]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/t1_lib.c
fa2d6e0154716e1ac7f7e1d0deeb87796e046608
[thirdparty/openssl.git] / ssl / t1_lib.c
1 /*
2 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /* We need access to the deprecated low level HMAC APIs */
11 #define OPENSSL_SUPPRESS_DEPRECATED
12
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include <openssl/objects.h>
16 #include <openssl/evp.h>
17 #include <openssl/hmac.h>
18 #include <openssl/core_names.h>
19 #include <openssl/ocsp.h>
20 #include <openssl/conf.h>
21 #include <openssl/x509v3.h>
22 #include <openssl/dh.h>
23 #include <openssl/bn.h>
24 #include "internal/nelem.h"
25 #include "ssl_local.h"
26 #include <openssl/ct.h>
27
28 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey);
29 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu);
30
31 SSL3_ENC_METHOD const TLSv1_enc_data = {
32 tls1_enc,
33 tls1_mac,
34 tls1_setup_key_block,
35 tls1_generate_master_secret,
36 tls1_change_cipher_state,
37 tls1_final_finish_mac,
38 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
39 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
40 tls1_alert_code,
41 tls1_export_keying_material,
42 0,
43 ssl3_set_handshake_header,
44 tls_close_construct_packet,
45 ssl3_handshake_write
46 };
47
48 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
49 tls1_enc,
50 tls1_mac,
51 tls1_setup_key_block,
52 tls1_generate_master_secret,
53 tls1_change_cipher_state,
54 tls1_final_finish_mac,
55 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
56 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
57 tls1_alert_code,
58 tls1_export_keying_material,
59 SSL_ENC_FLAG_EXPLICIT_IV,
60 ssl3_set_handshake_header,
61 tls_close_construct_packet,
62 ssl3_handshake_write
63 };
64
65 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
66 tls1_enc,
67 tls1_mac,
68 tls1_setup_key_block,
69 tls1_generate_master_secret,
70 tls1_change_cipher_state,
71 tls1_final_finish_mac,
72 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
73 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
74 tls1_alert_code,
75 tls1_export_keying_material,
76 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
77 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
78 ssl3_set_handshake_header,
79 tls_close_construct_packet,
80 ssl3_handshake_write
81 };
82
83 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
84 tls13_enc,
85 tls1_mac,
86 tls13_setup_key_block,
87 tls13_generate_master_secret,
88 tls13_change_cipher_state,
89 tls13_final_finish_mac,
90 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
91 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
92 tls13_alert_code,
93 tls13_export_keying_material,
94 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
95 ssl3_set_handshake_header,
96 tls_close_construct_packet,
97 ssl3_handshake_write
98 };
99
100 long tls1_default_timeout(void)
101 {
102 /*
103 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
104 * http, the cache would over fill
105 */
106 return (60 * 60 * 2);
107 }
108
109 int tls1_new(SSL *s)
110 {
111 if (!ssl3_new(s))
112 return 0;
113 if (!s->method->ssl_clear(s))
114 return 0;
115
116 return 1;
117 }
118
119 void tls1_free(SSL *s)
120 {
121 OPENSSL_free(s->ext.session_ticket);
122 ssl3_free(s);
123 }
124
125 int tls1_clear(SSL *s)
126 {
127 if (!ssl3_clear(s))
128 return 0;
129
130 if (s->method->version == TLS_ANY_VERSION)
131 s->version = TLS_MAX_VERSION_INTERNAL;
132 else
133 s->version = s->method->version;
134
135 return 1;
136 }
137
138 /*
139 * Table of group information.
140 */
141 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
142 static const TLS_GROUP_INFO nid_list[] = {
143 # ifndef OPENSSL_NO_EC
144 {NID_sect163k1, 80, TLS_GROUP_CURVE_CHAR2, 0x0001}, /* sect163k1 (1) */
145 {NID_sect163r1, 80, TLS_GROUP_CURVE_CHAR2, 0x0002}, /* sect163r1 (2) */
146 {NID_sect163r2, 80, TLS_GROUP_CURVE_CHAR2, 0x0003}, /* sect163r2 (3) */
147 {NID_sect193r1, 80, TLS_GROUP_CURVE_CHAR2, 0x0004}, /* sect193r1 (4) */
148 {NID_sect193r2, 80, TLS_GROUP_CURVE_CHAR2, 0x0005}, /* sect193r2 (5) */
149 {NID_sect233k1, 112, TLS_GROUP_CURVE_CHAR2, 0x0006}, /* sect233k1 (6) */
150 {NID_sect233r1, 112, TLS_GROUP_CURVE_CHAR2, 0x0007}, /* sect233r1 (7) */
151 {NID_sect239k1, 112, TLS_GROUP_CURVE_CHAR2, 0x0008}, /* sect239k1 (8) */
152 {NID_sect283k1, 128, TLS_GROUP_CURVE_CHAR2, 0x0009}, /* sect283k1 (9) */
153 {NID_sect283r1, 128, TLS_GROUP_CURVE_CHAR2, 0x000A}, /* sect283r1 (10) */
154 {NID_sect409k1, 192, TLS_GROUP_CURVE_CHAR2, 0x000B}, /* sect409k1 (11) */
155 {NID_sect409r1, 192, TLS_GROUP_CURVE_CHAR2, 0x000C}, /* sect409r1 (12) */
156 {NID_sect571k1, 256, TLS_GROUP_CURVE_CHAR2, 0x000D}, /* sect571k1 (13) */
157 {NID_sect571r1, 256, TLS_GROUP_CURVE_CHAR2, 0x000E}, /* sect571r1 (14) */
158 {NID_secp160k1, 80, TLS_GROUP_CURVE_PRIME, 0x000F}, /* secp160k1 (15) */
159 {NID_secp160r1, 80, TLS_GROUP_CURVE_PRIME, 0x0010}, /* secp160r1 (16) */
160 {NID_secp160r2, 80, TLS_GROUP_CURVE_PRIME, 0x0011}, /* secp160r2 (17) */
161 {NID_secp192k1, 80, TLS_GROUP_CURVE_PRIME, 0x0012}, /* secp192k1 (18) */
162 {NID_X9_62_prime192v1, 80, TLS_GROUP_CURVE_PRIME, 0x0013}, /* secp192r1 (19) */
163 {NID_secp224k1, 112, TLS_GROUP_CURVE_PRIME, 0x0014}, /* secp224k1 (20) */
164 {NID_secp224r1, 112, TLS_GROUP_CURVE_PRIME, 0x0015}, /* secp224r1 (21) */
165 {NID_secp256k1, 128, TLS_GROUP_CURVE_PRIME, 0x0016}, /* secp256k1 (22) */
166 {NID_X9_62_prime256v1, 128, TLS_GROUP_CURVE_PRIME, 0x0017}, /* secp256r1 (23) */
167 {NID_secp384r1, 192, TLS_GROUP_CURVE_PRIME, 0x0018}, /* secp384r1 (24) */
