]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/t1_lib.c
f3373dc6d55039e6f16c415c13537cb0ae844b2c
[thirdparty/openssl.git] / ssl / t1_lib.c
1 /*
2 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /* We need access to the deprecated low level HMAC APIs */
11 #define OPENSSL_SUPPRESS_DEPRECATED
12
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include <openssl/objects.h>
16 #include <openssl/evp.h>
17 #include <openssl/hmac.h>
18 #include <openssl/core_names.h>
19 #include <openssl/ocsp.h>
20 #include <openssl/conf.h>
21 #include <openssl/x509v3.h>
22 #include <openssl/dh.h>
23 #include <openssl/bn.h>
24 #include "internal/nelem.h"
25 #include "internal/evp.h"
26 #include "ssl_local.h"
27 #include <openssl/ct.h>
28
29 DEFINE_STACK_OF_CONST(SSL_CIPHER)
30 DEFINE_STACK_OF(X509)
31 DEFINE_STACK_OF(X509_NAME)
32
33 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey);
34 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu);
35
36 SSL3_ENC_METHOD const TLSv1_enc_data = {
37 tls1_enc,
38 tls1_mac,
39 tls1_setup_key_block,
40 tls1_generate_master_secret,
41 tls1_change_cipher_state,
42 tls1_final_finish_mac,
43 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
44 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
45 tls1_alert_code,
46 tls1_export_keying_material,
47 0,
48 ssl3_set_handshake_header,
49 tls_close_construct_packet,
50 ssl3_handshake_write
51 };
52
53 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
54 tls1_enc,
55 tls1_mac,
56 tls1_setup_key_block,
57 tls1_generate_master_secret,
58 tls1_change_cipher_state,
59 tls1_final_finish_mac,
60 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
61 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
62 tls1_alert_code,
63 tls1_export_keying_material,
64 SSL_ENC_FLAG_EXPLICIT_IV,
65 ssl3_set_handshake_header,
66 tls_close_construct_packet,
67 ssl3_handshake_write
68 };
69
70 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
71 tls1_enc,
72 tls1_mac,
73 tls1_setup_key_block,
74 tls1_generate_master_secret,
75 tls1_change_cipher_state,
76 tls1_final_finish_mac,
77 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
78 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
79 tls1_alert_code,
80 tls1_export_keying_material,
81 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
82 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
83 ssl3_set_handshake_header,
84 tls_close_construct_packet,
85 ssl3_handshake_write
86 };
87
88 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
89 tls13_enc,
90 tls1_mac,
91 tls13_setup_key_block,
92 tls13_generate_master_secret,
93 tls13_change_cipher_state,
94 tls13_final_finish_mac,
95 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
96 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
97 tls13_alert_code,
98 tls13_export_keying_material,
99 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
100 ssl3_set_handshake_header,
101 tls_close_construct_packet,
102 ssl3_handshake_write
103 };
104
105 long tls1_default_timeout(void)
106 {
107 /*
108 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
109 * http, the cache would over fill
110 */
111 return (60 * 60 * 2);
112 }
113
114 int tls1_new(SSL *s)
115 {
116 if (!ssl3_new(s))
117 return 0;
118 if (!s->method->ssl_clear(s))
119 return 0;
120
121 return 1;
122 }
123
124 void tls1_free(SSL *s)
125 {
126 OPENSSL_free(s->ext.session_ticket);
127 ssl3_free(s);
128 }
129
130 int tls1_clear(SSL *s)
131 {
132 if (!ssl3_clear(s))
133 return 0;
134
135 if (s->method->version == TLS_ANY_VERSION)
136 s->version = TLS_MAX_VERSION_INTERNAL;
137 else
138 s->version = s->method->version;
139
140 return 1;
141 }
142
143 /*
144 * Table of group information.
145 */
146 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
147 static const TLS_GROUP_INFO nid_list[] = {
148 # ifndef OPENSSL_NO_EC
149 {NID_sect163k1, "EC", 80, TLS_GROUP_CURVE_CHAR2, 0x0001}, /* sect163k1 (1) */
150 {NID_sect163r1, "EC", 80, TLS_GROUP_CURVE_CHAR2, 0x0002}, /* sect163r1 (2) */
151 {NID_sect163r2, "EC", 80, TLS_GROUP_CURVE_CHAR2, 0x0003}, /* sect163r2 (3) */
152 {NID_sect193r1, "EC", 80, TLS_GROUP_CURVE_CHAR2, 0x0004}, /* sect193r1 (4) */
153 {NID_sect193r2, "EC", 80, TLS_GROUP_CURVE_CHAR2, 0x0005}, /* sect193r2 (5) */
154 {NID_sect233k1, "EC", 112, TLS_GROUP_CURVE_CHAR2, 0x0006}, /* sect233k1 (6) */
155 {NID_sect233r1, "EC", 112, TLS_GROUP_CURVE_CHAR2, 0x0007}, /* sect233r1 (7) */
156 {NID_sect239k1, "EC", 112, TLS_GROUP_CURVE_CHAR2, 0x0008}, /* sect239k1 (8) */
157 {NID_sect283k1, "EC", 128, TLS_GROUP_CURVE_CHAR2, 0x0009}, /* sect283k1 (9) */
158 {NID_sect283r1, "EC", 128, TLS_GROUP_CURVE_CHAR2, 0x000A}, /* sect283r1 (10) */
159 {NID_sect409k1, "EC", 192, TLS_GROUP_CURVE_CHAR2, 0x000B}, /* sect409k1 (11) */
160 {NID_sect409r1, "EC", 192, TLS_GROUP_CURVE_CHAR2, 0x000C}, /* sect409r1 (12) */
161 {NID_sect571k1, "EC", 256, TLS_GROUP_CURVE_CHAR2, 0x000D}, /* sect571k1 (13) */
162 {NID_sect571r1, "EC", 256, TLS_GROUP_CURVE_CHAR2, 0x000E}, /* sect571r1 (14) */
163 {NID_secp160k1, "EC", 80, TLS_GROUP_CURVE_PRIME, 0x000F}, /* secp160k1 (15) */
164 {NID_secp160r1, "EC", 80, TLS_GROUP_CURVE_PRIME, 0x0010}, /* secp160r1 (16) */
165 {NID_secp160r2, "EC", 80, TLS_GROUP_CURVE_PRIME, 0x0011}, /* secp160r2 (17) */
166 {NID_secp192k1, "EC", 80, TLS_GROUP_CURVE_PRIME, 0x0012}, /* secp192k1 (18) */
167 {NID_X9_62_prime192v1, "EC", 80, TLS_GROUP_CURVE_PRIME, 0x0013}, /* secp192r1 (19) */
168 {NID_secp224k1, "EC", 112, TLS_GROUP_CURVE_PRIME, 0x0014}, /* secp224k1 (20) */
169 {NID_secp224r1, "EC", 112, TLS_GROUP_CURVE_PRIME, 0x0015}, /* secp224r1 (21) */
170 {NID_secp256k1, "EC", 128, TLS_GROUP_CURVE_PRIME, 0x0016}, /* secp256k1 (22) */
171 {NID_X9_62_prime256v1, "EC", 128, TLS_GROUP_CURVE_PRIME, 0x0017}, /* secp256r1 (23) */
172 {NID_secp384r1, "EC", 192, TLS_GROUP_CURVE_PRIME, 0x0018}, /* secp384r1 (24) */
173 {NID_secp521r1, "EC", 256, TLS_GROUP_CURVE_PRIME, 0x0019}, /* secp521r1 (25) */
174 {NID_brainpoolP256r1, "EC", 128, TLS_GROUP_CURVE_PRIME, 0x001A}, /* brainpoolP256r1 (26) */
175 {NID_brainpoolP384r1, "EC", 192, TLS_GROUP_CURVE_PRIME, 0x001B}, /* brainpoolP384r1 (27) */
176 {NID_brainpoolP512r1, "EC", 256, TLS_GROUP_CURVE_PRIME, 0x001C}, /* brainpool512r1 (28) */
177 {EVP_PKEY_X25519, "X25519", 128, TLS_GROUP_CURVE_CUSTOM, 0x001D}, /* X25519 (29) */
178 {EVP_PKEY_X448, "X448", 224, TLS_GROUP_CURVE_CUSTOM, 0x001E}, /* X448 (30) */
179 # endif /* OPENSSL_NO_EC */
180 # ifndef OPENSSL_NO_GOST
181 {NID_id_tc26_gost_3410_2012_256_paramSetA, "GOST_2012_256", 128, TLS_GROUP_CURVE_PRIME, 0x0022}, /* GC256A (34) */
182 {NID_id_tc26_gost_3410_2012_256_paramSetB, "GOST_2012_256", 128, TLS_GROUP_CURVE_PRIME, 0x0023}, /* GC256B (35) */
183 {NID_id_tc26_gost_3410_2012_256_paramSetC, "GOST_2012_256", 128, TLS_GROUP_CURVE_PRIME, 0x0024}, /* GC256C (36) */
184 {NID_id_tc26_gost_3410_2012_256_paramSetD, "GOST_2012_256", 128, TLS_GROUP_CURVE_PRIME, 0x0025}, /* GC256D (37) */
185 {NID_id_tc26_gost_3410_2012_512_paramSetA, "GOST_2012_512", 256, TLS_GROUP_CURVE_PRIME, 0x0026}, /* GC512A (38) */
186 {NID_id_tc26_gost_3410_2012_512_paramSetB, "GOST_2012_512", 256, TLS_GROUP_CURVE_PRIME, 0x0027}, /* GC512B (39) */
187 {NID_id_tc26_gost_3410_2012_512_paramSetC, "GOST_2012_512", 256, TLS_GROUP_CURVE_PRIME, 0x0028}, /* GC512C (40) */
188 # endif /* OPENSSL_NO_GOST */
189 # ifndef OPENSSL_NO_DH
190 /* Security bit values for FFDHE groups are updated as per RFC 7919 */
191 {NID_ffdhe2048, "DH", 103, TLS_GROUP_FFDHE_FOR_TLS1_3, 0x0100}, /* ffdhe2048 (0x0100) */
192 {NID_ffdhe3072, "DH", 125, TLS_GROUP_FFDHE_FOR_TLS1_3, 0x0101}, /* ffdhe3072 (0x0101) */
193 {NID_ffdhe4096, "DH", 150, TLS_GROUP_FFDHE_FOR_TLS1_3, 0x0102}, /* ffdhe4096 (0x0102) */
194 {NID_ffdhe6144, "DH", 175, TLS_GROUP_FFDHE_FOR_TLS1_3, 0x0103}, /* ffdhe6144 (0x0103) */
195 {NID_ffdhe8192, "DH", 192, TLS_GROUP_FFDHE_FOR_TLS1_3, 0x0104}, /* ffdhe8192 (0x0104) */
196 # endif /* OPENSSL_NO_DH */
197 };
198 #endif
199
200 #ifndef OPENSSL_NO_EC
201 static const unsigned char ecformats_default[] = {
202 TLSEXT_ECPOINTFORMAT_uncompressed,
203 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
204 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
205 };
206 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
207
208 /* The default curves */
209 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
210 static const uint16_t supported_groups_default[] = {
211 # ifndef OPENSSL_NO_EC
212 29, /* X25519 (29) */
213 23, /* secp256r1 (23) */
214 30, /* X448 (30) */
215 25, /* secp521r1 (25) */
216 24, /* secp384r1 (24) */
217 # endif
218 # ifndef OPENSSL_NO_GOST
219 34, /* GC256A (34) */
220 35, /* GC256B (35) */
221 36, /* GC256C (36) */
222 37, /* GC256D (37) */
223 38, /* GC512A (38) */
224 39, /* GC512B (39) */
225 40, /* GC512C (40) */
226 # endif
227 # ifndef OPENSSL_NO_DH
228 0x100, /* ffdhe2048 (0x100) */
229 0x101, /* ffdhe3072 (0x101) */
230 0x102, /* ffdhe4096 (0x102) */
231 0x103, /* ffdhe6144 (0x103) */
232 0x104, /* ffdhe8192 (0x104) */
233 # endif
234 };
235 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
236
237 #ifndef OPENSSL_NO_EC
238 static const uint16_t suiteb_curves[] = {
239 TLSEXT_curve_P_256,
240 TLSEXT_curve_P_384
241 };
242 #endif
243
244 const TLS_GROUP_INFO *tls1_group_id_lookup(uint16_t group_id)
245 {
246 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
247 size_t i;
248
249 /* ECC curves from RFC 4492 and RFC 7027 FFDHE group from RFC 8446 */
250 for (i = 0; i < OSSL_NELEM(nid_list); i++) {
251 if (nid_list[i].group_id == group_id)
252 return &nid_list[i];
253 }
254 #endif /* !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC) */
255 return NULL;
256 }
257
258 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
259 int tls1_group_id2nid(uint16_t group_id)
260 {
261 const TLS_GROUP_INFO *ginf = tls1_group_id_lookup(group_id);
262
263 return ginf == NULL ? NID_undef : ginf->nid;
264 }
265
266 static uint16_t tls1_nid2group_id(int nid)
267 {
268 size_t i;
269
270 for (i = 0; i < OSSL_NELEM(nid_list); i++) {
271 if (nid_list[i].nid == nid)
272 return nid_list[i].group_id;
273 }
274 return 0;
275 }
276 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
277
278 /*
279 * Set *pgroups to the supported groups list and *pgroupslen to
280 * the number of groups supported.
