]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_lib.c
b5239d6eb2e22c128ce78135d804308e75adda46
[thirdparty/openssl.git] / ssl / ssl_lib.c
1 /*
2 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the Apache License 2.0 (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include "ssl_local.h"
14 #include "e_os.h"
15 #include <openssl/objects.h>
16 #include <openssl/x509v3.h>
17 #include <openssl/rand.h>
18 #include <openssl/rand_drbg.h>
19 #include <openssl/ocsp.h>
20 #include <openssl/dh.h>
21 #include <openssl/engine.h>
22 #include <openssl/async.h>
23 #include <openssl/ct.h>
24 #include <openssl/trace.h>
25 #include "internal/cryptlib.h"
26 #include "internal/refcount.h"
27 #include "internal/ktls.h"
28
29 static int ssl_undefined_function_1(SSL *ssl, SSL3_RECORD *r, size_t s, int t)
30 {
31 (void)r;
32 (void)s;
33 (void)t;
34 return ssl_undefined_function(ssl);
35 }
36
37 static int ssl_undefined_function_2(SSL *ssl, SSL3_RECORD *r, unsigned char *s,
38 int t)
39 {
40 (void)r;
41 (void)s;
42 (void)t;
43 return ssl_undefined_function(ssl);
44 }
45
46 static int ssl_undefined_function_3(SSL *ssl, unsigned char *r,
47 unsigned char *s, size_t t, size_t *u)
48 {
49 (void)r;
50 (void)s;
51 (void)t;
52 (void)u;
53 return ssl_undefined_function(ssl);
54 }
55
56 static int ssl_undefined_function_4(SSL *ssl, int r)
57 {
58 (void)r;
59 return ssl_undefined_function(ssl);
60 }
61
62 static size_t ssl_undefined_function_5(SSL *ssl, const char *r, size_t s,
63 unsigned char *t)
64 {
65 (void)r;
66 (void)s;
67 (void)t;
68 return ssl_undefined_function(ssl);
69 }
70
71 static int ssl_undefined_function_6(int r)
72 {
73 (void)r;
74 return ssl_undefined_function(NULL);
75 }
76
77 static int ssl_undefined_function_7(SSL *ssl, unsigned char *r, size_t s,
78 const char *t, size_t u,
79 const unsigned char *v, size_t w, int x)
80 {
81 (void)r;
82 (void)s;
83 (void)t;
84 (void)u;
85 (void)v;
86 (void)w;
87 (void)x;
88 return ssl_undefined_function(ssl);
89 }
90
91 SSL3_ENC_METHOD ssl3_undef_enc_method = {
92 ssl_undefined_function_1,
93 ssl_undefined_function_2,
94 ssl_undefined_function,
95 ssl_undefined_function_3,
96 ssl_undefined_function_4,
97 ssl_undefined_function_5,
98 NULL, /* client_finished_label */
99 0, /* client_finished_label_len */
100 NULL, /* server_finished_label */
101 0, /* server_finished_label_len */
102 ssl_undefined_function_6,
103 ssl_undefined_function_7,
104 };
105
106 struct ssl_async_args {
107 SSL *s;
108 void *buf;
109 size_t num;
110 enum { READFUNC, WRITEFUNC, OTHERFUNC } type;
111 union {
112 int (*func_read) (SSL *, void *, size_t, size_t *);
113 int (*func_write) (SSL *, const void *, size_t, size_t *);
114 int (*func_other) (SSL *);
115 } f;
116 };
117
118 static const struct {
119 uint8_t mtype;
120 uint8_t ord;
121 int nid;
122 } dane_mds[] = {
123 {
124 DANETLS_MATCHING_FULL, 0, NID_undef
125 },
126 {
127 DANETLS_MATCHING_2256, 1, NID_sha256
128 },
129 {
130 DANETLS_MATCHING_2512, 2, NID_sha512
131 },
132 };
133
134 static int dane_ctx_enable(struct dane_ctx_st *dctx)
135 {
136 const EVP_MD **mdevp;
137 uint8_t *mdord;
138 uint8_t mdmax = DANETLS_MATCHING_LAST;
139 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */
140 size_t i;
141
142 if (dctx->mdevp != NULL)
143 return 1;
144
145 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
146 mdord = OPENSSL_zalloc(n * sizeof(*mdord));
147
148 if (mdord == NULL || mdevp == NULL) {
149 OPENSSL_free(mdord);
150 OPENSSL_free(mdevp);
151 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE);
152 return 0;
153 }
154
155 /* Install default entries */
156 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
157 const EVP_MD *md;
158
159 if (dane_mds[i].nid == NID_undef ||
160 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
161 continue;
162 mdevp[dane_mds[i].mtype] = md;
163 mdord[dane_mds[i].mtype] = dane_mds[i].ord;
164 }
165
166 dctx->mdevp = mdevp;
167 dctx->mdord = mdord;
168 dctx->mdmax = mdmax;
169
170 return 1;
171 }
172
173 static void dane_ctx_final(struct dane_ctx_st *dctx)
174 {
175 OPENSSL_free(dctx->mdevp);
176 dctx->mdevp = NULL;
177
178 OPENSSL_free(dctx->mdord);
179 dctx->mdord = NULL;
180 dctx->mdmax = 0;
181 }
182
183 static void tlsa_free(danetls_record *t)
184 {
185 if (t == NULL)
186 return;
187 OPENSSL_free(t->data);
188 EVP_PKEY_free(t->spki);
189 OPENSSL_free(t);
190 }
191
192 static void dane_final(SSL_DANE *dane)
193 {
194 sk_danetls_record_pop_free(dane->trecs, tlsa_free);
195 dane->trecs = NULL;
196
197 sk_X509_pop_free(dane->certs, X509_free);
198 dane->certs = NULL;
199
200 X509_free(dane->mcert);
201 dane->mcert = NULL;
202 dane->mtlsa = NULL;
203 dane->mdpth = -1;
204 dane->pdpth = -1;
205 }
206
207 /*
208 * dane_copy - Copy dane configuration, sans verification state.
209 */
210 static int ssl_dane_dup(SSL *to, SSL *from)
211 {
212 int num;
213 int i;
214
215 if (!DANETLS_ENABLED(&from->dane))
216 return 1;
217
218 num = sk_danetls_record_num(from->dane.trecs);
219 dane_final(&to->dane);
220 to->dane.flags = from->dane.flags;
221 to->dane.dctx = &to->ctx->dane;
222 to->dane.trecs = sk_danetls_record_new_reserve(NULL, num);
223
224 if (to->dane.trecs == NULL) {
225 SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE);
226 return 0;
227 }
228
229 for (i = 0; i < num; ++i) {
230 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
231
232 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
233 t->data, t->dlen) <= 0)
234 return 0;
235 }
236 return 1;
237 }
238
239 static int dane_mtype_set(struct dane_ctx_st *dctx,
240 const EVP_MD *md, uint8_t mtype, uint8_t ord)
241 {
242 int i;
243
244 if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
245 SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
246 return 0;
247 }
248
249 if (mtype > dctx->mdmax) {
250 const EVP_MD **mdevp;
251 uint8_t *mdord;
252 int n = ((int)mtype) + 1;
253
254 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
255 if (mdevp == NULL) {
256 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
257 return -1;
258 }
259 dctx->mdevp = mdevp;
260
261 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
262 if (mdord == NULL) {
263 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
264 return -1;
265 }
266 dctx->mdord = mdord;
267
268 /* Zero-fill any gaps */
269 for (i = dctx->mdmax + 1; i < mtype; ++i) {
270 mdevp[i] = NULL;
271 mdord[i] = 0;
272 }
273
274 dctx->mdmax = mtype;
275 }
276
277 dctx->mdevp[mtype] = md;
278 /* Coerce ordinal of disabled matching types to 0 */
279 dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
280
281 return 1;
282 }
283
284 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype)
285 {
286 if (mtype > dane->dctx->mdmax)
287 return NULL;
288 return dane->dctx->mdevp[mtype];
289 }
290
291 static int dane_tlsa_add(SSL_DANE *dane,
292 uint8_t usage,
293 uint8_t selector,
294 uint8_t mtype, unsigned const char *data, size_t dlen)
295 {
296 danetls_record *t;
297 const EVP_MD *md = NULL;
298 int ilen = (int)dlen;
299 int i;
300 int num;
301
302 if (dane->trecs == NULL) {
303 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED);
304 return -1;
305 }
306
307 if (ilen < 0 || dlen != (size_t)ilen) {
308 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
309 return 0;
310 }
311
312 if (usage > DANETLS_USAGE_LAST) {
313 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
314 return 0;
315 }
316
317 if (selector > DANETLS_SELECTOR_LAST) {
318 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR);
319 return 0;
320 }
321
322 if (mtype != DANETLS_MATCHING_FULL) {
323 md = tlsa_md_get(dane, mtype);
324 if (md == NULL) {
325 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
326 return 0;
327 }
328 }
329
330 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) {
331 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
332 return 0;
333 }
334 if (!data) {
335 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA);
336 return 0;
337 }
338
339 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
340 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
341 return -1;
342 }
343
344 t->usage = usage;
345 t->selector = selector;
346 t->mtype = mtype;
347 t->data = OPENSSL_malloc(dlen);
348 if (t->data == NULL) {
349 tlsa_free(t);
350 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
351 return -1;
352 }
353 memcpy(t->data, data, dlen);
354 t->dlen = dlen;
355
356 /* Validate and cache full certificate or public key */
357 if (mtype == DANETLS_MATCHING_FULL) {
358 const unsigned char *p = data;
359 X509 *cert = NULL;
360 EVP_PKEY *pkey = NULL;
361
362 switch (selector) {
363 case DANETLS_SELECTOR_CERT:
364 if (!d2i_X509(&cert, &p, ilen) || p < data ||
365 dlen != (size_t)(p - data)) {
366 tlsa_free(t);
367 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
368 return 0;
369 }
370 if (X509_get0_pubkey(cert) == NULL) {
371 tlsa_free(t);
372 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
373 return 0;
374 }
375
376 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
377 X509_free(cert);
378 break;
379 }
380
381 /*
382 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
383 * records that contain full certificates of trust-anchors that are
384 * not present in the wire chain. For usage PKIX-TA(0), we augment
385 * the chain with untrusted Full(0) certificates from DNS, in case
386 * they are missing from the chain.
387 */
388 if ((dane->certs == NULL &&
389 (dane->certs = sk_X509_new_null()) == NULL) ||
390 !sk_X509_push(dane->certs, cert)) {
391 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
392 X509_free(cert);
393 tlsa_free(t);
394 return -1;
395 }
396 break;
397
398 case DANETLS_SELECTOR_SPKI:
399 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data ||
400 dlen != (size_t)(p - data)) {
401 tlsa_free(t);
402 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
403 return 0;
404 }
405
406 /*
407 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
408 * records that contain full bare keys of trust-anchors that are
409 * not present in the wire chain.
410 */
411 if (usage == DANETLS_USAGE_DANE_TA)
412 t->spki = pkey;
413 else
414 EVP_PKEY_free(pkey);
415 break;
416 }
417 }
418
419 /*-
420 * Find the right insertion point for the new record.
421 *
422 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
423 * they can be processed first, as they require no chain building, and no
424 * expiration or hostname checks. Because DANE-EE(3) is numerically
425 * largest, this is accomplished via descending sort by "usage".
426 *
427 * We also sort in descending order by matching ordinal to simplify
428 * the implementation of digest agility in the verification code.
429 *
430 * The choice of order for the selector is not significant, so we
431 * use the same descending order for consistency.
432 */
433 num = sk_danetls_record_num(dane->trecs);
434 for (i = 0; i < num; ++i) {
435 danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
436
437 if (rec->usage > usage)
438 continue;
439 if (rec->usage < usage)
440 break;
441 if (rec->selector > selector)
442 continue;
443 if (rec->selector < selector)
444 break;
445 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
446 continue;
447 break;
448 }
449
450 if (!sk_danetls_record_insert(dane->trecs, t, i)) {
451 tlsa_free(t);
452 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
453 return -1;
454 }
455 dane->umask |= DANETLS_USAGE_BIT(usage);
456
457 return 1;
458 }
459
460 /*
461 * Return 0 if there is only one version configured and it was disabled
462 * at configure time. Return 1 otherwise.
463 */
464 static int ssl_check_allowed_versions(int min_version, int max_version)
465 {
466 int minisdtls = 0, maxisdtls = 0;
467
468 /* Figure out if we're doing DTLS versions or TLS versions */
469 if (min_version == DTLS1_BAD_VER
470 || min_version >> 8 == DTLS1_VERSION_MAJOR)
471 minisdtls = 1;
472 if (max_version == DTLS1_BAD_VER
473 || max_version >> 8 == DTLS1_VERSION_MAJOR)
474 maxisdtls = 1;
475 /* A wildcard version of 0 could be DTLS or TLS. */
476 if ((minisdtls && !maxisdtls && max_version != 0)
477 || (maxisdtls && !minisdtls && min_version != 0)) {
478 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */
479 return 0;
480 }
481
482 if (minisdtls || maxisdtls) {
483 /* Do DTLS version checks. */
484 if (min_version == 0)
485 /* Ignore DTLS1_BAD_VER */
486 min_version = DTLS1_VERSION;
487 if (max_version == 0)
488 max_version = DTLS1_2_VERSION;
489 #ifdef OPENSSL_NO_DTLS1_2
490 if (max_version == DTLS1_2_VERSION)
491 max_version = DTLS1_VERSION;
492 #endif
493 #ifdef OPENSSL_NO_DTLS1
494 if (min_version == DTLS1_VERSION)
495 min_version = DTLS1_2_VERSION;
496 #endif
497 /* Done massaging versions; do the check. */
498 if (0
499 #ifdef OPENSSL_NO_DTLS1
500 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION)
501 && DTLS_VERSION_GE(DTLS1_VERSION, max_version))
502 #endif
503 #ifdef OPENSSL_NO_DTLS1_2
504 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION)
505 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version))
506 #endif
507 )
508 return 0;
509 } else {
510 /* Regular TLS version checks. */
511 if (min_version == 0)
512 min_version = SSL3_VERSION;
513 if (max_version == 0)
514 max_version = TLS1_3_VERSION;
515 #ifdef OPENSSL_NO_TLS1_3
516 if (max_version == TLS1_3_VERSION)
517 max_version = TLS1_2_VERSION;
518 #endif
519 #ifdef OPENSSL_NO_TLS1_2
520 if (max_version == TLS1_2_VERSION)
521 max_version = TLS1_1_VERSION;
522 #endif
523 #ifdef OPENSSL_NO_TLS1_1
524 if (max_version == TLS1_1_VERSION)
525 max_version = TLS1_VERSION;
526 #endif
527 #ifdef OPENSSL_NO_TLS1
528 if (max_version == TLS1_VERSION)
529 max_version = SSL3_VERSION;
530 #endif
531 #ifdef OPENSSL_NO_SSL3
532 if (min_version == SSL3_VERSION)
533 min_version = TLS1_VERSION;
534 #endif
535 #ifdef OPENSSL_NO_TLS1
536 if (min_version == TLS1_VERSION)
537 min_version = TLS1_1_VERSION;
538 #endif
539 #ifdef OPENSSL_NO_TLS1_1
540 if (min_version == TLS1_1_VERSION)
541 min_version = TLS1_2_VERSION;
542 #endif
543 #ifdef OPENSSL_NO_TLS1_2
544 if (min_version == TLS1_2_VERSION)
545 min_version = TLS1_3_VERSION;
546 #endif
547 /* Done massaging versions; do the check. */
548 if (0
549 #ifdef OPENSSL_NO_SSL3
550 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version)
551 #endif
552 #ifdef OPENSSL_NO_TLS1
553 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version)
554 #endif
555 #ifdef OPENSSL_NO_TLS1_1
556 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version)
557 #endif
558 #ifdef OPENSSL_NO_TLS1_2
559 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version)
560 #endif
561 #ifdef OPENSSL_NO_TLS1_3
562 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version)
563 #endif
564 )
565 return 0;
566 }
567 return 1;
568 }
569
570 static void clear_ciphers(SSL *s)
571 {
572 /* clear the current cipher */
573 ssl_clear_cipher_ctx(s);
574 ssl_clear_hash_ctx(&s->read_hash);
575 ssl_clear_hash_ctx(&s->write_hash);
576 }
577
578 int SSL_clear(SSL *s)
579 {
580 if (s->method == NULL) {
581 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED);
582 return 0;
583 }
584
585 if (ssl_clear_bad_session(s)) {
586 SSL_SESSION_free(s->session);
587 s->session = NULL;
588 }
589 SSL_SESSION_free(s->psksession);
590 s->psksession = NULL;
591 OPENSSL_free(s->psksession_id);
592 s->psksession_id = NULL;
593 s->psksession_id_len = 0;
594 s->hello_retry_request = 0;
595 s->sent_tickets = 0;
596
597 s->error = 0;
598 s->hit = 0;
599 s->shutdown = 0;
600
601 if (s->renegotiate) {
602 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR);
603 return 0;
604 }
605
606 ossl_statem_clear(s);
607
608 s->version = s->method->version;
609 s->client_version = s->version;
610 s->rwstate = SSL_NOTHING;
611
612 BUF_MEM_free(s->init_buf);
613 s->init_buf = NULL;
614 clear_ciphers(s);
615 s->first_packet = 0;
616
617 s->key_update = SSL_KEY_UPDATE_NONE;
618
619 EVP_MD_CTX_free(s->pha_dgst);
620 s->pha_dgst = NULL;
621
622 /* Reset DANE verification result state */
623 s->dane.mdpth = -1;
624 s->dane.pdpth = -1;
625 X509_free(s->dane.mcert);
626 s->dane.mcert = NULL;
627 s->dane.mtlsa = NULL;
628
629 /* Clear the verification result peername */
630 X509_VERIFY_PARAM_move_peername(s->param, NULL);
631
632 /* Clear any shared connection state */
633 OPENSSL_free(s->shared_sigalgs);
634 s->shared_sigalgs = NULL;
635 s->shared_sigalgslen = 0;
636
637 /*
638 * Check to see if we were changed into a different method, if so, revert
639 * back.
640 */
641 if (s->method != s->ctx->method) {
642 s->method->ssl_free(s);
643 s->method = s->ctx->method;
644 if (!s->method->ssl_new(s))
645 return 0;
646 } else {
647 if (!s->method->ssl_clear(s))
648 return 0;
649 }
650
651 RECORD_LAYER_clear(&s->rlayer);
652
653 return 1;
654 }
655
656 /** Used to change an SSL_CTXs default SSL method type */
657 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
658 {
659 STACK_OF(SSL_CIPHER) *sk;
660
661 ctx->method = meth;
662
663 if (!SSL_CTX_set_ciphersuites(ctx, OSSL_default_ciphersuites())) {
664 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
665 return 0;
666 }
667 sk = ssl_create_cipher_list(ctx->method,
668 ctx->tls13_ciphersuites,
669 &(ctx->cipher_list),
670 &(ctx->cipher_list_by_id),
671 OSSL_default_cipher_list(), ctx->cert);
672 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
673 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
674 return 0;
675 }
676 return 1;
677 }
678
679 SSL *SSL_new(SSL_CTX *ctx)
680 {
681 SSL *s;
682
683 if (ctx == NULL) {
684 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX);
685 return NULL;
686 }
687 if (ctx->method == NULL) {
688 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
689 return NULL;
690 }
691
692 s = OPENSSL_zalloc(sizeof(*s));
693 if (s == NULL)
694 goto err;
695
696 s->references = 1;
697 s->lock = CRYPTO_THREAD_lock_new();
698 if (s->lock == NULL) {
699 OPENSSL_free(s);
700 s = NULL;
701 goto err;
702 }
703
704 RECORD_LAYER_init(&s->rlayer, s);
705
706 s->options = ctx->options;
707 s->dane.flags = ctx->dane.flags;
708 s->min_proto_version = ctx->min_proto_version;
709 s->max_proto_version = ctx->max_proto_version;
710 s->mode = ctx->mode;
711 s->max_cert_list = ctx->max_cert_list;
712 s->max_early_data = ctx->max_early_data;
713 s->recv_max_early_data = ctx->recv_max_early_data;
714 s->num_tickets = ctx->num_tickets;
715 s->pha_enabled = ctx->pha_enabled;
716
717 /* Shallow copy of the ciphersuites stack */
718 s->tls13_ciphersuites = sk_SSL_CIPHER_dup(ctx->tls13_ciphersuites);
719 if (s->tls13_ciphersuites == NULL)
720 goto err;
721
722 /*
723 * Earlier library versions used to copy the pointer to the CERT, not
724 * its contents; only when setting new parameters for the per-SSL
725 * copy, ssl_cert_new would be called (and the direct reference to
726 * the per-SSL_CTX settings would be lost, but those still were
727 * indirectly accessed for various purposes, and for that reason they
728 * used to be known as s->ctx->default_cert). Now we don't look at the
729 * SSL_CTX's CERT after having duplicated it once.