168 {NID_secp521r1, 256, TLS_GROUP_CURVE_PRIME, 0x0019}, /* secp521r1 (25) */
169 {NID_brainpoolP256r1, 128, TLS_GROUP_CURVE_PRIME, 0x001A}, /* brainpoolP256r1 (26) */
170 {NID_brainpoolP384r1, 192, TLS_GROUP_CURVE_PRIME, 0x001B}, /* brainpoolP384r1 (27) */
171 {NID_brainpoolP512r1, 256, TLS_GROUP_CURVE_PRIME, 0x001C}, /* brainpool512r1 (28) */
172 {EVP_PKEY_X25519, 128, TLS_GROUP_CURVE_CUSTOM, 0x001D}, /* X25519 (29) */
173 {EVP_PKEY_X448, 224, TLS_GROUP_CURVE_CUSTOM, 0x001E}, /* X448 (30) */
174 # endif /* OPENSSL_NO_EC */
175 # ifndef OPENSSL_NO_DH
176 /* Security bit values for FFDHE groups are updated as per RFC 7919 */
177 {NID_ffdhe2048, 103, TLS_GROUP_FFDHE_FOR_TLS1_3, 0x0100}, /* ffdhe2048 (0x0100) */
178 {NID_ffdhe3072, 125, TLS_GROUP_FFDHE_FOR_TLS1_3, 0x0101}, /* ffdhe3072 (0x0101) */
179 {NID_ffdhe4096, 150, TLS_GROUP_FFDHE_FOR_TLS1_3, 0x0102}, /* ffdhe4096 (0x0102) */
180 {NID_ffdhe6144, 175, TLS_GROUP_FFDHE_FOR_TLS1_3, 0x0103}, /* ffdhe6144 (0x0103) */
181 {NID_ffdhe8192, 192, TLS_GROUP_FFDHE_FOR_TLS1_3, 0x0104}, /* ffdhe8192 (0x0104) */
182 # endif /* OPENSSL_NO_DH */
183 };
184 #endif
185
186 #ifndef OPENSSL_NO_EC
187 static const unsigned char ecformats_default[] = {
188 TLSEXT_ECPOINTFORMAT_uncompressed,
189 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
190 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
191 };
192 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
193
194 /* The default curves */
195 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
196 static const uint16_t supported_groups_default[] = {
197 # ifndef OPENSSL_NO_EC
198 29, /* X25519 (29) */
199 23, /* secp256r1 (23) */
200 30, /* X448 (30) */
201 25, /* secp521r1 (25) */
202 24, /* secp384r1 (24) */
203 # endif
204 # ifndef OPENSSL_NO_DH
205 0x100, /* ffdhe2048 (0x100) */
206 0x101, /* ffdhe3072 (0x101) */
207 0x102, /* ffdhe4096 (0x102) */
208 0x103, /* ffdhe6144 (0x103) */
209 0x104, /* ffdhe8192 (0x104) */
210 # endif
211 };
212 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
213
214 #ifndef OPENSSL_NO_EC
215 static const uint16_t suiteb_curves[] = {
216 TLSEXT_curve_P_256,
217 TLSEXT_curve_P_384
218 };
219 #endif
220
221 const TLS_GROUP_INFO *tls1_group_id_lookup(uint16_t group_id)
222 {
223 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
224 size_t i;
225
226 /* ECC curves from RFC 4492 and RFC 7027 FFDHE group from RFC 8446 */
227 for (i = 0; i < OSSL_NELEM(nid_list); i++) {
228 if (nid_list[i].group_id == group_id)
229 return &nid_list[i];
230 }
231 #endif /* !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC) */
232 return NULL;
233 }
234
235 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
236 int tls1_group_id2nid(uint16_t group_id)
237 {
238 const TLS_GROUP_INFO *ginf = tls1_group_id_lookup(group_id);
239
240 return ginf == NULL ? NID_undef : ginf->nid;
241 }
242
243 static uint16_t tls1_nid2group_id(int nid)
244 {
245 size_t i;
246
247 for (i = 0; i < OSSL_NELEM(nid_list); i++) {
248 if (nid_list[i].nid == nid)
249 return nid_list[i].group_id;
250 }
251 return 0;
252 }
253 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
254
255 /*
256 * Set *pgroups to the supported groups list and *pgroupslen to
257 * the number of groups supported.
258 */
259 void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
260 size_t *pgroupslen)
261 {
262 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH)
263 /* For Suite B mode only include P-256, P-384 */
264 switch (tls1_suiteb(s)) {
265 # ifndef OPENSSL_NO_EC
266 case SSL_CERT_FLAG_SUITEB_128_LOS:
267 *pgroups = suiteb_curves;
268 *pgroupslen = OSSL_NELEM(suiteb_curves);
269 break;
270
271 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
272 *pgroups = suiteb_curves;
273 *pgroupslen = 1;
274 break;
275
276 case SSL_CERT_FLAG_SUITEB_192_LOS:
277 *pgroups = suiteb_curves + 1;
278 *pgroupslen = 1;
279 break;
280 # endif
281
282 default:
283 if (s->ext.supportedgroups == NULL) {
284 *pgroups = supported_groups_default;
285 *pgroupslen = OSSL_NELEM(supported_groups_default);
286 } else {
287 *pgroups = s->ext.supportedgroups;
288 *pgroupslen = s->ext.supportedgroups_len;
289 }
290 break;
291 }
292 #else
293 *pgroups = NULL;
294 *pgroupslen = 0;
295 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
296 }
297
298 int tls_valid_group(SSL *s, uint16_t group_id, int version)
299 {
300 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(group_id);
301
302 if (version < TLS1_3_VERSION) {
303 if ((ginfo->flags & TLS_GROUP_ONLY_FOR_TLS1_3) != 0)
304 return 0;
305 }
306 return 1;
307 }
308
309 /* See if group is allowed by security callback */
310 int tls_group_allowed(SSL *s, uint16_t group, int op)
311 {
312 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(group);
313 unsigned char gtmp[2];
314
315 if (ginfo == NULL)
316 return 0;
317 #ifdef OPENSSL_NO_EC2M
318 if (ginfo->flags & TLS_GROUP_CURVE_CHAR2)
319 return 0;
320 #endif
321 #ifdef OPENSSL_NO_DH
322 if (ginfo->flags & TLS_GROUP_FFDHE)
323 return 0;
324 #endif
325 gtmp[0] = group >> 8;
326 gtmp[1] = group & 0xff;
327 return ssl_security(s, op, ginfo->secbits, ginfo->nid, (void *)gtmp);
328 }
329
330 /* Return 1 if "id" is in "list" */
331 static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
332 {
333 size_t i;
334 for (i = 0; i < listlen; i++)
335 if (list[i] == id)
336 return 1;
337 return 0;
338 }
339
340 /*-
341 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
342 * if there is no match.
343 * For nmatch == -1, return number of matches
344 * For nmatch == -2, return the id of the group to use for
345 * a tmp key, or 0 if there is no match.
