:
152 * k: 1024, security: 129 bits (t: 6, M: 23)
153 *
154 * k is the number of bits of the prime, securitybits is the level we want to
155 * reach.
156 *
157 * prime length | RSA key size | # MR tests | security level
158 * -------------+--------------|------------+---------------
159 * (b) >= 6394 | >= 12788 | 3 | 256 bit
160 * (b) >= 3747 | >= 7494 | 3 | 192 bit
161 * (b) >= 1345 | >= 2690 | 4 | 128 bit
162 * (b) >= 1080 | >= 2160 | 5 | 128 bit
163 * (b) >= 852 | >= 1704 | 5 | 112 bit
164 * (b) >= 476 | >= 952 | 5 | 80 bit
165 * (b) >= 400 | >= 800 | 6 | 80 bit
166 * (b) >= 347 | >= 694 | 7 | 80 bit
167 * (b) >= 308 | >= 616 | 8 | 80 bit
168 * (b) >= 55 | >= 110 | 27 | 64 bit
169 * (b) >= 6 | >= 12 | 34 | 64 bit
170 */
171
172 # define BN_prime_checks_for_size(b) ((b) >= 3747 ? 3 : \
173 (b) >= 1345 ? 4 : \
174 (b) >= 476 ? 5 : \
175 (b) >= 400 ? 6 : \
176 (b) >= 347 ? 7 : \
177 (b) >= 308 ? 8 : \
178 (b) >= 55 ? 27 : \
179 /* b >= 6 */ 34)
180
181 # define BN_num_bytes(a) ((BN_num_bits(a)+7)/8)
182
183 int BN_abs_is_word(const BIGNUM *a, const BN_ULONG w);
184 int BN_is_zero(const BIGNUM *a);
185 int BN_is_one(const BIGNUM *a);
186 int BN_is_word(const BIGNUM *a, const BN_ULONG w);
187 int BN_is_odd(const BIGNUM *a);
188
189 # define BN_one(a) (BN_set_word((a),1))
190
191 void BN_zero_ex(BIGNUM *a);
192
193 # if OPENSSL_API_0_9_8
194 # define BN_zero(a) BN_zero_ex(a)
195 # else
196 # define BN_zero(a) (BN_set_word((a),0))
197 # endif
198
199 const BIGNUM *BN_value_one(void);
200 char *BN_options(void);
201 BN_CTX *BN_CTX_new_ex(OPENSSL_CTX *ctx);
202 BN_CTX *BN_CTX_new(void);
203 BN_CTX *BN_CTX_secure_new_ex(OPENSSL_CTX *ctx);
204 BN_CTX *BN_CTX_secure_new(void);
205 void BN_CTX_free(BN_CTX *c);
206 void BN_CTX_start(BN_CTX *ctx);
207 BIGNUM *BN_CTX_get(BN_CTX *ctx);
208 void BN_CTX_end(BN_CTX *ctx);
209 int BN_rand_ex(BIGNUM *rnd, int bits, int top, int bottom, BN_CTX *ctx);
210 int BN_rand(BIGNUM *rnd, int bits, int top, int bottom);
211 int BN_priv_rand_ex(BIGNUM *rnd, int bits, int top, int bottom, BN_CTX *ctx);
212 int BN_priv_rand(BIGNUM *rnd, int bits, int top, int bottom);
213 int BN_rand_range_ex(BIGNUM *r, const BIGNUM *range, BN_CTX *ctx);
214 int BN_rand_range(BIGNUM *rnd, const BIGNUM *range);
215 int BN_priv_rand_range_ex(BIGNUM *r, const BIGNUM *range, BN_CTX *ctx);
216 int BN_priv_rand_range(BIGNUM *rnd, const BIGNUM *range);
217 int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom);
218 int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range);
219 int BN_num_bits(const BIGNUM *a);
220 int BN_num_bits_word(BN_ULONG l);
221 int BN_security_bits(int L, int N);
222 BIGNUM *BN_new(void);
223 BIGNUM *BN_secure_new(void);
224 void BN_clear_free(BIGNUM *a);
225 BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b);
226 void BN_swap(BIGNUM *a, BIGNUM *b);
227 BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret);
228 int BN_bn2bin(const BIGNUM *a, unsigned char *to);
229 int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen);
230 BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret);
231 int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen);
232 BIGNUM *BN_native2bn(const unsigned char *s, int len, BIGNUM *ret);
233 int BN_bn2nativepad(const BIGNUM *a, unsigned char *to, int tolen);
234 BIGNUM *BN_mpi2bn(const unsigned char *s, int len, BIGNUM *ret);
235 int BN_bn2mpi(const BIGNUM *a, unsigned char *to);
236 int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
237 int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
238 int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
239 int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
240 int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
241 int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
242 /** BN_set_negative sets sign of a BIGNUM
243 * \param b pointer to the BIGNUM object
244 * \param n 0 if the BIGNUM b should be positive and a value != 0 otherwise
245 */