730 */
731 s->cert = ssl_cert_dup(ctx->cert);
732 if (s->cert == NULL)
733 goto err;
734
735 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
736 s->msg_callback = ctx->msg_callback;
737 s->msg_callback_arg = ctx->msg_callback_arg;
738 s->verify_mode = ctx->verify_mode;
739 s->not_resumable_session_cb = ctx->not_resumable_session_cb;
740 s->record_padding_cb = ctx->record_padding_cb;
741 s->record_padding_arg = ctx->record_padding_arg;
742 s->block_padding = ctx->block_padding;
743 s->sid_ctx_length = ctx->sid_ctx_length;
744 if (!ossl_assert(s->sid_ctx_length <= sizeof(s->sid_ctx)))
745 goto err;
746 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
747 s->verify_callback = ctx->default_verify_callback;
748 s->generate_session_id = ctx->generate_session_id;
749
750 s->param = X509_VERIFY_PARAM_new();
751 if (s->param == NULL)
752 goto err;
753 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
754 s->quiet_shutdown = ctx->quiet_shutdown;
755
756 s->ext.max_fragment_len_mode = ctx->ext.max_fragment_len_mode;
757 s->max_send_fragment = ctx->max_send_fragment;
758 s->split_send_fragment = ctx->split_send_fragment;
759 s->max_pipelines = ctx->max_pipelines;
760 if (s->max_pipelines > 1)
761 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
762 if (ctx->default_read_buf_len > 0)
763 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len);
764
765 SSL_CTX_up_ref(ctx);
766 s->ctx = ctx;
767 s->ext.debug_cb = 0;
768 s->ext.debug_arg = NULL;
769 s->ext.ticket_expected = 0;
770 s->ext.status_type = ctx->ext.status_type;
771 s->ext.status_expected = 0;
772 s->ext.ocsp.ids = NULL;
773 s->ext.ocsp.exts = NULL;
774 s->ext.ocsp.resp = NULL;
775 s->ext.ocsp.resp_len = 0;
776 SSL_CTX_up_ref(ctx);
777 s->session_ctx = ctx;
778 #ifndef OPENSSL_NO_EC
779 if (ctx->ext.ecpointformats) {
780 s->ext.ecpointformats =
781 OPENSSL_memdup(ctx->ext.ecpointformats,
782 ctx->ext.ecpointformats_len);
783 if (!s->ext.ecpointformats)
784 goto err;
785 s->ext.ecpointformats_len =
786 ctx->ext.ecpointformats_len;
787 }
788 #endif
789 if (ctx->ext.supportedgroups) {
790 s->ext.supportedgroups =
791 OPENSSL_memdup(ctx->ext.supportedgroups,
792 ctx->ext.supportedgroups_len
793 * sizeof(*ctx->ext.supportedgroups));
794 if (!s->ext.supportedgroups)
795 goto err;
796 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len;
797 }
798
799 #ifndef OPENSSL_NO_NEXTPROTONEG
800 s->ext.npn = NULL;
801 #endif
802
803 if (s->ctx->ext.alpn) {
804 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len);
805 if (s->ext.alpn == NULL)
806 goto err;
807 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len);
808 s->ext.alpn_len = s->ctx->ext.alpn_len;
809 }
810
811 s->verified_chain = NULL;
812 s->verify_result = X509_V_OK;
813
814 s->default_passwd_callback = ctx->default_passwd_callback;
815 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
816
817 s->method = ctx->method;
818
819 s->key_update = SSL_KEY_UPDATE_NONE;
820
821 s->allow_early_data_cb = ctx->allow_early_data_cb;
822 s->allow_early_data_cb_data = ctx->allow_early_data_cb_data;
823
824 if (!s->method->ssl_new(s))
825 goto err;
826
827 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
828
829 if (!SSL_clear(s))
830 goto err;
831
832 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data))
833 goto err;
834
835 #ifndef OPENSSL_NO_PSK
836 s->psk_client_callback = ctx->psk_client_callback;
837 s->psk_server_callback = ctx->psk_server_callback;
838 #endif
839 s->psk_find_session_cb = ctx->psk_find_session_cb;
840 s->psk_use_session_cb = ctx->psk_use_session_cb;
841
842 s->async_cb = ctx->async_cb;
843 s->async_cb_arg = ctx->async_cb_arg;
844
845 s->job = NULL;
846
847 #ifndef OPENSSL_NO_CT
848 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback,
849 ctx->ct_validation_callback_arg))
850 goto err;
851 #endif
852
853 return s;
854 err:
855 SSL_free(s);
856 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
857 return NULL;
858 }
859
860 int SSL_is_dtls(const SSL *s)
861 {
862 return SSL_IS_DTLS(s) ? 1 : 0;
863 }
864
865 int SSL_up_ref(SSL *s)
866 {
867 int i;
868
869 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0)
870 return 0;
871
872 REF_PRINT_COUNT("SSL", s);
873 REF_ASSERT_ISNT(i < 2);
874 return ((i > 1) ? 1 : 0);
875 }
876
877 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
878 unsigned int sid_ctx_len)
879 {
880 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
881 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT,
882 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
883 return 0;
884 }
885 ctx->sid_ctx_length = sid_ctx_len;
886 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
887
888 return 1;
889 }
890
891 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
892 unsigned int sid_ctx_len)
893 {
894 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
895 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT,
896 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
897 return 0;
898 }
899 ssl->sid_ctx_length = sid_ctx_len;
900 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
901
902 return 1;
903 }
904
905 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
906 {
907 CRYPTO_THREAD_write_lock(ctx->lock);
908 ctx->generate_session_id = cb;
909 CRYPTO_THREAD_unlock(ctx->lock);
910 return 1;
911 }
912
913 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
914 {
915 CRYPTO_THREAD_write_lock(ssl->lock);
916 ssl->generate_session_id = cb;
917 CRYPTO_THREAD_unlock(ssl->lock);
918 return 1;
919 }
920
921 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
922 unsigned int id_len)
923 {
924 /*
925 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
926 * we can "construct" a session to give us the desired check - i.e. to
927 * find if there's a session in the hash table that would conflict with
928 * any new session built out of this id/id_len and the ssl_version in use
929 * by this SSL.
930 */
931 SSL_SESSION r, *p;
932
933 if (id_len > sizeof(r.session_id))
934 return 0;
935
936 r.ssl_version = ssl->version;
937 r.session_id_length = id_len;
938 memcpy(r.session_id, id, id_len);
939
940 CRYPTO_THREAD_read_lock(ssl->session_ctx->lock);
941 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r);
942 CRYPTO_THREAD_unlock(ssl->session_ctx->lock);
943 return (p != NULL);
944 }
945
946 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
947 {
948 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
949 }
950
951 int SSL_set_purpose(SSL *s, int purpose)
952 {
953 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
954 }
955
956 int SSL_CTX_set_trust(SSL_CTX *s, int trust)
957 {
958 return X509_VERIFY_PARAM_set_trust(s->param, trust);
959 }
960
961 int SSL_set_trust(SSL *s, int trust)
962 {
963 return X509_VERIFY_PARAM_set_trust(s->param, trust);
964 }
965
966 int SSL_set1_host(SSL *s, const char *hostname)
967 {
968 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
969 }
970
971 int SSL_add1_host(SSL *s, const char *hostname)
972 {
973 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
974 }
975
976 void SSL_set_hostflags(SSL *s, unsigned int flags)
977 {
978 X509_VERIFY_PARAM_set_hostflags(s->param, flags);
979 }
980
981 const char *SSL_get0_peername(SSL *s)
982 {
983 return X509_VERIFY_PARAM_get0_peername(s->param);
984 }
985
986 int SSL_CTX_dane_enable(SSL_CTX *ctx)
987 {
988 return dane_ctx_enable(&ctx->dane);
989 }
990
991 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags)
992 {
993 unsigned long orig = ctx->dane.flags;
994
995 ctx->dane.flags |= flags;
996 return orig;
997 }
998
999 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags)
1000 {
1001 unsigned long orig = ctx->dane.flags;
1002
1003 ctx->dane.flags &= ~flags;
1004 return orig;
1005 }
1006
1007 int SSL_dane_enable(SSL *s, const char *basedomain)
1008 {
1009 SSL_DANE *dane = &s->dane;
1010
1011 if (s->ctx->dane.mdmax == 0) {
1012 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED);
1013 return 0;
1014 }
1015 if (dane->trecs != NULL) {
1016 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED);
1017 return 0;
1018 }
1019
1020 /*
1021 * Default SNI name. This rejects empty names, while set1_host below
1022 * accepts them and disables host name checks. To avoid side-effects with
1023 * invalid input, set the SNI name first.
1024 */
1025 if (s->ext.hostname == NULL) {
1026 if (!SSL_set_tlsext_host_name(s, basedomain)) {
1027 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
1028 return -1;
1029 }
1030 }
1031
1032 /* Primary RFC6125 reference identifier */
1033 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
1034 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
1035 return -1;
1036 }
1037
1038 dane->mdpth = -1;
1039 dane->pdpth = -1;
1040 dane->dctx = &s->ctx->dane;
1041 dane->trecs = sk_danetls_record_new_null();
1042
1043 if (dane->trecs == NULL) {
1044 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE);
1045 return -1;
1046 }
1047 return 1;
1048 }
1049
1050 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags)
1051 {
1052 unsigned long orig = ssl->dane.flags;
1053
1054 ssl->dane.flags |= flags;
1055 return orig;
1056 }
1057
1058 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags)
1059 {
1060 unsigned long orig = ssl->dane.flags;
1061
1062 ssl->dane.flags &= ~flags;
1063 return orig;
1064 }
1065
1066 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
1067 {
1068 SSL_DANE *dane = &s->dane;
1069
1070 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1071 return -1;
1072 if (dane->mtlsa) {
1073 if (mcert)
1074 *mcert = dane->mcert;
1075 if (mspki)
1076 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
1077 }
1078 return dane->mdpth;
1079 }
1080
1081 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
1082 uint8_t *mtype, unsigned const char **data, size_t *dlen)
1083 {
1084 SSL_DANE *dane = &s->dane;
1085
1086 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1087 return -1;
1088 if (dane->mtlsa) {
1089 if (usage)
1090 *usage = dane->mtlsa->usage;
1091 if (selector)
1092 *selector = dane->mtlsa->selector;
1093 if (mtype)
1094 *mtype = dane->mtlsa->mtype;
1095 if (data)
1096 *data = dane->mtlsa->data;
1097 if (dlen)
1098 *dlen = dane->mtlsa->dlen;
1099 }
1100 return dane->mdpth;
1101 }
1102
1103 SSL_DANE *SSL_get0_dane(SSL *s)
1104 {
1105 return &s->dane;
1106 }
1107
1108 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
1109 uint8_t mtype, unsigned const char *data, size_t dlen)
1110 {
1111 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
1112 }
1113
1114 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype,
1115 uint8_t ord)
1116 {
1117 return dane_mtype_set(&ctx->dane, md, mtype, ord);
1118 }
1119
1120 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
1121 {
1122 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
1123 }
1124
1125 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
1126 {
1127 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
1128 }
1129
1130 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
1131 {
1132 return ctx->param;
1133 }
1134
1135 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
1136 {
1137 return ssl->param;
1138 }
1139
1140 void SSL_certs_clear(SSL *s)
1141 {
1142 ssl_cert_clear_certs(s->cert);
1143 }
1144
1145 void SSL_free(SSL *s)
1146 {
1147 int i;
1148
1149 if (s == NULL)
1150 return;
1151 CRYPTO_DOWN_REF(&s->references, &i, s->lock);
1152 REF_PRINT_COUNT("SSL", s);
1153 if (i > 0)
1154 return;
1155 REF_ASSERT_ISNT(i < 0);
1156
1157 X509_VERIFY_PARAM_free(s->param);
1158 dane_final(&s->dane);
1159 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
1160
1161 RECORD_LAYER_release(&s->rlayer);
1162
1163 /* Ignore return value */
1164 ssl_free_wbio_buffer(s);
1165
1166 BIO_free_all(s->wbio);
1167 s->wbio = NULL;
1168 BIO_free_all(s->rbio);
1169 s->rbio = NULL;
1170
1171 BUF_MEM_free(s->init_buf);
1172
1173 /* add extra stuff */
1174 sk_SSL_CIPHER_free(s->cipher_list);
1175 sk_SSL_CIPHER_free(s->cipher_list_by_id);
1176 sk_SSL_CIPHER_free(s->tls13_ciphersuites);
1177 sk_SSL_CIPHER_free(s->peer_ciphers);
1178
1179 /* Make the next call work :-) */
1180 if (s->session != NULL) {
1181 ssl_clear_bad_session(s);
1182 SSL_SESSION_free(s->session);
1183 }
1184 SSL_SESSION_free(s->psksession);
1185 OPENSSL_free(s->psksession_id);
1186
1187 clear_ciphers(s);
1188
1189 ssl_cert_free(s->cert);
1190 OPENSSL_free(s->shared_sigalgs);
1191 /* Free up if allocated */
1192
1193 OPENSSL_free(s->ext.hostname);
1194 SSL_CTX_free(s->session_ctx);
1195 #ifndef OPENSSL_NO_EC
1196 OPENSSL_free(s->ext.ecpointformats);
1197 OPENSSL_free(s->ext.peer_ecpointformats);
1198 #endif /* OPENSSL_NO_EC */
1199 OPENSSL_free(s->ext.supportedgroups);
1200 OPENSSL_free(s->ext.peer_supportedgroups);
1201 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free);
1202 #ifndef OPENSSL_NO_OCSP
1203 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free);
1204 #endif
1205 #ifndef OPENSSL_NO_CT
1206 SCT_LIST_free(s->scts);
1207 OPENSSL_free(s->ext.scts);
1208 #endif
1209 OPENSSL_free(s->ext.ocsp.resp);
1210 OPENSSL_free(s->ext.alpn);
1211 OPENSSL_free(s->ext.tls13_cookie);
1212 OPENSSL_free(s->clienthello);
1213 OPENSSL_free(s->pha_context);
1214 EVP_MD_CTX_free(s->pha_dgst);
1215
1216 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free);
1217 sk_X509_NAME_pop_free(s->client_ca_names, X509_NAME_free);
1218
1219 sk_X509_pop_free(s->verified_chain, X509_free);
1220
1221 if (s->method != NULL)
1222 s->method->ssl_free(s);
1223
1224 SSL_CTX_free(s->ctx);
1225
1226 ASYNC_WAIT_CTX_free(s->waitctx);
1227
1228 #if !defined(OPENSSL_NO_NEXTPROTONEG)
1229 OPENSSL_free(s->ext.npn);
1230 #endif
1231
1232 #ifndef OPENSSL_NO_SRTP
1233 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
1234 #endif
1235
1236 CRYPTO_THREAD_lock_free(s->lock);
1237
1238 OPENSSL_free(s);
1239 }
1240
1241 void SSL_set0_rbio(SSL *s, BIO *rbio)
1242 {
1243 BIO_free_all(s->rbio);
1244 s->rbio = rbio;
1245 }
1246
1247 void SSL_set0_wbio(SSL *s, BIO *wbio)
1248 {
1249 /*
1250 * If the output buffering BIO is still in place, remove it
1251 */
1252 if (s->bbio != NULL)
1253 s->wbio = BIO_pop(s->wbio);
1254
1255 BIO_free_all(s->wbio);
1256 s->wbio = wbio;
1257
1258 /* Re-attach |bbio| to the new |wbio|. */
1259 if (s->bbio != NULL)
1260 s->wbio = BIO_push(s->bbio, s->wbio);
1261 }
1262
1263 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
1264 {
1265 /*
1266 * For historical reasons, this function has many different cases in
1267 * ownership handling.
1268 */
1269
1270 /* If nothing has changed, do nothing */
1271 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s))
1272 return;
1273
1274 /*
1275 * If the two arguments are equal then one fewer reference is granted by the
1276 * caller than we want to take
1277 */
1278 if (rbio != NULL && rbio == wbio)
1279 BIO_up_ref(rbio);
1280
1281 /*
1282 * If only the wbio is changed only adopt one reference.
1283 */
1284 if (rbio == SSL_get_rbio(s)) {
1285 SSL_set0_wbio(s, wbio);
1286 return;
1287 }
1288 /*
1289 * There is an asymmetry here for historical reasons. If only the rbio is
1290 * changed AND the rbio and wbio were originally different, then we only
1291 * adopt one reference.
1292 */
1293 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) {
1294 SSL_set0_rbio(s, rbio);
1295 return;
1296 }
1297
1298 /* Otherwise, adopt both references. */
1299 SSL_set0_rbio(s, rbio);
1300 SSL_set0_wbio(s, wbio);
1301 }
1302
1303 BIO *SSL_get_rbio(const SSL *s)
1304 {
1305 return s->rbio;
1306 }
1307
1308 BIO *SSL_get_wbio(const SSL *s)
1309 {
1310 if (s->bbio != NULL) {
1311 /*
1312 * If |bbio| is active, the true caller-configured BIO is its
1313 * |next_bio|.
1314 */
1315 return BIO_next(s->bbio);
1316 }
1317 return s->wbio;
1318 }
1319
1320 int SSL_get_fd(const SSL *s)
1321 {
1322 return SSL_get_rfd(s);
1323 }
1324
1325 int SSL_get_rfd(const SSL *s)
1326 {
1327 int ret = -1;
1328 BIO *b, *r;
1329
1330 b = SSL_get_rbio(s);
1331 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1332 if (r != NULL)
1333 BIO_get_fd(r, &ret);
1334 return ret;
1335 }
1336
1337 int SSL_get_wfd(const SSL *s)
1338 {
1339 int ret = -1;
1340 BIO *b, *r;
1341
1342 b = SSL_get_wbio(s);
1343 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1344 if (r != NULL)
1345 BIO_get_fd(r, &ret);
1346 return ret;
1347 }
1348
1349 #ifndef OPENSSL_NO_SOCK
1350 int SSL_set_fd(SSL *s, int fd)
1351 {
1352 int ret = 0;
1353 BIO *bio = NULL;
1354
1355 bio = BIO_new(BIO_s_socket());
1356
1357 if (bio == NULL) {
1358 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB);
1359 goto err;
1360 }
1361 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1362 SSL_set_bio(s, bio, bio);
1363 #ifndef OPENSSL_NO_KTLS
1364 /*
1365 * The new socket is created successfully regardless of ktls_enable.
1366 * ktls_enable doesn't change any functionality of the socket, except
1367 * changing the setsockopt to enable the processing of ktls_start.
1368 * Thus, it is not a problem to call it for non-TLS sockets.
1369 */
1370 ktls_enable(fd);
1371 #endif /* OPENSSL_NO_KTLS */
1372 ret = 1;
1373 err:
1374 return ret;
1375 }
1376
1377 int SSL_set_wfd(SSL *s, int fd)
1378 {
1379 BIO *rbio = SSL_get_rbio(s);
1380
1381 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET
1382 || (int)BIO_get_fd(rbio, NULL) != fd) {
1383 BIO *bio = BIO_new(BIO_s_socket());
1384
1385 if (bio == NULL) {
1386 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB);
1387 return 0;
1388 }
1389 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1390 SSL_set0_wbio(s, bio);
1391 #ifndef OPENSSL_NO_KTLS
1392 /*
1393 * The new socket is created successfully regardless of ktls_enable.
1394 * ktls_enable doesn't change any functionality of the socket, except
1395 * changing the setsockopt to enable the processing of ktls_start.
1396 * Thus, it is not a problem to call it for non-TLS sockets.
1397 */
1398 ktls_enable(fd);
1399 #endif /* OPENSSL_NO_KTLS */
1400 } else {
1401 BIO_up_ref(rbio);
1402 SSL_set0_wbio(s, rbio);
1403 }
1404 return 1;
1405 }
1406
1407 int SSL_set_rfd(SSL *s, int fd)
1408 {
1409 BIO *wbio = SSL_get_wbio(s);
1410
1411 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET
1412 || ((int)BIO_get_fd(wbio, NULL) != fd)) {
1413 BIO *bio = BIO_new(BIO_s_socket());
1414
1415 if (bio == NULL) {
1416 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB);
1417 return 0;
1418 }
1419 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1420 SSL_set0_rbio(s, bio);
1421 } else {
1422 BIO_up_ref(wbio);
1423 SSL_set0_rbio(s, wbio);
1424 }
1425
1426 return 1;
1427 }
1428 #endif
1429
1430 /* return length of latest Finished message we sent, copy to 'buf' */
1431 size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
1432 {
1433 size_t ret = 0;
1434
1435 ret = s->s3.tmp.finish_md_len;
1436 if (count > ret)
1437 count = ret;
1438 memcpy(buf, s->s3.tmp.finish_md, count);
1439 return ret;
1440 }
1441
1442 /* return length of latest Finished message we expected, copy to 'buf' */
1443 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
1444 {
1445 size_t ret = 0;
1446
1447 ret = s->s3.tmp.peer_finish_md_len;
1448 if (count > ret)
1449 count = ret;
1450 memcpy(buf, s->s3.tmp.peer_finish_md, count);
1451 return ret;
1452 }
1453
1454 int SSL_get_verify_mode(const SSL *s)
1455 {
1456 return s->verify_mode;
1457 }
1458
1459 int SSL_get_verify_depth(const SSL *s)
1460 {
1461 return X509_VERIFY_PARAM_get_depth(s->param);
1462 }
1463
1464 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
1465 return s->verify_callback;
1466 }
1467
1468 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
1469 {
1470 return ctx->verify_mode;
1471 }
1472
1473 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
1474 {
1475 return X509_VERIFY_PARAM_get_depth(ctx->param);
1476 }
1477
1478 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
1479 return ctx->default_verify_callback;
1480 }
1481
1482 void SSL_set_verify(SSL *s, int mode,
1483 int (*callback) (int ok, X509_STORE_CTX *ctx))
1484 {
1485 s->verify_mode = mode;
1486 if (callback != NULL)
1487 s->verify_callback = callback;
1488 }
1489
1490 void SSL_set_verify_depth(SSL *s, int depth)
1491 {
1492 X509_VERIFY_PARAM_set_depth(s->param, depth);
1493 }
1494
1495 void SSL_set_read_ahead(SSL *s, int yes)
1496 {
1497 RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
1498 }
1499
1500 int SSL_get_read_ahead(const SSL *s)
1501 {
1502 return RECORD_LAYER_get_read_ahead(&s->rlayer);
1503 }
1504
1505 int SSL_pending(const SSL *s)
1506 {
1507 size_t pending = s->method->ssl_pending(s);
1508
1509 /*
1510 * SSL_pending cannot work properly if read-ahead is enabled
1511 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
1512 * impossible to fix since SSL_pending cannot report errors that may be
1513 * observed while scanning the new data. (Note that SSL_pending() is
1514 * often used as a boolean value, so we'd better not return -1.)
1515 *
1516 * SSL_pending also cannot work properly if the value >INT_MAX. In that case
1517 * we just return INT_MAX.