346 */
347 uint16_t tls1_shared_group(SSL *s, int nmatch)
348 {
349 const uint16_t *pref, *supp;
350 size_t num_pref, num_supp, i;
351 int k;
352
353 /* Can't do anything on client side */
354 if (s->server == 0)
355 return 0;
356 if (nmatch == -2) {
357 if (tls1_suiteb(s)) {
358 /*
359 * For Suite B ciphersuite determines curve: we already know
360 * these are acceptable due to previous checks.
361 */
362 unsigned long cid = s->s3.tmp.new_cipher->id;
363
364 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
365 return TLSEXT_curve_P_256;
366 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
367 return TLSEXT_curve_P_384;
368 /* Should never happen */
369 return 0;
370 }
371 /* If not Suite B just return first preference shared curve */
372 nmatch = 0;
373 }
374 /*
375 * If server preference set, our groups are the preference order
376 * otherwise peer decides.
377 */
378 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
379 tls1_get_supported_groups(s, &pref, &num_pref);
380 tls1_get_peer_groups(s, &supp, &num_supp);
381 } else {
382 tls1_get_peer_groups(s, &pref, &num_pref);
383 tls1_get_supported_groups(s, &supp, &num_supp);
384 }
385
386 for (k = 0, i = 0; i < num_pref; i++) {
387 uint16_t id = pref[i];
388
389 if (!tls1_in_list(id, supp, num_supp)
390 || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
391 continue;
392 if (nmatch == k)
393 return id;
394 k++;
395 }
396 if (nmatch == -1)
397 return k;
398 /* Out of range (nmatch > k). */
399 return 0;
400 }
401
402 int tls1_set_groups(uint16_t **pext, size_t *pextlen,
403 int *groups, size_t ngroups)
404 {
405 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH)
406 uint16_t *glist;
407 size_t i;
408 /*
409 * Bitmap of groups included to detect duplicates: two variables are added
410 * to detect duplicates as some values are more than 32.
411 */
412 unsigned long *dup_list = NULL;
413 unsigned long dup_list_egrp = 0;
414 unsigned long dup_list_dhgrp = 0;
415
416 if (ngroups == 0) {
417 SSLerr(SSL_F_TLS1_SET_GROUPS, SSL_R_BAD_LENGTH);
418 return 0;
419 }
420 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) {
421 SSLerr(SSL_F_TLS1_SET_GROUPS, ERR_R_MALLOC_FAILURE);
422 return 0;
423 }
424 for (i = 0; i < ngroups; i++) {
425 unsigned long idmask;
426 uint16_t id;
427 id = tls1_nid2group_id(groups[i]);
428 if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
429 goto err;
430 idmask = 1L << (id & 0x00FF);
431 dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
432 if (!id || ((*dup_list) & idmask))
433 goto err;
434 *dup_list |= idmask;
435 glist[i] = id;
436 }
437 OPENSSL_free(*pext);
438 *pext = glist;
439 *pextlen = ngroups;
440 return 1;
441 err:
442 OPENSSL_free(glist);
443 return 0;
444 #else
445 return 0;
446 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
447 }
448
449 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH)
450 # define MAX_GROUPLIST OSSL_NELEM(nid_list)
451
452 typedef struct {
453 size_t nidcnt;
454 int nid_arr[MAX_GROUPLIST];
455 } nid_cb_st;
456
457 static int nid_cb(const char *elem, int len, void *arg)
458 {
459 nid_cb_st *narg = arg;
460 size_t i;
461 int nid = NID_undef;
462 char etmp[20];
463 if (elem == NULL)
464 return 0;
465 if (narg->nidcnt == MAX_GROUPLIST)
466 return 0;
467 if (len > (int)(sizeof(etmp) - 1))
468 return 0;
469 memcpy(etmp, elem, len);
470 etmp[len] = 0;
471 # ifndef OPENSSL_NO_EC
472 nid = EC_curve_nist2nid(etmp);
473 # endif
474 if (nid == NID_undef)
475 nid = OBJ_sn2nid(etmp);
476 if (nid == NID_undef)
477 nid = OBJ_ln2nid(etmp);
478 if (nid == NID_undef)
479 return 0;
480 for (i = 0; i < narg->nidcnt; i++)
481 if (narg->nid_arr[i] == nid)
482 return 0;
483 narg->nid_arr[narg->nidcnt++] = nid;
484 return 1;
485 }
486 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
487
488 /* Set groups based on a colon separate list */
489 int tls1_set_groups_list(uint16_t **pext, size_t *pextlen, const char *str)
490 {
491 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH)
492 nid_cb_st ncb;
493 ncb.nidcnt = 0;
494 if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb))
495 return 0;
496 if (pext == NULL)
497 return 1;
498 return tls1_set_groups(pext, pextlen, ncb.nid_arr, ncb.nidcnt);
499 #else
500 return 0;
501 #endif
502 }
503
504 /* Check a group id matches preferences */
505 int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
506 {
507 const uint16_t *groups;
508 size_t groups_len;
509
510 if (group_id == 0)
511 return 0;
512
513 /* Check for Suite B compliance */
514 if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
515 unsigned long cid = s->s3.tmp.new_cipher->id;
516
517 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
518 if (group_id != TLSEXT_curve_P_256)
519 return 0;
520 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
521 if (group_id != TLSEXT_curve_P_384)
522 return 0;
523 } else {
524 /* Should never happen */
525 return 0;
526 }
527 }
528
529 if (check_own_groups) {
530 /* Check group is one of our preferences */
531 tls1_get_supported_groups(s, &groups, &groups_len);
532 if (!tls1_in_list(group_id, groups, groups_len))
533 return 0;
534 }
535
536 if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
537 return 0;
538
539 /* For clients, nothing more to check */
540 if (!s->server)
541 return 1;
542
543 /* Check group is one of peers preferences */
544 tls1_get_peer_groups(s, &groups, &groups_len);
545
546 /*
547 * RFC 4492 does not require the supported elliptic curves extension
548 * so if it is not sent we can just choose any curve.
549 * It is invalid to send an empty list in the supported groups
550 * extension, so groups_len == 0 always means no extension.
551 */
552 if (groups_len == 0)
553 return 1;
554 return tls1_in_list(group_id, groups, groups_len);
555 }
556
557 #ifndef OPENSSL_NO_EC
558 void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
559 size_t *num_formats)
560 {
561 /*
562 * If we have a custom point format list use it otherwise use default
563 */
564 if (s->ext.ecpointformats) {
565 *pformats = s->ext.ecpointformats;
566 *num_formats = s->ext.ecpointformats_len;
567 } else {
568 *pformats = ecformats_default;
569 /* For Suite B we don't support char2 fields */
570 if (tls1_suiteb(s))
571 *num_formats = sizeof(ecformats_default) - 1;
572 else
573 *num_formats = sizeof(ecformats_default);
574 }
575 }
576
577 /* Check a key is compatible with compression extension */
578 static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)
579 {
580 const EC_KEY *ec;
581 const EC_GROUP *grp;
582 unsigned char comp_id;
583 size_t i;
584
585 /* If not an EC key nothing to check */
586 if (EVP_PKEY_id(pkey) != EVP_PKEY_EC)
587 return 1;
588 ec = EVP_PKEY_get0_EC_KEY(pkey);
589 grp = EC_KEY_get0_group(ec);
590
591 /* Get required compression id */
592 if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_UNCOMPRESSED) {
593 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
594 } else if (SSL_IS_TLS13(s)) {
595 /*
596 * ec_point_formats extension is not used in TLSv1.3 so we ignore
597 * this check.