281 */
282 void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
283 size_t *pgroupslen)
284 {
285 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH)
286 /* For Suite B mode only include P-256, P-384 */
287 switch (tls1_suiteb(s)) {
288 # ifndef OPENSSL_NO_EC
289 case SSL_CERT_FLAG_SUITEB_128_LOS:
290 *pgroups = suiteb_curves;
291 *pgroupslen = OSSL_NELEM(suiteb_curves);
292 break;
293
294 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
295 *pgroups = suiteb_curves;
296 *pgroupslen = 1;
297 break;
298
299 case SSL_CERT_FLAG_SUITEB_192_LOS:
300 *pgroups = suiteb_curves + 1;
301 *pgroupslen = 1;
302 break;
303 # endif
304
305 default:
306 if (s->ext.supportedgroups == NULL) {
307 *pgroups = supported_groups_default;
308 *pgroupslen = OSSL_NELEM(supported_groups_default);
309 } else {
310 *pgroups = s->ext.supportedgroups;
311 *pgroupslen = s->ext.supportedgroups_len;
312 }
313 break;
314 }
315 #else
316 *pgroups = NULL;
317 *pgroupslen = 0;
318 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
319 }
320
321 int tls_valid_group(SSL *s, uint16_t group_id, int version)
322 {
323 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(group_id);
324
325 if (version < TLS1_3_VERSION) {
326 if ((ginfo->flags & TLS_GROUP_ONLY_FOR_TLS1_3) != 0)
327 return 0;
328 }
329 return 1;
330 }
331
332 /* See if group is allowed by security callback */
333 int tls_group_allowed(SSL *s, uint16_t group, int op)
334 {
335 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(group);
336 unsigned char gtmp[2];
337
338 if (ginfo == NULL)
339 return 0;
340 #ifdef OPENSSL_NO_EC2M
341 if (ginfo->flags & TLS_GROUP_CURVE_CHAR2)
342 return 0;
343 #endif
344 #ifdef OPENSSL_NO_DH
345 if (ginfo->flags & TLS_GROUP_FFDHE)
346 return 0;
347 #endif
348 gtmp[0] = group >> 8;
349 gtmp[1] = group & 0xff;
350 return ssl_security(s, op, ginfo->secbits, ginfo->nid, (void *)gtmp);
351 }
352
353 /* Return 1 if "id" is in "list" */
354 static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
355 {
356 size_t i;
357 for (i = 0; i < listlen; i++)
358 if (list[i] == id)
359 return 1;
360 return 0;
361 }
362
363 /*-
364 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
365 * if there is no match.
366 * For nmatch == -1, return number of matches
367 * For nmatch == -2, return the id of the group to use for
368 * a tmp key, or 0 if there is no match.
369 */
370 uint16_t tls1_shared_group(SSL *s, int nmatch)
371 {
372 const uint16_t *pref, *supp;
373 size_t num_pref, num_supp, i;
374 int k;
375
376 /* Can't do anything on client side */
377 if (s->server == 0)
378 return 0;
379 if (nmatch == -2) {
380 if (tls1_suiteb(s)) {
381 /*
382 * For Suite B ciphersuite determines curve: we already know
383 * these are acceptable due to previous checks.
384 */
385 unsigned long cid = s->s3.tmp.new_cipher->id;
386
387 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
388 return TLSEXT_curve_P_256;
389 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
390 return TLSEXT_curve_P_384;
391 /* Should never happen */
392 return 0;
393 }
394 /* If not Suite B just return first preference shared curve */
395 nmatch = 0;
396 }
397 /*
398 * If server preference set, our groups are the preference order
399 * otherwise peer decides.
400 */
401 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
402 tls1_get_supported_groups(s, &pref, &num_pref);
403 tls1_get_peer_groups(s, &supp, &num_supp);
404 } else {
405 tls1_get_peer_groups(s, &pref, &num_pref);
406 tls1_get_supported_groups(s, &supp, &num_supp);
407 }
408
409 for (k = 0, i = 0; i < num_pref; i++) {
410 uint16_t id = pref[i];
411
412 if (!tls1_in_list(id, supp, num_supp)
413 || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
414 continue;
415 if (nmatch == k)
416 return id;
417 k++;
418 }
419 if (nmatch == -1)
420 return k;
421 /* Out of range (nmatch > k). */
422 return 0;
423 }
424
425 int tls1_set_groups(uint16_t **pext, size_t *pextlen,
426 int *groups, size_t ngroups)
427 {
428 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH)
429 uint16_t *glist;
430 size_t i;
431 /*
432 * Bitmap of groups included to detect duplicates: two variables are added
433 * to detect duplicates as some values are more than 32.
434 */
435 unsigned long *dup_list = NULL;
436 unsigned long dup_list_egrp = 0;
437 unsigned long dup_list_dhgrp = 0;
438
439 if (ngroups == 0) {
440 SSLerr(SSL_F_TLS1_SET_GROUPS, SSL_R_BAD_LENGTH);
441 return 0;
442 }
443 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) {
444 SSLerr(SSL_F_TLS1_SET_GROUPS, ERR_R_MALLOC_FAILURE);
445 return 0;
446 }
447 for (i = 0; i < ngroups; i++) {
448 unsigned long idmask;
449 uint16_t id;
450 id = tls1_nid2group_id(groups[i]);
451 if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
452 goto err;
453 idmask = 1L << (id & 0x00FF);
454 dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
455 if (!id || ((*dup_list) & idmask))
456 goto err;
457 *dup_list |= idmask;
458 glist[i] = id;
459 }
460 OPENSSL_free(*pext);
461 *pext = glist;
462 *pextlen = ngroups;
463 return 1;
464 err:
465 OPENSSL_free(glist);
466 return 0;
467 #else
468 return 0;
469 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
470 }
471
472 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH)
473 # define MAX_GROUPLIST OSSL_NELEM(nid_list)
474
475 typedef struct {
476 size_t nidcnt;
477 int nid_arr[MAX_GROUPLIST];
478 } nid_cb_st;
479
480 static int nid_cb(const char *elem, int len, void *arg)
481 {
482 nid_cb_st *narg = arg;
483 size_t i;
484 int nid = NID_undef;
485 char etmp[20];
486 if (elem == NULL)
487 return 0;
488 if (narg->nidcnt == MAX_GROUPLIST)
489 return 0;
490 if (len > (int)(sizeof(etmp) - 1))
491 return 0;
492 memcpy(etmp, elem, len);
493 etmp[len] = 0;
494 # ifndef OPENSSL_NO_EC
495 nid = EC_curve_nist2nid(etmp);
496 # endif
497 if (nid == NID_undef)
498 nid = OBJ_sn2nid(etmp);
499 if (nid == NID_undef)
500 nid = OBJ_ln2nid(etmp);
501 if (nid == NID_undef)
502 return 0;
503 for (i = 0; i < narg->nidcnt; i++)
504 if (narg->nid_arr[i] == nid)
505 return 0;
506 narg->nid_arr[narg->nidcnt++] = nid;
507 return 1;
508 }
509 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
510
511 /* Set groups based on a colon separate list */
512 int tls1_set_groups_list(uint16_t **pext, size_t *pextlen, const char *str)
513 {
514 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH)
515 nid_cb_st ncb;
516 ncb.nidcnt = 0;
517 if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb))
518 return 0;
519 if (pext == NULL)
520 return 1;
521 return tls1_set_groups(pext, pextlen, ncb.nid_arr, ncb.nidcnt);
522 #else
523 return 0;
524 #endif
525 }
526
527 /* Check a group id matches preferences */
528 int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
529 {
530 const uint16_t *groups;
531 size_t groups_len;
532
533 if (group_id == 0)
534 return 0;
535
536 /* Check for Suite B compliance */
537 if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
538 unsigned long cid = s->s3.tmp.new_cipher->id;
539
540 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
541 if (group_id != TLSEXT_curve_P_256)
542 return 0;
543 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
544 if (group_id != TLSEXT_curve_P_384)
545 return 0;
546 } else {
547 /* Should never happen */
548 return 0;
549 }
550 }
551
552 if (check_own_groups) {
553 /* Check group is one of our preferences */
554 tls1_get_supported_groups(s, &groups, &groups_len);
555 if (!tls1_in_list(group_id, groups, groups_len))
556 return 0;
557 }
558
559 if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
560 return 0;
561
562 /* For clients, nothing more to check */
563 if (!s->server)
564 return 1;
565
566 /* Check group is one of peers preferences */
567 tls1_get_peer_groups(s, &groups, &groups_len);
568
569 /*
570 * RFC 4492 does not require the supported elliptic curves extension
571 * so if it is not sent we can just choose any curve.
572 * It is invalid to send an empty list in the supported groups
573 * extension, so groups_len == 0 always means no extension.
574 */
575 if (groups_len == 0)
576 return 1;
577 return tls1_in_list(group_id, groups, groups_len);
578 }
579
580 #ifndef OPENSSL_NO_EC
581 void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
582 size_t *num_formats)
583 {
584 /*
585 * If we have a custom point format list use it otherwise use default
586 */
587 if (s->ext.ecpointformats) {
588 *pformats = s->ext.ecpointformats;
589 *num_formats = s->ext.ecpointformats_len;
590 } else {
591 *pformats = ecformats_default;
592 /* For Suite B we don't support char2 fields */
593 if (tls1_suiteb(s))
594 *num_formats = sizeof(ecformats_default) - 1;
595 else
596 *num_formats = sizeof(ecformats_default);
597 }
598 }
599
600 /* Check a key is compatible with compression extension */
601 static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)
602 {
603 const EC_KEY *ec;
604 const EC_GROUP *grp;
605 unsigned char comp_id;
606 size_t i;
607
608 /* If not an EC key nothing to check */
609 if (!EVP_PKEY_is_a(pkey, "EC"))
610 return 1;
611 ec = EVP_PKEY_get0_EC_KEY(pkey);
612 grp = EC_KEY_get0_group(ec);
613
614 /* Get required compression id */
615 if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_UNCOMPRESSED) {
616 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
617 } else if (SSL_IS_TLS13(s)) {
618 /*
619 * ec_point_formats extension is not used in TLSv1.3 so we ignore
620 * this check.
621 */
622 return 1;
623 } else {
624 int field_type = EC_METHOD_get_field_type(EC_GROUP_method_of(grp));
625
626 if (field_type == NID_X9_62_prime_field)
627 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
628 else if (field_type == NID_X9_62_characteristic_two_field)
629 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
630 else
631 return 0;
632 }
633 /*
634 * If point formats extension present check it, otherwise everything is
635 * supported (see RFC4492).
636 */
637 if (s->ext.peer_ecpointformats == NULL)
638 return 1;
639
640 for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
641 if (s->ext.peer_ecpointformats[i] == comp_id)
642 return 1;
643 }
644 return 0;
645 }
646
647 /* Return group id of a key */
648 static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
649 {
650 int curve_nid = evp_pkey_get_EC_KEY_curve_nid(pkey);
651
652 if (curve_nid == NID_undef)
653 return 0;
654 return tls1_nid2group_id(curve_nid);
655 }
656
657 /*
658 * Check cert parameters compatible with extensions: currently just checks EC
659 * certificates have compatible curves and compression.
660 */
661 static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
662 {
663 uint16_t group_id;
664 EVP_PKEY *pkey;
665 pkey = X509_get0_pubkey(x);
666 if (pkey == NULL)
667 return 0;
668 /* If not EC nothing to do */
669 if (!EVP_PKEY_is_a(pkey, "EC"))
670 return 1;
671 /* Check compression */
672 if (!tls1_check_pkey_comp(s, pkey))
673 return 0;
674 group_id = tls1_get_group_id(pkey);
675 /*
676 * For a server we allow the certificate to not be in our list of supported
677 * groups.
678 */
679 if (!tls1_check_group_id(s, group_id, !s->server))
680 return 0;
681 /*
682 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
683 * SHA384+P-384.
684 */
685 if (check_ee_md && tls1_suiteb(s)) {
686 int check_md;
687 size_t i;
688
689 /* Check to see we have necessary signing algorithm */
690 if (group_id == TLSEXT_curve_P_256)
691 check_md = NID_ecdsa_with_SHA256;
692 else if (group_id == TLSEXT_curve_P_384)
693 check_md = NID_ecdsa_with_SHA384;
694 else
695 return 0; /* Should never happen */
696 for (i = 0; i < s->shared_sigalgslen; i++) {
697 if (check_md == s->shared_sigalgs[i]->sigandhash)
698 return 1;;
699 }
700 return 0;
701 }
702 return 1;
703 }
704
705 /*
706 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
707 * @s: SSL connection
708 * @cid: Cipher ID we're considering using
709 *
710 * Checks that the kECDHE cipher suite we're considering using
711 * is compatible with the client extensions.
712 *
713 * Returns 0 when the cipher can't be used or 1 when it can.