1518 */
1519 return pending < INT_MAX ? (int)pending : INT_MAX;
1520 }
1521
1522 int SSL_has_pending(const SSL *s)
1523 {
1524 /*
1525 * Similar to SSL_pending() but returns a 1 to indicate that we have
1526 * unprocessed data available or 0 otherwise (as opposed to the number of
1527 * bytes available). Unlike SSL_pending() this will take into account
1528 * read_ahead data. A 1 return simply indicates that we have unprocessed
1529 * data. That data may not result in any application data, or we may fail
1530 * to parse the records for some reason.
1531 */
1532 if (RECORD_LAYER_processed_read_pending(&s->rlayer))
1533 return 1;
1534
1535 return RECORD_LAYER_read_pending(&s->rlayer);
1536 }
1537
1538 X509 *SSL_get_peer_certificate(const SSL *s)
1539 {
1540 X509 *r;
1541
1542 if ((s == NULL) || (s->session == NULL))
1543 r = NULL;
1544 else
1545 r = s->session->peer;
1546
1547 if (r == NULL)
1548 return r;
1549
1550 X509_up_ref(r);
1551
1552 return r;
1553 }
1554
1555 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
1556 {
1557 STACK_OF(X509) *r;
1558
1559 if ((s == NULL) || (s->session == NULL))
1560 r = NULL;
1561 else
1562 r = s->session->peer_chain;
1563
1564 /*
1565 * If we are a client, cert_chain includes the peer's own certificate; if
1566 * we are a server, it does not.
1567 */
1568
1569 return r;
1570 }
1571
1572 /*
1573 * Now in theory, since the calling process own 't' it should be safe to
1574 * modify. We need to be able to read f without being hassled
1575 */
1576 int SSL_copy_session_id(SSL *t, const SSL *f)
1577 {
1578 int i;
1579 /* Do we need to to SSL locking? */
1580 if (!SSL_set_session(t, SSL_get_session(f))) {
1581 return 0;
1582 }
1583
1584 /*
1585 * what if we are setup for one protocol version but want to talk another
1586 */
1587 if (t->method != f->method) {
1588 t->method->ssl_free(t);
1589 t->method = f->method;
1590 if (t->method->ssl_new(t) == 0)
1591 return 0;
1592 }
1593
1594 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock);
1595 ssl_cert_free(t->cert);
1596 t->cert = f->cert;
1597 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) {
1598 return 0;
1599 }
1600
1601 return 1;
1602 }
1603
1604 /* Fix this so it checks all the valid key/cert options */
1605 int SSL_CTX_check_private_key(const SSL_CTX *ctx)
1606 {
1607 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) {
1608 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1609 return 0;
1610 }
1611 if (ctx->cert->key->privatekey == NULL) {
1612 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1613 return 0;
1614 }
1615 return X509_check_private_key
1616 (ctx->cert->key->x509, ctx->cert->key->privatekey);
1617 }
1618
1619 /* Fix this function so that it takes an optional type parameter */
1620 int SSL_check_private_key(const SSL *ssl)
1621 {
1622 if (ssl == NULL) {
1623 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER);
1624 return 0;
1625 }
1626 if (ssl->cert->key->x509 == NULL) {
1627 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1628 return 0;
1629 }
1630 if (ssl->cert->key->privatekey == NULL) {
1631 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1632 return 0;
1633 }
1634 return X509_check_private_key(ssl->cert->key->x509,
1635 ssl->cert->key->privatekey);
1636 }
1637
1638 int SSL_waiting_for_async(SSL *s)
1639 {
1640 if (s->job)
1641 return 1;
1642
1643 return 0;
1644 }
1645
1646 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds)
1647 {
1648 ASYNC_WAIT_CTX *ctx = s->waitctx;
1649
1650 if (ctx == NULL)
1651 return 0;
1652 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds);
1653 }
1654
1655 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds,
1656 OSSL_ASYNC_FD *delfd, size_t *numdelfds)
1657 {
1658 ASYNC_WAIT_CTX *ctx = s->waitctx;
1659
1660 if (ctx == NULL)
1661 return 0;
1662 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd,
1663 numdelfds);
1664 }
1665
1666 int SSL_CTX_set_async_callback(SSL_CTX *ctx, SSL_async_callback_fn callback)
1667 {
1668 ctx->async_cb = callback;
1669 return 1;
1670 }
1671
1672 int SSL_CTX_set_async_callback_arg(SSL_CTX *ctx, void *arg)
1673 {
1674 ctx->async_cb_arg = arg;
1675 return 1;
1676 }
1677
1678 int SSL_set_async_callback(SSL *s, SSL_async_callback_fn callback)
1679 {
1680 s->async_cb = callback;
1681 return 1;
1682 }
1683
1684 int SSL_set_async_callback_arg(SSL *s, void *arg)
1685 {
1686 s->async_cb_arg = arg;
1687 return 1;
1688 }
1689
1690 int SSL_get_async_status(SSL *s, int *status)
1691 {
1692 ASYNC_WAIT_CTX *ctx = s->waitctx;
1693
1694 if (ctx == NULL)
1695 return 0;
1696 *status = ASYNC_WAIT_CTX_get_status(ctx);
1697 return 1;
1698 }
1699
1700 int SSL_accept(SSL *s)
1701 {
1702 if (s->handshake_func == NULL) {
1703 /* Not properly initialized yet */
1704 SSL_set_accept_state(s);
1705 }
1706
1707 return SSL_do_handshake(s);
1708 }
1709
1710 int SSL_connect(SSL *s)
1711 {
1712 if (s->handshake_func == NULL) {
1713 /* Not properly initialized yet */
1714 SSL_set_connect_state(s);
1715 }
1716
1717 return SSL_do_handshake(s);
1718 }
1719
1720 long SSL_get_default_timeout(const SSL *s)
1721 {
1722 return s->method->get_timeout();
1723 }
1724
1725 static int ssl_async_wait_ctx_cb(void *arg)
1726 {
1727 SSL *s = (SSL *)arg;
1728
1729 return s->async_cb(s, s->async_cb_arg);
1730 }
1731
1732 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
1733 int (*func) (void *))
1734 {
1735 int ret;
1736 if (s->waitctx == NULL) {
1737 s->waitctx = ASYNC_WAIT_CTX_new();
1738 if (s->waitctx == NULL)
1739 return -1;
1740 if (s->async_cb != NULL
1741 && !ASYNC_WAIT_CTX_set_callback
1742 (s->waitctx, ssl_async_wait_ctx_cb, s))
1743 return -1;
1744 }
1745 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args,
1746 sizeof(struct ssl_async_args))) {
1747 case ASYNC_ERR:
1748 s->rwstate = SSL_NOTHING;
1749 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC);
1750 return -1;
1751 case ASYNC_PAUSE:
1752 s->rwstate = SSL_ASYNC_PAUSED;
1753 return -1;
1754 case ASYNC_NO_JOBS:
1755 s->rwstate = SSL_ASYNC_NO_JOBS;
1756 return -1;
1757 case ASYNC_FINISH:
1758 s->job = NULL;
1759 return ret;
1760 default:
1761 s->rwstate = SSL_NOTHING;
1762 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR);
1763 /* Shouldn't happen */
1764 return -1;
1765 }
1766 }
1767
1768 static int ssl_io_intern(void *vargs)
1769 {
1770 struct ssl_async_args *args;
1771 SSL *s;
1772 void *buf;
1773 size_t num;
1774
1775 args = (struct ssl_async_args *)vargs;
1776 s = args->s;
1777 buf = args->buf;
1778 num = args->num;
1779 switch (args->type) {
1780 case READFUNC:
1781 return args->f.func_read(s, buf, num, &s->asyncrw);
1782 case WRITEFUNC:
1783 return args->f.func_write(s, buf, num, &s->asyncrw);
1784 case OTHERFUNC:
1785 return args->f.func_other(s);
1786 }
1787 return -1;
1788 }
1789
1790 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1791 {
1792 if (s->handshake_func == NULL) {
1793 SSLerr(SSL_F_SSL_READ_INTERNAL, SSL_R_UNINITIALIZED);
1794 return -1;
1795 }
1796
1797 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1798 s->rwstate = SSL_NOTHING;
1799 return 0;
1800 }
1801
1802 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1803 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) {
1804 SSLerr(SSL_F_SSL_READ_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1805 return 0;
1806 }
1807 /*
1808 * If we are a client and haven't received the ServerHello etc then we
1809 * better do that
1810 */
1811 ossl_statem_check_finish_init(s, 0);
1812
1813 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1814 struct ssl_async_args args;
1815 int ret;
1816
1817 args.s = s;
1818 args.buf = buf;
1819 args.num = num;
1820 args.type = READFUNC;
1821 args.f.func_read = s->method->ssl_read;
1822
1823 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1824 *readbytes = s->asyncrw;
1825 return ret;
1826 } else {
1827 return s->method->ssl_read(s, buf, num, readbytes);
1828 }
1829 }
1830
1831 int SSL_read(SSL *s, void *buf, int num)
1832 {
1833 int ret;
1834 size_t readbytes;
1835
1836 if (num < 0) {
1837 SSLerr(SSL_F_SSL_READ, SSL_R_BAD_LENGTH);
1838 return -1;
1839 }
1840
1841 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes);
1842
1843 /*
1844 * The cast is safe here because ret should be <= INT_MAX because num is
1845 * <= INT_MAX
1846 */
1847 if (ret > 0)
1848 ret = (int)readbytes;
1849
1850 return ret;
1851 }
1852
1853 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1854 {
1855 int ret = ssl_read_internal(s, buf, num, readbytes);
1856
1857 if (ret < 0)
1858 ret = 0;
1859 return ret;
1860 }
1861
1862 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes)
1863 {
1864 int ret;
1865
1866 if (!s->server) {
1867 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1868 return SSL_READ_EARLY_DATA_ERROR;
1869 }
1870
1871 switch (s->early_data_state) {
1872 case SSL_EARLY_DATA_NONE:
1873 if (!SSL_in_before(s)) {
1874 SSLerr(SSL_F_SSL_READ_EARLY_DATA,
1875 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1876 return SSL_READ_EARLY_DATA_ERROR;
1877 }
1878 /* fall through */
1879
1880 case SSL_EARLY_DATA_ACCEPT_RETRY:
1881 s->early_data_state = SSL_EARLY_DATA_ACCEPTING;
1882 ret = SSL_accept(s);
1883 if (ret <= 0) {
1884 /* NBIO or error */
1885 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY;
1886 return SSL_READ_EARLY_DATA_ERROR;
1887 }
1888 /* fall through */
1889
1890 case SSL_EARLY_DATA_READ_RETRY:
1891 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) {
1892 s->early_data_state = SSL_EARLY_DATA_READING;
1893 ret = SSL_read_ex(s, buf, num, readbytes);
1894 /*
1895 * State machine will update early_data_state to
1896 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData
1897 * message
1898 */
1899 if (ret > 0 || (ret <= 0 && s->early_data_state
1900 != SSL_EARLY_DATA_FINISHED_READING)) {
1901 s->early_data_state = SSL_EARLY_DATA_READ_RETRY;
1902 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS
1903 : SSL_READ_EARLY_DATA_ERROR;
1904 }
1905 } else {
1906 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING;
1907 }
1908 *readbytes = 0;
1909 return SSL_READ_EARLY_DATA_FINISH;
1910
1911 default:
1912 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1913 return SSL_READ_EARLY_DATA_ERROR;
1914 }
1915 }
1916
1917 int SSL_get_early_data_status(const SSL *s)
1918 {
1919 return s->ext.early_data;
1920 }
1921
1922 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1923 {
1924 if (s->handshake_func == NULL) {
1925 SSLerr(SSL_F_SSL_PEEK_INTERNAL, SSL_R_UNINITIALIZED);
1926 return -1;
1927 }
1928
1929 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1930 return 0;
1931 }
1932 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1933 struct ssl_async_args args;
1934 int ret;
1935
1936 args.s = s;
1937 args.buf = buf;
1938 args.num = num;
1939 args.type = READFUNC;
1940 args.f.func_read = s->method->ssl_peek;
1941
1942 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1943 *readbytes = s->asyncrw;
1944 return ret;
1945 } else {
1946 return s->method->ssl_peek(s, buf, num, readbytes);
1947 }
1948 }
1949
1950 int SSL_peek(SSL *s, void *buf, int num)
1951 {
1952 int ret;
1953 size_t readbytes;
1954
1955 if (num < 0) {
1956 SSLerr(SSL_F_SSL_PEEK, SSL_R_BAD_LENGTH);
1957 return -1;
1958 }
1959
1960 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes);
1961
1962 /*
1963 * The cast is safe here because ret should be <= INT_MAX because num is
1964 * <= INT_MAX
1965 */
1966 if (ret > 0)
1967 ret = (int)readbytes;
1968
1969 return ret;
1970 }
1971
1972
1973 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1974 {
1975 int ret = ssl_peek_internal(s, buf, num, readbytes);
1976
1977 if (ret < 0)
1978 ret = 0;
1979 return ret;
1980 }
1981
1982 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written)
1983 {
1984 if (s->handshake_func == NULL) {
1985 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_UNINITIALIZED);
1986 return -1;
1987 }
1988
1989 if (s->shutdown & SSL_SENT_SHUTDOWN) {
1990 s->rwstate = SSL_NOTHING;
1991 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_PROTOCOL_IS_SHUTDOWN);
1992 return -1;
1993 }
1994
1995 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1996 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY
1997 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) {
1998 SSLerr(SSL_F_SSL_WRITE_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1999 return 0;
2000 }
2001 /* If we are a client and haven't sent the Finished we better do that */
2002 ossl_statem_check_finish_init(s, 1);
2003
2004 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
2005 int ret;
2006 struct ssl_async_args args;
2007
2008 args.s = s;
2009 args.buf = (void *)buf;
2010 args.num = num;
2011 args.type = WRITEFUNC;
2012 args.f.func_write = s->method->ssl_write;
2013
2014 ret = ssl_start_async_job(s, &args, ssl_io_intern);
2015 *written = s->asyncrw;
2016 return ret;
2017 } else {
2018 return s->method->ssl_write(s, buf, num, written);
2019 }
2020 }
2021
2022 ossl_ssize_t SSL_sendfile(SSL *s, int fd, off_t offset, size_t size, int flags)
2023 {
2024 ossl_ssize_t ret;
2025
2026 if (s->handshake_func == NULL) {
2027 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_UNINITIALIZED);
2028 return -1;
2029 }
2030
2031 if (s->shutdown & SSL_SENT_SHUTDOWN) {
2032 s->rwstate = SSL_NOTHING;
2033 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_PROTOCOL_IS_SHUTDOWN);
2034 return -1;
2035 }
2036
2037 if (!BIO_get_ktls_send(s->wbio)) {
2038 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_UNINITIALIZED);
2039 return -1;
2040 }
2041
2042 /* If we have an alert to send, lets send it */
2043 if (s->s3.alert_dispatch) {
2044 ret = (ossl_ssize_t)s->method->ssl_dispatch_alert(s);
2045 if (ret <= 0) {
2046 /* SSLfatal() already called if appropriate */
2047 return ret;
2048 }
2049 /* if it went, fall through and send more stuff */
2050 }
2051
2052 s->rwstate = SSL_WRITING;
2053 if (BIO_flush(s->wbio) <= 0) {
2054 if (!BIO_should_retry(s->wbio)) {
2055 s->rwstate = SSL_NOTHING;
2056 } else {
2057 #ifdef EAGAIN
2058 set_sys_error(EAGAIN);
2059 #endif
2060 }
2061 return -1;
2062 }
2063
2064 #ifdef OPENSSL_NO_KTLS
2065 ERR_raise_data(ERR_LIB_SYS, ERR_R_INTERNAL_ERROR, "calling sendfile()");
2066 return -1;
2067 #else
2068 ret = ktls_sendfile(SSL_get_wfd(s), fd, offset, size, flags);
2069 if (ret < 0) {
2070 #if defined(EAGAIN) && defined(EINTR) && defined(EBUSY)
2071 if ((get_last_sys_error() == EAGAIN) ||
2072 (get_last_sys_error() == EINTR) ||
2073 (get_last_sys_error() == EBUSY))
2074 BIO_set_retry_write(s->wbio);
2075 else
2076 #endif
2077 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_UNINITIALIZED);
2078 return ret;
2079 }
2080 s->rwstate = SSL_NOTHING;
2081 return ret;
2082 #endif
2083 }
2084
2085 int SSL_write(SSL *s, const void *buf, int num)
2086 {
2087 int ret;
2088 size_t written;
2089
2090 if (num < 0) {
2091 SSLerr(SSL_F_SSL_WRITE, SSL_R_BAD_LENGTH);
2092 return -1;
2093 }
2094
2095 ret = ssl_write_internal(s, buf, (size_t)num, &written);
2096
2097 /*
2098 * The cast is safe here because ret should be <= INT_MAX because num is
2099 * <= INT_MAX
2100 */
2101 if (ret > 0)
2102 ret = (int)written;
2103
2104 return ret;
2105 }
2106
2107 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written)
2108 {
2109 int ret = ssl_write_internal(s, buf, num, written);
2110
2111 if (ret < 0)
2112 ret = 0;
2113 return ret;
2114 }
2115
2116 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written)
2117 {
2118 int ret, early_data_state;
2119 size_t writtmp;
2120 uint32_t partialwrite;
2121
2122 switch (s->early_data_state) {
2123 case SSL_EARLY_DATA_NONE:
2124 if (s->server
2125 || !SSL_in_before(s)
2126 || ((s->session == NULL || s->session->ext.max_early_data == 0)
2127 && (s->psk_use_session_cb == NULL))) {
2128 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA,
2129 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2130 return 0;
2131 }
2132 /* fall through */
2133
2134 case SSL_EARLY_DATA_CONNECT_RETRY:
2135 s->early_data_state = SSL_EARLY_DATA_CONNECTING;
2136 ret = SSL_connect(s);
2137 if (ret <= 0) {
2138 /* NBIO or error */
2139 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY;
2140 return 0;
2141 }
2142 /* fall through */
2143
2144 case SSL_EARLY_DATA_WRITE_RETRY:
2145 s->early_data_state = SSL_EARLY_DATA_WRITING;
2146 /*
2147 * We disable partial write for early data because we don't keep track
2148 * of how many bytes we've written between the SSL_write_ex() call and
2149 * the flush if the flush needs to be retried)
2150 */
2151 partialwrite = s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE;
2152 s->mode &= ~SSL_MODE_ENABLE_PARTIAL_WRITE;
2153 ret = SSL_write_ex(s, buf, num, &writtmp);
2154 s->mode |= partialwrite;
2155 if (!ret) {
2156 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
2157 return ret;
2158 }
2159 s->early_data_state = SSL_EARLY_DATA_WRITE_FLUSH;
2160 /* fall through */
2161
2162 case SSL_EARLY_DATA_WRITE_FLUSH:
2163 /* The buffering BIO is still in place so we need to flush it */
2164 if (statem_flush(s) != 1)
2165 return 0;
2166 *written = num;
2167 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
2168 return 1;
2169
2170 case SSL_EARLY_DATA_FINISHED_READING:
2171 case SSL_EARLY_DATA_READ_RETRY:
2172 early_data_state = s->early_data_state;
2173 /* We are a server writing to an unauthenticated client */
2174 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING;
2175 ret = SSL_write_ex(s, buf, num, written);
2176 /* The buffering BIO is still in place */
2177 if (ret)
2178 (void)BIO_flush(s->wbio);
2179 s->early_data_state = early_data_state;
2180 return ret;
2181
2182 default:
2183 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2184 return 0;
2185 }
2186 }
2187
2188 int SSL_shutdown(SSL *s)
2189 {
2190 /*
2191 * Note that this function behaves differently from what one might
2192 * expect. Return values are 0 for no success (yet), 1 for success; but
2193 * calling it once is usually not enough, even if blocking I/O is used
2194 * (see ssl3_shutdown).
2195 */
2196
2197 if (s->handshake_func == NULL) {
2198 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED);
2199 return -1;
2200 }
2201
2202 if (!SSL_in_init(s)) {
2203 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
2204 struct ssl_async_args args;
2205
2206 args.s = s;
2207 args.type = OTHERFUNC;
2208 args.f.func_other = s->method->ssl_shutdown;
2209
2210 return ssl_start_async_job(s, &args, ssl_io_intern);
2211 } else {
2212 return s->method->ssl_shutdown(s);
2213 }
2214 } else {
2215 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT);
2216 return -1;
2217 }
2218 }
2219
2220 int SSL_key_update(SSL *s, int updatetype)
2221 {
2222 /*
2223 * TODO(TLS1.3): How will applications know whether TLSv1.3 has been
2224 * negotiated, and that it is appropriate to call SSL_key_update() instead
2225 * of SSL_renegotiate().