598 */
599 return 1;
600 } else {
601 int field_type = EC_METHOD_get_field_type(EC_GROUP_method_of(grp));
602
603 if (field_type == NID_X9_62_prime_field)
604 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
605 else if (field_type == NID_X9_62_characteristic_two_field)
606 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
607 else
608 return 0;
609 }
610 /*
611 * If point formats extension present check it, otherwise everything is
612 * supported (see RFC4492).
613 */
614 if (s->ext.peer_ecpointformats == NULL)
615 return 1;
616
617 for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
618 if (s->ext.peer_ecpointformats[i] == comp_id)
619 return 1;
620 }
621 return 0;
622 }
623
624 /* Return group id of a key */
625 static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
626 {
627 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey);
628 const EC_GROUP *grp;
629
630 if (ec == NULL)
631 return 0;
632 grp = EC_KEY_get0_group(ec);
633 return tls1_nid2group_id(EC_GROUP_get_curve_name(grp));
634 }
635
636 /*
637 * Check cert parameters compatible with extensions: currently just checks EC
638 * certificates have compatible curves and compression.
639 */
640 static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
641 {
642 uint16_t group_id;
643 EVP_PKEY *pkey;
644 pkey = X509_get0_pubkey(x);
645 if (pkey == NULL)
646 return 0;
647 /* If not EC nothing to do */
648 if (EVP_PKEY_id(pkey) != EVP_PKEY_EC)
649 return 1;
650 /* Check compression */
651 if (!tls1_check_pkey_comp(s, pkey))
652 return 0;
653 group_id = tls1_get_group_id(pkey);
654 /*
655 * For a server we allow the certificate to not be in our list of supported
656 * groups.
657 */
658 if (!tls1_check_group_id(s, group_id, !s->server))
659 return 0;
660 /*
661 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
662 * SHA384+P-384.
663 */
664 if (check_ee_md && tls1_suiteb(s)) {
665 int check_md;
666 size_t i;
667
668 /* Check to see we have necessary signing algorithm */
669 if (group_id == TLSEXT_curve_P_256)
670 check_md = NID_ecdsa_with_SHA256;
671 else if (group_id == TLSEXT_curve_P_384)
672 check_md = NID_ecdsa_with_SHA384;
673 else
674 return 0; /* Should never happen */
675 for (i = 0; i < s->shared_sigalgslen; i++) {
676 if (check_md == s->shared_sigalgs[i]->sigandhash)
677 return 1;;
678 }
679 return 0;
680 }
681 return 1;
682 }
683
684 /*
685 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
686 * @s: SSL connection
687 * @cid: Cipher ID we're considering using
688 *
689 * Checks that the kECDHE cipher suite we're considering using
690 * is compatible with the client extensions.
691 *
692 * Returns 0 when the cipher can't be used or 1 when it can.
693 */
694 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
695 {
696 /* If not Suite B just need a shared group */
697 if (!tls1_suiteb(s))
698 return tls1_shared_group(s, 0) != 0;
699 /*
700 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
701 * curves permitted.
702 */
703 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
704 return tls1_check_group_id(s, TLSEXT_curve_P_256, 1);
705 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
706 return tls1_check_group_id(s, TLSEXT_curve_P_384, 1);
707
708 return 0;
709 }
710
711 #else
712
713 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
714 {
715 return 1;
716 }
717
718 #endif /* OPENSSL_NO_EC */
719
720 /* Default sigalg schemes */
721 static const uint16_t tls12_sigalgs[] = {
722 #ifndef OPENSSL_NO_EC
723 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
724 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
725 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
726 TLSEXT_SIGALG_ed25519,
727 TLSEXT_SIGALG_ed448,
728 #endif
729
730 TLSEXT_SIGALG_rsa_pss_pss_sha256,
731 TLSEXT_SIGALG_rsa_pss_pss_sha384,
732 TLSEXT_SIGALG_rsa_pss_pss_sha512,
733 TLSEXT_SIGALG_rsa_pss_rsae_sha256,
734 TLSEXT_SIGALG_rsa_pss_rsae_sha384,
735 TLSEXT_SIGALG_rsa_pss_rsae_sha512,
736
737 TLSEXT_SIGALG_rsa_pkcs1_sha256,
738 TLSEXT_SIGALG_rsa_pkcs1_sha384,
739 TLSEXT_SIGALG_rsa_pkcs1_sha512,
740
741 #ifndef OPENSSL_NO_EC
742 TLSEXT_SIGALG_ecdsa_sha224,
743 TLSEXT_SIGALG_ecdsa_sha1,
744 #endif
745 TLSEXT_SIGALG_rsa_pkcs1_sha224,
746 TLSEXT_SIGALG_rsa_pkcs1_sha1,
747 #ifndef OPENSSL_NO_DSA
748 TLSEXT_SIGALG_dsa_sha224,
749 TLSEXT_SIGALG_dsa_sha1,
750
751 TLSEXT_SIGALG_dsa_sha256,
752 TLSEXT_SIGALG_dsa_sha384,
753 TLSEXT_SIGALG_dsa_sha512,
754 #endif
755 #ifndef OPENSSL_NO_GOST
756 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
757 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
758 TLSEXT_SIGALG_gostr34102001_gostr3411,
759 #endif
760 };
761
762 #ifndef OPENSSL_NO_EC
763 static const uint16_t suiteb_sigalgs[] = {
764 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
765 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
766 };
767 #endif
768
769 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
770 #ifndef OPENSSL_NO_EC
771 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
772 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
773 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1},
774 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
775 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
776 NID_ecdsa_with_SHA384, NID_secp384r1},
777 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
778 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
779 NID_ecdsa_with_SHA512, NID_secp521r1},
780 {"ed25519", TLSEXT_SIGALG_ed25519,
781 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
782 NID_undef, NID_undef},
783 {"ed448", TLSEXT_SIGALG_ed448,
784 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
785 NID_undef, NID_undef},
786 {NULL, TLSEXT_SIGALG_ecdsa_sha224,
787 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
788 NID_ecdsa_with_SHA224, NID_undef},
789 {NULL, TLSEXT_SIGALG_ecdsa_sha1,
790 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
791 NID_ecdsa_with_SHA1, NID_undef},
792 #endif
793 {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
794 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
795 NID_undef, NID_undef},
796 {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
797 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
798 NID_undef, NID_undef},
799 {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
800 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
801 NID_undef, NID_undef},
802 {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
803 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
804 NID_undef, NID_undef},
805 {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
806 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
807 NID_undef, NID_undef},
808 {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
809 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
810 NID_undef, NID_undef},
811 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
812 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
813 NID_sha256WithRSAEncryption, NID_undef},
814 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
815 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
816 NID_sha384WithRSAEncryption, NID_undef},
817 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
818 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
819 NID_sha512WithRSAEncryption, NID_undef},
820 {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
821 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
822 NID_sha224WithRSAEncryption, NID_undef},
823 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
824 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
825 NID_sha1WithRSAEncryption, NID_undef},
826 #ifndef OPENSSL_NO_DSA
827 {NULL, TLSEXT_SIGALG_dsa_sha256,
828 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
829 NID_dsa_with_SHA256, NID_undef},
830 {NULL, TLSEXT_SIGALG_dsa_sha384,
831 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
832 NID_undef, NID_undef},
833 {NULL, TLSEXT_SIGALG_dsa_sha512,
834 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
835 NID_undef, NID_undef},
836 {NULL, TLSEXT_SIGALG_dsa_sha224,
837 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
838 NID_undef, NID_undef},
839 {NULL, TLSEXT_SIGALG_dsa_sha1,
840 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
841 NID_dsaWithSHA1, NID_undef},
842 #endif
843 #ifndef OPENSSL_NO_GOST
844 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
845 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
846 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
847 NID_undef, NID_undef},
848 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
849 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
850 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
851 NID_undef, NID_undef},
852 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
853 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
854 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
855 NID_undef, NID_undef}
856 #endif
857 };
858 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
859 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
860 "rsa_pkcs1_md5_sha1", 0,
861 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
862 EVP_PKEY_RSA, SSL_PKEY_RSA,
863 NID_undef, NID_undef
864 };
865
866 /*
867 * Default signature algorithm values used if signature algorithms not present.