714 */
715 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
716 {
717 /* If not Suite B just need a shared group */
718 if (!tls1_suiteb(s))
719 return tls1_shared_group(s, 0) != 0;
720 /*
721 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
722 * curves permitted.
723 */
724 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
725 return tls1_check_group_id(s, TLSEXT_curve_P_256, 1);
726 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
727 return tls1_check_group_id(s, TLSEXT_curve_P_384, 1);
728
729 return 0;
730 }
731
732 #else
733
734 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
735 {
736 return 1;
737 }
738
739 #endif /* OPENSSL_NO_EC */
740
741 /* Default sigalg schemes */
742 static const uint16_t tls12_sigalgs[] = {
743 #ifndef OPENSSL_NO_EC
744 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
745 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
746 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
747 TLSEXT_SIGALG_ed25519,
748 TLSEXT_SIGALG_ed448,
749 #endif
750
751 TLSEXT_SIGALG_rsa_pss_pss_sha256,
752 TLSEXT_SIGALG_rsa_pss_pss_sha384,
753 TLSEXT_SIGALG_rsa_pss_pss_sha512,
754 TLSEXT_SIGALG_rsa_pss_rsae_sha256,
755 TLSEXT_SIGALG_rsa_pss_rsae_sha384,
756 TLSEXT_SIGALG_rsa_pss_rsae_sha512,
757
758 TLSEXT_SIGALG_rsa_pkcs1_sha256,
759 TLSEXT_SIGALG_rsa_pkcs1_sha384,
760 TLSEXT_SIGALG_rsa_pkcs1_sha512,
761
762 #ifndef OPENSSL_NO_EC
763 TLSEXT_SIGALG_ecdsa_sha224,
764 TLSEXT_SIGALG_ecdsa_sha1,
765 #endif
766 TLSEXT_SIGALG_rsa_pkcs1_sha224,
767 TLSEXT_SIGALG_rsa_pkcs1_sha1,
768 #ifndef OPENSSL_NO_DSA
769 TLSEXT_SIGALG_dsa_sha224,
770 TLSEXT_SIGALG_dsa_sha1,
771
772 TLSEXT_SIGALG_dsa_sha256,
773 TLSEXT_SIGALG_dsa_sha384,
774 TLSEXT_SIGALG_dsa_sha512,
775 #endif
776 #ifndef OPENSSL_NO_GOST
777 TLSEXT_SIGALG_gostr34102012_256_intrinsic,
778 TLSEXT_SIGALG_gostr34102012_512_intrinsic,
779 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
780 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
781 TLSEXT_SIGALG_gostr34102001_gostr3411,
782 #endif
783 };
784
785 #ifndef OPENSSL_NO_EC
786 static const uint16_t suiteb_sigalgs[] = {
787 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
788 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
789 };
790 #endif
791
792 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
793 #ifndef OPENSSL_NO_EC
794 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
795 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
796 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1},
797 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
798 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
799 NID_ecdsa_with_SHA384, NID_secp384r1},
800 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
801 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
802 NID_ecdsa_with_SHA512, NID_secp521r1},
803 {"ed25519", TLSEXT_SIGALG_ed25519,
804 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
805 NID_undef, NID_undef},
806 {"ed448", TLSEXT_SIGALG_ed448,
807 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
808 NID_undef, NID_undef},
809 {NULL, TLSEXT_SIGALG_ecdsa_sha224,
810 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
811 NID_ecdsa_with_SHA224, NID_undef},
812 {NULL, TLSEXT_SIGALG_ecdsa_sha1,
813 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
814 NID_ecdsa_with_SHA1, NID_undef},
815 #endif
816 {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
817 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
818 NID_undef, NID_undef},
819 {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
820 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
821 NID_undef, NID_undef},
822 {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
823 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
824 NID_undef, NID_undef},
825 {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
826 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
827 NID_undef, NID_undef},
828 {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
829 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
830 NID_undef, NID_undef},
831 {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
832 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
833 NID_undef, NID_undef},
834 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
835 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
836 NID_sha256WithRSAEncryption, NID_undef},
837 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
838 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
839 NID_sha384WithRSAEncryption, NID_undef},
840 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
841 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
842 NID_sha512WithRSAEncryption, NID_undef},
843 {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
844 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
845 NID_sha224WithRSAEncryption, NID_undef},
846 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
847 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
848 NID_sha1WithRSAEncryption, NID_undef},
849 #ifndef OPENSSL_NO_DSA
850 {NULL, TLSEXT_SIGALG_dsa_sha256,
851 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
852 NID_dsa_with_SHA256, NID_undef},
853 {NULL, TLSEXT_SIGALG_dsa_sha384,
854 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
855 NID_undef, NID_undef},
856 {NULL, TLSEXT_SIGALG_dsa_sha512,
857 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
858 NID_undef, NID_undef},
859 {NULL, TLSEXT_SIGALG_dsa_sha224,
860 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
861 NID_undef, NID_undef},
862 {NULL, TLSEXT_SIGALG_dsa_sha1,
863 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
864 NID_dsaWithSHA1, NID_undef},
865 #endif
866 #ifndef OPENSSL_NO_GOST
867 {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
868 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
869 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
870 NID_undef, NID_undef},
871 {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
872 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
873 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
874 NID_undef, NID_undef},
875 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
876 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
877 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
878 NID_undef, NID_undef},
879 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
880 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
881 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
882 NID_undef, NID_undef},
883 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
884 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
885 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
886 NID_undef, NID_undef}
887 #endif
888 };
889 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
890 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
891 "rsa_pkcs1_md5_sha1", 0,
892 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
893 EVP_PKEY_RSA, SSL_PKEY_RSA,
894 NID_undef, NID_undef
895 };
896
897 /*
898 * Default signature algorithm values used if signature algorithms not present.
899 * From RFC5246. Note: order must match certificate index order.
900 */
901 static const uint16_t tls_default_sigalg[] = {
902 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
903 0, /* SSL_PKEY_RSA_PSS_SIGN */
904 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
905 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
906 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
907 TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
908 TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
909 0, /* SSL_PKEY_ED25519 */
910 0, /* SSL_PKEY_ED448 */
911 };
912
913 /* Lookup TLS signature algorithm */
914 static const SIGALG_LOOKUP *tls1_lookup_sigalg(uint16_t sigalg)
915 {
916 size_t i;
917 const SIGALG_LOOKUP *s;
918
919 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
920 i++, s++) {
921 if (s->sigalg == sigalg)
922 return s;
923 }
924 return NULL;
925 }
926 /* Lookup hash: return 0 if invalid or not enabled */
927 int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
928 {
929 const EVP_MD *md;
930 if (lu == NULL)
931 return 0;
932 /* lu->hash == NID_undef means no associated digest */
933 if (lu->hash == NID_undef) {
934 md = NULL;
935 } else {
936 md = ssl_md(ctx, lu->hash_idx);
937 if (md == NULL)
938 return 0;
939 }
940 if (pmd)
941 *pmd = md;
942 return 1;
943 }
944
945 /*
946 * Check if key is large enough to generate RSA-PSS signature.
947 *
948 * The key must greater than or equal to 2 * hash length + 2.
949 * SHA512 has a hash length of 64 bytes, which is incompatible
950 * with a 128 byte (1024 bit) key.
951 */
952 #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_size(md) + 2)
953 static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
954 const SIGALG_LOOKUP *lu)
955 {
956 const EVP_MD *md;
957
958 if (pkey == NULL)
959 return 0;
960 if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
961 return 0;
962 if (EVP_PKEY_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
963 return 0;
964 return 1;
965 }
966
967 /*
968 * Returns a signature algorithm when the peer did not send a list of supported
969 * signature algorithms. The signature algorithm is fixed for the certificate
970 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
971 * certificate type from |s| will be used.
972 * Returns the signature algorithm to use, or NULL on error.
973 */
974 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
975 {
976 if (idx == -1) {
977 if (s->server) {
978 size_t i;
979
980 /* Work out index corresponding to ciphersuite */
981 for (i = 0; i < SSL_PKEY_NUM; i++) {
982 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
983
984 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
985 idx = i;
986 break;
987 }
988 }
989
990 /*
991 * Some GOST ciphersuites allow more than one signature algorithms
992 * */
993 if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
994 int real_idx;
995
996 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
997 real_idx--) {
998 if (s->cert->pkeys[real_idx].privatekey != NULL) {
999 idx = real_idx;
1000 break;
1001 }
1002 }
1003 }
1004 /*
1005 * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1006 * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1007 */
1008 else if (idx == SSL_PKEY_GOST12_256) {
1009 int real_idx;
1010
1011 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1012 real_idx--) {
1013 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1014 idx = real_idx;
1015 break;
1016 }
1017 }
1018 }
1019 } else {
1020 idx = s->cert->key - s->cert->pkeys;
1021 }
1022 }
1023 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1024 return NULL;
1025 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1026 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(tls_default_sigalg[idx]);
1027
1028 if (!tls1_lookup_md(s->ctx, lu, NULL))
1029 return NULL;
1030 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1031 return NULL;
1032 return lu;
1033 }
1034 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1035 return NULL;
1036 return &legacy_rsa_sigalg;
1037 }
1038 /* Set peer sigalg based key type */
1039 int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
1040 {
1041 size_t idx;
1042 const SIGALG_LOOKUP *lu;
1043
1044 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
1045 return 0;
1046 lu = tls1_get_legacy_sigalg(s, idx);
1047 if (lu == NULL)
1048 return 0;
1049 s->s3.tmp.peer_sigalg = lu;
1050 return 1;
1051 }
1052
1053 size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
1054 {
1055 /*
1056 * If Suite B mode use Suite B sigalgs only, ignore any other
1057 * preferences.
1058 */
1059 #ifndef OPENSSL_NO_EC
1060 switch (tls1_suiteb(s)) {
1061 case SSL_CERT_FLAG_SUITEB_128_LOS:
1062 *psigs = suiteb_sigalgs;
1063 return OSSL_NELEM(suiteb_sigalgs);
1064
1065 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1066 *psigs = suiteb_sigalgs;
1067 return 1;
1068
1069 case SSL_CERT_FLAG_SUITEB_192_LOS:
1070 *psigs = suiteb_sigalgs + 1;
1071 return 1;
1072 }
1073 #endif
1074 /*
1075 * We use client_sigalgs (if not NULL) if we're a server
1076 * and sending a certificate request or if we're a client and
1077 * determining which shared algorithm to use.
1078 */
1079 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1080 *psigs = s->cert->client_sigalgs;
1081 return s->cert->client_sigalgslen;
1082 } else if (s->cert->conf_sigalgs) {
1083 *psigs = s->cert->conf_sigalgs;
1084 return s->cert->conf_sigalgslen;
1085 } else {
1086 *psigs = tls12_sigalgs;
1087 return OSSL_NELEM(tls12_sigalgs);
1088 }
1089 }
1090
1091 #ifndef OPENSSL_NO_EC
1092 /*
1093 * Called by servers only. Checks that we have a sig alg that supports the
1094 * specified EC curve.
1095 */
1096 int tls_check_sigalg_curve(const SSL *s, int curve)
1097 {
1098 const uint16_t *sigs;
1099 size_t siglen, i;
1100
1101 if (s->cert->conf_sigalgs) {
1102 sigs = s->cert->conf_sigalgs;
1103 siglen = s->cert->conf_sigalgslen;
1104 } else {
1105 sigs = tls12_sigalgs;
1106 siglen = OSSL_NELEM(tls12_sigalgs);
1107 }
1108
1109 for (i = 0; i < siglen; i++) {
1110 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(sigs[i]);
1111
1112 if (lu == NULL)
1113 continue;
1114 if (lu->sig == EVP_PKEY_EC
1115 && lu->curve != NID_undef
1116 && curve == lu->curve)
1117 return 1;
1118 }
1119
1120 return 0;
1121 }
1122 #endif
1123
1124 /*
1125 * Return the number of security bits for the signature algorithm, or 0 on
1126 * error.
1127 */
1128 static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1129 {
1130 const EVP_MD *md = NULL;
1131 int secbits = 0;
1132
1133 if (!tls1_lookup_md(ctx, lu, &md))
1134 return 0;
1135 if (md != NULL)
1136 {
1137 /* Security bits: half digest bits */
1138 secbits = EVP_MD_size(md) * 4;
1139 } else {
1140 /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1141 if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1142 secbits = 128;
1143 else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1144 secbits = 224;
1145 }
1146 return secbits;
1147 }
1148
1149 /*
1150 * Check signature algorithm is consistent with sent supported signature
1151 * algorithms and if so set relevant digest and signature scheme in
1152 * s.
1153 */
1154 int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
1155 {
1156 const uint16_t *sent_sigs;
1157 const EVP_MD *md = NULL;
1158 char sigalgstr[2];
1159 size_t sent_sigslen, i, cidx;
1160 int pkeyid = -1;
1161 const SIGALG_LOOKUP *lu;
1162 int secbits = 0;
1163
1164 /*
1165 * TODO(3.0) Remove this when we adapted this function for provider
1166 * side keys. We know that EVP_PKEY_get0() downgrades an EVP_PKEY
1167 * to contain a legacy key.