2226 */
2227 if (!SSL_IS_TLS13(s)) {
2228 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_WRONG_SSL_VERSION);
2229 return 0;
2230 }
2231
2232 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED
2233 && updatetype != SSL_KEY_UPDATE_REQUESTED) {
2234 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_INVALID_KEY_UPDATE_TYPE);
2235 return 0;
2236 }
2237
2238 if (!SSL_is_init_finished(s)) {
2239 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_STILL_IN_INIT);
2240 return 0;
2241 }
2242
2243 ossl_statem_set_in_init(s, 1);
2244 s->key_update = updatetype;
2245 return 1;
2246 }
2247
2248 int SSL_get_key_update_type(const SSL *s)
2249 {
2250 return s->key_update;
2251 }
2252
2253 int SSL_renegotiate(SSL *s)
2254 {
2255 if (SSL_IS_TLS13(s)) {
2256 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_WRONG_SSL_VERSION);
2257 return 0;
2258 }
2259
2260 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2261 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_NO_RENEGOTIATION);
2262 return 0;
2263 }
2264
2265 s->renegotiate = 1;
2266 s->new_session = 1;
2267
2268 return s->method->ssl_renegotiate(s);
2269 }
2270
2271 int SSL_renegotiate_abbreviated(SSL *s)
2272 {
2273 if (SSL_IS_TLS13(s)) {
2274 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_WRONG_SSL_VERSION);
2275 return 0;
2276 }
2277
2278 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2279 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_NO_RENEGOTIATION);
2280 return 0;
2281 }
2282
2283 s->renegotiate = 1;
2284 s->new_session = 0;
2285
2286 return s->method->ssl_renegotiate(s);
2287 }
2288
2289 int SSL_renegotiate_pending(const SSL *s)
2290 {
2291 /*
2292 * becomes true when negotiation is requested; false again once a
2293 * handshake has finished
2294 */
2295 return (s->renegotiate != 0);
2296 }
2297
2298 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
2299 {
2300 long l;
2301
2302 switch (cmd) {
2303 case SSL_CTRL_GET_READ_AHEAD:
2304 return RECORD_LAYER_get_read_ahead(&s->rlayer);
2305 case SSL_CTRL_SET_READ_AHEAD:
2306 l = RECORD_LAYER_get_read_ahead(&s->rlayer);
2307 RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
2308 return l;
2309
2310 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2311 s->msg_callback_arg = parg;
2312 return 1;
2313
2314 case SSL_CTRL_MODE:
2315 return (s->mode |= larg);
2316 case SSL_CTRL_CLEAR_MODE:
2317 return (s->mode &= ~larg);
2318 case SSL_CTRL_GET_MAX_CERT_LIST:
2319 return (long)s->max_cert_list;
2320 case SSL_CTRL_SET_MAX_CERT_LIST:
2321 if (larg < 0)
2322 return 0;
2323 l = (long)s->max_cert_list;
2324 s->max_cert_list = (size_t)larg;
2325 return l;
2326 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2327 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2328 return 0;
2329 #ifndef OPENSSL_NO_KTLS
2330 if (s->wbio != NULL && BIO_get_ktls_send(s->wbio))
2331 return 0;
2332 #endif /* OPENSSL_NO_KTLS */
2333 s->max_send_fragment = larg;
2334 if (s->max_send_fragment < s->split_send_fragment)
2335 s->split_send_fragment = s->max_send_fragment;
2336 return 1;
2337 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2338 if ((size_t)larg > s->max_send_fragment || larg == 0)
2339 return 0;
2340 s->split_send_fragment = larg;
2341 return 1;
2342 case SSL_CTRL_SET_MAX_PIPELINES:
2343 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2344 return 0;
2345 s->max_pipelines = larg;
2346 if (larg > 1)
2347 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
2348 return 1;
2349 case SSL_CTRL_GET_RI_SUPPORT:
2350 return s->s3.send_connection_binding;
2351 case SSL_CTRL_CERT_FLAGS:
2352 return (s->cert->cert_flags |= larg);
2353 case SSL_CTRL_CLEAR_CERT_FLAGS:
2354 return (s->cert->cert_flags &= ~larg);
2355
2356 case SSL_CTRL_GET_RAW_CIPHERLIST:
2357 if (parg) {
2358 if (s->s3.tmp.ciphers_raw == NULL)
2359 return 0;
2360 *(unsigned char **)parg = s->s3.tmp.ciphers_raw;
2361 return (int)s->s3.tmp.ciphers_rawlen;
2362 } else {
2363 return TLS_CIPHER_LEN;
2364 }
2365 case SSL_CTRL_GET_EXTMS_SUPPORT:
2366 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
2367 return -1;
2368 if (s->session->flags & SSL_SESS_FLAG_EXTMS)
2369 return 1;
2370 else
2371 return 0;
2372 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2373 return ssl_check_allowed_versions(larg, s->max_proto_version)
2374 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2375 &s->min_proto_version);
2376 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2377 return s->min_proto_version;
2378 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2379 return ssl_check_allowed_versions(s->min_proto_version, larg)
2380 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2381 &s->max_proto_version);
2382 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2383 return s->max_proto_version;
2384 default:
2385 return s->method->ssl_ctrl(s, cmd, larg, parg);
2386 }
2387 }
2388
2389 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
2390 {
2391 switch (cmd) {
2392 case SSL_CTRL_SET_MSG_CALLBACK:
2393 s->msg_callback = (void (*)
2394 (int write_p, int version, int content_type,
2395 const void *buf, size_t len, SSL *ssl,
2396 void *arg))(fp);
2397 return 1;
2398
2399 default:
2400 return s->method->ssl_callback_ctrl(s, cmd, fp);
2401 }
2402 }
2403
2404 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
2405 {
2406 return ctx->sessions;
2407 }
2408
2409 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
2410 {
2411 long l;
2412 /* For some cases with ctx == NULL perform syntax checks */
2413 if (ctx == NULL) {
2414 switch (cmd) {
2415 #ifndef OPENSSL_NO_EC
2416 case SSL_CTRL_SET_GROUPS_LIST:
2417 return tls1_set_groups_list(NULL, NULL, parg);
2418 #endif
2419 case SSL_CTRL_SET_SIGALGS_LIST:
2420 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
2421 return tls1_set_sigalgs_list(NULL, parg, 0);
2422 default:
2423 return 0;
2424 }
2425 }
2426
2427 switch (cmd) {
2428 case SSL_CTRL_GET_READ_AHEAD:
2429 return ctx->read_ahead;
2430 case SSL_CTRL_SET_READ_AHEAD:
2431 l = ctx->read_ahead;
2432 ctx->read_ahead = larg;
2433 return l;
2434
2435 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2436 ctx->msg_callback_arg = parg;
2437 return 1;
2438
2439 case SSL_CTRL_GET_MAX_CERT_LIST:
2440 return (long)ctx->max_cert_list;
2441 case SSL_CTRL_SET_MAX_CERT_LIST:
2442 if (larg < 0)
2443 return 0;
2444 l = (long)ctx->max_cert_list;
2445 ctx->max_cert_list = (size_t)larg;
2446 return l;
2447
2448 case SSL_CTRL_SET_SESS_CACHE_SIZE:
2449 if (larg < 0)
2450 return 0;
2451 l = (long)ctx->session_cache_size;
2452 ctx->session_cache_size = (size_t)larg;
2453 return l;
2454 case SSL_CTRL_GET_SESS_CACHE_SIZE:
2455 return (long)ctx->session_cache_size;
2456 case SSL_CTRL_SET_SESS_CACHE_MODE:
2457 l = ctx->session_cache_mode;
2458 ctx->session_cache_mode = larg;
2459 return l;
2460 case SSL_CTRL_GET_SESS_CACHE_MODE:
2461 return ctx->session_cache_mode;
2462
2463 case SSL_CTRL_SESS_NUMBER:
2464 return lh_SSL_SESSION_num_items(ctx->sessions);
2465 case SSL_CTRL_SESS_CONNECT:
2466 return tsan_load(&ctx->stats.sess_connect);
2467 case SSL_CTRL_SESS_CONNECT_GOOD:
2468 return tsan_load(&ctx->stats.sess_connect_good);
2469 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
2470 return tsan_load(&ctx->stats.sess_connect_renegotiate);
2471 case SSL_CTRL_SESS_ACCEPT:
2472 return tsan_load(&ctx->stats.sess_accept);
2473 case SSL_CTRL_SESS_ACCEPT_GOOD:
2474 return tsan_load(&ctx->stats.sess_accept_good);
2475 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
2476 return tsan_load(&ctx->stats.sess_accept_renegotiate);
2477 case SSL_CTRL_SESS_HIT:
2478 return tsan_load(&ctx->stats.sess_hit);
2479 case SSL_CTRL_SESS_CB_HIT:
2480 return tsan_load(&ctx->stats.sess_cb_hit);
2481 case SSL_CTRL_SESS_MISSES:
2482 return tsan_load(&ctx->stats.sess_miss);
2483 case SSL_CTRL_SESS_TIMEOUTS:
2484 return tsan_load(&ctx->stats.sess_timeout);
2485 case SSL_CTRL_SESS_CACHE_FULL:
2486 return tsan_load(&ctx->stats.sess_cache_full);
2487 case SSL_CTRL_MODE:
2488 return (ctx->mode |= larg);
2489 case SSL_CTRL_CLEAR_MODE:
2490 return (ctx->mode &= ~larg);
2491 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2492 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2493 return 0;
2494 ctx->max_send_fragment = larg;
2495 if (ctx->max_send_fragment < ctx->split_send_fragment)
2496 ctx->split_send_fragment = ctx->max_send_fragment;
2497 return 1;
2498 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2499 if ((size_t)larg > ctx->max_send_fragment || larg == 0)
2500 return 0;
2501 ctx->split_send_fragment = larg;
2502 return 1;
2503 case SSL_CTRL_SET_MAX_PIPELINES:
2504 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2505 return 0;
2506 ctx->max_pipelines = larg;
2507 return 1;
2508 case SSL_CTRL_CERT_FLAGS:
2509 return (ctx->cert->cert_flags |= larg);
2510 case SSL_CTRL_CLEAR_CERT_FLAGS:
2511 return (ctx->cert->cert_flags &= ~larg);
2512 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2513 return ssl_check_allowed_versions(larg, ctx->max_proto_version)
2514 && ssl_set_version_bound(ctx->method->version, (int)larg,
2515 &ctx->min_proto_version);
2516 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2517 return ctx->min_proto_version;
2518 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2519 return ssl_check_allowed_versions(ctx->min_proto_version, larg)
2520 && ssl_set_version_bound(ctx->method->version, (int)larg,
2521 &ctx->max_proto_version);
2522 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2523 return ctx->max_proto_version;
2524 default:
2525 return ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg);
2526 }
2527 }
2528
2529 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
2530 {
2531 switch (cmd) {
2532 case SSL_CTRL_SET_MSG_CALLBACK:
2533 ctx->msg_callback = (void (*)
2534 (int write_p, int version, int content_type,
2535 const void *buf, size_t len, SSL *ssl,
2536 void *arg))(fp);
2537 return 1;
2538
2539 default:
2540 return ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp);
2541 }
2542 }
2543
2544 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
2545 {
2546 if (a->id > b->id)
2547 return 1;
2548 if (a->id < b->id)
2549 return -1;
2550 return 0;
2551 }
2552
2553 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
2554 const SSL_CIPHER *const *bp)
2555 {
2556 if ((*ap)->id > (*bp)->id)
2557 return 1;
2558 if ((*ap)->id < (*bp)->id)
2559 return -1;
2560 return 0;
2561 }
2562
2563 /** return a STACK of the ciphers available for the SSL and in order of
2564 * preference */
2565 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
2566 {
2567 if (s != NULL) {
2568 if (s->cipher_list != NULL) {
2569 return s->cipher_list;
2570 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
2571 return s->ctx->cipher_list;
2572 }
2573 }
2574 return NULL;
2575 }
2576
2577 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
2578 {
2579 if ((s == NULL) || !s->server)
2580 return NULL;
2581 return s->peer_ciphers;
2582 }
2583
2584 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
2585 {
2586 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
2587 int i;
2588
2589 ciphers = SSL_get_ciphers(s);
2590 if (!ciphers)
2591 return NULL;
2592 if (!ssl_set_client_disabled(s))
2593 return NULL;
2594 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
2595 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
2596 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) {
2597 if (!sk)
2598 sk = sk_SSL_CIPHER_new_null();
2599 if (!sk)
2600 return NULL;
2601 if (!sk_SSL_CIPHER_push(sk, c)) {
2602 sk_SSL_CIPHER_free(sk);
2603 return NULL;
2604 }
2605 }
2606 }
2607 return sk;
2608 }
2609
2610 /** return a STACK of the ciphers available for the SSL and in order of
2611 * algorithm id */
2612 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
2613 {
2614 if (s != NULL) {
2615 if (s->cipher_list_by_id != NULL) {
2616 return s->cipher_list_by_id;
2617 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
2618 return s->ctx->cipher_list_by_id;
2619 }
2620 }
2621 return NULL;
2622 }
2623
2624 /** The old interface to get the same thing as SSL_get_ciphers() */
2625 const char *SSL_get_cipher_list(const SSL *s, int n)
2626 {
2627 const SSL_CIPHER *c;
2628 STACK_OF(SSL_CIPHER) *sk;
2629
2630 if (s == NULL)
2631 return NULL;
2632 sk = SSL_get_ciphers(s);
2633 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
2634 return NULL;
2635 c = sk_SSL_CIPHER_value(sk, n);
2636 if (c == NULL)
2637 return NULL;
2638 return c->name;
2639 }
2640
2641 /** return a STACK of the ciphers available for the SSL_CTX and in order of
2642 * preference */
2643 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx)
2644 {
2645 if (ctx != NULL)
2646 return ctx->cipher_list;
2647 return NULL;
2648 }
2649
2650 /*
2651 * Distinguish between ciphers controlled by set_ciphersuite() and
2652 * set_cipher_list() when counting.
2653 */
2654 static int cipher_list_tls12_num(STACK_OF(SSL_CIPHER) *sk)
2655 {
2656 int i, num = 0;
2657 const SSL_CIPHER *c;
2658
2659 if (sk == NULL)
2660 return 0;
2661 for (i = 0; i < sk_SSL_CIPHER_num(sk); ++i) {
2662 c = sk_SSL_CIPHER_value(sk, i);
2663 if (c->min_tls >= TLS1_3_VERSION)
2664 continue;
2665 num++;
2666 }
2667 return num;
2668 }
2669
2670 /** specify the ciphers to be used by default by the SSL_CTX */
2671 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
2672 {
2673 STACK_OF(SSL_CIPHER) *sk;
2674
2675 sk = ssl_create_cipher_list(ctx->method, ctx->tls13_ciphersuites,
2676 &ctx->cipher_list, &ctx->cipher_list_by_id, str,
2677 ctx->cert);
2678 /*
2679 * ssl_create_cipher_list may return an empty stack if it was unable to
2680 * find a cipher matching the given rule string (for example if the rule
2681 * string specifies a cipher which has been disabled). This is not an
2682 * error as far as ssl_create_cipher_list is concerned, and hence
2683 * ctx->cipher_list and ctx->cipher_list_by_id has been updated.
2684 */
2685 if (sk == NULL)
2686 return 0;
2687 else if (cipher_list_tls12_num(sk) == 0) {
2688 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2689 return 0;
2690 }
2691 return 1;
2692 }
2693
2694 /** specify the ciphers to be used by the SSL */
2695 int SSL_set_cipher_list(SSL *s, const char *str)
2696 {
2697 STACK_OF(SSL_CIPHER) *sk;
2698
2699 sk = ssl_create_cipher_list(s->ctx->method, s->tls13_ciphersuites,
2700 &s->cipher_list, &s->cipher_list_by_id, str,
2701 s->cert);
2702 /* see comment in SSL_CTX_set_cipher_list */
2703 if (sk == NULL)
2704 return 0;
2705 else if (cipher_list_tls12_num(sk) == 0) {
2706 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2707 return 0;
2708 }
2709 return 1;
2710 }
2711
2712 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int size)
2713 {
2714 char *p;
2715 STACK_OF(SSL_CIPHER) *clntsk, *srvrsk;
2716 const SSL_CIPHER *c;
2717 int i;
2718
2719 if (!s->server
2720 || s->peer_ciphers == NULL
2721 || size < 2)
2722 return NULL;
2723
2724 p = buf;
2725 clntsk = s->peer_ciphers;
2726 srvrsk = SSL_get_ciphers(s);
2727 if (clntsk == NULL || srvrsk == NULL)
2728 return NULL;
2729
2730 if (sk_SSL_CIPHER_num(clntsk) == 0 || sk_SSL_CIPHER_num(srvrsk) == 0)
2731 return NULL;
2732
2733 for (i = 0; i < sk_SSL_CIPHER_num(clntsk); i++) {
2734 int n;
2735
2736 c = sk_SSL_CIPHER_value(clntsk, i);
2737 if (sk_SSL_CIPHER_find(srvrsk, c) < 0)
2738 continue;
2739
2740 n = strlen(c->name);
2741 if (n + 1 > size) {
2742 if (p != buf)
2743 --p;
2744 *p = '\0';
2745 return buf;
2746 }
2747 strcpy(p, c->name);
2748 p += n;
2749 *(p++) = ':';
2750 size -= n + 1;
2751 }
2752 p[-1] = '\0';
2753 return buf;
2754 }
2755
2756 /**
2757 * Return the requested servername (SNI) value. Note that the behaviour varies
2758 * depending on:
2759 * - whether this is called by the client or the server,
2760 * - if we are before or during/after the handshake,
2761 * - if a resumption or normal handshake is being attempted/has occurred
2762 * - whether we have negotiated TLSv1.2 (or below) or TLSv1.3
2763 *
2764 * Note that only the host_name type is defined (RFC 3546).
2765 */
2766 const char *SSL_get_servername(const SSL *s, const int type)
2767 {
2768 /*
2769 * If we don't know if we are the client or the server yet then we assume
2770 * client.
2771 */
2772 int server = s->handshake_func == NULL ? 0 : s->server;
2773 if (type != TLSEXT_NAMETYPE_host_name)
2774 return NULL;
2775
2776 if (server) {
2777 /**
2778 * Server side
2779 * In TLSv1.3 on the server SNI is not associated with the session
2780 * but in TLSv1.2 or below it is.
2781 *
2782 * Before the handshake:
2783 * - return NULL
2784 *
2785 * During/after the handshake (TLSv1.2 or below resumption occurred):
2786 * - If a servername was accepted by the server in the original
2787 * handshake then it will return that servername, or NULL otherwise.
2788 *
2789 * During/after the handshake (TLSv1.2 or below resumption did not occur):
2790 * - The function will return the servername requested by the client in
2791 * this handshake or NULL if none was requested.
2792 */
2793 if (s->hit && !SSL_IS_TLS13(s))
2794 return s->session->ext.hostname;
2795 } else {
2796 /**
2797 * Client side
2798 *
2799 * Before the handshake:
2800 * - If a servername has been set via a call to
2801 * SSL_set_tlsext_host_name() then it will return that servername
2802 * - If one has not been set, but a TLSv1.2 resumption is being
2803 * attempted and the session from the original handshake had a
2804 * servername accepted by the server then it will return that
2805 * servername
2806 * - Otherwise it returns NULL
2807 *
2808 * During/after the handshake (TLSv1.2 or below resumption occurred):
2809 * - If the session from the orignal handshake had a servername accepted
2810 * by the server then it will return that servername.
2811 * - Otherwise it returns the servername set via
2812 * SSL_set_tlsext_host_name() (or NULL if it was not called).
2813 *
2814 * During/after the handshake (TLSv1.2 or below resumption did not occur):
2815 * - It will return the servername set via SSL_set_tlsext_host_name()
2816 * (or NULL if it was not called).
2817 */
2818 if (SSL_in_before(s)) {
2819 if (s->ext.hostname == NULL
2820 && s->session != NULL
2821 && s->session->ssl_version != TLS1_3_VERSION)
2822 return s->session->ext.hostname;
2823 } else {
2824 if (!SSL_IS_TLS13(s) && s->hit && s->session->ext.hostname != NULL)
2825 return s->session->ext.hostname;
2826 }
2827 }
2828
2829 return s->ext.hostname;
2830 }
2831
2832 int SSL_get_servername_type(const SSL *s)
2833 {
2834 if (SSL_get_servername(s, TLSEXT_NAMETYPE_host_name) != NULL)
2835 return TLSEXT_NAMETYPE_host_name;
2836 return -1;
2837 }
2838
2839 /*
2840 * SSL_select_next_proto implements the standard protocol selection. It is
2841 * expected that this function is called from the callback set by
2842 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
2843 * vector of 8-bit, length prefixed byte strings. The length byte itself is
2844 * not included in the length. A byte string of length 0 is invalid. No byte
2845 * string may be truncated. The current, but experimental algorithm for
2846 * selecting the protocol is: 1) If the server doesn't support NPN then this
2847 * is indicated to the callback. In this case, the client application has to
2848 * abort the connection or have a default application level protocol. 2) If
2849 * the server supports NPN, but advertises an empty list then the client
2850 * selects the first protocol in its list, but indicates via the API that this
2851 * fallback case was enacted. 3) Otherwise, the client finds the first
2852 * protocol in the server's list that it supports and selects this protocol.
2853 * This is because it's assumed that the server has better information about
2854 * which protocol a client should use. 4) If the client doesn't support any
2855 * of the server's advertised protocols, then this is treated the same as
2856 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
2857 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
2858 */
2859 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
2860 const unsigned char *server,
2861 unsigned int server_len,
2862 const unsigned char *client, unsigned int client_len)
2863 {
2864 unsigned int i, j;
2865 const unsigned char *result;
2866 int status = OPENSSL_NPN_UNSUPPORTED;
2867
2868 /*
2869 * For each protocol in server preference order, see if we support it.
2870 */
2871 for (i = 0; i < server_len;) {
2872 for (j = 0; j < client_len;) {
2873 if (server[i] == client[j] &&
2874 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
2875 /* We found a match */
2876 result = &server[i];
2877 status = OPENSSL_NPN_NEGOTIATED;
2878 goto found;
2879 }
2880 j += client[j];
2881 j++;
2882 }
2883 i += server[i];
2884 i++;
2885 }
2886
2887 /* There's no overlap between our protocols and the server's list. */
2888 result = client;
2889 status = OPENSSL_NPN_NO_OVERLAP;
2890
2891 found:
2892 *out = (unsigned char *)result + 1;
2893 *outlen = result[0];
2894 return status;
2895 }
2896
2897 #ifndef OPENSSL_NO_NEXTPROTONEG
2898 /*
2899 * SSL_get0_next_proto_negotiated sets *data and *len to point to the
2900 * client's requested protocol for this connection and returns 0. If the
2901 * client didn't request any protocol, then *data is set to NULL. Note that
2902 * the client can request any protocol it chooses. The value returned from
2903 * this function need not be a member of the list of supported protocols
2904 * provided by the callback.