246 void BN_set_negative(BIGNUM *b, int n);
247 /** BN_is_negative returns 1 if the BIGNUM is negative
248 * \param b pointer to the BIGNUM object
249 * \return 1 if a < 0 and 0 otherwise
250 */
251 int BN_is_negative(const BIGNUM *b);
252
253 int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d,
254 BN_CTX *ctx);
255 # define BN_mod(rem,m,d,ctx) BN_div(NULL,(rem),(m),(d),(ctx))
256 int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx);
257 int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
258 BN_CTX *ctx);
259 int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
260 const BIGNUM *m);
261 int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
262 BN_CTX *ctx);
263 int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
264 const BIGNUM *m);
265 int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
266 BN_CTX *ctx);
267 int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
268 int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
269 int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m);
270 int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
271 BN_CTX *ctx);
272 int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m);
273
274 BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);
275 BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w);
276 int BN_mul_word(BIGNUM *a, BN_ULONG w);
277 int BN_add_word(BIGNUM *a, BN_ULONG w);
278 int BN_sub_word(BIGNUM *a, BN_ULONG w);
279 int BN_set_word(BIGNUM *a, BN_ULONG w);
280 BN_ULONG BN_get_word(const BIGNUM *a);
281
282 int BN_cmp(const BIGNUM *a, const BIGNUM *b);
283 void BN_free(BIGNUM *a);
284 int BN_is_bit_set(const BIGNUM *a, int n);
285 int BN_lshift(BIGNUM *r, const BIGNUM *a, int n);
286 int BN_lshift1(BIGNUM *r, const BIGNUM *a);
287 int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
288
289 int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
290 const BIGNUM *m, BN_CTX *ctx);
291 int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
292 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
293 int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
294 const BIGNUM *m, BN_CTX *ctx,
295 BN_MONT_CTX *in_mont);
296 int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p,
297 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
298 int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, const BIGNUM *p1,
299 const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m,
300 BN_CTX *ctx, BN_MONT_CTX *m_ctx);
301 int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
302 const BIGNUM *m, BN_CTX *ctx);
303
304 int BN_mask_bits(BIGNUM *a, int n);
305 # ifndef OPENSSL_NO_STDIO
306 int BN_print_fp(FILE *fp, const BIGNUM *a);
307 # endif
308 int BN_print(BIO *bio, const BIGNUM *a);
309 int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx);
310 int BN_rshift(BIGNUM *r, const BIGNUM *a, int n);
311 int BN_rshift1(BIGNUM *r, const BIGNUM *a);
312 void BN_clear(BIGNUM *a);
313 BIGNUM *BN_dup(const BIGNUM *a);
314 int BN_ucmp(const BIGNUM *a, const BIGNUM *b);
315 int BN_set_bit(BIGNUM *a, int n);
316 int BN_clear_bit(BIGNUM *a, int n);
317 char *BN_bn2hex(const BIGNUM *a);
318 char *BN_bn2dec(const BIGNUM *a);
319 int BN_hex2bn(BIGNUM **a, const char *str);
320 int BN_dec2bn(BIGNUM **a, const char *str);
321 int BN_asc2bn(BIGNUM **a, const char *str);
322 int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
323 int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); /* returns
324 * -2 for
325 * error */
326 BIGNUM *BN_mod_inverse(BIGNUM *ret,
327 const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx);
328 BIGNUM *BN_mod_sqrt(BIGNUM *ret,
329 const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx);
330
331 void BN_consttime_swap(BN_ULONG swap, BIGNUM *a, BIGNUM *b, int nwords);
332
333 /* Deprecated versions */
334 DEPRECATEDIN_0_9_8(BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe,
335 const BIGNUM *add,
336 const BIGNUM *rem,
337 void (*callback) (int, int,