868 * From RFC5246. Note: order must match certificate index order.
869 */
870 static const uint16_t tls_default_sigalg[] = {
871 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
872 0, /* SSL_PKEY_RSA_PSS_SIGN */
873 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
874 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
875 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
876 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, /* SSL_PKEY_GOST12_256 */
877 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, /* SSL_PKEY_GOST12_512 */
878 0, /* SSL_PKEY_ED25519 */
879 0, /* SSL_PKEY_ED448 */
880 };
881
882 /* Lookup TLS signature algorithm */
883 static const SIGALG_LOOKUP *tls1_lookup_sigalg(uint16_t sigalg)
884 {
885 size_t i;
886 const SIGALG_LOOKUP *s;
887
888 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
889 i++, s++) {
890 if (s->sigalg == sigalg)
891 return s;
892 }
893 return NULL;
894 }
895 /* Lookup hash: return 0 if invalid or not enabled */
896 int tls1_lookup_md(const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
897 {
898 const EVP_MD *md;
899 if (lu == NULL)
900 return 0;
901 /* lu->hash == NID_undef means no associated digest */
902 if (lu->hash == NID_undef) {
903 md = NULL;
904 } else {
905 md = ssl_md(lu->hash_idx);
906 if (md == NULL)
907 return 0;
908 }
909 if (pmd)
910 *pmd = md;
911 return 1;
912 }
913
914 /*
915 * Check if key is large enough to generate RSA-PSS signature.
916 *
917 * The key must greater than or equal to 2 * hash length + 2.
918 * SHA512 has a hash length of 64 bytes, which is incompatible
919 * with a 128 byte (1024 bit) key.
920 */
921 #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_size(md) + 2)
922 static int rsa_pss_check_min_key_size(const RSA *rsa, const SIGALG_LOOKUP *lu)
923 {
924 const EVP_MD *md;
925
926 if (rsa == NULL)
927 return 0;
928 if (!tls1_lookup_md(lu, &md) || md == NULL)
929 return 0;
930 if (RSA_size(rsa) < RSA_PSS_MINIMUM_KEY_SIZE(md))
931 return 0;
932 return 1;
933 }
934
935 /*
936 * Returns a signature algorithm when the peer did not send a list of supported
937 * signature algorithms. The signature algorithm is fixed for the certificate
938 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
939 * certificate type from |s| will be used.
940 * Returns the signature algorithm to use, or NULL on error.
941 */
942 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
943 {
944 if (idx == -1) {
945 if (s->server) {
946 size_t i;
947
948 /* Work out index corresponding to ciphersuite */
949 for (i = 0; i < SSL_PKEY_NUM; i++) {
950 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
951
952 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
953 idx = i;
954 break;
955 }
956 }
957
958 /*
959 * Some GOST ciphersuites allow more than one signature algorithms
960 * */
961 if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
962 int real_idx;
963
964 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
965 real_idx--) {
966 if (s->cert->pkeys[real_idx].privatekey != NULL) {
967 idx = real_idx;
968 break;
969 }
970 }
971 }
972 } else {
973 idx = s->cert->key - s->cert->pkeys;
974 }
975 }
976 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
977 return NULL;
978 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
979 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(tls_default_sigalg[idx]);
980
981 if (!tls1_lookup_md(lu, NULL))
982 return NULL;
983 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
984 return NULL;
985 return lu;
986 }
987 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
988 return NULL;
989 return &legacy_rsa_sigalg;
990 }
991 /* Set peer sigalg based key type */
992 int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
993 {
994 size_t idx;
995 const SIGALG_LOOKUP *lu;
996
997 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
998 return 0;
999 lu = tls1_get_legacy_sigalg(s, idx);
1000 if (lu == NULL)
1001 return 0;
1002 s->s3.tmp.peer_sigalg = lu;
1003 return 1;
1004 }
1005
1006 size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
1007 {
1008 /*
1009 * If Suite B mode use Suite B sigalgs only, ignore any other
1010 * preferences.
1011 */
1012 #ifndef OPENSSL_NO_EC
1013 switch (tls1_suiteb(s)) {
1014 case SSL_CERT_FLAG_SUITEB_128_LOS:
1015 *psigs = suiteb_sigalgs;
1016 return OSSL_NELEM(suiteb_sigalgs);
1017
1018 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1019 *psigs = suiteb_sigalgs;
1020 return 1;
1021
1022 case SSL_CERT_FLAG_SUITEB_192_LOS:
1023 *psigs = suiteb_sigalgs + 1;
1024 return 1;
1025 }
1026 #endif
1027 /*
1028 * We use client_sigalgs (if not NULL) if we're a server
1029 * and sending a certificate request or if we're a client and
1030 * determining which shared algorithm to use.
1031 */
1032 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1033 *psigs = s->cert->client_sigalgs;
1034 return s->cert->client_sigalgslen;
1035 } else if (s->cert->conf_sigalgs) {
1036 *psigs = s->cert->conf_sigalgs;
1037 return s->cert->conf_sigalgslen;
1038 } else {
1039 *psigs = tls12_sigalgs;
1040 return OSSL_NELEM(tls12_sigalgs);
1041 }
1042 }
1043
1044 #ifndef OPENSSL_NO_EC
1045 /*
1046 * Called by servers only. Checks that we have a sig alg that supports the
1047 * specified EC curve.