2905 */
2906 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
2907 unsigned *len)
2908 {
2909 *data = s->ext.npn;
2910 if (*data == NULL) {
2911 *len = 0;
2912 } else {
2913 *len = (unsigned int)s->ext.npn_len;
2914 }
2915 }
2916
2917 /*
2918 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when
2919 * a TLS server needs a list of supported protocols for Next Protocol
2920 * Negotiation. The returned list must be in wire format. The list is
2921 * returned by setting |out| to point to it and |outlen| to its length. This
2922 * memory will not be modified, but one should assume that the SSL* keeps a
2923 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
2924 * wishes to advertise. Otherwise, no such extension will be included in the
2925 * ServerHello.
2926 */
2927 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx,
2928 SSL_CTX_npn_advertised_cb_func cb,
2929 void *arg)
2930 {
2931 ctx->ext.npn_advertised_cb = cb;
2932 ctx->ext.npn_advertised_cb_arg = arg;
2933 }
2934
2935 /*
2936 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
2937 * client needs to select a protocol from the server's provided list. |out|
2938 * must be set to point to the selected protocol (which may be within |in|).
2939 * The length of the protocol name must be written into |outlen|. The
2940 * server's advertised protocols are provided in |in| and |inlen|. The
2941 * callback can assume that |in| is syntactically valid. The client must
2942 * select a protocol. It is fatal to the connection if this callback returns
2943 * a value other than SSL_TLSEXT_ERR_OK.
2944 */
2945 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx,
2946 SSL_CTX_npn_select_cb_func cb,
2947 void *arg)
2948 {
2949 ctx->ext.npn_select_cb = cb;
2950 ctx->ext.npn_select_cb_arg = arg;
2951 }
2952 #endif
2953
2954 /*
2955 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
2956 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2957 * length-prefixed strings). Returns 0 on success.
2958 */
2959 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
2960 unsigned int protos_len)
2961 {
2962 OPENSSL_free(ctx->ext.alpn);
2963 ctx->ext.alpn = OPENSSL_memdup(protos, protos_len);
2964 if (ctx->ext.alpn == NULL) {
2965 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2966 return 1;
2967 }
2968 ctx->ext.alpn_len = protos_len;
2969
2970 return 0;
2971 }
2972
2973 /*
2974 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
2975 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2976 * length-prefixed strings). Returns 0 on success.
2977 */
2978 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
2979 unsigned int protos_len)
2980 {
2981 OPENSSL_free(ssl->ext.alpn);
2982 ssl->ext.alpn = OPENSSL_memdup(protos, protos_len);
2983 if (ssl->ext.alpn == NULL) {
2984 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2985 return 1;
2986 }
2987 ssl->ext.alpn_len = protos_len;
2988
2989 return 0;
2990 }
2991
2992 /*
2993 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
2994 * called during ClientHello processing in order to select an ALPN protocol
2995 * from the client's list of offered protocols.
2996 */
2997 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
2998 SSL_CTX_alpn_select_cb_func cb,
2999 void *arg)
3000 {
3001 ctx->ext.alpn_select_cb = cb;
3002 ctx->ext.alpn_select_cb_arg = arg;
3003 }
3004
3005 /*
3006 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|.
3007 * On return it sets |*data| to point to |*len| bytes of protocol name
3008 * (not including the leading length-prefix byte). If the server didn't
3009 * respond with a negotiated protocol then |*len| will be zero.
3010 */
3011 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
3012 unsigned int *len)
3013 {
3014 *data = ssl->s3.alpn_selected;
3015 if (*data == NULL)
3016 *len = 0;
3017 else
3018 *len = (unsigned int)ssl->s3.alpn_selected_len;
3019 }
3020
3021 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
3022 const char *label, size_t llen,
3023 const unsigned char *context, size_t contextlen,
3024 int use_context)
3025 {
3026 if (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER)
3027 return -1;
3028
3029 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
3030 llen, context,
3031 contextlen, use_context);
3032 }
3033
3034 int SSL_export_keying_material_early(SSL *s, unsigned char *out, size_t olen,
3035 const char *label, size_t llen,
3036 const unsigned char *context,
3037 size_t contextlen)
3038 {
3039 if (s->version != TLS1_3_VERSION)
3040 return 0;
3041
3042 return tls13_export_keying_material_early(s, out, olen, label, llen,
3043 context, contextlen);
3044 }
3045
3046 static unsigned long ssl_session_hash(const SSL_SESSION *a)
3047 {
3048 const unsigned char *session_id = a->session_id;
3049 unsigned long l;
3050 unsigned char tmp_storage[4];
3051
3052 if (a->session_id_length < sizeof(tmp_storage)) {
3053 memset(tmp_storage, 0, sizeof(tmp_storage));
3054 memcpy(tmp_storage, a->session_id, a->session_id_length);
3055 session_id = tmp_storage;
3056 }
3057
3058 l = (unsigned long)
3059 ((unsigned long)session_id[0]) |
3060 ((unsigned long)session_id[1] << 8L) |
3061 ((unsigned long)session_id[2] << 16L) |
3062 ((unsigned long)session_id[3] << 24L);
3063 return l;
3064 }
3065
3066 /*
3067 * NB: If this function (or indeed the hash function which uses a sort of
3068 * coarser function than this one) is changed, ensure
3069 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
3070 * being able to construct an SSL_SESSION that will collide with any existing
3071 * session with a matching session ID.
3072 */
3073 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
3074 {
3075 if (a->ssl_version != b->ssl_version)
3076 return 1;
3077 if (a->session_id_length != b->session_id_length)
3078 return 1;
3079 return memcmp(a->session_id, b->session_id, a->session_id_length);
3080 }
3081
3082 /*
3083 * These wrapper functions should remain rather than redeclaring
3084 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
3085 * variable. The reason is that the functions aren't static, they're exposed
3086 * via ssl.h.
3087 */
3088
3089 SSL_CTX *SSL_CTX_new_with_libctx(OPENSSL_CTX *libctx, const char *propq,
3090 const SSL_METHOD *meth)
3091 {
3092 SSL_CTX *ret = NULL;
3093
3094 if (meth == NULL) {
3095 SSLerr(0, SSL_R_NULL_SSL_METHOD_PASSED);
3096 return NULL;
3097 }
3098
3099 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL))
3100 return NULL;
3101
3102 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
3103 SSLerr(0, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
3104 goto err;
3105 }
3106 ret = OPENSSL_zalloc(sizeof(*ret));
3107 if (ret == NULL)
3108 goto err;
3109
3110 ret->libctx = libctx;
3111 if (propq != NULL) {
3112 ret->propq = OPENSSL_strdup(propq);
3113 if (ret->propq == NULL)
3114 goto err;
3115 }
3116
3117 ret->method = meth;
3118 ret->min_proto_version = 0;
3119 ret->max_proto_version = 0;
3120 ret->mode = SSL_MODE_AUTO_RETRY;
3121 ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
3122 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
3123 /* We take the system default. */
3124 ret->session_timeout = meth->get_timeout();
3125 ret->references = 1;
3126 ret->lock = CRYPTO_THREAD_lock_new();
3127 if (ret->lock == NULL) {
3128 SSLerr(0, ERR_R_MALLOC_FAILURE);
3129 OPENSSL_free(ret);
3130 return NULL;
3131 }
3132 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
3133 ret->verify_mode = SSL_VERIFY_NONE;
3134 if ((ret->cert = ssl_cert_new()) == NULL)
3135 goto err;
3136
3137 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
3138 if (ret->sessions == NULL)
3139 goto err;
3140 ret->cert_store = X509_STORE_new();
3141 if (ret->cert_store == NULL)
3142 goto err;
3143 #ifndef OPENSSL_NO_CT
3144 ret->ctlog_store = CTLOG_STORE_new();
3145 if (ret->ctlog_store == NULL)
3146 goto err;
3147 #endif
3148
3149 if (!SSL_CTX_set_ciphersuites(ret, OSSL_default_ciphersuites()))
3150 goto err;
3151
3152 if (!ssl_create_cipher_list(ret->method,
3153 ret->tls13_ciphersuites,
3154 &ret->cipher_list, &ret->cipher_list_by_id,
3155 OSSL_default_cipher_list(), ret->cert)
3156 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
3157 SSLerr(0, SSL_R_LIBRARY_HAS_NO_CIPHERS);
3158 goto err2;
3159 }
3160
3161 ret->param = X509_VERIFY_PARAM_new();
3162 if (ret->param == NULL)
3163 goto err;
3164
3165 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) {
3166 SSLerr(0, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES);
3167 goto err2;
3168 }
3169 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) {
3170 SSLerr(0, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES);
3171 goto err2;
3172 }
3173
3174 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL)
3175 goto err;
3176
3177 if ((ret->client_ca_names = sk_X509_NAME_new_null()) == NULL)
3178 goto err;
3179
3180 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data))
3181 goto err;
3182
3183 if ((ret->ext.secure = OPENSSL_secure_zalloc(sizeof(*ret->ext.secure))) == NULL)
3184 goto err;
3185
3186 /* No compression for DTLS */
3187 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
3188 ret->comp_methods = SSL_COMP_get_compression_methods();
3189
3190 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
3191 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
3192
3193 /* Setup RFC5077 ticket keys */
3194 if ((RAND_bytes_ex(libctx, ret->ext.tick_key_name,
3195 sizeof(ret->ext.tick_key_name)) <= 0)
3196 || (RAND_priv_bytes_ex(libctx, ret->ext.secure->tick_hmac_key,
3197 sizeof(ret->ext.secure->tick_hmac_key)) <= 0)
3198 || (RAND_priv_bytes_ex(libctx, ret->ext.secure->tick_aes_key,
3199 sizeof(ret->ext.secure->tick_aes_key)) <= 0))
3200 ret->options |= SSL_OP_NO_TICKET;
3201
3202 if (RAND_priv_bytes_ex(libctx, ret->ext.cookie_hmac_key,
3203 sizeof(ret->ext.cookie_hmac_key)) <= 0)
3204 goto err;
3205
3206 #ifndef OPENSSL_NO_SRP
3207 if (!SSL_CTX_SRP_CTX_init(ret))
3208 goto err;
3209 #endif
3210 #ifndef OPENSSL_NO_ENGINE
3211 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
3212 # define eng_strx(x) #x
3213 # define eng_str(x) eng_strx(x)
3214 /* Use specific client engine automatically... ignore errors */
3215 {
3216 ENGINE *eng;
3217 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
3218 if (!eng) {
3219 ERR_clear_error();
3220 ENGINE_load_builtin_engines();
3221 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
3222 }
3223 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
3224 ERR_clear_error();
3225 }
3226 # endif
3227 #endif
3228 /*
3229 * Default is to connect to non-RI servers. When RI is more widely
3230 * deployed might change this.
3231 */
3232 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;
3233 /*
3234 * Disable compression by default to prevent CRIME. Applications can
3235 * re-enable compression by configuring
3236 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
3237 * or by using the SSL_CONF library. Similarly we also enable TLSv1.3
3238 * middlebox compatibility by default. This may be disabled by default in
3239 * a later OpenSSL version.
3240 */
3241 ret->options |= SSL_OP_NO_COMPRESSION | SSL_OP_ENABLE_MIDDLEBOX_COMPAT;
3242
3243 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing;
3244
3245 /*
3246 * We cannot usefully set a default max_early_data here (which gets
3247 * propagated in SSL_new(), for the following reason: setting the
3248 * SSL field causes tls_construct_stoc_early_data() to tell the
3249 * client that early data will be accepted when constructing a TLS 1.3
3250 * session ticket, and the client will accordingly send us early data
3251 * when using that ticket (if the client has early data to send).
3252 * However, in order for the early data to actually be consumed by
3253 * the application, the application must also have calls to
3254 * SSL_read_early_data(); otherwise we'll just skip past the early data
3255 * and ignore it. So, since the application must add calls to
3256 * SSL_read_early_data(), we also require them to add
3257 * calls to SSL_CTX_set_max_early_data() in order to use early data,
3258 * eliminating the bandwidth-wasting early data in the case described
3259 * above.
3260 */
3261 ret->max_early_data = 0;
3262
3263 /*
3264 * Default recv_max_early_data is a fully loaded single record. Could be
3265 * split across multiple records in practice. We set this differently to
3266 * max_early_data so that, in the default case, we do not advertise any
3267 * support for early_data, but if a client were to send us some (e.g.
3268 * because of an old, stale ticket) then we will tolerate it and skip over
3269 * it.
3270 */
3271 ret->recv_max_early_data = SSL3_RT_MAX_PLAIN_LENGTH;
3272
3273 /* By default we send two session tickets automatically in TLSv1.3 */
3274 ret->num_tickets = 2;
3275
3276 ssl_ctx_system_config(ret);
3277
3278 return ret;
3279 err:
3280 SSLerr(0, ERR_R_MALLOC_FAILURE);
3281 err2:
3282 SSL_CTX_free(ret);
3283 return NULL;
3284 }
3285
3286 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
3287 {
3288 return SSL_CTX_new_with_libctx(NULL, NULL, meth);
3289 }
3290
3291 int SSL_CTX_up_ref(SSL_CTX *ctx)
3292 {
3293 int i;
3294
3295 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0)
3296 return 0;
3297
3298 REF_PRINT_COUNT("SSL_CTX", ctx);
3299 REF_ASSERT_ISNT(i < 2);
3300 return ((i > 1) ? 1 : 0);
3301 }
3302
3303 void SSL_CTX_free(SSL_CTX *a)
3304 {
3305 int i;
3306
3307 if (a == NULL)
3308 return;
3309
3310 CRYPTO_DOWN_REF(&a->references, &i, a->lock);
3311 REF_PRINT_COUNT("SSL_CTX", a);
3312 if (i > 0)
3313 return;
3314 REF_ASSERT_ISNT(i < 0);
3315
3316 X509_VERIFY_PARAM_free(a->param);
3317 dane_ctx_final(&a->dane);
3318
3319 /*
3320 * Free internal session cache. However: the remove_cb() may reference
3321 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
3322 * after the sessions were flushed.
3323 * As the ex_data handling routines might also touch the session cache,
3324 * the most secure solution seems to be: empty (flush) the cache, then
3325 * free ex_data, then finally free the cache.
3326 * (See ticket [openssl.org #212].)
3327 */
3328 if (a->sessions != NULL)
3329 SSL_CTX_flush_sessions(a, 0);
3330
3331 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
3332 lh_SSL_SESSION_free(a->sessions);
3333 X509_STORE_free(a->cert_store);
3334 #ifndef OPENSSL_NO_CT
3335 CTLOG_STORE_free(a->ctlog_store);
3336 #endif
3337 sk_SSL_CIPHER_free(a->cipher_list);
3338 sk_SSL_CIPHER_free(a->cipher_list_by_id);
3339 sk_SSL_CIPHER_free(a->tls13_ciphersuites);
3340 ssl_cert_free(a->cert);
3341 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free);
3342 sk_X509_NAME_pop_free(a->client_ca_names, X509_NAME_free);
3343 sk_X509_pop_free(a->extra_certs, X509_free);
3344 a->comp_methods = NULL;
3345 #ifndef OPENSSL_NO_SRTP
3346 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
3347 #endif
3348 #ifndef OPENSSL_NO_SRP
3349 SSL_CTX_SRP_CTX_free(a);
3350 #endif
3351 #ifndef OPENSSL_NO_ENGINE
3352 ENGINE_finish(a->client_cert_engine);
3353 #endif
3354
3355 #ifndef OPENSSL_NO_EC
3356 OPENSSL_free(a->ext.ecpointformats);
3357 #endif
3358 OPENSSL_free(a->ext.supportedgroups);
3359 OPENSSL_free(a->ext.alpn);
3360 OPENSSL_secure_free(a->ext.secure);
3361
3362 CRYPTO_THREAD_lock_free(a->lock);
3363
3364 OPENSSL_free(a->propq);
3365
3366 OPENSSL_free(a);
3367 }
3368
3369 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
3370 {
3371 ctx->default_passwd_callback = cb;
3372 }
3373
3374 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
3375 {
3376 ctx->default_passwd_callback_userdata = u;
3377 }
3378
3379 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx)
3380 {
3381 return ctx->default_passwd_callback;
3382 }
3383
3384 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx)
3385 {
3386 return ctx->default_passwd_callback_userdata;
3387 }
3388
3389 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
3390 {
3391 s->default_passwd_callback = cb;
3392 }
3393
3394 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
3395 {
3396 s->default_passwd_callback_userdata = u;
3397 }
3398
3399 pem_password_cb *SSL_get_default_passwd_cb(SSL *s)
3400 {
3401 return s->default_passwd_callback;
3402 }
3403
3404 void *SSL_get_default_passwd_cb_userdata(SSL *s)
3405 {
3406 return s->default_passwd_callback_userdata;
3407 }
3408
3409 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
3410 int (*cb) (X509_STORE_CTX *, void *),
3411 void *arg)
3412 {
3413 ctx->app_verify_callback = cb;
3414 ctx->app_verify_arg = arg;
3415 }
3416
3417 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
3418 int (*cb) (int, X509_STORE_CTX *))
3419 {
3420 ctx->verify_mode = mode;
3421 ctx->default_verify_callback = cb;
3422 }
3423
3424 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
3425 {
3426 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
3427 }
3428
3429 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg)
3430 {
3431 ssl_cert_set_cert_cb(c->cert, cb, arg);
3432 }
3433
3434 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
3435 {
3436 ssl_cert_set_cert_cb(s->cert, cb, arg);
3437 }
3438
3439 void ssl_set_masks(SSL *s)
3440 {
3441 CERT *c = s->cert;
3442 uint32_t *pvalid = s->s3.tmp.valid_flags;
3443 int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
3444 unsigned long mask_k, mask_a;
3445 #ifndef OPENSSL_NO_EC
3446 int have_ecc_cert, ecdsa_ok;
3447 #endif
3448 if (c == NULL)
3449 return;
3450
3451 #ifndef OPENSSL_NO_DH
3452 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto);
3453 #else
3454 dh_tmp = 0;
3455 #endif
3456
3457 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3458 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3459 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID;
3460 #ifndef OPENSSL_NO_EC
3461 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
3462 #endif
3463 mask_k = 0;
3464 mask_a = 0;
3465
3466 OSSL_TRACE4(TLS_CIPHER, "dh_tmp=%d rsa_enc=%d rsa_sign=%d dsa_sign=%d\n",
3467 dh_tmp, rsa_enc, rsa_sign, dsa_sign);
3468
3469 #ifndef OPENSSL_NO_GOST
3470 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) {
3471 mask_k |= SSL_kGOST;
3472 mask_a |= SSL_aGOST12;
3473 }
3474 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) {
3475 mask_k |= SSL_kGOST;
3476 mask_a |= SSL_aGOST12;
3477 }
3478 if (ssl_has_cert(s, SSL_PKEY_GOST01)) {
3479 mask_k |= SSL_kGOST;
3480 mask_a |= SSL_aGOST01;
3481 }
3482 #endif
3483
3484 if (rsa_enc)
3485 mask_k |= SSL_kRSA;
3486
3487 if (dh_tmp)
3488 mask_k |= SSL_kDHE;
3489
3490 /*
3491 * If we only have an RSA-PSS certificate allow RSA authentication
3492 * if TLS 1.2 and peer supports it.
3493 */
3494
3495 if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN)
3496 && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN
3497 && TLS1_get_version(s) == TLS1_2_VERSION))
3498 mask_a |= SSL_aRSA;
3499
3500 if (dsa_sign) {
3501 mask_a |= SSL_aDSS;
3502 }
3503
3504 mask_a |= SSL_aNULL;
3505
3506 /*
3507 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
3508 * depending on the key usage extension.
3509 */
3510 #ifndef OPENSSL_NO_EC
3511 if (have_ecc_cert) {
3512 uint32_t ex_kusage;
3513 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509);
3514 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
3515 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
3516 ecdsa_ok = 0;
3517 if (ecdsa_ok)
3518 mask_a |= SSL_aECDSA;
3519 }
3520 /* Allow Ed25519 for TLS 1.2 if peer supports it */
3521 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519)
3522 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN
3523 && TLS1_get_version(s) == TLS1_2_VERSION)
3524 mask_a |= SSL_aECDSA;
3525
3526 /* Allow Ed448 for TLS 1.2 if peer supports it */
3527 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED448)
3528 && pvalid[SSL_PKEY_ED448] & CERT_PKEY_EXPLICIT_SIGN
3529 && TLS1_get_version(s) == TLS1_2_VERSION)
3530 mask_a |= SSL_aECDSA;
3531 #endif
3532
3533 #ifndef OPENSSL_NO_EC
3534 mask_k |= SSL_kECDHE;
3535 #endif
3536
3537 #ifndef OPENSSL_NO_PSK
3538 mask_k |= SSL_kPSK;
3539 mask_a |= SSL_aPSK;
3540 if (mask_k & SSL_kRSA)
3541 mask_k |= SSL_kRSAPSK;
3542 if (mask_k & SSL_kDHE)
3543 mask_k |= SSL_kDHEPSK;
3544 if (mask_k & SSL_kECDHE)
3545 mask_k |= SSL_kECDHEPSK;
3546 #endif
3547
3548 s->s3.tmp.mask_k = mask_k;
3549 s->s3.tmp.mask_a = mask_a;
3550 }
3551
3552 #ifndef OPENSSL_NO_EC
3553
3554 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
3555 {
3556 if (s->s3.tmp.new_cipher->algorithm_auth & SSL_aECDSA) {
3557 /* key usage, if present, must allow signing */
3558 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) {
3559 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
3560 SSL_R_ECC_CERT_NOT_FOR_SIGNING);
3561 return 0;
3562 }
3563 }
3564 return 1; /* all checks are ok */
3565 }
3566
3567 #endif
3568
3569 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
3570 size_t *serverinfo_length)
3571 {
3572 CERT_PKEY *cpk = s->s3.tmp.cert;
3573 *serverinfo_length = 0;
3574
3575 if (cpk == NULL || cpk->serverinfo == NULL)
3576 return 0;
3577
3578 *serverinfo = cpk->serverinfo;
3579 *serverinfo_length = cpk->serverinfo_length;
3580 return 1;
3581 }
3582
3583 void ssl_update_cache(SSL *s, int mode)
3584 {
3585 int i;
3586
3587 /*
3588 * If the session_id_length is 0, we are not supposed to cache it, and it
3589 * would be rather hard to do anyway :-)
3590 */
3591 if (s->session->session_id_length == 0)
3592 return;
3593
3594 /*
3595 * If sid_ctx_length is 0 there is no specific application context
3596 * associated with this session, so when we try to resume it and
3597 * SSL_VERIFY_PEER is requested to verify the client identity, we have no
3598 * indication that this is actually a session for the proper application
3599 * context, and the *handshake* will fail, not just the resumption attempt.