1168 *
1169 * THIS IS TEMPORARY
1170 */
1171 EVP_PKEY_get0(pkey);
1172 if (EVP_PKEY_id(pkey) == EVP_PKEY_NONE)
1173 return 0;
1174
1175 pkeyid = EVP_PKEY_id(pkey);
1176 /* Should never happen */
1177 if (pkeyid == -1)
1178 return -1;
1179 if (SSL_IS_TLS13(s)) {
1180 /* Disallow DSA for TLS 1.3 */
1181 if (pkeyid == EVP_PKEY_DSA) {
1182 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1183 SSL_R_WRONG_SIGNATURE_TYPE);
1184 return 0;
1185 }
1186 /* Only allow PSS for TLS 1.3 */
1187 if (pkeyid == EVP_PKEY_RSA)
1188 pkeyid = EVP_PKEY_RSA_PSS;
1189 }
1190 lu = tls1_lookup_sigalg(sig);
1191 /*
1192 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1193 * is consistent with signature: RSA keys can be used for RSA-PSS
1194 */
1195 if (lu == NULL
1196 || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1197 || (pkeyid != lu->sig
1198 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1199 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1200 SSL_R_WRONG_SIGNATURE_TYPE);
1201 return 0;
1202 }
1203 /* Check the sigalg is consistent with the key OID */
1204 if (!ssl_cert_lookup_by_nid(EVP_PKEY_id(pkey), &cidx)
1205 || lu->sig_idx != (int)cidx) {
1206 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1207 SSL_R_WRONG_SIGNATURE_TYPE);
1208 return 0;
1209 }
1210
1211 #ifndef OPENSSL_NO_EC
1212 if (pkeyid == EVP_PKEY_EC) {
1213
1214 /* Check point compression is permitted */
1215 if (!tls1_check_pkey_comp(s, pkey)) {
1216 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1217 SSL_F_TLS12_CHECK_PEER_SIGALG,
1218 SSL_R_ILLEGAL_POINT_COMPRESSION);
1219 return 0;
1220 }
1221
1222 /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1223 if (SSL_IS_TLS13(s) || tls1_suiteb(s)) {
1224 int curve = evp_pkey_get_EC_KEY_curve_nid(pkey);
1225
1226 if (lu->curve != NID_undef && curve != lu->curve) {
1227 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1228 SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
1229 return 0;
1230 }
1231 }
1232 if (!SSL_IS_TLS13(s)) {
1233 /* Check curve matches extensions */
1234 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1235 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1236 SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
1237 return 0;
1238 }
1239 if (tls1_suiteb(s)) {
1240 /* Check sigalg matches a permissible Suite B value */
1241 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1242 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1243 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1244 SSL_F_TLS12_CHECK_PEER_SIGALG,
1245 SSL_R_WRONG_SIGNATURE_TYPE);
1246 return 0;
1247 }
1248 }
1249 }
1250 } else if (tls1_suiteb(s)) {
1251 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1252 SSL_R_WRONG_SIGNATURE_TYPE);
1253 return 0;
1254 }
1255 #endif
1256
1257 /* Check signature matches a type we sent */
1258 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1259 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1260 if (sig == *sent_sigs)
1261 break;
1262 }
1263 /* Allow fallback to SHA1 if not strict mode */
1264 if (i == sent_sigslen && (lu->hash != NID_sha1
1265 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1266 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1267 SSL_R_WRONG_SIGNATURE_TYPE);
1268 return 0;
1269 }
1270 if (!tls1_lookup_md(s->ctx, lu, &md)) {
1271 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1272 SSL_R_UNKNOWN_DIGEST);
1273 return 0;
1274 }
1275 /*
1276 * Make sure security callback allows algorithm. For historical
1277 * reasons we have to pass the sigalg as a two byte char array.
1278 */
1279 sigalgstr[0] = (sig >> 8) & 0xff;
1280 sigalgstr[1] = sig & 0xff;
1281 secbits = sigalg_security_bits(s->ctx, lu);
1282 if (secbits == 0 ||
1283 !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
1284 md != NULL ? EVP_MD_type(md) : NID_undef,
1285 (void *)sigalgstr)) {
1286 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1287 SSL_R_WRONG_SIGNATURE_TYPE);
1288 return 0;
1289 }
1290 /* Store the sigalg the peer uses */
1291 s->s3.tmp.peer_sigalg = lu;
1292 return 1;
1293 }
1294
1295 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1296 {
1297 if (s->s3.tmp.peer_sigalg == NULL)
1298 return 0;
1299 *pnid = s->s3.tmp.peer_sigalg->sig;
1300 return 1;
1301 }
1302
1303 int SSL_get_signature_type_nid(const SSL *s, int *pnid)
1304 {
1305 if (s->s3.tmp.sigalg == NULL)
1306 return 0;
1307 *pnid = s->s3.tmp.sigalg->sig;
1308 return 1;
1309 }
1310
1311 /*
1312 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1313 * supported, doesn't appear in supported signature algorithms, isn't supported
1314 * by the enabled protocol versions or by the security level.
1315 *
1316 * This function should only be used for checking which ciphers are supported
1317 * by the client.
1318 *
1319 * Call ssl_cipher_disabled() to check that it's enabled or not.
1320 */
1321 int ssl_set_client_disabled(SSL *s)
1322 {
1323 s->s3.tmp.mask_a = 0;
1324 s->s3.tmp.mask_k = 0;
1325 ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1326 if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
1327 &s->s3.tmp.max_ver, NULL) != 0)
1328 return 0;
1329 #ifndef OPENSSL_NO_PSK
1330 /* with PSK there must be client callback set */
1331 if (!s->psk_client_callback) {
1332 s->s3.tmp.mask_a |= SSL_aPSK;
1333 s->s3.tmp.mask_k |= SSL_PSK;
1334 }
1335 #endif /* OPENSSL_NO_PSK */
1336 #ifndef OPENSSL_NO_SRP
1337 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1338 s->s3.tmp.mask_a |= SSL_aSRP;
1339 s->s3.tmp.mask_k |= SSL_kSRP;
1340 }
1341 #endif
1342 return 1;
1343 }
1344
1345 /*
1346 * ssl_cipher_disabled - check that a cipher is disabled or not
1347 * @s: SSL connection that you want to use the cipher on
1348 * @c: cipher to check
1349 * @op: Security check that you want to do
1350 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1351 *
1352 * Returns 1 when it's disabled, 0 when enabled.
1353 */
1354 int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
1355 {
1356 if (c->algorithm_mkey & s->s3.tmp.mask_k
1357 || c->algorithm_auth & s->s3.tmp.mask_a)
1358 return 1;
1359 if (s->s3.tmp.max_ver == 0)
1360 return 1;
1361 if (!SSL_IS_DTLS(s)) {
1362 int min_tls = c->min_tls;
1363
1364 /*
1365 * For historical reasons we will allow ECHDE to be selected by a server
1366 * in SSLv3 if we are a client
1367 */
1368 if (min_tls == TLS1_VERSION && ecdhe
1369 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1370 min_tls = SSL3_VERSION;
1371
1372 if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))
1373 return 1;
1374 }
1375 if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)
1376 || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))
1377 return 1;
1378
1379 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1380 }
1381
1382 int tls_use_ticket(SSL *s)
1383 {
1384 if ((s->options & SSL_OP_NO_TICKET))
1385 return 0;
1386 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1387 }
1388
1389 int tls1_set_server_sigalgs(SSL *s)
1390 {
1391 size_t i;
1392
1393 /* Clear any shared signature algorithms */
1394 OPENSSL_free(s->shared_sigalgs);
1395 s->shared_sigalgs = NULL;
1396 s->shared_sigalgslen = 0;
1397 /* Clear certificate validity flags */
1398 for (i = 0; i < SSL_PKEY_NUM; i++)
1399 s->s3.tmp.valid_flags[i] = 0;
1400 /*
1401 * If peer sent no signature algorithms check to see if we support
1402 * the default algorithm for each certificate type
1403 */
1404 if (s->s3.tmp.peer_cert_sigalgs == NULL
1405 && s->s3.tmp.peer_sigalgs == NULL) {
1406 const uint16_t *sent_sigs;
1407 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1408
1409 for (i = 0; i < SSL_PKEY_NUM; i++) {
1410 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1411 size_t j;
1412
1413 if (lu == NULL)
1414 continue;
1415 /* Check default matches a type we sent */
1416 for (j = 0; j < sent_sigslen; j++) {
1417 if (lu->sigalg == sent_sigs[j]) {
1418 s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
1419 break;
1420 }
1421 }
1422 }
1423 return 1;
1424 }
1425
1426 if (!tls1_process_sigalgs(s)) {
1427 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
1428 SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_INTERNAL_ERROR);
1429 return 0;
1430 }
1431 if (s->shared_sigalgs != NULL)
1432 return 1;
1433
1434 /* Fatal error if no shared signature algorithms */
1435 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS1_SET_SERVER_SIGALGS,
1436 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1437 return 0;
1438 }
1439
1440 /*-
1441 * Gets the ticket information supplied by the client if any.
1442 *
1443 * hello: The parsed ClientHello data
1444 * ret: (output) on return, if a ticket was decrypted, then this is set to
1445 * point to the resulting session.
1446 */
1447 SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1448 SSL_SESSION **ret)
1449 {
1450 size_t size;
1451 RAW_EXTENSION *ticketext;
1452
1453 *ret = NULL;
1454 s->ext.ticket_expected = 0;
1455
1456 /*
1457 * If tickets disabled or not supported by the protocol version
1458 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1459 * resumption.
1460 */
1461 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1462 return SSL_TICKET_NONE;
1463
1464 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1465 if (!ticketext->present)
1466 return SSL_TICKET_NONE;
1467
1468 size = PACKET_remaining(&ticketext->data);
1469
1470 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1471 hello->session_id, hello->session_id_len, ret);
1472 }
1473
1474 /*-
1475 * tls_decrypt_ticket attempts to decrypt a session ticket.
1476 *
1477 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
1478 * expecting a pre-shared key ciphersuite, in which case we have no use for
1479 * session tickets and one will never be decrypted, nor will
1480 * s->ext.ticket_expected be set to 1.
1481 *
1482 * Side effects:
1483 * Sets s->ext.ticket_expected to 1 if the server will have to issue
1484 * a new session ticket to the client because the client indicated support
1485 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1486 * a session ticket or we couldn't use the one it gave us, or if
1487 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1488 * Otherwise, s->ext.ticket_expected is set to 0.
1489 *
1490 * etick: points to the body of the session ticket extension.
1491 * eticklen: the length of the session tickets extension.
1492 * sess_id: points at the session ID.
1493 * sesslen: the length of the session ID.
1494 * psess: (output) on return, if a ticket was decrypted, then this is set to
1495 * point to the resulting session.
1496 */
1497 SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1498 size_t eticklen, const unsigned char *sess_id,
1499 size_t sesslen, SSL_SESSION **psess)
1500 {
1501 SSL_SESSION *sess = NULL;
1502 unsigned char *sdec;
1503 const unsigned char *p;
1504 int slen, renew_ticket = 0, declen;
1505 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
1506 size_t mlen;
1507 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1508 SSL_HMAC *hctx = NULL;
1509 EVP_CIPHER_CTX *ctx = NULL;
1510 SSL_CTX *tctx = s->session_ctx;
1511
1512 if (eticklen == 0) {
1513 /*
1514 * The client will accept a ticket but doesn't currently have
1515 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
1516 */
1517 ret = SSL_TICKET_EMPTY;
1518 goto end;
1519 }
1520 if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) {
1521 /*
1522 * Indicate that the ticket couldn't be decrypted rather than
1523 * generating the session from ticket now, trigger
1524 * abbreviated handshake based on external mechanism to
1525 * calculate the master secret later.