338 void *),
339 void *cb_arg))
340 DEPRECATEDIN_0_9_8(int
341 BN_is_prime(const BIGNUM *p, int nchecks,
342 void (*callback) (int, int, void *),
343 BN_CTX *ctx, void *cb_arg))
344 DEPRECATEDIN_0_9_8(int
345 BN_is_prime_fasttest(const BIGNUM *p, int nchecks,
346 void (*callback) (int, int, void *),
347 BN_CTX *ctx, void *cb_arg,
348 int do_trial_division))
349
350 /* Newer versions */
351 int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add,
352 const BIGNUM *rem, BN_GENCB *cb);
353 int BN_is_prime_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, BN_GENCB *cb);
354 int BN_is_prime_fasttest_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx,
355 int do_trial_division, BN_GENCB *cb);
356
357 int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx);
358
359 int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
360 const BIGNUM *Xp, const BIGNUM *Xp1,
361 const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx,
362 BN_GENCB *cb);
363 int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, BIGNUM *Xp1,
364 BIGNUM *Xp2, const BIGNUM *Xp, const BIGNUM *e,
365 BN_CTX *ctx, BN_GENCB *cb);
366
367 BN_MONT_CTX *BN_MONT_CTX_new(void);
368 int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
369 BN_MONT_CTX *mont, BN_CTX *ctx);
370 int BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
371 BN_CTX *ctx);
372 int BN_from_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
373 BN_CTX *ctx);
374 void BN_MONT_CTX_free(BN_MONT_CTX *mont);
375 int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx);
376 BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from);
377 BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_RWLOCK *lock,
378 const BIGNUM *mod, BN_CTX *ctx);
379
380 /* BN_BLINDING flags */
381 # define BN_BLINDING_NO_UPDATE 0x00000001
382 # define BN_BLINDING_NO_RECREATE 0x00000002
383
384 BN_BLINDING *BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai, BIGNUM *mod);
385 void BN_BLINDING_free(BN_BLINDING *b);
386 int BN_BLINDING_update(BN_BLINDING *b, BN_CTX *ctx);
387 int BN_BLINDING_convert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx);
388 int BN_BLINDING_invert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx);
389 int BN_BLINDING_convert_ex(BIGNUM *n, BIGNUM *r, BN_BLINDING *b, BN_CTX *);
390 int BN_BLINDING_invert_ex(BIGNUM *n, const BIGNUM *r, BN_BLINDING *b,
391 BN_CTX *);
392
393 int BN_BLINDING_is_current_thread(BN_BLINDING *b);
394 void BN_BLINDING_set_current_thread(BN_BLINDING *b);
395 int BN_BLINDING_lock(BN_BLINDING *b);
396 int BN_BLINDING_unlock(BN_BLINDING *b);
397
398 unsigned long BN_BLINDING_get_flags(const BN_BLINDING *);
399 void BN_BLINDING_set_flags(BN_BLINDING *, unsigned long);
400 BN_BLINDING *BN_BLINDING_create_param(BN_BLINDING *b,
401 const BIGNUM *e, BIGNUM *m, BN_CTX *ctx,
402 int (*bn_mod_exp) (BIGNUM *r,
403 const BIGNUM *a,
404 const BIGNUM *p,
405 const BIGNUM *m,
406 BN_CTX *ctx,
407 BN_MONT_CTX *m_ctx),
408 BN_MONT_CTX *m_ctx);
409
410 DEPRECATEDIN_0_9_8(void BN_set_params(int mul, int high, int low, int mont))
411 DEPRECATEDIN_0_9_8(int BN_get_params(int which)) /* 0, mul, 1 high, 2 low, 3
412 * mont */
413
414 BN_RECP_CTX *BN_RECP_CTX_new(void);
415 void BN_RECP_CTX_free(BN_RECP_CTX *recp);
416 int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *rdiv, BN_CTX *ctx);
417 int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y,
418 BN_RECP_CTX *recp, BN_CTX *ctx);
419 int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
420 const BIGNUM *m, BN_CTX *ctx);
421 int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
422 BN_RECP_CTX *recp, BN_CTX *ctx);
423
424 # ifndef OPENSSL_NO_EC2M
425
426 /*
427 * Functions for arithmetic over binary polynomials represented by BIGNUMs.
428 * The BIGNUM::neg property of BIGNUMs representing binary polynomials is
429 * ignored. Note that input arguments are not const so that their bit arrays
430 * can be expanded to the appropriate size if needed.