3600 * Do not cache (on the server) these sessions that are not resumable
3601 * (clients can set SSL_VERIFY_PEER without needing a sid_ctx set).
3602 */
3603 if (s->server && s->session->sid_ctx_length == 0
3604 && (s->verify_mode & SSL_VERIFY_PEER) != 0)
3605 return;
3606
3607 i = s->session_ctx->session_cache_mode;
3608 if ((i & mode) != 0
3609 && (!s->hit || SSL_IS_TLS13(s))) {
3610 /*
3611 * Add the session to the internal cache. In server side TLSv1.3 we
3612 * normally don't do this because by default it's a full stateless ticket
3613 * with only a dummy session id so there is no reason to cache it,
3614 * unless:
3615 * - we are doing early_data, in which case we cache so that we can
3616 * detect replays
3617 * - the application has set a remove_session_cb so needs to know about
3618 * session timeout events
3619 * - SSL_OP_NO_TICKET is set in which case it is a stateful ticket
3620 */
3621 if ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) == 0
3622 && (!SSL_IS_TLS13(s)
3623 || !s->server
3624 || (s->max_early_data > 0
3625 && (s->options & SSL_OP_NO_ANTI_REPLAY) == 0)
3626 || s->session_ctx->remove_session_cb != NULL
3627 || (s->options & SSL_OP_NO_TICKET) != 0))
3628 SSL_CTX_add_session(s->session_ctx, s->session);
3629
3630 /*
3631 * Add the session to the external cache. We do this even in server side
3632 * TLSv1.3 without early data because some applications just want to
3633 * know about the creation of a session and aren't doing a full cache.
3634 */
3635 if (s->session_ctx->new_session_cb != NULL) {
3636 SSL_SESSION_up_ref(s->session);
3637 if (!s->session_ctx->new_session_cb(s, s->session))
3638 SSL_SESSION_free(s->session);
3639 }
3640 }
3641
3642 /* auto flush every 255 connections */
3643 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
3644 TSAN_QUALIFIER int *stat;
3645 if (mode & SSL_SESS_CACHE_CLIENT)
3646 stat = &s->session_ctx->stats.sess_connect_good;
3647 else
3648 stat = &s->session_ctx->stats.sess_accept_good;
3649 if ((tsan_load(stat) & 0xff) == 0xff)
3650 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
3651 }
3652 }
3653
3654 const SSL_METHOD *SSL_CTX_get_ssl_method(const SSL_CTX *ctx)
3655 {
3656 return ctx->method;
3657 }
3658
3659 const SSL_METHOD *SSL_get_ssl_method(const SSL *s)
3660 {
3661 return s->method;
3662 }
3663
3664 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
3665 {
3666 int ret = 1;
3667
3668 if (s->method != meth) {
3669 const SSL_METHOD *sm = s->method;
3670 int (*hf) (SSL *) = s->handshake_func;
3671
3672 if (sm->version == meth->version)
3673 s->method = meth;
3674 else {
3675 sm->ssl_free(s);
3676 s->method = meth;
3677 ret = s->method->ssl_new(s);
3678 }
3679
3680 if (hf == sm->ssl_connect)
3681 s->handshake_func = meth->ssl_connect;
3682 else if (hf == sm->ssl_accept)
3683 s->handshake_func = meth->ssl_accept;
3684 }
3685 return ret;
3686 }
3687
3688 int SSL_get_error(const SSL *s, int i)
3689 {
3690 int reason;
3691 unsigned long l;
3692 BIO *bio;
3693
3694 if (i > 0)
3695 return SSL_ERROR_NONE;
3696
3697 /*
3698 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
3699 * where we do encode the error
3700 */
3701 if ((l = ERR_peek_error()) != 0) {
3702 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
3703 return SSL_ERROR_SYSCALL;
3704 else
3705 return SSL_ERROR_SSL;
3706 }
3707
3708 if (SSL_want_read(s)) {
3709 bio = SSL_get_rbio(s);
3710 if (BIO_should_read(bio))
3711 return SSL_ERROR_WANT_READ;
3712 else if (BIO_should_write(bio))
3713 /*
3714 * This one doesn't make too much sense ... We never try to write
3715 * to the rbio, and an application program where rbio and wbio
3716 * are separate couldn't even know what it should wait for.
3717 * However if we ever set s->rwstate incorrectly (so that we have
3718 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
3719 * wbio *are* the same, this test works around that bug; so it
3720 * might be safer to keep it.
3721 */
3722 return SSL_ERROR_WANT_WRITE;
3723 else if (BIO_should_io_special(bio)) {
3724 reason = BIO_get_retry_reason(bio);
3725 if (reason == BIO_RR_CONNECT)
3726 return SSL_ERROR_WANT_CONNECT;
3727 else if (reason == BIO_RR_ACCEPT)
3728 return SSL_ERROR_WANT_ACCEPT;
3729 else
3730 return SSL_ERROR_SYSCALL; /* unknown */
3731 }
3732 }
3733
3734 if (SSL_want_write(s)) {
3735 /* Access wbio directly - in order to use the buffered bio if present */
3736 bio = s->wbio;
3737 if (BIO_should_write(bio))
3738 return SSL_ERROR_WANT_WRITE;
3739 else if (BIO_should_read(bio))
3740 /*
3741 * See above (SSL_want_read(s) with BIO_should_write(bio))
3742 */
3743 return SSL_ERROR_WANT_READ;
3744 else if (BIO_should_io_special(bio)) {
3745 reason = BIO_get_retry_reason(bio);
3746 if (reason == BIO_RR_CONNECT)
3747 return SSL_ERROR_WANT_CONNECT;
3748 else if (reason == BIO_RR_ACCEPT)
3749 return SSL_ERROR_WANT_ACCEPT;
3750 else
3751 return SSL_ERROR_SYSCALL;
3752 }
3753 }
3754 if (SSL_want_x509_lookup(s))
3755 return SSL_ERROR_WANT_X509_LOOKUP;
3756 if (SSL_want_async(s))
3757 return SSL_ERROR_WANT_ASYNC;
3758 if (SSL_want_async_job(s))
3759 return SSL_ERROR_WANT_ASYNC_JOB;
3760 if (SSL_want_client_hello_cb(s))
3761 return SSL_ERROR_WANT_CLIENT_HELLO_CB;
3762
3763 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
3764 (s->s3.warn_alert == SSL_AD_CLOSE_NOTIFY))
3765 return SSL_ERROR_ZERO_RETURN;
3766
3767 return SSL_ERROR_SYSCALL;
3768 }
3769
3770 static int ssl_do_handshake_intern(void *vargs)
3771 {
3772 struct ssl_async_args *args;
3773 SSL *s;
3774
3775 args = (struct ssl_async_args *)vargs;
3776 s = args->s;
3777
3778 return s->handshake_func(s);
3779 }
3780
3781 int SSL_do_handshake(SSL *s)
3782 {
3783 int ret = 1;
3784
3785 if (s->handshake_func == NULL) {
3786 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET);
3787 return -1;
3788 }
3789
3790 ossl_statem_check_finish_init(s, -1);
3791
3792 s->method->ssl_renegotiate_check(s, 0);
3793
3794 if (SSL_in_init(s) || SSL_in_before(s)) {
3795 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
3796 struct ssl_async_args args;
3797
3798 args.s = s;
3799
3800 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
3801 } else {
3802 ret = s->handshake_func(s);
3803 }
3804 }
3805 return ret;
3806 }
3807
3808 void SSL_set_accept_state(SSL *s)
3809 {
3810 s->server = 1;
3811 s->shutdown = 0;
3812 ossl_statem_clear(s);
3813 s->handshake_func = s->method->ssl_accept;
3814 clear_ciphers(s);
3815 }
3816
3817 void SSL_set_connect_state(SSL *s)
3818 {
3819 s->server = 0;
3820 s->shutdown = 0;
3821 ossl_statem_clear(s);
3822 s->handshake_func = s->method->ssl_connect;
3823 clear_ciphers(s);
3824 }
3825
3826 int ssl_undefined_function(SSL *s)
3827 {
3828 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3829 return 0;
3830 }
3831
3832 int ssl_undefined_void_function(void)
3833 {
3834 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION,
3835 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3836 return 0;
3837 }
3838
3839 int ssl_undefined_const_function(const SSL *s)
3840 {
3841 return 0;
3842 }
3843
3844 const SSL_METHOD *ssl_bad_method(int ver)
3845 {
3846 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3847 return NULL;
3848 }
3849
3850 const char *ssl_protocol_to_string(int version)
3851 {
3852 switch(version)
3853 {
3854 case TLS1_3_VERSION:
3855 return "TLSv1.3";
3856
3857 case TLS1_2_VERSION:
3858 return "TLSv1.2";
3859
3860 case TLS1_1_VERSION:
3861 return "TLSv1.1";
3862
3863 case TLS1_VERSION:
3864 return "TLSv1";
3865
3866 case SSL3_VERSION:
3867 return "SSLv3";
3868
3869 case DTLS1_BAD_VER:
3870 return "DTLSv0.9";
3871
3872 case DTLS1_VERSION:
3873 return "DTLSv1";
3874
3875 case DTLS1_2_VERSION:
3876 return "DTLSv1.2";
3877
3878 default:
3879 return "unknown";
3880 }
3881 }
3882
3883 const char *SSL_get_version(const SSL *s)
3884 {
3885 return ssl_protocol_to_string(s->version);
3886 }
3887
3888 static int dup_ca_names(STACK_OF(X509_NAME) **dst, STACK_OF(X509_NAME) *src)
3889 {
3890 STACK_OF(X509_NAME) *sk;
3891 X509_NAME *xn;
3892 int i;
3893
3894 if (src == NULL) {
3895 *dst = NULL;
3896 return 1;
3897 }
3898
3899 if ((sk = sk_X509_NAME_new_null()) == NULL)
3900 return 0;
3901 for (i = 0; i < sk_X509_NAME_num(src); i++) {
3902 xn = X509_NAME_dup(sk_X509_NAME_value(src, i));
3903 if (xn == NULL) {
3904 sk_X509_NAME_pop_free(sk, X509_NAME_free);
3905 return 0;
3906 }
3907 if (sk_X509_NAME_insert(sk, xn, i) == 0) {
3908 X509_NAME_free(xn);
3909 sk_X509_NAME_pop_free(sk, X509_NAME_free);
3910 return 0;
3911 }
3912 }
3913 *dst = sk;
3914
3915 return 1;
3916 }
3917
3918 SSL *SSL_dup(SSL *s)
3919 {
3920 SSL *ret;
3921 int i;
3922
3923 /* If we're not quiescent, just up_ref! */
3924 if (!SSL_in_init(s) || !SSL_in_before(s)) {
3925 CRYPTO_UP_REF(&s->references, &i, s->lock);
3926 return s;
3927 }
3928
3929 /*
3930 * Otherwise, copy configuration state, and session if set.
3931 */
3932 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
3933 return NULL;
3934
3935 if (s->session != NULL) {
3936 /*
3937 * Arranges to share the same session via up_ref. This "copies"
3938 * session-id, SSL_METHOD, sid_ctx, and 'cert'
3939 */
3940 if (!SSL_copy_session_id(ret, s))
3941 goto err;
3942 } else {
3943 /*
3944 * No session has been established yet, so we have to expect that
3945 * s->cert or ret->cert will be changed later -- they should not both
3946 * point to the same object, and thus we can't use
3947 * SSL_copy_session_id.
3948 */
3949 if (!SSL_set_ssl_method(ret, s->method))
3950 goto err;
3951
3952 if (s->cert != NULL) {
3953 ssl_cert_free(ret->cert);
3954 ret->cert = ssl_cert_dup(s->cert);
3955 if (ret->cert == NULL)
3956 goto err;
3957 }
3958
3959 if (!SSL_set_session_id_context(ret, s->sid_ctx,
3960 (int)s->sid_ctx_length))
3961 goto err;
3962 }
3963
3964 if (!ssl_dane_dup(ret, s))
3965 goto err;
3966 ret->version = s->version;
3967 ret->options = s->options;
3968 ret->mode = s->mode;
3969 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
3970 SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
3971 ret->msg_callback = s->msg_callback;
3972 ret->msg_callback_arg = s->msg_callback_arg;
3973 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
3974 SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
3975 ret->generate_session_id = s->generate_session_id;
3976
3977 SSL_set_info_callback(ret, SSL_get_info_callback(s));
3978
3979 /* copy app data, a little dangerous perhaps */
3980 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
3981 goto err;
3982
3983 /* setup rbio, and wbio */
3984 if (s->rbio != NULL) {
3985 if (!BIO_dup_state(s->rbio, (char *)&ret->rbio))
3986 goto err;
3987 }
3988 if (s->wbio != NULL) {
3989 if (s->wbio != s->rbio) {
3990 if (!BIO_dup_state(s->wbio, (char *)&ret->wbio))
3991 goto err;
3992 } else {
3993 BIO_up_ref(ret->rbio);
3994 ret->wbio = ret->rbio;
3995 }
3996 }
3997
3998 ret->server = s->server;
3999 if (s->handshake_func) {
4000 if (s->server)
4001 SSL_set_accept_state(ret);
4002 else
4003 SSL_set_connect_state(ret);
4004 }
4005 ret->shutdown = s->shutdown;
4006 ret->hit = s->hit;
4007
4008 ret->default_passwd_callback = s->default_passwd_callback;
4009 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
4010
4011 X509_VERIFY_PARAM_inherit(ret->param, s->param);
4012
4013 /* dup the cipher_list and cipher_list_by_id stacks */
4014 if (s->cipher_list != NULL) {
4015 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
4016 goto err;
4017 }
4018 if (s->cipher_list_by_id != NULL)
4019 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
4020 == NULL)
4021 goto err;
4022
4023 /* Dup the client_CA list */
4024 if (!dup_ca_names(&ret->ca_names, s->ca_names)
4025 || !dup_ca_names(&ret->client_ca_names, s->client_ca_names))
4026 goto err;
4027
4028 return ret;
4029
4030 err:
4031 SSL_free(ret);
4032 return NULL;
4033 }
4034
4035 void ssl_clear_cipher_ctx(SSL *s)
4036 {
4037 if (s->enc_read_ctx != NULL) {
4038 EVP_CIPHER_CTX_free(s->enc_read_ctx);
4039 s->enc_read_ctx = NULL;
4040 }
4041 if (s->enc_write_ctx != NULL) {
4042 EVP_CIPHER_CTX_free(s->enc_write_ctx);
4043 s->enc_write_ctx = NULL;
4044 }
4045 #ifndef OPENSSL_NO_COMP
4046 COMP_CTX_free(s->expand);
4047 s->expand = NULL;
4048 COMP_CTX_free(s->compress);
4049 s->compress = NULL;
4050 #endif
4051 }
4052
4053 X509 *SSL_get_certificate(const SSL *s)
4054 {
4055 if (s->cert != NULL)
4056 return s->cert->key->x509;
4057 else
4058 return NULL;
4059 }
4060
4061 EVP_PKEY *SSL_get_privatekey(const SSL *s)
4062 {
4063 if (s->cert != NULL)
4064 return s->cert->key->privatekey;
4065 else
4066 return NULL;
4067 }
4068
4069 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
4070 {
4071 if (ctx->cert != NULL)
4072 return ctx->cert->key->x509;
4073 else
4074 return NULL;
4075 }
4076
4077 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
4078 {
4079 if (ctx->cert != NULL)
4080 return ctx->cert->key->privatekey;
4081 else
4082 return NULL;
4083 }
4084
4085 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
4086 {
4087 if ((s->session != NULL) && (s->session->cipher != NULL))
4088 return s->session->cipher;
4089 return NULL;
4090 }
4091
4092 const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s)
4093 {
4094 return s->s3.tmp.new_cipher;
4095 }
4096
4097 const COMP_METHOD *SSL_get_current_compression(const SSL *s)
4098 {
4099 #ifndef OPENSSL_NO_COMP
4100 return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
4101 #else
4102 return NULL;
4103 #endif
4104 }
4105
4106 const COMP_METHOD *SSL_get_current_expansion(const SSL *s)
4107 {
4108 #ifndef OPENSSL_NO_COMP
4109 return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
4110 #else
4111 return NULL;
4112 #endif
4113 }
4114
4115 int ssl_init_wbio_buffer(SSL *s)
4116 {
4117 BIO *bbio;
4118
4119 if (s->bbio != NULL) {
4120 /* Already buffered. */
4121 return 1;
4122 }
4123
4124 bbio = BIO_new(BIO_f_buffer());
4125 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) {
4126 BIO_free(bbio);
4127 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB);
4128 return 0;
4129 }
4130 s->bbio = bbio;
4131 s->wbio = BIO_push(bbio, s->wbio);
4132
4133 return 1;
4134 }
4135
4136 int ssl_free_wbio_buffer(SSL *s)
4137 {
4138 /* callers ensure s is never null */
4139 if (s->bbio == NULL)
4140 return 1;
4141
4142 s->wbio = BIO_pop(s->wbio);
4143 BIO_free(s->bbio);
4144 s->bbio = NULL;
4145
4146 return 1;
4147 }
4148
4149 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
4150 {
4151 ctx->quiet_shutdown = mode;
4152 }
4153
4154 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
4155 {
4156 return ctx->quiet_shutdown;
4157 }
4158
4159 void SSL_set_quiet_shutdown(SSL *s, int mode)
4160 {
4161 s->quiet_shutdown = mode;
4162 }
4163
4164 int SSL_get_quiet_shutdown(const SSL *s)
4165 {
4166 return s->quiet_shutdown;
4167 }
4168
4169 void SSL_set_shutdown(SSL *s, int mode)
4170 {
4171 s->shutdown = mode;
4172 }
4173
4174 int SSL_get_shutdown(const SSL *s)
4175 {
4176 return s->shutdown;
4177 }
4178
4179 int SSL_version(const SSL *s)
4180 {
4181 return s->version;
4182 }
4183
4184 int SSL_client_version(const SSL *s)
4185 {
4186 return s->client_version;
4187 }
4188
4189 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
4190 {
4191 return ssl->ctx;
4192 }
4193
4194 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
4195 {
4196 CERT *new_cert;
4197 if (ssl->ctx == ctx)
4198 return ssl->ctx;
4199 if (ctx == NULL)
4200 ctx = ssl->session_ctx;
4201 new_cert = ssl_cert_dup(ctx->cert);
4202 if (new_cert == NULL) {
4203 return NULL;
4204 }
4205
4206 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) {
4207 ssl_cert_free(new_cert);
4208 return NULL;
4209 }
4210
4211 ssl_cert_free(ssl->cert);
4212 ssl->cert = new_cert;
4213
4214 /*
4215 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
4216 * so setter APIs must prevent invalid lengths from entering the system.
4217 */
4218 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx)))
4219 return NULL;
4220
4221 /*
4222 * If the session ID context matches that of the parent SSL_CTX,
4223 * inherit it from the new SSL_CTX as well. If however the context does
4224 * not match (i.e., it was set per-ssl with SSL_set_session_id_context),
4225 * leave it unchanged.
4226 */
4227 if ((ssl->ctx != NULL) &&
4228 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
4229 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
4230 ssl->sid_ctx_length = ctx->sid_ctx_length;
4231 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
4232 }
4233
4234 SSL_CTX_up_ref(ctx);
4235 SSL_CTX_free(ssl->ctx); /* decrement reference count */
4236 ssl->ctx = ctx;
4237
4238 return ssl->ctx;
4239 }
4240
4241 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
4242 {
4243 return X509_STORE_set_default_paths(ctx->cert_store);
4244 }
4245
4246 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
4247 {
4248 X509_LOOKUP *lookup;
4249
4250 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
4251 if (lookup == NULL)
4252 return 0;
4253
4254 /* We ignore errors, in case the directory doesn't exist */
4255 ERR_set_mark();
4256
4257 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
4258
4259 ERR_pop_to_mark();
4260
4261 return 1;
4262 }
4263
4264 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
4265 {
4266 X509_LOOKUP *lookup;
4267
4268 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
4269 if (lookup == NULL)
4270 return 0;
4271
4272 /* We ignore errors, in case the directory doesn't exist */
4273 ERR_set_mark();
4274
4275 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT);
4276
4277 ERR_pop_to_mark();
4278
4279 return 1;
4280 }
4281
4282 int SSL_CTX_set_default_verify_store(SSL_CTX *ctx)
4283 {
4284 X509_LOOKUP *lookup;
4285
4286 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_store());
4287 if (lookup == NULL)
4288 return 0;
4289
4290 /* We ignore errors, in case the directory doesn't exist */
4291 ERR_set_mark();
4292
4293 X509_LOOKUP_add_store(lookup, NULL);
4294
4295 ERR_pop_to_mark();
4296
4297 return 1;
4298 }
4299
4300 int SSL_CTX_load_verify_file(SSL_CTX *ctx, const char *CAfile)
4301 {
4302 return X509_STORE_load_file(ctx->cert_store, CAfile);
4303 }
4304
4305 int SSL_CTX_load_verify_dir(SSL_CTX *ctx, const char *CApath)
4306 {
4307 return X509_STORE_load_path(ctx->cert_store, CApath);
4308 }
4309
4310 int SSL_CTX_load_verify_store(SSL_CTX *ctx, const char *CAstore)
4311 {
4312 return X509_STORE_load_store(ctx->cert_store, CAstore);
4313 }
4314
4315 #ifndef OPENSSL_NO_DEPRECATED_3_0
4316 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
4317 const char *CApath)
4318 {
4319 if (CAfile == NULL && CApath == NULL)
4320 return 0;
4321 if (CAfile != NULL && !SSL_CTX_load_verify_file(ctx, CAfile))
4322 return 0;
4323 if (CApath != NULL && !SSL_CTX_load_verify_dir(ctx, CApath))
4324 return 0;
4325 return 1;
4326 }
4327 #endif
4328
4329 void SSL_set_info_callback(SSL *ssl,
4330 void (*cb) (const SSL *ssl, int type, int val))
4331 {
4332 ssl->info_callback = cb;
4333 }
4334
4335 /*
4336 * One compiler (Diab DCC) doesn't like argument names in returned function
4337 * pointer.