1526 */
1527 ret = SSL_TICKET_NO_DECRYPT;
1528 goto end;
1529 }
1530
1531 /* Need at least keyname + iv */
1532 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
1533 ret = SSL_TICKET_NO_DECRYPT;
1534 goto end;
1535 }
1536
1537 /* Initialize session ticket encryption and HMAC contexts */
1538 hctx = ssl_hmac_new(tctx);
1539 if (hctx == NULL) {
1540 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1541 goto end;
1542 }
1543 ctx = EVP_CIPHER_CTX_new();
1544 if (ctx == NULL) {
1545 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1546 goto end;
1547 }
1548 #ifndef OPENSSL_NO_DEPRECATED_3_0
1549 if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
1550 #else
1551 if (tctx->ext.ticket_key_evp_cb != NULL)
1552 #endif
1553 {
1554 unsigned char *nctick = (unsigned char *)etick;
1555 int rv = 0;
1556
1557 if (tctx->ext.ticket_key_evp_cb != NULL)
1558 rv = tctx->ext.ticket_key_evp_cb(s, nctick,
1559 nctick + TLSEXT_KEYNAME_LENGTH,
1560 ctx,
1561 ssl_hmac_get0_EVP_MAC_CTX(hctx),
1562 0);
1563 #ifndef OPENSSL_NO_DEPRECATED_3_0
1564 else if (tctx->ext.ticket_key_cb != NULL)
1565 /* if 0 is returned, write an empty ticket */
1566 rv = tctx->ext.ticket_key_cb(s, nctick,
1567 nctick + TLSEXT_KEYNAME_LENGTH,
1568 ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
1569 #endif
1570 if (rv < 0) {
1571 ret = SSL_TICKET_FATAL_ERR_OTHER;
1572 goto end;
1573 }
1574 if (rv == 0) {
1575 ret = SSL_TICKET_NO_DECRYPT;
1576 goto end;
1577 }
1578 if (rv == 2)
1579 renew_ticket = 1;
1580 } else {
1581 EVP_CIPHER *aes256cbc = NULL;
1582
1583 /* Check key name matches */
1584 if (memcmp(etick, tctx->ext.tick_key_name,
1585 TLSEXT_KEYNAME_LENGTH) != 0) {
1586 ret = SSL_TICKET_NO_DECRYPT;
1587 goto end;
1588 }
1589
1590 aes256cbc = EVP_CIPHER_fetch(s->ctx->libctx, "AES-256-CBC",
1591 s->ctx->propq);
1592 if (aes256cbc == NULL
1593 || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
1594 sizeof(tctx->ext.secure->tick_hmac_key),
1595 "SHA256") <= 0
1596 || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
1597 tctx->ext.secure->tick_aes_key,
1598 etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
1599 EVP_CIPHER_free(aes256cbc);
1600 ret = SSL_TICKET_FATAL_ERR_OTHER;
1601 goto end;
1602 }
1603 EVP_CIPHER_free(aes256cbc);
1604 if (SSL_IS_TLS13(s))
1605 renew_ticket = 1;
1606 }
1607 /*
1608 * Attempt to process session ticket, first conduct sanity and integrity
1609 * checks on ticket.
1610 */
1611 mlen = ssl_hmac_size(hctx);
1612 if (mlen == 0) {
1613 ret = SSL_TICKET_FATAL_ERR_OTHER;
1614 goto end;
1615 }
1616
1617 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1618 if (eticklen <=
1619 TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx) + mlen) {
1620 ret = SSL_TICKET_NO_DECRYPT;
1621 goto end;
1622 }
1623 eticklen -= mlen;
1624 /* Check HMAC of encrypted ticket */
1625 if (ssl_hmac_update(hctx, etick, eticklen) <= 0
1626 || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
1627 ret = SSL_TICKET_FATAL_ERR_OTHER;
1628 goto end;
1629 }
1630
1631 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1632 ret = SSL_TICKET_NO_DECRYPT;
1633 goto end;
1634 }
1635 /* Attempt to decrypt session data */
1636 /* Move p after IV to start of encrypted ticket, update length */
1637 p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1638 eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1639 sdec = OPENSSL_malloc(eticklen);
1640 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1641 (int)eticklen) <= 0) {
1642 OPENSSL_free(sdec);
1643 ret = SSL_TICKET_FATAL_ERR_OTHER;
1644 goto end;
1645 }
1646 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1647 OPENSSL_free(sdec);
1648 ret = SSL_TICKET_NO_DECRYPT;
1649 goto end;
1650 }
1651 slen += declen;
1652 p = sdec;
1653
1654 sess = d2i_SSL_SESSION(NULL, &p, slen);
1655 slen -= p - sdec;
1656 OPENSSL_free(sdec);
1657 if (sess) {
1658 /* Some additional consistency checks */
1659 if (slen != 0) {
1660 SSL_SESSION_free(sess);
1661 sess = NULL;
1662 ret = SSL_TICKET_NO_DECRYPT;
1663 goto end;
1664 }
1665 /*
1666 * The session ID, if non-empty, is used by some clients to detect
1667 * that the ticket has been accepted. So we copy it to the session
1668 * structure. If it is empty set length to zero as required by
1669 * standard.
1670 */
1671 if (sesslen) {
1672 memcpy(sess->session_id, sess_id, sesslen);
1673 sess->session_id_length = sesslen;
1674 }
1675 if (renew_ticket)
1676 ret = SSL_TICKET_SUCCESS_RENEW;
1677 else
1678 ret = SSL_TICKET_SUCCESS;
1679 goto end;
1680 }
1681 ERR_clear_error();
1682 /*
1683 * For session parse failure, indicate that we need to send a new ticket.
1684 */
1685 ret = SSL_TICKET_NO_DECRYPT;
1686
1687 end:
1688 EVP_CIPHER_CTX_free(ctx);
1689 ssl_hmac_free(hctx);
1690
1691 /*
1692 * If set, the decrypt_ticket_cb() is called unless a fatal error was
1693 * detected above. The callback is responsible for checking |ret| before it
1694 * performs any action
1695 */
1696 if (s->session_ctx->decrypt_ticket_cb != NULL
1697 && (ret == SSL_TICKET_EMPTY
1698 || ret == SSL_TICKET_NO_DECRYPT
1699 || ret == SSL_TICKET_SUCCESS
1700 || ret == SSL_TICKET_SUCCESS_RENEW)) {
1701 size_t keyname_len = eticklen;
1702 int retcb;
1703
1704 if (keyname_len > TLSEXT_KEYNAME_LENGTH)
1705 keyname_len = TLSEXT_KEYNAME_LENGTH;
1706 retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len,
1707 ret,
1708 s->session_ctx->ticket_cb_data);
1709 switch (retcb) {
1710 case SSL_TICKET_RETURN_ABORT:
1711 ret = SSL_TICKET_FATAL_ERR_OTHER;
1712 break;
1713
1714 case SSL_TICKET_RETURN_IGNORE:
1715 ret = SSL_TICKET_NONE;
1716 SSL_SESSION_free(sess);
1717 sess = NULL;
1718 break;
1719
1720 case SSL_TICKET_RETURN_IGNORE_RENEW:
1721 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
1722 ret = SSL_TICKET_NO_DECRYPT;
1723 /* else the value of |ret| will already do the right thing */
1724 SSL_SESSION_free(sess);
1725 sess = NULL;
1726 break;
1727
1728 case SSL_TICKET_RETURN_USE:
1729 case SSL_TICKET_RETURN_USE_RENEW:
1730 if (ret != SSL_TICKET_SUCCESS
1731 && ret != SSL_TICKET_SUCCESS_RENEW)
1732 ret = SSL_TICKET_FATAL_ERR_OTHER;
1733 else if (retcb == SSL_TICKET_RETURN_USE)
1734 ret = SSL_TICKET_SUCCESS;
1735 else
1736 ret = SSL_TICKET_SUCCESS_RENEW;
1737 break;
1738
1739 default:
1740 ret = SSL_TICKET_FATAL_ERR_OTHER;
1741 }
1742 }
1743
1744 if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) {
1745 switch (ret) {
1746 case SSL_TICKET_NO_DECRYPT:
1747 case SSL_TICKET_SUCCESS_RENEW:
1748 case SSL_TICKET_EMPTY:
1749 s->ext.ticket_expected = 1;
1750 }
1751 }
1752
1753 *psess = sess;
1754
1755 return ret;
1756 }
1757
1758 /* Check to see if a signature algorithm is allowed */
1759 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
1760 {
1761 unsigned char sigalgstr[2];
1762 int secbits;
1763
1764 /* See if sigalgs is recognised and if hash is enabled */
1765 if (!tls1_lookup_md(s->ctx, lu, NULL))
1766 return 0;
1767 /* DSA is not allowed in TLS 1.3 */
1768 if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
1769 return 0;
1770 /* TODO(OpenSSL1.2) fully axe DSA/etc. in ClientHello per TLS 1.3 spec */
1771 if (!s->server && !SSL_IS_DTLS(s) && s->s3.tmp.min_ver >= TLS1_3_VERSION
1772 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
1773 || lu->hash_idx == SSL_MD_MD5_IDX
1774 || lu->hash_idx == SSL_MD_SHA224_IDX))
1775 return 0;
1776
1777 /* See if public key algorithm allowed */
1778 if (ssl_cert_is_disabled(lu->sig_idx))
1779 return 0;
1780
1781 if (lu->sig == NID_id_GostR3410_2012_256
1782 || lu->sig == NID_id_GostR3410_2012_512
1783 || lu->sig == NID_id_GostR3410_2001) {
1784 /* We never allow GOST sig algs on the server with TLSv1.3 */
1785 if (s->server && SSL_IS_TLS13(s))
1786 return 0;
1787 if (!s->server
1788 && s->method->version == TLS_ANY_VERSION
1789 && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
1790 int i, num;
1791 STACK_OF(SSL_CIPHER) *sk;
1792
1793 /*
1794 * We're a client that could negotiate TLSv1.3. We only allow GOST
1795 * sig algs if we could negotiate TLSv1.2 or below and we have GOST
1796 * ciphersuites enabled.
1797 */
1798
1799 if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
1800 return 0;
1801
1802 sk = SSL_get_ciphers(s);
1803 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
1804 for (i = 0; i < num; i++) {
1805 const SSL_CIPHER *c;
1806
1807 c = sk_SSL_CIPHER_value(sk, i);
1808 /* Skip disabled ciphers */
1809 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
1810 continue;
1811
1812 if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
1813 break;
1814 }
1815 if (i == num)
1816 return 0;
1817 }
1818 }
1819
1820 /* Finally see if security callback allows it */
1821 secbits = sigalg_security_bits(s->ctx, lu);
1822 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
1823 sigalgstr[1] = lu->sigalg & 0xff;
1824 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
1825 }
1826
1827 /*
1828 * Get a mask of disabled public key algorithms based on supported signature
1829 * algorithms. For example if no signature algorithm supports RSA then RSA is
1830 * disabled.
1831 */
1832
1833 void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
1834 {
1835 const uint16_t *sigalgs;
1836 size_t i, sigalgslen;
1837 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
1838 /*
1839 * Go through all signature algorithms seeing if we support any
1840 * in disabled_mask.