1048 */
1049 int tls_check_sigalg_curve(const SSL *s, int curve)
1050 {
1051 const uint16_t *sigs;
1052 size_t siglen, i;
1053
1054 if (s->cert->conf_sigalgs) {
1055 sigs = s->cert->conf_sigalgs;
1056 siglen = s->cert->conf_sigalgslen;
1057 } else {
1058 sigs = tls12_sigalgs;
1059 siglen = OSSL_NELEM(tls12_sigalgs);
1060 }
1061
1062 for (i = 0; i < siglen; i++) {
1063 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(sigs[i]);
1064
1065 if (lu == NULL)
1066 continue;
1067 if (lu->sig == EVP_PKEY_EC
1068 && lu->curve != NID_undef
1069 && curve == lu->curve)
1070 return 1;
1071 }
1072
1073 return 0;
1074 }
1075 #endif
1076
1077 /*
1078 * Check signature algorithm is consistent with sent supported signature
1079 * algorithms and if so set relevant digest and signature scheme in
1080 * s.
1081 */
1082 int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
1083 {
1084 const uint16_t *sent_sigs;
1085 const EVP_MD *md = NULL;
1086 char sigalgstr[2];
1087 size_t sent_sigslen, i, cidx;
1088 int pkeyid = EVP_PKEY_id(pkey);
1089 const SIGALG_LOOKUP *lu;
1090
1091 /* Should never happen */
1092 if (pkeyid == -1)
1093 return -1;
1094 if (SSL_IS_TLS13(s)) {
1095 /* Disallow DSA for TLS 1.3 */
1096 if (pkeyid == EVP_PKEY_DSA) {
1097 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1098 SSL_R_WRONG_SIGNATURE_TYPE);
1099 return 0;
1100 }
1101 /* Only allow PSS for TLS 1.3 */
1102 if (pkeyid == EVP_PKEY_RSA)
1103 pkeyid = EVP_PKEY_RSA_PSS;
1104 }
1105 lu = tls1_lookup_sigalg(sig);
1106 /*
1107 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1108 * is consistent with signature: RSA keys can be used for RSA-PSS
1109 */
1110 if (lu == NULL
1111 || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1112 || (pkeyid != lu->sig
1113 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1114 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1115 SSL_R_WRONG_SIGNATURE_TYPE);
1116 return 0;
1117 }
1118 /* Check the sigalg is consistent with the key OID */
1119 if (!ssl_cert_lookup_by_nid(EVP_PKEY_id(pkey), &cidx)
1120 || lu->sig_idx != (int)cidx) {
1121 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1122 SSL_R_WRONG_SIGNATURE_TYPE);
1123 return 0;
1124 }
1125
1126 #ifndef OPENSSL_NO_EC
1127 if (pkeyid == EVP_PKEY_EC) {
1128
1129 /* Check point compression is permitted */
1130 if (!tls1_check_pkey_comp(s, pkey)) {
1131 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1132 SSL_F_TLS12_CHECK_PEER_SIGALG,
1133 SSL_R_ILLEGAL_POINT_COMPRESSION);
1134 return 0;
1135 }
1136
1137 /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1138 if (SSL_IS_TLS13(s) || tls1_suiteb(s)) {
1139 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey);
1140 int curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
1141
1142 if (lu->curve != NID_undef && curve != lu->curve) {
1143 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1144 SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
1145 return 0;
1146 }
1147 }
1148 if (!SSL_IS_TLS13(s)) {
1149 /* Check curve matches extensions */
1150 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1151 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1152 SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
1153 return 0;
1154 }
1155 if (tls1_suiteb(s)) {
1156 /* Check sigalg matches a permissible Suite B value */
1157 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1158 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1159 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1160 SSL_F_TLS12_CHECK_PEER_SIGALG,
1161 SSL_R_WRONG_SIGNATURE_TYPE);
1162 return 0;
1163 }
1164 }
1165 }
1166 } else if (tls1_suiteb(s)) {
1167 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1168 SSL_R_WRONG_SIGNATURE_TYPE);
1169 return 0;
1170 }
1171 #endif
1172
1173 /* Check signature matches a type we sent */
1174 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1175 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1176 if (sig == *sent_sigs)
1177 break;
1178 }
1179 /* Allow fallback to SHA1 if not strict mode */
1180 if (i == sent_sigslen && (lu->hash != NID_sha1
1181 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1182 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1183 SSL_R_WRONG_SIGNATURE_TYPE);
1184 return 0;
1185 }
1186 if (!tls1_lookup_md(lu, &md)) {
1187 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1188 SSL_R_UNKNOWN_DIGEST);
1189 return 0;
1190 }
1191 if (md != NULL) {
1192 /*
1193 * Make sure security callback allows algorithm. For historical
1194 * reasons we have to pass the sigalg as a two byte char array.
1195 */
1196 sigalgstr[0] = (sig >> 8) & 0xff;
1197 sigalgstr[1] = sig & 0xff;
1198 if (!ssl_security(s, SSL_SECOP_SIGALG_CHECK,
1199 EVP_MD_size(md) * 4, EVP_MD_type(md),
1200 (void *)sigalgstr)) {
1201 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1202 SSL_R_WRONG_SIGNATURE_TYPE);
1203 return 0;
1204 }
1205 }
1206 /* Store the sigalg the peer uses */
1207 s->s3.tmp.peer_sigalg = lu;
1208 return 1;
1209 }
1210
1211 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1212 {
1213 if (s->s3.tmp.peer_sigalg == NULL)
1214 return 0;
1215 *pnid = s->s3.tmp.peer_sigalg->sig;
1216 return 1;
1217 }
1218
1219 int SSL_get_signature_type_nid(const SSL *s, int *pnid)
1220 {
1221 if (s->s3.tmp.sigalg == NULL)
1222 return 0;
1223 *pnid = s->s3.tmp.sigalg->sig;
1224 return 1;
1225 }
1226
1227 /*
1228 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1229 * supported, doesn't appear in supported signature algorithms, isn't supported
1230 * by the enabled protocol versions or by the security level.
1231 *
1232 * This function should only be used for checking which ciphers are supported
1233 * by the client.
1234 *
1235 * Call ssl_cipher_disabled() to check that it's enabled or not.
1236 */
1237 int ssl_set_client_disabled(SSL *s)
1238 {
1239 s->s3.tmp.mask_a = 0;
1240 s->s3.tmp.mask_k = 0;
1241 ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1242 if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
1243 &s->s3.tmp.max_ver, NULL) != 0)
1244 return 0;
1245 #ifndef OPENSSL_NO_PSK
1246 /* with PSK there must be client callback set */
1247 if (!s->psk_client_callback) {
1248 s->s3.tmp.mask_a |= SSL_aPSK;
1249 s->s3.tmp.mask_k |= SSL_PSK;
1250 }
1251 #endif /* OPENSSL_NO_PSK */
1252 #ifndef OPENSSL_NO_SRP
1253 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1254 s->s3.tmp.mask_a |= SSL_aSRP;
1255 s->s3.tmp.mask_k |= SSL_kSRP;
1256 }
1257 #endif
1258 return 1;
1259 }
1260
1261 /*
1262 * ssl_cipher_disabled - check that a cipher is disabled or not
1263 * @s: SSL connection that you want to use the cipher on
1264 * @c: cipher to check
1265 * @op: Security check that you want to do
1266 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1267 *
1268 * Returns 1 when it's disabled, 0 when enabled.