4338 */
4339 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
4340 int /* type */ ,
4341 int /* val */ ) {
4342 return ssl->info_callback;
4343 }
4344
4345 void SSL_set_verify_result(SSL *ssl, long arg)
4346 {
4347 ssl->verify_result = arg;
4348 }
4349
4350 long SSL_get_verify_result(const SSL *ssl)
4351 {
4352 return ssl->verify_result;
4353 }
4354
4355 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
4356 {
4357 if (outlen == 0)
4358 return sizeof(ssl->s3.client_random);
4359 if (outlen > sizeof(ssl->s3.client_random))
4360 outlen = sizeof(ssl->s3.client_random);
4361 memcpy(out, ssl->s3.client_random, outlen);
4362 return outlen;
4363 }
4364
4365 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
4366 {
4367 if (outlen == 0)
4368 return sizeof(ssl->s3.server_random);
4369 if (outlen > sizeof(ssl->s3.server_random))
4370 outlen = sizeof(ssl->s3.server_random);
4371 memcpy(out, ssl->s3.server_random, outlen);
4372 return outlen;
4373 }
4374
4375 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
4376 unsigned char *out, size_t outlen)
4377 {
4378 if (outlen == 0)
4379 return session->master_key_length;
4380 if (outlen > session->master_key_length)
4381 outlen = session->master_key_length;
4382 memcpy(out, session->master_key, outlen);
4383 return outlen;
4384 }
4385
4386 int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in,
4387 size_t len)
4388 {
4389 if (len > sizeof(sess->master_key))
4390 return 0;
4391
4392 memcpy(sess->master_key, in, len);
4393 sess->master_key_length = len;
4394 return 1;
4395 }
4396
4397
4398 int SSL_set_ex_data(SSL *s, int idx, void *arg)
4399 {
4400 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
4401 }
4402
4403 void *SSL_get_ex_data(const SSL *s, int idx)
4404 {
4405 return CRYPTO_get_ex_data(&s->ex_data, idx);
4406 }
4407
4408 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
4409 {
4410 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
4411 }
4412
4413 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
4414 {
4415 return CRYPTO_get_ex_data(&s->ex_data, idx);
4416 }
4417
4418 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
4419 {
4420 return ctx->cert_store;
4421 }
4422
4423 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
4424 {
4425 X509_STORE_free(ctx->cert_store);
4426 ctx->cert_store = store;
4427 }
4428
4429 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store)
4430 {
4431 if (store != NULL)
4432 X509_STORE_up_ref(store);
4433 SSL_CTX_set_cert_store(ctx, store);
4434 }
4435
4436 int SSL_want(const SSL *s)
4437 {
4438 return s->rwstate;
4439 }
4440
4441 /**
4442 * \brief Set the callback for generating temporary DH keys.
4443 * \param ctx the SSL context.
4444 * \param dh the callback
4445 */
4446
4447 #ifndef OPENSSL_NO_DH
4448 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
4449 DH *(*dh) (SSL *ssl, int is_export,
4450 int keylength))
4451 {
4452 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
4453 }
4454
4455 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export,
4456 int keylength))
4457 {
4458 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
4459 }
4460 #endif
4461
4462 #ifndef OPENSSL_NO_PSK
4463 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
4464 {
4465 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
4466 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
4467 return 0;
4468 }
4469 OPENSSL_free(ctx->cert->psk_identity_hint);
4470 if (identity_hint != NULL) {
4471 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
4472 if (ctx->cert->psk_identity_hint == NULL)
4473 return 0;
4474 } else
4475 ctx->cert->psk_identity_hint = NULL;
4476 return 1;
4477 }
4478
4479 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
4480 {
4481 if (s == NULL)
4482 return 0;
4483
4484 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
4485 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
4486 return 0;
4487 }
4488 OPENSSL_free(s->cert->psk_identity_hint);
4489 if (identity_hint != NULL) {
4490 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
4491 if (s->cert->psk_identity_hint == NULL)
4492 return 0;
4493 } else
4494 s->cert->psk_identity_hint = NULL;
4495 return 1;
4496 }
4497
4498 const char *SSL_get_psk_identity_hint(const SSL *s)
4499 {
4500 if (s == NULL || s->session == NULL)
4501 return NULL;
4502 return s->session->psk_identity_hint;
4503 }
4504
4505 const char *SSL_get_psk_identity(const SSL *s)
4506 {
4507 if (s == NULL || s->session == NULL)
4508 return NULL;
4509 return s->session->psk_identity;
4510 }
4511
4512 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb)
4513 {
4514 s->psk_client_callback = cb;
4515 }
4516
4517 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb)
4518 {
4519 ctx->psk_client_callback = cb;
4520 }
4521
4522 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb)
4523 {
4524 s->psk_server_callback = cb;
4525 }
4526
4527 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb)
4528 {
4529 ctx->psk_server_callback = cb;
4530 }
4531 #endif
4532
4533 void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb)
4534 {
4535 s->psk_find_session_cb = cb;
4536 }
4537
4538 void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx,
4539 SSL_psk_find_session_cb_func cb)
4540 {
4541 ctx->psk_find_session_cb = cb;
4542 }
4543
4544 void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb)
4545 {
4546 s->psk_use_session_cb = cb;
4547 }
4548
4549 void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx,
4550 SSL_psk_use_session_cb_func cb)
4551 {
4552 ctx->psk_use_session_cb = cb;
4553 }
4554
4555 void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
4556 void (*cb) (int write_p, int version,
4557 int content_type, const void *buf,
4558 size_t len, SSL *ssl, void *arg))
4559 {
4560 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4561 }
4562
4563 void SSL_set_msg_callback(SSL *ssl,
4564 void (*cb) (int write_p, int version,
4565 int content_type, const void *buf,
4566 size_t len, SSL *ssl, void *arg))
4567 {
4568 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4569 }
4570
4571 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
4572 int (*cb) (SSL *ssl,
4573 int
4574 is_forward_secure))
4575 {
4576 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4577 (void (*)(void))cb);
4578 }
4579
4580 void SSL_set_not_resumable_session_callback(SSL *ssl,
4581 int (*cb) (SSL *ssl,
4582 int is_forward_secure))
4583 {
4584 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4585 (void (*)(void))cb);
4586 }
4587
4588 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx,
4589 size_t (*cb) (SSL *ssl, int type,
4590 size_t len, void *arg))
4591 {
4592 ctx->record_padding_cb = cb;
4593 }
4594
4595 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg)
4596 {
4597 ctx->record_padding_arg = arg;
4598 }
4599
4600 void *SSL_CTX_get_record_padding_callback_arg(const SSL_CTX *ctx)
4601 {
4602 return ctx->record_padding_arg;
4603 }
4604
4605 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size)
4606 {
4607 /* block size of 0 or 1 is basically no padding */
4608 if (block_size == 1)
4609 ctx->block_padding = 0;
4610 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4611 ctx->block_padding = block_size;
4612 else
4613 return 0;
4614 return 1;
4615 }
4616
4617 void SSL_set_record_padding_callback(SSL *ssl,
4618 size_t (*cb) (SSL *ssl, int type,
4619 size_t len, void *arg))
4620 {
4621 ssl->record_padding_cb = cb;
4622 }
4623
4624 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg)
4625 {
4626 ssl->record_padding_arg = arg;
4627 }
4628
4629 void *SSL_get_record_padding_callback_arg(const SSL *ssl)
4630 {
4631 return ssl->record_padding_arg;
4632 }
4633
4634 int SSL_set_block_padding(SSL *ssl, size_t block_size)
4635 {
4636 /* block size of 0 or 1 is basically no padding */
4637 if (block_size == 1)
4638 ssl->block_padding = 0;
4639 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4640 ssl->block_padding = block_size;
4641 else
4642 return 0;
4643 return 1;
4644 }
4645
4646 int SSL_set_num_tickets(SSL *s, size_t num_tickets)
4647 {
4648 s->num_tickets = num_tickets;
4649
4650 return 1;
4651 }
4652
4653 size_t SSL_get_num_tickets(const SSL *s)
4654 {
4655 return s->num_tickets;
4656 }
4657
4658 int SSL_CTX_set_num_tickets(SSL_CTX *ctx, size_t num_tickets)
4659 {
4660 ctx->num_tickets = num_tickets;
4661
4662 return 1;
4663 }
4664
4665 size_t SSL_CTX_get_num_tickets(const SSL_CTX *ctx)
4666 {
4667 return ctx->num_tickets;
4668 }
4669
4670 /*
4671 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer
4672 * variable, freeing EVP_MD_CTX previously stored in that variable, if any.
4673 * If EVP_MD pointer is passed, initializes ctx with this |md|.
4674 * Returns the newly allocated ctx;
4675 */
4676
4677 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
4678 {
4679 ssl_clear_hash_ctx(hash);
4680 *hash = EVP_MD_CTX_new();
4681 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
4682 EVP_MD_CTX_free(*hash);
4683 *hash = NULL;
4684 return NULL;
4685 }
4686 return *hash;
4687 }
4688
4689 void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
4690 {
4691
4692 EVP_MD_CTX_free(*hash);
4693 *hash = NULL;
4694 }
4695
4696 /* Retrieve handshake hashes */
4697 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen,
4698 size_t *hashlen)
4699 {
4700 EVP_MD_CTX *ctx = NULL;
4701 EVP_MD_CTX *hdgst = s->s3.handshake_dgst;
4702 int hashleni = EVP_MD_CTX_size(hdgst);
4703 int ret = 0;
4704
4705 if (hashleni < 0 || (size_t)hashleni > outlen) {
4706 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH,
4707 ERR_R_INTERNAL_ERROR);
4708 goto err;
4709 }
4710
4711 ctx = EVP_MD_CTX_new();
4712 if (ctx == NULL)
4713 goto err;
4714
4715 if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
4716 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0) {
4717 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH,
4718 ERR_R_INTERNAL_ERROR);
4719 goto err;
4720 }
4721
4722 *hashlen = hashleni;
4723
4724 ret = 1;
4725 err:
4726 EVP_MD_CTX_free(ctx);
4727 return ret;
4728 }
4729
4730 int SSL_session_reused(const SSL *s)
4731 {
4732 return s->hit;
4733 }
4734
4735 int SSL_is_server(const SSL *s)
4736 {
4737 return s->server;
4738 }
4739
4740 #ifndef OPENSSL_NO_DEPRECATED_1_1_0
4741 void SSL_set_debug(SSL *s, int debug)
4742 {
4743 /* Old function was do-nothing anyway... */
4744 (void)s;
4745 (void)debug;
4746 }
4747 #endif
4748
4749 void SSL_set_security_level(SSL *s, int level)
4750 {
4751 s->cert->sec_level = level;
4752 }
4753
4754 int SSL_get_security_level(const SSL *s)
4755 {
4756 return s->cert->sec_level;
4757 }
4758
4759 void SSL_set_security_callback(SSL *s,
4760 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4761 int op, int bits, int nid,
4762 void *other, void *ex))
4763 {
4764 s->cert->sec_cb = cb;
4765 }
4766
4767 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s,
4768 const SSL_CTX *ctx, int op,
4769 int bits, int nid, void *other,
4770 void *ex) {
4771 return s->cert->sec_cb;
4772 }
4773
4774 void SSL_set0_security_ex_data(SSL *s, void *ex)
4775 {
4776 s->cert->sec_ex = ex;
4777 }
4778
4779 void *SSL_get0_security_ex_data(const SSL *s)
4780 {
4781 return s->cert->sec_ex;
4782 }
4783
4784 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
4785 {
4786 ctx->cert->sec_level = level;
4787 }
4788
4789 int SSL_CTX_get_security_level(const SSL_CTX *ctx)
4790 {
4791 return ctx->cert->sec_level;
4792 }
4793
4794 void SSL_CTX_set_security_callback(SSL_CTX *ctx,
4795 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4796 int op, int bits, int nid,
4797 void *other, void *ex))
4798 {
4799 ctx->cert->sec_cb = cb;
4800 }
4801
4802 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s,
4803 const SSL_CTX *ctx,
4804 int op, int bits,
4805 int nid,
4806 void *other,
4807 void *ex) {
4808 return ctx->cert->sec_cb;
4809 }
4810
4811 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
4812 {
4813 ctx->cert->sec_ex = ex;
4814 }
4815
4816 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
4817 {
4818 return ctx->cert->sec_ex;
4819 }
4820
4821 /*
4822 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that
4823 * can return unsigned long, instead of the generic long return value from the
4824 * control interface.
4825 */
4826 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx)
4827 {
4828 return ctx->options;
4829 }
4830
4831 unsigned long SSL_get_options(const SSL *s)
4832 {
4833 return s->options;
4834 }
4835
4836 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op)
4837 {
4838 return ctx->options |= op;
4839 }
4840
4841 unsigned long SSL_set_options(SSL *s, unsigned long op)
4842 {
4843 return s->options |= op;
4844 }
4845
4846 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op)
4847 {
4848 return ctx->options &= ~op;
4849 }
4850
4851 unsigned long SSL_clear_options(SSL *s, unsigned long op)
4852 {
4853 return s->options &= ~op;
4854 }
4855
4856 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
4857 {
4858 return s->verified_chain;
4859 }
4860
4861 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);
4862
4863 #ifndef OPENSSL_NO_CT
4864
4865 /*
4866 * Moves SCTs from the |src| stack to the |dst| stack.
4867 * The source of each SCT will be set to |origin|.
4868 * If |dst| points to a NULL pointer, a new stack will be created and owned by
4869 * the caller.
4870 * Returns the number of SCTs moved, or a negative integer if an error occurs.
4871 */
4872 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src,
4873 sct_source_t origin)
4874 {
4875 int scts_moved = 0;
4876 SCT *sct = NULL;
4877
4878 if (*dst == NULL) {
4879 *dst = sk_SCT_new_null();
4880 if (*dst == NULL) {
4881 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE);
4882 goto err;
4883 }
4884 }
4885
4886 while ((sct = sk_SCT_pop(src)) != NULL) {
4887 if (SCT_set_source(sct, origin) != 1)
4888 goto err;
4889
4890 if (sk_SCT_push(*dst, sct) <= 0)
4891 goto err;
4892 scts_moved += 1;
4893 }
4894
4895 return scts_moved;
4896 err:
4897 if (sct != NULL)
4898 sk_SCT_push(src, sct); /* Put the SCT back */
4899 return -1;
4900 }
4901
4902 /*
4903 * Look for data collected during ServerHello and parse if found.
4904 * Returns the number of SCTs extracted.
4905 */
4906 static int ct_extract_tls_extension_scts(SSL *s)
4907 {
4908 int scts_extracted = 0;
4909
4910 if (s->ext.scts != NULL) {
4911 const unsigned char *p = s->ext.scts;
4912 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len);
4913
4914 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION);
4915
4916 SCT_LIST_free(scts);
4917 }
4918
4919 return scts_extracted;
4920 }
4921
4922 /*
4923 * Checks for an OCSP response and then attempts to extract any SCTs found if it
4924 * contains an SCT X509 extension. They will be stored in |s->scts|.
4925 * Returns:
4926 * - The number of SCTs extracted, assuming an OCSP response exists.
4927 * - 0 if no OCSP response exists or it contains no SCTs.
4928 * - A negative integer if an error occurs.
4929 */
4930 static int ct_extract_ocsp_response_scts(SSL *s)
4931 {
4932 # ifndef OPENSSL_NO_OCSP
4933 int scts_extracted = 0;
4934 const unsigned char *p;
4935 OCSP_BASICRESP *br = NULL;
4936 OCSP_RESPONSE *rsp = NULL;
4937 STACK_OF(SCT) *scts = NULL;
4938 int i;
4939
4940 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0)
4941 goto err;
4942
4943 p = s->ext.ocsp.resp;
4944 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len);
4945 if (rsp == NULL)
4946 goto err;
4947
4948 br = OCSP_response_get1_basic(rsp);
4949 if (br == NULL)
4950 goto err;
4951
4952 for (i = 0; i < OCSP_resp_count(br); ++i) {
4953 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i);
4954
4955 if (single == NULL)
4956 continue;
4957
4958 scts =
4959 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL);
4960 scts_extracted =
4961 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE);
4962 if (scts_extracted < 0)
4963 goto err;
4964 }
4965 err:
4966 SCT_LIST_free(scts);
4967 OCSP_BASICRESP_free(br);
4968 OCSP_RESPONSE_free(rsp);
4969 return scts_extracted;
4970 # else
4971 /* Behave as if no OCSP response exists */
4972 return 0;
4973 # endif
4974 }
4975
4976 /*
4977 * Attempts to extract SCTs from the peer certificate.
4978 * Return the number of SCTs extracted, or a negative integer if an error
4979 * occurs.
4980 */
4981 static int ct_extract_x509v3_extension_scts(SSL *s)
4982 {
4983 int scts_extracted = 0;
4984 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4985
4986 if (cert != NULL) {
4987 STACK_OF(SCT) *scts =
4988 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL);
4989
4990 scts_extracted =
4991 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION);
4992
4993 SCT_LIST_free(scts);
4994 }
4995
4996 return scts_extracted;
4997 }
4998
4999 /*
5000 * Attempts to find all received SCTs by checking TLS extensions, the OCSP
5001 * response (if it exists) and X509v3 extensions in the certificate.
5002 * Returns NULL if an error occurs.
5003 */
5004 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s)
5005 {
5006 if (!s->scts_parsed) {
5007 if (ct_extract_tls_extension_scts(s) < 0 ||
5008 ct_extract_ocsp_response_scts(s) < 0 ||
5009 ct_extract_x509v3_extension_scts(s) < 0)
5010 goto err;
5011
5012 s->scts_parsed = 1;
5013 }
5014 return s->scts;
5015 err:
5016 return NULL;
5017 }
5018
5019 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx,
5020 const STACK_OF(SCT) *scts, void *unused_arg)
5021 {
5022 return 1;
5023 }
5024
5025 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx,
5026 const STACK_OF(SCT) *scts, void *unused_arg)
5027 {
5028 int count = scts != NULL ? sk_SCT_num(scts) : 0;
5029 int i;
5030
5031 for (i = 0; i < count; ++i) {
5032 SCT *sct = sk_SCT_value(scts, i);
5033 int status = SCT_get_validation_status(sct);
5034
5035 if (status == SCT_VALIDATION_STATUS_VALID)
5036 return 1;
5037 }
5038 SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS);
5039 return 0;
5040 }
5041
5042 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback,
5043 void *arg)
5044 {
5045 /*
5046 * Since code exists that uses the custom extension handler for CT, look
5047 * for this and throw an error if they have already registered to use CT.
5048 */
5049 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx,
5050 TLSEXT_TYPE_signed_certificate_timestamp))
5051 {
5052 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK,
5053 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
5054 return 0;
5055 }
5056
5057 if (callback != NULL) {
5058 /*
5059 * If we are validating CT, then we MUST accept SCTs served via OCSP
5060 */
5061 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp))
5062 return 0;
5063 }
5064
5065 s->ct_validation_callback = callback;
5066 s->ct_validation_callback_arg = arg;
5067
5068 return 1;
5069 }
5070
5071 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx,
5072 ssl_ct_validation_cb callback, void *arg)
5073 {
5074 /*
5075 * Since code exists that uses the custom extension handler for CT, look for
5076 * this and throw an error if they have already registered to use CT.
5077 */
5078 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx,
5079 TLSEXT_TYPE_signed_certificate_timestamp))
5080 {
5081 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK,
5082 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
5083 return 0;
5084 }
5085
5086 ctx->ct_validation_callback = callback;
5087 ctx->ct_validation_callback_arg = arg;
5088 return 1;
5089 }
5090
5091 int SSL_ct_is_enabled(const SSL *s)
5092 {
5093 return s->ct_validation_callback != NULL;
5094 }
5095
5096 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx)
5097 {
5098 return ctx->ct_validation_callback != NULL;
5099 }
5100
5101 int ssl_validate_ct(SSL *s)
5102 {
5103 int ret = 0;
5104 X509 *cert = s->session != NULL ? s->session->peer : NULL;
5105 X509 *issuer;
5106 SSL_DANE *dane = &s->dane;
5107 CT_POLICY_EVAL_CTX *ctx = NULL;
5108 const STACK_OF(SCT) *scts;
5109
5110 /*
5111 * If no callback is set, the peer is anonymous, or its chain is invalid,
5112 * skip SCT validation - just return success. Applications that continue
5113 * handshakes without certificates, with unverified chains, or pinned leaf
5114 * certificates are outside the scope of the WebPKI and CT.
5115 *
5116 * The above exclusions notwithstanding the vast majority of peers will
5117 * have rather ordinary certificate chains validated by typical
5118 * applications that perform certificate verification and therefore will
5119 * process SCTs when enabled.