1841 */
1842 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
1843 for (i = 0; i < sigalgslen; i++, sigalgs++) {
1844 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*sigalgs);
1845 const SSL_CERT_LOOKUP *clu;
1846
1847 if (lu == NULL)
1848 continue;
1849
1850 clu = ssl_cert_lookup_by_idx(lu->sig_idx);
1851 if (clu == NULL)
1852 continue;
1853
1854 /* If algorithm is disabled see if we can enable it */
1855 if ((clu->amask & disabled_mask) != 0
1856 && tls12_sigalg_allowed(s, op, lu))
1857 disabled_mask &= ~clu->amask;
1858 }
1859 *pmask_a |= disabled_mask;
1860 }
1861
1862 int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
1863 const uint16_t *psig, size_t psiglen)
1864 {
1865 size_t i;
1866 int rv = 0;
1867
1868 for (i = 0; i < psiglen; i++, psig++) {
1869 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*psig);
1870
1871 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1872 continue;
1873 if (!WPACKET_put_bytes_u16(pkt, *psig))
1874 return 0;
1875 /*
1876 * If TLS 1.3 must have at least one valid TLS 1.3 message
1877 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
1878 */
1879 if (rv == 0 && (!SSL_IS_TLS13(s)
1880 || (lu->sig != EVP_PKEY_RSA
1881 && lu->hash != NID_sha1
1882 && lu->hash != NID_sha224)))
1883 rv = 1;
1884 }
1885 if (rv == 0)
1886 SSLerr(SSL_F_TLS12_COPY_SIGALGS, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
1887 return rv;
1888 }
1889
1890 /* Given preference and allowed sigalgs set shared sigalgs */
1891 static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
1892 const uint16_t *pref, size_t preflen,
1893 const uint16_t *allow, size_t allowlen)
1894 {
1895 const uint16_t *ptmp, *atmp;
1896 size_t i, j, nmatch = 0;
1897 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
1898 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*ptmp);
1899
1900 /* Skip disabled hashes or signature algorithms */
1901 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
1902 continue;
1903 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
1904 if (*ptmp == *atmp) {
1905 nmatch++;
1906 if (shsig)
1907 *shsig++ = lu;
1908 break;
1909 }
1910 }
1911 }
1912 return nmatch;
1913 }
1914
1915 /* Set shared signature algorithms for SSL structures */
1916 static int tls1_set_shared_sigalgs(SSL *s)
1917 {
1918 const uint16_t *pref, *allow, *conf;
1919 size_t preflen, allowlen, conflen;
1920 size_t nmatch;
1921 const SIGALG_LOOKUP **salgs = NULL;
1922 CERT *c = s->cert;
1923 unsigned int is_suiteb = tls1_suiteb(s);
1924
1925 OPENSSL_free(s->shared_sigalgs);
1926 s->shared_sigalgs = NULL;
1927 s->shared_sigalgslen = 0;
1928 /* If client use client signature algorithms if not NULL */
1929 if (!s->server && c->client_sigalgs && !is_suiteb) {
1930 conf = c->client_sigalgs;
1931 conflen = c->client_sigalgslen;
1932 } else if (c->conf_sigalgs && !is_suiteb) {
1933 conf = c->conf_sigalgs;
1934 conflen = c->conf_sigalgslen;
1935 } else
1936 conflen = tls12_get_psigalgs(s, 0, &conf);
1937 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
1938 pref = conf;
1939 preflen = conflen;
1940 allow = s->s3.tmp.peer_sigalgs;
1941 allowlen = s->s3.tmp.peer_sigalgslen;
1942 } else {
1943 allow = conf;
1944 allowlen = conflen;
1945 pref = s->s3.tmp.peer_sigalgs;
1946 preflen = s->s3.tmp.peer_sigalgslen;
1947 }
1948 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
1949 if (nmatch) {
1950 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) {
1951 SSLerr(SSL_F_TLS1_SET_SHARED_SIGALGS, ERR_R_MALLOC_FAILURE);
1952 return 0;
1953 }
1954 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
1955 } else {
1956 salgs = NULL;
1957 }
1958 s->shared_sigalgs = salgs;
1959 s->shared_sigalgslen = nmatch;
1960 return 1;
1961 }
1962
1963 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
1964 {
1965 unsigned int stmp;
1966 size_t size, i;
1967 uint16_t *buf;
1968
1969 size = PACKET_remaining(pkt);
1970
1971 /* Invalid data length */
1972 if (size == 0 || (size & 1) != 0)
1973 return 0;
1974
1975 size >>= 1;
1976
1977 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) {
1978 SSLerr(SSL_F_TLS1_SAVE_U16, ERR_R_MALLOC_FAILURE);
1979 return 0;
1980 }
1981 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
1982 buf[i] = stmp;
1983
1984 if (i != size) {
1985 OPENSSL_free(buf);
1986 return 0;
1987 }
1988
1989 OPENSSL_free(*pdest);
1990 *pdest = buf;
1991 *pdestlen = size;
1992
1993 return 1;
1994 }
1995
1996 int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)
1997 {
1998 /* Extension ignored for inappropriate versions */
1999 if (!SSL_USE_SIGALGS(s))
2000 return 1;
2001 /* Should never happen */
2002 if (s->cert == NULL)
2003 return 0;
2004
2005 if (cert)
2006 return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2007 &s->s3.tmp.peer_cert_sigalgslen);
2008 else
2009 return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2010 &s->s3.tmp.peer_sigalgslen);
2011
2012 }
2013
2014 /* Set preferred digest for each key type */
2015
2016 int tls1_process_sigalgs(SSL *s)
2017 {
2018 size_t i;
2019 uint32_t *pvalid = s->s3.tmp.valid_flags;
2020
2021 if (!tls1_set_shared_sigalgs(s))
2022 return 0;
2023
2024 for (i = 0; i < SSL_PKEY_NUM; i++)
2025 pvalid[i] = 0;
2026
2027 for (i = 0; i < s->shared_sigalgslen; i++) {
2028 const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2029 int idx = sigptr->sig_idx;
2030
2031 /* Ignore PKCS1 based sig algs in TLSv1.3 */
2032 if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2033 continue;
2034 /* If not disabled indicate we can explicitly sign */
2035 if (pvalid[idx] == 0 && !ssl_cert_is_disabled(idx))
2036 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2037 }
2038 return 1;
2039 }
2040
2041 int SSL_get_sigalgs(SSL *s, int idx,
2042 int *psign, int *phash, int *psignhash,
2043 unsigned char *rsig, unsigned char *rhash)
2044 {
2045 uint16_t *psig = s->s3.tmp.peer_sigalgs;
2046 size_t numsigalgs = s->s3.tmp.peer_sigalgslen;
2047 if (psig == NULL || numsigalgs > INT_MAX)
2048 return 0;
2049 if (idx >= 0) {
2050 const SIGALG_LOOKUP *lu;
2051
2052 if (idx >= (int)numsigalgs)
2053 return 0;
2054 psig += idx;
2055 if (rhash != NULL)
2056 *rhash = (unsigned char)((*psig >> 8) & 0xff);
2057 if (rsig != NULL)
2058 *rsig = (unsigned char)(*psig & 0xff);
2059 lu = tls1_lookup_sigalg(*psig);
2060 if (psign != NULL)
2061 *psign = lu != NULL ? lu->sig : NID_undef;
2062 if (phash != NULL)
2063 *phash = lu != NULL ? lu->hash : NID_undef;
2064 if (psignhash != NULL)
2065 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2066 }
2067 return (int)numsigalgs;
2068 }
2069
2070 int SSL_get_shared_sigalgs(SSL *s, int idx,
2071 int *psign, int *phash, int *psignhash,
2072 unsigned char *rsig, unsigned char *rhash)
2073 {
2074 const SIGALG_LOOKUP *shsigalgs;
2075 if (s->shared_sigalgs == NULL
2076 || idx < 0
2077 || idx >= (int)s->shared_sigalgslen
2078 || s->shared_sigalgslen > INT_MAX)
2079 return 0;
2080 shsigalgs = s->shared_sigalgs[idx];
2081 if (phash != NULL)
2082 *phash = shsigalgs->hash;
2083 if (psign != NULL)
2084 *psign = shsigalgs->sig;
2085 if (psignhash != NULL)
2086 *psignhash = shsigalgs->sigandhash;
2087 if (rsig != NULL)
2088 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2089 if (rhash != NULL)
2090 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2091 return (int)s->shared_sigalgslen;
2092 }
2093
2094 /* Maximum possible number of unique entries in sigalgs array */
2095 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2096
2097 typedef struct {
2098 size_t sigalgcnt;
2099 /* TLSEXT_SIGALG_XXX values */
2100 uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2101 } sig_cb_st;
2102
2103 static void get_sigorhash(int *psig, int *phash, const char *str)
2104 {
2105 if (strcmp(str, "RSA") == 0) {
2106 *psig = EVP_PKEY_RSA;
2107 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2108 *psig = EVP_PKEY_RSA_PSS;
2109 } else if (strcmp(str, "DSA") == 0) {
2110 *psig = EVP_PKEY_DSA;
2111 } else if (strcmp(str, "ECDSA") == 0) {
2112 *psig = EVP_PKEY_EC;
2113 } else {
2114 *phash = OBJ_sn2nid(str);
2115 if (*phash == NID_undef)
2116 *phash = OBJ_ln2nid(str);
2117 }
2118 }
2119 /* Maximum length of a signature algorithm string component */
2120 #define TLS_MAX_SIGSTRING_LEN 40
2121
2122 static int sig_cb(const char *elem, int len, void *arg)
2123 {
2124 sig_cb_st *sarg = arg;
2125 size_t i;
2126 const SIGALG_LOOKUP *s;
2127 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2128 int sig_alg = NID_undef, hash_alg = NID_undef;
2129 if (elem == NULL)
2130 return 0;
2131 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2132 return 0;
2133 if (len > (int)(sizeof(etmp) - 1))
2134 return 0;
2135 memcpy(etmp, elem, len);
2136 etmp[len] = 0;
2137 p = strchr(etmp, '+');
2138 /*
2139 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2140 * if there's no '+' in the provided name, look for the new-style combined
2141 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2142 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2143 * rsa_pss_rsae_* that differ only by public key OID; in such cases
2144 * we will pick the _rsae_ variant, by virtue of them appearing earlier
2145 * in the table.
2146 */
2147 if (p == NULL) {
2148 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2149 i++, s++) {
2150 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2151 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2152 break;
2153 }
2154 }
2155 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2156 return 0;
2157 } else {
2158 *p = 0;
2159 p++;
2160 if (*p == 0)
2161 return 0;
2162 get_sigorhash(&sig_alg, &hash_alg, etmp);
2163 get_sigorhash(&sig_alg, &hash_alg, p);
2164 if (sig_alg == NID_undef || hash_alg == NID_undef)
2165 return 0;
2166 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2167 i++, s++) {
2168 if (s->hash == hash_alg && s->sig == sig_alg) {
2169 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2170 break;
2171 }
2172 }
2173 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2174 return 0;
2175 }
2176
2177 /* Reject duplicates */
2178 for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2179 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2180 sarg->sigalgcnt--;
2181 return 0;
2182 }
2183 }
2184 return 1;
2185 }
2186
2187 /*
2188 * Set supported signature algorithms based on a colon separated list of the
2189 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2190 */
2191 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
2192 {
2193 sig_cb_st sig;
2194 sig.sigalgcnt = 0;
2195 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2196 return 0;
2197 if (c == NULL)
2198 return 1;
2199 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2200 }
2201
2202 int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2203 int client)
2204 {
2205 uint16_t *sigalgs;
2206
2207 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) {
2208 SSLerr(SSL_F_TLS1_SET_RAW_SIGALGS, ERR_R_MALLOC_FAILURE);
2209 return 0;
2210 }
2211 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2212
2213 if (client) {
2214 OPENSSL_free(c->client_sigalgs);
2215 c->client_sigalgs = sigalgs;
2216 c->client_sigalgslen = salglen;
2217 } else {
2218 OPENSSL_free(c->conf_sigalgs);
2219 c->conf_sigalgs = sigalgs;
2220 c->conf_sigalgslen = salglen;
2221 }
2222
2223 return 1;
2224 }
2225
2226 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
2227 {
2228 uint16_t *sigalgs, *sptr;
2229 size_t i;
2230
2231 if (salglen & 1)
2232 return 0;
2233 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) {
2234 SSLerr(SSL_F_TLS1_SET_SIGALGS, ERR_R_MALLOC_FAILURE);
2235 return 0;
2236 }
2237 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
2238 size_t j;
2239 const SIGALG_LOOKUP *curr;
2240 int md_id = *psig_nids++;
2241 int sig_id = *psig_nids++;
2242
2243 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
2244 j++, curr++) {
2245 if (curr->hash == md_id && curr->sig == sig_id) {
2246 *sptr++ = curr->sigalg;
2247 break;
2248 }
2249 }
2250
2251 if (j == OSSL_NELEM(sigalg_lookup_tbl))
2252 goto err;
2253 }
2254
2255 if (client) {
2256 OPENSSL_free(c->client_sigalgs);
2257 c->client_sigalgs = sigalgs;
2258 c->client_sigalgslen = salglen / 2;
2259 } else {
2260 OPENSSL_free(c->conf_sigalgs);
2261 c->conf_sigalgs = sigalgs;
2262 c->conf_sigalgslen = salglen / 2;
2263 }
2264
2265 return 1;
2266
2267 err:
2268 OPENSSL_free(sigalgs);
2269 return 0;
2270 }
2271
2272 static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)
2273 {
2274 int sig_nid, use_pc_sigalgs = 0;
2275 size_t i;
2276 const SIGALG_LOOKUP *sigalg;
2277 size_t sigalgslen;
2278 if (default_nid == -1)
2279 return 1;
2280 sig_nid = X509_get_signature_nid(x);
2281 if (default_nid)
2282 return sig_nid == default_nid ? 1 : 0;
2283
2284 if (SSL_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
2285 /*
2286 * If we're in TLSv1.3 then we only get here if we're checking the
2287 * chain. If the peer has specified peer_cert_sigalgs then we use them
2288 * otherwise we default to normal sigalgs.
2289 */
2290 sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
2291 use_pc_sigalgs = 1;
2292 } else {
2293 sigalgslen = s->shared_sigalgslen;
2294 }
2295 for (i = 0; i < sigalgslen; i++) {
2296 sigalg = use_pc_sigalgs
2297 ? tls1_lookup_sigalg(s->s3.tmp.peer_cert_sigalgs[i])
2298 : s->shared_sigalgs[i];
2299 if (sigalg != NULL && sig_nid == sigalg->sigandhash)
2300 return 1;
2301 }
2302 return 0;
2303 }
2304
2305 /* Check to see if a certificate issuer name matches list of CA names */
2306 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
2307 {
2308 const X509_NAME *nm;
2309 int i;
2310 nm = X509_get_issuer_name(x);
2311 for (i = 0; i < sk_X509_NAME_num(names); i++) {
2312 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
2313 return 1;
2314 }
2315 return 0;
2316 }
2317
2318 /*
2319 * Check certificate chain is consistent with TLS extensions and is usable by
2320 * server. This servers two purposes: it allows users to check chains before
2321 * passing them to the server and it allows the server to check chains before
2322 * attempting to use them.
2323 */
2324
2325 /* Flags which need to be set for a certificate when strict mode not set */
2326
2327 #define CERT_PKEY_VALID_FLAGS \
2328 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
2329 /* Strict mode flags */
2330 #define CERT_PKEY_STRICT_FLAGS \
2331 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
2332 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
2333
2334 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
2335 int idx)
2336 {
2337 int i;
2338 int rv = 0;
2339 int check_flags = 0, strict_mode;
2340 CERT_PKEY *cpk = NULL;
2341 CERT *c = s->cert;
2342 uint32_t *pvalid;
2343 unsigned int suiteb_flags = tls1_suiteb(s);
2344 /* idx == -1 means checking server chains */
2345 if (idx != -1) {
2346 /* idx == -2 means checking client certificate chains */
2347 if (idx == -2) {
2348 cpk = c->key;
2349 idx = (int)(cpk - c->pkeys);
2350 } else
2351 cpk = c->pkeys + idx;
2352 pvalid = s->s3.tmp.valid_flags + idx;
2353 x = cpk->x509;
2354 pk = cpk->privatekey;
2355 chain = cpk->chain;
2356 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
2357 /* If no cert or key, forget it */
2358 if (!x || !pk)
2359 goto end;
2360 } else {
2361 size_t certidx;
2362
2363 if (!x || !pk)
2364 return 0;
2365
2366 if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
2367 return 0;
2368 idx = certidx;
2369 pvalid = s->s3.tmp.valid_flags + idx;
2370
2371 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
2372 check_flags = CERT_PKEY_STRICT_FLAGS;
2373 else
2374 check_flags = CERT_PKEY_VALID_FLAGS;
2375 strict_mode = 1;
2376 }
2377
2378 if (suiteb_flags) {
2379 int ok;
2380 if (check_flags)
2381 check_flags |= CERT_PKEY_SUITEB;
2382 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
2383 if (ok == X509_V_OK)
2384 rv |= CERT_PKEY_SUITEB;
2385 else if (!check_flags)
2386 goto end;
2387 }
2388
2389 /*
2390 * Check all signature algorithms are consistent with signature
2391 * algorithms extension if TLS 1.2 or later and strict mode.