1269 */
1270 int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
1271 {
1272 if (c->algorithm_mkey & s->s3.tmp.mask_k
1273 || c->algorithm_auth & s->s3.tmp.mask_a)
1274 return 1;
1275 if (s->s3.tmp.max_ver == 0)
1276 return 1;
1277 if (!SSL_IS_DTLS(s)) {
1278 int min_tls = c->min_tls;
1279
1280 /*
1281 * For historical reasons we will allow ECHDE to be selected by a server
1282 * in SSLv3 if we are a client
1283 */
1284 if (min_tls == TLS1_VERSION && ecdhe
1285 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1286 min_tls = SSL3_VERSION;
1287
1288 if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))
1289 return 1;
1290 }
1291 if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)
1292 || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))
1293 return 1;
1294
1295 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1296 }
1297
1298 int tls_use_ticket(SSL *s)
1299 {
1300 if ((s->options & SSL_OP_NO_TICKET))
1301 return 0;
1302 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1303 }
1304
1305 int tls1_set_server_sigalgs(SSL *s)
1306 {
1307 size_t i;
1308
1309 /* Clear any shared signature algorithms */
1310 OPENSSL_free(s->shared_sigalgs);
1311 s->shared_sigalgs = NULL;
1312 s->shared_sigalgslen = 0;
1313 /* Clear certificate validity flags */
1314 for (i = 0; i < SSL_PKEY_NUM; i++)
1315 s->s3.tmp.valid_flags[i] = 0;
1316 /*
1317 * If peer sent no signature algorithms check to see if we support
1318 * the default algorithm for each certificate type
1319 */
1320 if (s->s3.tmp.peer_cert_sigalgs == NULL
1321 && s->s3.tmp.peer_sigalgs == NULL) {
1322 const uint16_t *sent_sigs;
1323 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1324
1325 for (i = 0; i < SSL_PKEY_NUM; i++) {
1326 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1327 size_t j;
1328
1329 if (lu == NULL)
1330 continue;
1331 /* Check default matches a type we sent */
1332 for (j = 0; j < sent_sigslen; j++) {
1333 if (lu->sigalg == sent_sigs[j]) {
1334 s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
1335 break;
1336 }
1337 }
1338 }
1339 return 1;
1340 }
1341
1342 if (!tls1_process_sigalgs(s)) {
1343 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
1344 SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_INTERNAL_ERROR);
1345 return 0;
1346 }
1347 if (s->shared_sigalgs != NULL)
1348 return 1;
1349
1350 /* Fatal error if no shared signature algorithms */
1351 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS1_SET_SERVER_SIGALGS,
1352 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1353 return 0;
1354 }
1355
1356 /*-
1357 * Gets the ticket information supplied by the client if any.
1358 *
1359 * hello: The parsed ClientHello data
1360 * ret: (output) on return, if a ticket was decrypted, then this is set to
1361 * point to the resulting session.
1362 */
1363 SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1364 SSL_SESSION **ret)
1365 {
1366 size_t size;
1367 RAW_EXTENSION *ticketext;
1368
1369 *ret = NULL;
1370 s->ext.ticket_expected = 0;
1371
1372 /*
1373 * If tickets disabled or not supported by the protocol version
1374 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1375 * resumption.
1376 */
1377 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1378 return SSL_TICKET_NONE;
1379
1380 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1381 if (!ticketext->present)
1382 return SSL_TICKET_NONE;
1383
1384 size = PACKET_remaining(&ticketext->data);
1385
1386 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1387 hello->session_id, hello->session_id_len, ret);
1388 }
1389
1390 /*-
1391 * tls_decrypt_ticket attempts to decrypt a session ticket.
1392 *
1393 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
1394 * expecting a pre-shared key ciphersuite, in which case we have no use for
1395 * session tickets and one will never be decrypted, nor will
1396 * s->ext.ticket_expected be set to 1.
1397 *
1398 * Side effects:
1399 * Sets s->ext.ticket_expected to 1 if the server will have to issue
1400 * a new session ticket to the client because the client indicated support
1401 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1402 * a session ticket or we couldn't use the one it gave us, or if
1403 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1404 * Otherwise, s->ext.ticket_expected is set to 0.
1405 *
1406 * etick: points to the body of the session ticket extension.
1407 * eticklen: the length of the session tickets extension.
1408 * sess_id: points at the session ID.
1409 * sesslen: the length of the session ID.
1410 * psess: (output) on return, if a ticket was decrypted, then this is set to
1411 * point to the resulting session.
1412 */
1413 SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1414 size_t eticklen, const unsigned char *sess_id,
1415 size_t sesslen, SSL_SESSION **psess)
1416 {
1417 SSL_SESSION *sess = NULL;
1418 unsigned char *sdec;
1419 const unsigned char *p;
1420 int slen, renew_ticket = 0, declen;
1421 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
1422 size_t mlen;
1423 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1424 SSL_HMAC *hctx = NULL;
1425 EVP_CIPHER_CTX *ctx = NULL;
1426 SSL_CTX *tctx = s->session_ctx;
1427
1428 if (eticklen == 0) {
1429 /*
1430 * The client will accept a ticket but doesn't currently have
1431 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
1432 */
1433 ret = SSL_TICKET_EMPTY;
1434 goto end;
1435 }
1436 if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) {
1437 /*
1438 * Indicate that the ticket couldn't be decrypted rather than
1439 * generating the session from ticket now, trigger
1440 * abbreviated handshake based on external mechanism to
1441 * calculate the master secret later.