431 */
432
433 /*
434 * r = a + b
435 */
436 int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
437 # define BN_GF2m_sub(r, a, b) BN_GF2m_add(r, a, b)
438 /*
439 * r=a mod p
440 */
441 int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p);
442 /* r = (a * b) mod p */
443 int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
444 const BIGNUM *p, BN_CTX *ctx);
445 /* r = (a * a) mod p */
446 int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
447 /* r = (1 / b) mod p */
448 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx);
449 /* r = (a / b) mod p */
450 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
451 const BIGNUM *p, BN_CTX *ctx);
452 /* r = (a ^ b) mod p */
453 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
454 const BIGNUM *p, BN_CTX *ctx);
455 /* r = sqrt(a) mod p */
456 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
457 BN_CTX *ctx);
458 /* r^2 + r = a mod p */
459 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
460 BN_CTX *ctx);
461 # define BN_GF2m_cmp(a, b) BN_ucmp((a), (b))
462 /*-
463 * Some functions allow for representation of the irreducible polynomials
464 * as an unsigned int[], say p. The irreducible f(t) is then of the form:
465 * t^p[0] + t^p[1] + ... + t^p[k]
466 * where m = p[0] > p[1] > ... > p[k] = 0.
467 */
468 /* r = a mod p */
469 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]);
470 /* r = (a * b) mod p */
471 int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
472 const int p[], BN_CTX *ctx);
473 /* r = (a * a) mod p */
474 int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
475 BN_CTX *ctx);
476 /* r = (1 / b) mod p */
477 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *b, const int p[],
478 BN_CTX *ctx);
479 /* r = (a / b) mod p */
480 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
481 const int p[], BN_CTX *ctx);
482 /* r = (a ^ b) mod p */
483 int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
484 const int p[], BN_CTX *ctx);
485 /* r = sqrt(a) mod p */
486 int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a,
487 const int p[], BN_CTX *ctx);
488 /* r^2 + r = a mod p */
489 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a,
490 const int p[], BN_CTX *ctx);
491 int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max);
492 int BN_GF2m_arr2poly(const int p[], BIGNUM *a);
493
494 # endif
495
496 /*
497 * faster mod functions for the 'NIST primes' 0 <= a < p^2
498 */
499 int BN_nist_mod_192(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
500 int BN_nist_mod_224(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
501 int BN_nist_mod_256(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
502 int BN_nist_mod_384(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
503 int BN_nist_mod_521(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
504
505 const BIGNUM *BN_get0_nist_prime_192(void);
506 const BIGNUM *BN_get0_nist_prime_224(void);
507 const BIGNUM *BN_get0_nist_prime_256(void);
508 const BIGNUM *BN_get0_nist_prime_384(void);
509 const BIGNUM *BN_get0_nist_prime_521(void);
510
511 int (*BN_nist_mod_func(const BIGNUM *p)) (BIGNUM *r, const BIGNUM *a,
512 const BIGNUM *field, BN_CTX *ctx);
513
514 int BN_generate_dsa_nonce(BIGNUM *out, const BIGNUM *range,
515 const BIGNUM *priv, const unsigned char *message,
516 size_t message_len, BN_CTX *ctx);
517
518 /* Primes from RFC 2409 */
519 BIGNUM *BN_get_rfc2409_prime_768(BIGNUM *bn);
520 BIGNUM *BN_get_rfc2409_prime_1024(BIGNUM *bn);
521
522 /* Primes from RFC 3526 */
523 BIGNUM *BN_get_rfc3526_prime_1536(BIGNUM *bn);
524 BIGNUM *BN_get_rfc3526_prime_2048(BIGNUM *bn);
525 BIGNUM *BN_get_rfc3526_prime_3072(BIGNUM *bn);
526 BIGNUM *BN_get_rfc3526_prime_4096(BIGNUM *bn);
527 BIGNUM *BN_get_rfc3526_prime_6144(BIGNUM *bn);
528 BIGNUM *BN_get_rfc3526_prime_8192(BIGNUM *bn);
529
530 # if !OPENSSL_API_1_1_0
531 # define get_rfc2409_prime_768 BN_get_rfc2409_prime_768
532 # define get_rfc2409_prime_1024 BN_get_rfc2409_prime_1024
533 # define get_rfc3526_prime_1536 BN_get_rfc3526_prime_1536
534 # define get_rfc3526_prime_2048 BN_get_rfc3526_prime_2048
535 # define get_rfc3526_prime_3072 BN_get_rfc3526_prime_3072
536 # define get_rfc3526_prime_4096 BN_get_rfc3526_prime_4096
537 # define get_rfc3526_prime_6144 BN_get_rfc3526_prime_6144
538 # define get_rfc3526_prime_8192 BN_get_rfc3526_prime_8192
539 # endif
540
541 int BN_bntest_rand(BIGNUM *rnd, int bits, int top, int bottom);
542
543
544 # ifdef __cplusplus
545 }
546 # endif
547 #endif