2392 */
2393 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
2394 int default_nid;
2395 int rsign = 0;
2396 if (s->s3.tmp.peer_cert_sigalgs != NULL
2397 || s->s3.tmp.peer_sigalgs != NULL) {
2398 default_nid = 0;
2399 /* If no sigalgs extension use defaults from RFC5246 */
2400 } else {
2401 switch (idx) {
2402 case SSL_PKEY_RSA:
2403 rsign = EVP_PKEY_RSA;
2404 default_nid = NID_sha1WithRSAEncryption;
2405 break;
2406
2407 case SSL_PKEY_DSA_SIGN:
2408 rsign = EVP_PKEY_DSA;
2409 default_nid = NID_dsaWithSHA1;
2410 break;
2411
2412 case SSL_PKEY_ECC:
2413 rsign = EVP_PKEY_EC;
2414 default_nid = NID_ecdsa_with_SHA1;
2415 break;
2416
2417 case SSL_PKEY_GOST01:
2418 rsign = NID_id_GostR3410_2001;
2419 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
2420 break;
2421
2422 case SSL_PKEY_GOST12_256:
2423 rsign = NID_id_GostR3410_2012_256;
2424 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
2425 break;
2426
2427 case SSL_PKEY_GOST12_512:
2428 rsign = NID_id_GostR3410_2012_512;
2429 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
2430 break;
2431
2432 default:
2433 default_nid = -1;
2434 break;
2435 }
2436 }
2437 /*
2438 * If peer sent no signature algorithms extension and we have set
2439 * preferred signature algorithms check we support sha1.
2440 */
2441 if (default_nid > 0 && c->conf_sigalgs) {
2442 size_t j;
2443 const uint16_t *p = c->conf_sigalgs;
2444 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
2445 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*p);
2446
2447 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
2448 break;
2449 }
2450 if (j == c->conf_sigalgslen) {
2451 if (check_flags)
2452 goto skip_sigs;
2453 else
2454 goto end;
2455 }
2456 }
2457 /* Check signature algorithm of each cert in chain */
2458 if (SSL_IS_TLS13(s)) {
2459 /*
2460 * We only get here if the application has called SSL_check_chain(),
2461 * so check_flags is always set.
2462 */
2463 if (find_sig_alg(s, x, pk) != NULL)
2464 rv |= CERT_PKEY_EE_SIGNATURE;
2465 } else if (!tls1_check_sig_alg(s, x, default_nid)) {
2466 if (!check_flags)
2467 goto end;
2468 } else
2469 rv |= CERT_PKEY_EE_SIGNATURE;
2470 rv |= CERT_PKEY_CA_SIGNATURE;
2471 for (i = 0; i < sk_X509_num(chain); i++) {
2472 if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
2473 if (check_flags) {
2474 rv &= ~CERT_PKEY_CA_SIGNATURE;
2475 break;
2476 } else
2477 goto end;
2478 }
2479 }
2480 }
2481 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2482 else if (check_flags)
2483 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2484 skip_sigs:
2485 /* Check cert parameters are consistent */
2486 if (tls1_check_cert_param(s, x, 1))
2487 rv |= CERT_PKEY_EE_PARAM;
2488 else if (!check_flags)
2489 goto end;
2490 if (!s->server)
2491 rv |= CERT_PKEY_CA_PARAM;
2492 /* In strict mode check rest of chain too */
2493 else if (strict_mode) {
2494 rv |= CERT_PKEY_CA_PARAM;
2495 for (i = 0; i < sk_X509_num(chain); i++) {
2496 X509 *ca = sk_X509_value(chain, i);
2497 if (!tls1_check_cert_param(s, ca, 0)) {
2498 if (check_flags) {
2499 rv &= ~CERT_PKEY_CA_PARAM;
2500 break;
2501 } else
2502 goto end;
2503 }
2504 }
2505 }
2506 if (!s->server && strict_mode) {
2507 STACK_OF(X509_NAME) *ca_dn;
2508 int check_type = 0;
2509
2510 if (EVP_PKEY_is_a(pk, "RSA"))
2511 check_type = TLS_CT_RSA_SIGN;
2512 else if (EVP_PKEY_is_a(pk, "DSA"))
2513 check_type = TLS_CT_DSS_SIGN;
2514 else if (EVP_PKEY_is_a(pk, "EC"))
2515 check_type = TLS_CT_ECDSA_SIGN;
2516
2517 if (check_type) {
2518 const uint8_t *ctypes = s->s3.tmp.ctype;
2519 size_t j;
2520
2521 for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
2522 if (*ctypes == check_type) {
2523 rv |= CERT_PKEY_CERT_TYPE;
2524 break;
2525 }
2526 }
2527 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2528 goto end;
2529 } else {
2530 rv |= CERT_PKEY_CERT_TYPE;
2531 }
2532
2533 ca_dn = s->s3.tmp.peer_ca_names;
2534
2535 if (!sk_X509_NAME_num(ca_dn))
2536 rv |= CERT_PKEY_ISSUER_NAME;
2537
2538 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2539 if (ssl_check_ca_name(ca_dn, x))
2540 rv |= CERT_PKEY_ISSUER_NAME;
2541 }
2542 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2543 for (i = 0; i < sk_X509_num(chain); i++) {
2544 X509 *xtmp = sk_X509_value(chain, i);
2545 if (ssl_check_ca_name(ca_dn, xtmp)) {
2546 rv |= CERT_PKEY_ISSUER_NAME;
2547 break;
2548 }
2549 }
2550 }
2551 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2552 goto end;
2553 } else
2554 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2555
2556 if (!check_flags || (rv & check_flags) == check_flags)
2557 rv |= CERT_PKEY_VALID;
2558
2559 end:
2560
2561 if (TLS1_get_version(s) >= TLS1_2_VERSION)
2562 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2563 else
2564 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2565
2566 /*
2567 * When checking a CERT_PKEY structure all flags are irrelevant if the
2568 * chain is invalid.
2569 */
2570 if (!check_flags) {
2571 if (rv & CERT_PKEY_VALID) {
2572 *pvalid = rv;
2573 } else {
2574 /* Preserve sign and explicit sign flag, clear rest */
2575 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2576 return 0;
2577 }
2578 }
2579 return rv;
2580 }
2581
2582 /* Set validity of certificates in an SSL structure */
2583 void tls1_set_cert_validity(SSL *s)
2584 {
2585 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2586 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
2587 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2588 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2589 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2590 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2591 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2592 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
2593 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
2594 }
2595
2596 /* User level utility function to check a chain is suitable */
2597 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2598 {
2599 return tls1_check_chain(s, x, pk, chain, -1);
2600 }
2601
2602 #ifndef OPENSSL_NO_DH
2603 DH *ssl_get_auto_dh(SSL *s)
2604 {
2605 int dh_secbits = 80;
2606 if (s->cert->dh_tmp_auto == 2)
2607 return DH_get_1024_160();
2608 if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2609 if (s->s3.tmp.new_cipher->strength_bits == 256)
2610 dh_secbits = 128;
2611 else
2612 dh_secbits = 80;
2613 } else {
2614 if (s->s3.tmp.cert == NULL)
2615 return NULL;
2616 dh_secbits = EVP_PKEY_security_bits(s->s3.tmp.cert->privatekey);
2617 }
2618
2619 if (dh_secbits >= 128) {
2620 DH *dhp = DH_new();
2621 BIGNUM *p, *g;
2622 if (dhp == NULL)
2623 return NULL;
2624 g = BN_new();
2625 if (g == NULL || !BN_set_word(g, 2)) {
2626 DH_free(dhp);
2627 BN_free(g);
2628 return NULL;
2629 }
2630 if (dh_secbits >= 192)
2631 p = BN_get_rfc3526_prime_8192(NULL);
2632 else
2633 p = BN_get_rfc3526_prime_3072(NULL);
2634 if (p == NULL || !DH_set0_pqg(dhp, p, NULL, g)) {
2635 DH_free(dhp);
2636 BN_free(p);
2637 BN_free(g);
2638 return NULL;
2639 }
2640 return dhp;
2641 }
2642 if (dh_secbits >= 112)
2643 return DH_get_2048_224();
2644 return DH_get_1024_160();
2645 }
2646 #endif
2647
2648 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2649 {
2650 int secbits = -1;
2651 EVP_PKEY *pkey = X509_get0_pubkey(x);
2652 if (pkey) {
2653 /*
2654 * If no parameters this will return -1 and fail using the default
2655 * security callback for any non-zero security level. This will
2656 * reject keys which omit parameters but this only affects DSA and
2657 * omission of parameters is never (?) done in practice.
2658 */
2659 secbits = EVP_PKEY_security_bits(pkey);
2660 }
2661 if (s)
2662 return ssl_security(s, op, secbits, 0, x);
2663 else
2664 return ssl_ctx_security(ctx, op, secbits, 0, x);
2665 }
2666
2667 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2668 {
2669 /* Lookup signature algorithm digest */
2670 int secbits, nid, pknid;
2671 /* Don't check signature if self signed */
2672 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
2673 return 1;
2674 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
2675 secbits = -1;
2676 /* If digest NID not defined use signature NID */
2677 if (nid == NID_undef)
2678 nid = pknid;
2679 if (s)
2680 return ssl_security(s, op, secbits, nid, x);
2681 else
2682 return ssl_ctx_security(ctx, op, secbits, nid, x);
2683 }
2684
2685 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
2686 {
2687 if (vfy)
2688 vfy = SSL_SECOP_PEER;
2689 if (is_ee) {
2690 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
2691 return SSL_R_EE_KEY_TOO_SMALL;
2692 } else {
2693 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
2694 return SSL_R_CA_KEY_TOO_SMALL;
2695 }
2696 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
2697 return SSL_R_CA_MD_TOO_WEAK;
2698 return 1;
2699 }
2700
2701 /*
2702 * Check security of a chain, if |sk| includes the end entity certificate then
2703 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
2704 * one to the peer. Return values: 1 if ok otherwise error code to use
2705 */
2706
2707 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
2708 {
2709 int rv, start_idx, i;
2710 if (x == NULL) {
2711 x = sk_X509_value(sk, 0);
2712 start_idx = 1;
2713 } else
2714 start_idx = 0;
2715
2716 rv = ssl_security_cert(s, NULL, x, vfy, 1);
2717 if (rv != 1)
2718 return rv;
2719
2720 for (i = start_idx; i < sk_X509_num(sk); i++) {
2721 x = sk_X509_value(sk, i);
2722 rv = ssl_security_cert(s, NULL, x, vfy, 0);
2723 if (rv != 1)
2724 return rv;
2725 }
2726 return 1;
2727 }
2728
2729 /*
2730 * For TLS 1.2 servers check if we have a certificate which can be used
2731 * with the signature algorithm "lu" and return index of certificate.
2732 */
2733
2734 static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
2735 {
2736 int sig_idx = lu->sig_idx;
2737 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
2738
2739 /* If not recognised or not supported by cipher mask it is not suitable */
2740 if (clu == NULL
2741 || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
2742 || (clu->nid == EVP_PKEY_RSA_PSS
2743 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
2744 return -1;
2745
2746 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
2747 }
2748
2749 /*
2750 * Checks the given cert against signature_algorithm_cert restrictions sent by
2751 * the peer (if any) as well as whether the hash from the sigalg is usable with
2752 * the key.
2753 * Returns true if the cert is usable and false otherwise.
2754 */
2755 static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
2756 EVP_PKEY *pkey)
2757 {
2758 const SIGALG_LOOKUP *lu;
2759 int mdnid, pknid, supported;
2760 size_t i;
2761
2762 /*
2763 * If the given EVP_PKEY cannot supporting signing with this sigalg,
2764 * the answer is simply 'no'.
2765 */
2766 ERR_set_mark();
2767 supported = EVP_PKEY_supports_digest_nid(pkey, sig->hash);
2768 ERR_pop_to_mark();
2769 if (supported == 0)
2770 return 0;
2771
2772 /*
2773 * The TLS 1.3 signature_algorithms_cert extension places restrictions
2774 * on the sigalg with which the certificate was signed (by its issuer).