5120 */
5121 if (s->ct_validation_callback == NULL || cert == NULL ||
5122 s->verify_result != X509_V_OK ||
5123 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1)
5124 return 1;
5125
5126 /*
5127 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3)
5128 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2
5129 */
5130 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) {
5131 switch (dane->mtlsa->usage) {
5132 case DANETLS_USAGE_DANE_TA:
5133 case DANETLS_USAGE_DANE_EE:
5134 return 1;
5135 }
5136 }
5137
5138 ctx = CT_POLICY_EVAL_CTX_new();
5139 if (ctx == NULL) {
5140 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_VALIDATE_CT,
5141 ERR_R_MALLOC_FAILURE);
5142 goto end;
5143 }
5144
5145 issuer = sk_X509_value(s->verified_chain, 1);
5146 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert);
5147 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer);
5148 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store);
5149 CT_POLICY_EVAL_CTX_set_time(
5150 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000);
5151
5152 scts = SSL_get0_peer_scts(s);
5153
5154 /*
5155 * This function returns success (> 0) only when all the SCTs are valid, 0
5156 * when some are invalid, and < 0 on various internal errors (out of
5157 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient
5158 * reason to abort the handshake, that decision is up to the callback.
5159 * Therefore, we error out only in the unexpected case that the return
5160 * value is negative.
5161 *
5162 * XXX: One might well argue that the return value of this function is an
5163 * unfortunate design choice. Its job is only to determine the validation
5164 * status of each of the provided SCTs. So long as it correctly separates
5165 * the wheat from the chaff it should return success. Failure in this case
5166 * ought to correspond to an inability to carry out its duties.
5167 */
5168 if (SCT_LIST_validate(scts, ctx) < 0) {
5169 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT,
5170 SSL_R_SCT_VERIFICATION_FAILED);
5171 goto end;
5172 }
5173
5174 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg);
5175 if (ret < 0)
5176 ret = 0; /* This function returns 0 on failure */
5177 if (!ret)
5178 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT,
5179 SSL_R_CALLBACK_FAILED);
5180
5181 end:
5182 CT_POLICY_EVAL_CTX_free(ctx);
5183 /*
5184 * With SSL_VERIFY_NONE the session may be cached and re-used despite a
5185 * failure return code here. Also the application may wish the complete
5186 * the handshake, and then disconnect cleanly at a higher layer, after
5187 * checking the verification status of the completed connection.
5188 *
5189 * We therefore force a certificate verification failure which will be
5190 * visible via SSL_get_verify_result() and cached as part of any resumed
5191 * session.
5192 *
5193 * Note: the permissive callback is for information gathering only, always
5194 * returns success, and does not affect verification status. Only the
5195 * strict callback or a custom application-specified callback can trigger
5196 * connection failure or record a verification error.
5197 */
5198 if (ret <= 0)
5199 s->verify_result = X509_V_ERR_NO_VALID_SCTS;
5200 return ret;
5201 }
5202
5203 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode)
5204 {
5205 switch (validation_mode) {
5206 default:
5207 SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
5208 return 0;
5209 case SSL_CT_VALIDATION_PERMISSIVE:
5210 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL);
5211 case SSL_CT_VALIDATION_STRICT:
5212 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL);
5213 }
5214 }
5215
5216 int SSL_enable_ct(SSL *s, int validation_mode)
5217 {
5218 switch (validation_mode) {
5219 default:
5220 SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
5221 return 0;
5222 case SSL_CT_VALIDATION_PERMISSIVE:
5223 return SSL_set_ct_validation_callback(s, ct_permissive, NULL);
5224 case SSL_CT_VALIDATION_STRICT:
5225 return SSL_set_ct_validation_callback(s, ct_strict, NULL);
5226 }
5227 }
5228
5229 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx)
5230 {
5231 return CTLOG_STORE_load_default_file(ctx->ctlog_store);
5232 }
5233
5234 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path)
5235 {
5236 return CTLOG_STORE_load_file(ctx->ctlog_store, path);
5237 }
5238
5239 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs)
5240 {
5241 CTLOG_STORE_free(ctx->ctlog_store);
5242 ctx->ctlog_store = logs;
5243 }
5244
5245 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx)
5246 {
5247 return ctx->ctlog_store;
5248 }
5249
5250 #endif /* OPENSSL_NO_CT */
5251
5252 void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb,
5253 void *arg)
5254 {
5255 c->client_hello_cb = cb;
5256 c->client_hello_cb_arg = arg;
5257 }
5258
5259 int SSL_client_hello_isv2(SSL *s)
5260 {
5261 if (s->clienthello == NULL)
5262 return 0;
5263 return s->clienthello->isv2;
5264 }
5265
5266 unsigned int SSL_client_hello_get0_legacy_version(SSL *s)
5267 {
5268 if (s->clienthello == NULL)
5269 return 0;
5270 return s->clienthello->legacy_version;
5271 }
5272
5273 size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out)
5274 {
5275 if (s->clienthello == NULL)
5276 return 0;
5277 if (out != NULL)
5278 *out = s->clienthello->random;
5279 return SSL3_RANDOM_SIZE;
5280 }
5281
5282 size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out)
5283 {
5284 if (s->clienthello == NULL)
5285 return 0;
5286 if (out != NULL)
5287 *out = s->clienthello->session_id;
5288 return s->clienthello->session_id_len;
5289 }
5290
5291 size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out)
5292 {
5293 if (s->clienthello == NULL)
5294 return 0;
5295 if (out != NULL)
5296 *out = PACKET_data(&s->clienthello->ciphersuites);
5297 return PACKET_remaining(&s->clienthello->ciphersuites);
5298 }
5299
5300 size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out)
5301 {
5302 if (s->clienthello == NULL)
5303 return 0;
5304 if (out != NULL)
5305 *out = s->clienthello->compressions;
5306 return s->clienthello->compressions_len;
5307 }
5308
5309 int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen)
5310 {
5311 RAW_EXTENSION *ext;
5312 int *present;
5313 size_t num = 0, i;
5314
5315 if (s->clienthello == NULL || out == NULL || outlen == NULL)
5316 return 0;
5317 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
5318 ext = s->clienthello->pre_proc_exts + i;
5319 if (ext->present)
5320 num++;
5321 }
5322 if (num == 0) {
5323 *out = NULL;
5324 *outlen = 0;
5325 return 1;
5326 }
5327 if ((present = OPENSSL_malloc(sizeof(*present) * num)) == NULL) {
5328 SSLerr(SSL_F_SSL_CLIENT_HELLO_GET1_EXTENSIONS_PRESENT,
5329 ERR_R_MALLOC_FAILURE);
5330 return 0;
5331 }
5332 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
5333 ext = s->clienthello->pre_proc_exts + i;
5334 if (ext->present) {
5335 if (ext->received_order >= num)
5336 goto err;
5337 present[ext->received_order] = ext->type;
5338 }
5339 }
5340 *out = present;
5341 *outlen = num;
5342 return 1;
5343 err:
5344 OPENSSL_free(present);
5345 return 0;
5346 }
5347
5348 int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out,
5349 size_t *outlen)
5350 {
5351 size_t i;
5352 RAW_EXTENSION *r;
5353
5354 if (s->clienthello == NULL)
5355 return 0;
5356 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) {
5357 r = s->clienthello->pre_proc_exts + i;
5358 if (r->present && r->type == type) {
5359 if (out != NULL)
5360 *out = PACKET_data(&r->data);
5361 if (outlen != NULL)
5362 *outlen = PACKET_remaining(&r->data);
5363 return 1;
5364 }
5365 }
5366 return 0;
5367 }
5368
5369 int SSL_free_buffers(SSL *ssl)
5370 {
5371 RECORD_LAYER *rl = &ssl->rlayer;
5372
5373 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl))
5374 return 0;
5375
5376 RECORD_LAYER_release(rl);
5377 return 1;
5378 }
5379
5380 int SSL_alloc_buffers(SSL *ssl)
5381 {
5382 return ssl3_setup_buffers(ssl);
5383 }
5384
5385 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb)
5386 {
5387 ctx->keylog_callback = cb;
5388 }
5389
5390 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx)
5391 {
5392 return ctx->keylog_callback;
5393 }
5394
5395 static int nss_keylog_int(const char *prefix,
5396 SSL *ssl,
5397 const uint8_t *parameter_1,
5398 size_t parameter_1_len,
5399 const uint8_t *parameter_2,
5400 size_t parameter_2_len)
5401 {
5402 char *out = NULL;
5403 char *cursor = NULL;
5404 size_t out_len = 0;
5405 size_t i;
5406 size_t prefix_len;
5407
5408 if (ssl->ctx->keylog_callback == NULL)
5409 return 1;
5410
5411 /*
5412 * Our output buffer will contain the following strings, rendered with
5413 * space characters in between, terminated by a NULL character: first the
5414 * prefix, then the first parameter, then the second parameter. The
5415 * meaning of each parameter depends on the specific key material being
5416 * logged. Note that the first and second parameters are encoded in
5417 * hexadecimal, so we need a buffer that is twice their lengths.
5418 */
5419 prefix_len = strlen(prefix);
5420 out_len = prefix_len + (2 * parameter_1_len) + (2 * parameter_2_len) + 3;
5421 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) {
5422 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, SSL_F_NSS_KEYLOG_INT,
5423 ERR_R_MALLOC_FAILURE);
5424 return 0;
5425 }
5426
5427 strcpy(cursor, prefix);
5428 cursor += prefix_len;
5429 *cursor++ = ' ';
5430
5431 for (i = 0; i < parameter_1_len; i++) {
5432 sprintf(cursor, "%02x", parameter_1[i]);
5433 cursor += 2;
5434 }
5435 *cursor++ = ' ';
5436
5437 for (i = 0; i < parameter_2_len; i++) {
5438 sprintf(cursor, "%02x", parameter_2[i]);
5439 cursor += 2;
5440 }
5441 *cursor = '\0';
5442
5443 ssl->ctx->keylog_callback(ssl, (const char *)out);
5444 OPENSSL_clear_free(out, out_len);
5445 return 1;
5446
5447 }
5448
5449 int ssl_log_rsa_client_key_exchange(SSL *ssl,
5450 const uint8_t *encrypted_premaster,
5451 size_t encrypted_premaster_len,
5452 const uint8_t *premaster,
5453 size_t premaster_len)
5454 {
5455 if (encrypted_premaster_len < 8) {
5456 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR,
5457 SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR);
5458 return 0;
5459 }
5460
5461 /* We only want the first 8 bytes of the encrypted premaster as a tag. */
5462 return nss_keylog_int("RSA",
5463 ssl,
5464 encrypted_premaster,
5465 8,
5466 premaster,
5467 premaster_len);
5468 }
5469
5470 int ssl_log_secret(SSL *ssl,
5471 const char *label,
5472 const uint8_t *secret,
5473 size_t secret_len)
5474 {
5475 return nss_keylog_int(label,
5476 ssl,
5477 ssl->s3.client_random,
5478 SSL3_RANDOM_SIZE,
5479 secret,
5480 secret_len);
5481 }
5482
5483 #define SSLV2_CIPHER_LEN 3
5484
5485 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format)
5486 {
5487 int n;
5488
5489 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5490
5491 if (PACKET_remaining(cipher_suites) == 0) {
5492 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_SSL_CACHE_CIPHERLIST,
5493 SSL_R_NO_CIPHERS_SPECIFIED);
5494 return 0;
5495 }
5496
5497 if (PACKET_remaining(cipher_suites) % n != 0) {
5498 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5499 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5500 return 0;
5501 }
5502
5503 OPENSSL_free(s->s3.tmp.ciphers_raw);
5504 s->s3.tmp.ciphers_raw = NULL;
5505 s->s3.tmp.ciphers_rawlen = 0;
5506
5507 if (sslv2format) {
5508 size_t numciphers = PACKET_remaining(cipher_suites) / n;
5509 PACKET sslv2ciphers = *cipher_suites;
5510 unsigned int leadbyte;
5511 unsigned char *raw;
5512
5513 /*
5514 * We store the raw ciphers list in SSLv3+ format so we need to do some
5515 * preprocessing to convert the list first. If there are any SSLv2 only
5516 * ciphersuites with a non-zero leading byte then we are going to
5517 * slightly over allocate because we won't store those. But that isn't a
5518 * problem.
5519 */
5520 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN);
5521 s->s3.tmp.ciphers_raw = raw;
5522 if (raw == NULL) {
5523 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5524 ERR_R_MALLOC_FAILURE);
5525 return 0;
5526 }
5527 for (s->s3.tmp.ciphers_rawlen = 0;
5528 PACKET_remaining(&sslv2ciphers) > 0;
5529 raw += TLS_CIPHER_LEN) {
5530 if (!PACKET_get_1(&sslv2ciphers, &leadbyte)
5531 || (leadbyte == 0
5532 && !PACKET_copy_bytes(&sslv2ciphers, raw,
5533 TLS_CIPHER_LEN))
5534 || (leadbyte != 0
5535 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) {
5536 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5537 SSL_R_BAD_PACKET);
5538 OPENSSL_free(s->s3.tmp.ciphers_raw);
5539 s->s3.tmp.ciphers_raw = NULL;
5540 s->s3.tmp.ciphers_rawlen = 0;
5541 return 0;
5542 }
5543 if (leadbyte == 0)
5544 s->s3.tmp.ciphers_rawlen += TLS_CIPHER_LEN;
5545 }
5546 } else if (!PACKET_memdup(cipher_suites, &s->s3.tmp.ciphers_raw,
5547 &s->s3.tmp.ciphers_rawlen)) {
5548 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5549 ERR_R_INTERNAL_ERROR);
5550 return 0;
5551 }
5552 return 1;
5553 }
5554
5555 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len,
5556 int isv2format, STACK_OF(SSL_CIPHER) **sk,
5557 STACK_OF(SSL_CIPHER) **scsvs)
5558 {
5559 PACKET pkt;
5560
5561 if (!PACKET_buf_init(&pkt, bytes, len))
5562 return 0;
5563 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, 0);
5564 }
5565
5566 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites,
5567 STACK_OF(SSL_CIPHER) **skp,
5568 STACK_OF(SSL_CIPHER) **scsvs_out,
5569 int sslv2format, int fatal)
5570 {
5571 const SSL_CIPHER *c;
5572 STACK_OF(SSL_CIPHER) *sk = NULL;
5573 STACK_OF(SSL_CIPHER) *scsvs = NULL;
5574 int n;
5575 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */
5576 unsigned char cipher[SSLV2_CIPHER_LEN];
5577
5578 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5579
5580 if (PACKET_remaining(cipher_suites) == 0) {
5581 if (fatal)
5582 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_BYTES_TO_CIPHER_LIST,
5583 SSL_R_NO_CIPHERS_SPECIFIED);
5584 else
5585 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED);
5586 return 0;
5587 }
5588
5589 if (PACKET_remaining(cipher_suites) % n != 0) {
5590 if (fatal)
5591 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5592 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5593 else
5594 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST,
5595 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5596 return 0;
5597 }
5598
5599 sk = sk_SSL_CIPHER_new_null();
5600 scsvs = sk_SSL_CIPHER_new_null();
5601 if (sk == NULL || scsvs == NULL) {
5602 if (fatal)
5603 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5604 ERR_R_MALLOC_FAILURE);
5605 else
5606 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5607 goto err;
5608 }
5609
5610 while (PACKET_copy_bytes(cipher_suites, cipher, n)) {
5611 /*
5612 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the
5613 * first byte set to zero, while true SSLv2 ciphers have a non-zero
5614 * first byte. We don't support any true SSLv2 ciphers, so skip them.
5615 */
5616 if (sslv2format && cipher[0] != '\0')
5617 continue;
5618
5619 /* For SSLv2-compat, ignore leading 0-byte. */
5620 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1);
5621 if (c != NULL) {
5622 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) ||
5623 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) {
5624 if (fatal)
5625 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
5626 SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5627 else
5628 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5629 goto err;
5630 }
5631 }
5632 }
5633 if (PACKET_remaining(cipher_suites) > 0) {
5634 if (fatal)
5635 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5636 SSL_R_BAD_LENGTH);
5637 else
5638 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_BAD_LENGTH);
5639 goto err;
5640 }
5641
5642 if (skp != NULL)
5643 *skp = sk;
5644 else
5645 sk_SSL_CIPHER_free(sk);
5646 if (scsvs_out != NULL)
5647 *scsvs_out = scsvs;
5648 else
5649 sk_SSL_CIPHER_free(scsvs);
5650 return 1;
5651 err:
5652 sk_SSL_CIPHER_free(sk);
5653 sk_SSL_CIPHER_free(scsvs);
5654 return 0;
5655 }
5656
5657 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data)
5658 {
5659 ctx->max_early_data = max_early_data;
5660
5661 return 1;
5662 }
5663
5664 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx)
5665 {
5666 return ctx->max_early_data;
5667 }
5668
5669 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data)
5670 {
5671 s->max_early_data = max_early_data;
5672
5673 return 1;
5674 }
5675
5676 uint32_t SSL_get_max_early_data(const SSL *s)
5677 {
5678 return s->max_early_data;
5679 }
5680
5681 int SSL_CTX_set_recv_max_early_data(SSL_CTX *ctx, uint32_t recv_max_early_data)
5682 {
5683 ctx->recv_max_early_data = recv_max_early_data;
5684
5685 return 1;
5686 }
5687
5688 uint32_t SSL_CTX_get_recv_max_early_data(const SSL_CTX *ctx)
5689 {
5690 return ctx->recv_max_early_data;
5691 }
5692
5693 int SSL_set_recv_max_early_data(SSL *s, uint32_t recv_max_early_data)
5694 {
5695 s->recv_max_early_data = recv_max_early_data;
5696
5697 return 1;
5698 }
5699
5700 uint32_t SSL_get_recv_max_early_data(const SSL *s)
5701 {
5702 return s->recv_max_early_data;
5703 }
5704
5705 __owur unsigned int ssl_get_max_send_fragment(const SSL *ssl)
5706 {
5707 /* Return any active Max Fragment Len extension */
5708 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session))
5709 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5710
5711 /* return current SSL connection setting */
5712 return ssl->max_send_fragment;
5713 }
5714
5715 __owur unsigned int ssl_get_split_send_fragment(const SSL *ssl)
5716 {
5717 /* Return a value regarding an active Max Fragment Len extension */
5718 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session)
5719 && ssl->split_send_fragment > GET_MAX_FRAGMENT_LENGTH(ssl->session))
5720 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5721
5722 /* else limit |split_send_fragment| to current |max_send_fragment| */
5723 if (ssl->split_send_fragment > ssl->max_send_fragment)
5724 return ssl->max_send_fragment;
5725
5726 /* return current SSL connection setting */
5727 return ssl->split_send_fragment;
5728 }
5729
5730 int SSL_stateless(SSL *s)
5731 {
5732 int ret;
5733
5734 /* Ensure there is no state left over from a previous invocation */
5735 if (!SSL_clear(s))
5736 return 0;
5737
5738 ERR_clear_error();
5739
5740 s->s3.flags |= TLS1_FLAGS_STATELESS;
5741 ret = SSL_accept(s);
5742 s->s3.flags &= ~TLS1_FLAGS_STATELESS;
5743
5744 if (ret > 0 && s->ext.cookieok)
5745 return 1;
5746
5747 if (s->hello_retry_request == SSL_HRR_PENDING && !ossl_statem_in_error(s))
5748 return 0;
5749
5750 return -1;
5751 }
5752
5753 void SSL_CTX_set_post_handshake_auth(SSL_CTX *ctx, int val)
5754 {
5755 ctx->pha_enabled = val;
5756 }
5757
5758 void SSL_set_post_handshake_auth(SSL *ssl, int val)
5759 {
5760 ssl->pha_enabled = val;
5761 }
5762
5763 int SSL_verify_client_post_handshake(SSL *ssl)
5764 {
5765 if (!SSL_IS_TLS13(ssl)) {
5766 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_WRONG_SSL_VERSION);
5767 return 0;
5768 }
5769 if (!ssl->server) {
5770 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_NOT_SERVER);
5771 return 0;
5772 }
5773
5774 if (!SSL_is_init_finished(ssl)) {
5775 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_STILL_IN_INIT);
5776 return 0;
5777 }
5778
5779 switch (ssl->post_handshake_auth) {
5780 case SSL_PHA_NONE:
5781 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_EXTENSION_NOT_RECEIVED);
5782 return 0;
5783 default:
5784 case SSL_PHA_EXT_SENT:
5785 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, ERR_R_INTERNAL_ERROR);
5786 return 0;
5787 case SSL_PHA_EXT_RECEIVED:
5788 break;
5789 case SSL_PHA_REQUEST_PENDING:
5790 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_PENDING);
5791 return 0;
5792 case SSL_PHA_REQUESTED:
5793 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_SENT);
5794 return 0;
5795 }
5796
5797 ssl->post_handshake_auth = SSL_PHA_REQUEST_PENDING;
5798
5799 /* checks verify_mode and algorithm_auth */
5800 if (!send_certificate_request(ssl)) {
5801 ssl->post_handshake_auth = SSL_PHA_EXT_RECEIVED; /* restore on error */
5802 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_INVALID_CONFIG);
5803 return 0;
5804 }
5805
5806 ossl_statem_set_in_init(ssl, 1);
5807 return 1;
5808 }
5809
5810 int SSL_CTX_set_session_ticket_cb(SSL_CTX *ctx,
5811 SSL_CTX_generate_session_ticket_fn gen_cb,
5812 SSL_CTX_decrypt_session_ticket_fn dec_cb,
5813 void *arg)
5814 {
5815 ctx->generate_ticket_cb = gen_cb;
5816 ctx->decrypt_ticket_cb = dec_cb;
5817 ctx->ticket_cb_data = arg;
5818 return 1;
5819 }
5820
5821 void SSL_CTX_set_allow_early_data_cb(SSL_CTX *ctx,
5822 SSL_allow_early_data_cb_fn cb,
5823 void *arg)
5824 {
5825 ctx->allow_early_data_cb = cb;
5826 ctx->allow_early_data_cb_data = arg;
5827 }
5828
5829 void SSL_set_allow_early_data_cb(SSL *s,
5830 SSL_allow_early_data_cb_fn cb,
5831 void *arg)
5832 {
5833 s->allow_early_data_cb = cb;
5834 s->allow_early_data_cb_data = arg;
5835 }