2775 */
2776 if (s->s3.tmp.peer_cert_sigalgs != NULL) {
2777 if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
2778 return 0;
2779 for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
2780 lu = tls1_lookup_sigalg(s->s3.tmp.peer_cert_sigalgs[i]);
2781 if (lu == NULL)
2782 continue;
2783
2784 /*
2785 * TODO this does not differentiate between the
2786 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
2787 * have a chain here that lets us look at the key OID in the
2788 * signing certificate.
2789 */
2790 if (mdnid == lu->hash && pknid == lu->sig)
2791 return 1;
2792 }
2793 return 0;
2794 }
2795
2796 /*
2797 * Without signat_algorithms_cert, any certificate for which we have
2798 * a viable public key is permitted.
2799 */
2800 return 1;
2801 }
2802
2803 /*
2804 * Returns true if |s| has a usable certificate configured for use
2805 * with signature scheme |sig|.
2806 * "Usable" includes a check for presence as well as applying
2807 * the signature_algorithm_cert restrictions sent by the peer (if any).
2808 * Returns false if no usable certificate is found.
2809 */
2810 static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)
2811 {
2812 /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
2813 if (idx == -1)
2814 idx = sig->sig_idx;
2815 if (!ssl_has_cert(s, idx))
2816 return 0;
2817
2818 return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
2819 s->cert->pkeys[idx].privatekey);
2820 }
2821
2822 /*
2823 * Returns true if the supplied cert |x| and key |pkey| is usable with the
2824 * specified signature scheme |sig|, or false otherwise.
2825 */
2826 static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
2827 EVP_PKEY *pkey)
2828 {
2829 size_t idx;
2830
2831 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
2832 return 0;
2833
2834 /* Check the key is consistent with the sig alg */
2835 if ((int)idx != sig->sig_idx)
2836 return 0;
2837
2838 return check_cert_usable(s, sig, x, pkey);
2839 }
2840
2841 /*
2842 * Find a signature scheme that works with the supplied certificate |x| and key
2843 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
2844 * available certs/keys to find one that works.
2845 */
2846 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)
2847 {
2848 const SIGALG_LOOKUP *lu = NULL;
2849 size_t i;
2850 #ifndef OPENSSL_NO_EC
2851 int curve = -1;
2852 #endif
2853 EVP_PKEY *tmppkey;
2854
2855 /* Look for a shared sigalgs matching possible certificates */
2856 for (i = 0; i < s->shared_sigalgslen; i++) {
2857 lu = s->shared_sigalgs[i];
2858
2859 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
2860 if (lu->hash == NID_sha1
2861 || lu->hash == NID_sha224
2862 || lu->sig == EVP_PKEY_DSA
2863 || lu->sig == EVP_PKEY_RSA)
2864 continue;
2865 /* Check that we have a cert, and signature_algorithms_cert */
2866 if (!tls1_lookup_md(s->ctx, lu, NULL))
2867 continue;
2868 if ((pkey == NULL && !has_usable_cert(s, lu, -1))
2869 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
2870 continue;
2871
2872 tmppkey = (pkey != NULL) ? pkey
2873 : s->cert->pkeys[lu->sig_idx].privatekey;
2874
2875 if (lu->sig == EVP_PKEY_EC) {
2876 #ifndef OPENSSL_NO_EC
2877 if (curve == -1)
2878 curve = evp_pkey_get_EC_KEY_curve_nid(tmppkey);
2879 if (lu->curve != NID_undef && curve != lu->curve)
2880 continue;
2881 #else
2882 continue;
2883 #endif
2884 } else if (lu->sig == EVP_PKEY_RSA_PSS) {
2885 /* validate that key is large enough for the signature algorithm */
2886 if (!rsa_pss_check_min_key_size(s->ctx, tmppkey, lu))
2887 continue;
2888 }
2889 break;
2890 }
2891
2892 if (i == s->shared_sigalgslen)
2893 return NULL;
2894
2895 return lu;
2896 }
2897
2898 /*
2899 * Choose an appropriate signature algorithm based on available certificates
2900 * Sets chosen certificate and signature algorithm.
2901 *
2902 * For servers if we fail to find a required certificate it is a fatal error,
2903 * an appropriate error code is set and a TLS alert is sent.
2904 *
2905 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
2906 * a fatal error: we will either try another certificate or not present one
2907 * to the server. In this case no error is set.
2908 */
2909 int tls_choose_sigalg(SSL *s, int fatalerrs)
2910 {
2911 const SIGALG_LOOKUP *lu = NULL;
2912 int sig_idx = -1;
2913
2914 s->s3.tmp.cert = NULL;
2915 s->s3.tmp.sigalg = NULL;
2916
2917 if (SSL_IS_TLS13(s)) {
2918 lu = find_sig_alg(s, NULL, NULL);
2919 if (lu == NULL) {
2920 if (!fatalerrs)
2921 return 1;
2922 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS_CHOOSE_SIGALG,
2923 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2924 return 0;
2925 }
2926 } else {
2927 /* If ciphersuite doesn't require a cert nothing to do */
2928 if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
2929 return 1;
2930 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
2931 return 1;
2932
2933 if (SSL_USE_SIGALGS(s)) {
2934 size_t i;
2935 if (s->s3.tmp.peer_sigalgs != NULL) {
2936 #ifndef OPENSSL_NO_EC
2937 int curve = -1;
2938
2939 /* For Suite B need to match signature algorithm to curve */
2940 if (tls1_suiteb(s))
2941 curve =
2942 evp_pkey_get_EC_KEY_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
2943 .privatekey);
2944 #endif
2945
2946 /*
2947 * Find highest preference signature algorithm matching
2948 * cert type
2949 */
2950 for (i = 0; i < s->shared_sigalgslen; i++) {
2951 lu = s->shared_sigalgs[i];
2952
2953 if (s->server) {
2954 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
2955 continue;
2956 } else {
2957 int cc_idx = s->cert->key - s->cert->pkeys;
2958
2959 sig_idx = lu->sig_idx;
2960 if (cc_idx != sig_idx)
2961 continue;
2962 }
2963 /* Check that we have a cert, and sig_algs_cert */
2964 if (!has_usable_cert(s, lu, sig_idx))
2965 continue;
2966 if (lu->sig == EVP_PKEY_RSA_PSS) {
2967 /* validate that key is large enough for the signature algorithm */
2968 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
2969
2970 if (!rsa_pss_check_min_key_size(s->ctx, pkey, lu))
2971 continue;
2972 }
2973 #ifndef OPENSSL_NO_EC
2974 if (curve == -1 || lu->curve == curve)
2975 #endif
2976 break;
2977 }
2978 #ifndef OPENSSL_NO_GOST
2979 /*
2980 * Some Windows-based implementations do not send GOST algorithms indication
2981 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
2982 * we have to assume GOST support.
2983 */
2984 if (i == s->shared_sigalgslen && s->s3.tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) {
2985 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
2986 if (!fatalerrs)
2987 return 1;
2988 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2989 SSL_F_TLS_CHOOSE_SIGALG,
2990 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2991 return 0;
2992 } else {
2993 i = 0;
2994 sig_idx = lu->sig_idx;
2995 }
2996 }
2997 #endif
2998 if (i == s->shared_sigalgslen) {
2999 if (!fatalerrs)
3000 return 1;
3001 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3002 SSL_F_TLS_CHOOSE_SIGALG,
3003 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3004 return 0;
3005 }
3006 } else {
3007 /*
3008 * If we have no sigalg use defaults
3009 */
3010 const uint16_t *sent_sigs;
3011 size_t sent_sigslen;
3012
3013 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3014 if (!fatalerrs)
3015 return 1;
3016 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG,
3017 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3018 return 0;
3019 }
3020
3021 /* Check signature matches a type we sent */
3022 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3023 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3024 if (lu->sigalg == *sent_sigs
3025 && has_usable_cert(s, lu, lu->sig_idx))
3026 break;
3027 }
3028 if (i == sent_sigslen) {
3029 if (!fatalerrs)
3030 return 1;
3031 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
3032 SSL_F_TLS_CHOOSE_SIGALG,
3033 SSL_R_WRONG_SIGNATURE_TYPE);
3034 return 0;
3035 }
3036 }
3037 } else {
3038 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3039 if (!fatalerrs)
3040 return 1;
3041 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG,
3042 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3043 return 0;
3044 }
3045 }
3046 }
3047 if (sig_idx == -1)
3048 sig_idx = lu->sig_idx;
3049 s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3050 s->cert->key = s->s3.tmp.cert;
3051 s->s3.tmp.sigalg = lu;
3052 return 1;
3053 }
3054
3055 int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3056 {
3057 if (mode != TLSEXT_max_fragment_length_DISABLED
3058 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3059 SSLerr(SSL_F_SSL_CTX_SET_TLSEXT_MAX_FRAGMENT_LENGTH,
3060 SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3061 return 0;
3062 }
3063
3064 ctx->ext.max_fragment_len_mode = mode;
3065 return 1;
3066 }
3067
3068 int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3069 {
3070 if (mode != TLSEXT_max_fragment_length_DISABLED
3071 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3072 SSLerr(SSL_F_SSL_SET_TLSEXT_MAX_FRAGMENT_LENGTH,
3073 SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3074 return 0;
3075 }
3076
3077 ssl->ext.max_fragment_len_mode = mode;
3078 return 1;
3079 }
3080
3081 uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3082 {
3083 return session->ext.max_fragment_len_mode;
3084 }
3085
3086 /*
3087 * Helper functions for HMAC access with legacy support included.
3088 */
3089 SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3090 {
3091 SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3092 EVP_MAC *mac = NULL;
3093
3094 if (ret == NULL)
3095 return NULL;
3096 #ifndef OPENSSL_NO_DEPRECATED_3_0
3097 if (ctx->ext.ticket_key_evp_cb == NULL
3098 && ctx->ext.ticket_key_cb != NULL) {
3099 ret->old_ctx = HMAC_CTX_new();
3100 if (ret->old_ctx == NULL)
3101 goto err;
3102 return ret;
3103 }
3104 #endif
3105 mac = EVP_MAC_fetch(ctx->libctx, "HMAC", NULL);
3106 if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3107 goto err;
3108 EVP_MAC_free(mac);
3109 return ret;
3110 err:
3111 EVP_MAC_CTX_free(ret->ctx);
3112 EVP_MAC_free(mac);
3113 OPENSSL_free(ret);
3114 return NULL;
3115 }
3116
3117 void ssl_hmac_free(SSL_HMAC *ctx)
3118 {
3119 if (ctx != NULL) {
3120 EVP_MAC_CTX_free(ctx->ctx);
3121 #ifndef OPENSSL_NO_DEPRECATED_3_0
3122 HMAC_CTX_free(ctx->old_ctx);
3123 #endif
3124 OPENSSL_free(ctx);
3125 }
3126 }
3127
3128 #ifndef OPENSSL_NO_DEPRECATED_3_0
3129 HMAC_CTX *ssl_hmac_get0_HMAC_CTX(SSL_HMAC *ctx)
3130 {
3131 return ctx->old_ctx;
3132 }
3133 #endif
3134
3135 EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3136 {
3137 return ctx->ctx;
3138 }
3139
3140 int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3141 {
3142 OSSL_PARAM params[3], *p = params;
3143
3144 if (ctx->ctx != NULL) {
3145 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3146 *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_KEY, key, len);
3147 *p = OSSL_PARAM_construct_end();
3148 if (EVP_MAC_CTX_set_params(ctx->ctx, params) && EVP_MAC_init(ctx->ctx))
3149 return 1;
3150 }
3151 #ifndef OPENSSL_NO_DEPRECATED_3_0
3152 if (ctx->old_ctx != NULL)
3153 return HMAC_Init_ex(ctx->old_ctx, key, len,
3154 EVP_get_digestbyname(md), NULL);
3155 #endif
3156 return 0;
3157 }
3158
3159 int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3160 {
3161 if (ctx->ctx != NULL)
3162 return EVP_MAC_update(ctx->ctx, data, len);
3163 #ifndef OPENSSL_NO_DEPRECATED_3_0
3164 if (ctx->old_ctx != NULL)
3165 return HMAC_Update(ctx->old_ctx, data, len);
3166 #endif
3167 return 0;
3168 }
3169
3170 int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
3171 size_t max_size)
3172 {
3173 if (ctx->ctx != NULL)
3174 return EVP_MAC_final(ctx->ctx, md, len, max_size);
3175 #ifndef OPENSSL_NO_DEPRECATED_3_0
3176 if (ctx->old_ctx != NULL) {
3177 unsigned int l;
3178
3179 if (HMAC_Final(ctx->old_ctx, md, &l) > 0) {
3180 if (len != NULL)
3181 *len = l;
3182 return 1;
3183 }
3184 }
3185 #endif
3186 return 0;
3187 }
3188
3189 size_t ssl_hmac_size(const SSL_HMAC *ctx)
3190 {
3191 if (ctx->ctx != NULL)
3192 return EVP_MAC_size(ctx->ctx);
3193 #ifndef OPENSSL_NO_DEPRECATED_3_0
3194 if (ctx->old_ctx != NULL)
3195 return HMAC_size(ctx->old_ctx);
3196 #endif
3197 return 0;
3198 }
3199