1442 */
1443 ret = SSL_TICKET_NO_DECRYPT;
1444 goto end;
1445 }
1446
1447 /* Need at least keyname + iv */
1448 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
1449 ret = SSL_TICKET_NO_DECRYPT;
1450 goto end;
1451 }
1452
1453 /* Initialize session ticket encryption and HMAC contexts */
1454 hctx = ssl_hmac_new(tctx);
1455 if (hctx == NULL) {
1456 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1457 goto end;
1458 }
1459 ctx = EVP_CIPHER_CTX_new();
1460 if (ctx == NULL) {
1461 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1462 goto end;
1463 }
1464 #ifndef OPENSSL_NO_DEPRECATED_3_0
1465 if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
1466 #else
1467 if (tctx->ext.ticket_key_evp_cb != NULL)
1468 #endif
1469 {
1470 unsigned char *nctick = (unsigned char *)etick;
1471 int rv = 0;
1472
1473 if (tctx->ext.ticket_key_evp_cb != NULL)
1474 rv = tctx->ext.ticket_key_evp_cb(s, nctick,
1475 nctick + TLSEXT_KEYNAME_LENGTH,
1476 ctx,
1477 ssl_hmac_get0_EVP_MAC_CTX(hctx),
1478 0);
1479 #ifndef OPENSSL_NO_DEPRECATED_3_0
1480 else if (tctx->ext.ticket_key_cb != NULL)
1481 /* if 0 is returned, write an empty ticket */
1482 rv = tctx->ext.ticket_key_cb(s, nctick,
1483 nctick + TLSEXT_KEYNAME_LENGTH,
1484 ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
1485 #endif
1486 if (rv < 0) {
1487 ret = SSL_TICKET_FATAL_ERR_OTHER;
1488 goto end;
1489 }
1490 if (rv == 0) {
1491 ret = SSL_TICKET_NO_DECRYPT;
1492 goto end;
1493 }
1494 if (rv == 2)
1495 renew_ticket = 1;
1496 } else {
1497 /* Check key name matches */
1498 if (memcmp(etick, tctx->ext.tick_key_name,
1499 TLSEXT_KEYNAME_LENGTH) != 0) {
1500 ret = SSL_TICKET_NO_DECRYPT;
1501 goto end;
1502 }
1503 if (ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
1504 sizeof(tctx->ext.secure->tick_hmac_key),
1505 "SHA256") <= 0
1506 || EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL,
1507 tctx->ext.secure->tick_aes_key,
1508 etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
1509 ret = SSL_TICKET_FATAL_ERR_OTHER;
1510 goto end;
1511 }
1512 if (SSL_IS_TLS13(s))
1513 renew_ticket = 1;
1514 }
1515 /*
1516 * Attempt to process session ticket, first conduct sanity and integrity
1517 * checks on ticket.
1518 */
1519 mlen = ssl_hmac_size(hctx);
1520 if (mlen == 0) {
1521 ret = SSL_TICKET_FATAL_ERR_OTHER;
1522 goto end;
1523 }
1524
1525 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1526 if (eticklen <=
1527 TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx) + mlen) {
1528 ret = SSL_TICKET_NO_DECRYPT;
1529 goto end;
1530 }
1531 eticklen -= mlen;
1532 /* Check HMAC of encrypted ticket */
1533 if (ssl_hmac_update(hctx, etick, eticklen) <= 0
1534 || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
1535 ret = SSL_TICKET_FATAL_ERR_OTHER;
1536 goto end;
1537 }
1538
1539 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1540 ret = SSL_TICKET_NO_DECRYPT;
1541 goto end;
1542 }
1543 /* Attempt to decrypt session data */
1544 /* Move p after IV to start of encrypted ticket, update length */
1545 p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1546 eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1547 sdec = OPENSSL_malloc(eticklen);
1548 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1549 (int)eticklen) <= 0) {
1550 OPENSSL_free(sdec);
1551 ret = SSL_TICKET_FATAL_ERR_OTHER;
1552 goto end;
1553 }
1554 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1555 OPENSSL_free(sdec);
1556 ret = SSL_TICKET_NO_DECRYPT;
1557 goto end;
1558 }
1559 slen += declen;
1560 p = sdec;
1561
1562 sess = d2i_SSL_SESSION(NULL, &p, slen);
1563 slen -= p - sdec;
1564 OPENSSL_free(sdec);
1565 if (sess) {
1566 /* Some additional consistency checks */
1567 if (slen != 0) {
1568 SSL_SESSION_free(sess);
1569 sess = NULL;
1570 ret = SSL_TICKET_NO_DECRYPT;
1571 goto end;
1572 }
1573 /*
1574 * The session ID, if non-empty, is used by some clients to detect
1575 * that the ticket has been accepted. So we copy it to the session
1576 * structure. If it is empty set length to zero as required by
1577 * standard.
1578 */
1579 if (sesslen) {
1580 memcpy(sess->session_id, sess_id, sesslen);
1581 sess->session_id_length = sesslen;
1582 }
1583 if (renew_ticket)
1584 ret = SSL_TICKET_SUCCESS_RENEW;
1585 else
1586 ret = SSL_TICKET_SUCCESS;
1587 goto end;
1588 }
1589 ERR_clear_error();
1590 /*
1591 * For session parse failure, indicate that we need to send a new ticket.
1592 */
1593 ret = SSL_TICKET_NO_DECRYPT;
1594
1595 end:
1596 EVP_CIPHER_CTX_free(ctx);
1597 ssl_hmac_free(hctx);
1598
1599 /*
1600 * If set, the decrypt_ticket_cb() is called unless a fatal error was
1601 * detected above. The callback is responsible for checking |ret| before it
1602 * performs any action
1603 */
1604 if (s->session_ctx->decrypt_ticket_cb != NULL
1605 && (ret == SSL_TICKET_EMPTY
1606 || ret == SSL_TICKET_NO_DECRYPT
1607 || ret == SSL_TICKET_SUCCESS
1608 || ret == SSL_TICKET_SUCCESS_RENEW)) {
1609 size_t keyname_len = eticklen;
1610 int retcb;
1611
1612 if (keyname_len > TLSEXT_KEYNAME_LENGTH)
1613 keyname_len = TLSEXT_KEYNAME_LENGTH;
1614 retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len,
1615 ret,
1616 s->session_ctx->ticket_cb_data);
1617 switch (retcb) {
1618 case SSL_TICKET_RETURN_ABORT:
1619 ret = SSL_TICKET_FATAL_ERR_OTHER;
1620 break;
1621
1622 case SSL_TICKET_RETURN_IGNORE:
1623 ret = SSL_TICKET_NONE;
1624 SSL_SESSION_free(sess);
1625 sess = NULL;
1626 break;
1627
1628 case SSL_TICKET_RETURN_IGNORE_RENEW:
1629 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
1630 ret = SSL_TICKET_NO_DECRYPT;
1631 /* else the value of |ret| will already do the right thing */
1632 SSL_SESSION_free(sess);
1633 sess = NULL;
1634 break;
1635
1636 case SSL_TICKET_RETURN_USE:
1637 case SSL_TICKET_RETURN_USE_RENEW:
1638 if (ret != SSL_TICKET_SUCCESS
1639 && ret != SSL_TICKET_SUCCESS_RENEW)
1640 ret = SSL_TICKET_FATAL_ERR_OTHER;
1641 else if (retcb == SSL_TICKET_RETURN_USE)
1642 ret = SSL_TICKET_SUCCESS;
1643 else
1644 ret = SSL_TICKET_SUCCESS_RENEW;
1645 break;
1646
1647 default:
1648 ret = SSL_TICKET_FATAL_ERR_OTHER;
1649 }
1650 }
1651
1652 if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) {
1653 switch (ret) {
1654 case SSL_TICKET_NO_DECRYPT:
1655 case SSL_TICKET_SUCCESS_RENEW:
1656 case SSL_TICKET_EMPTY:
1657 s->ext.ticket_expected = 1;
1658 }
1659 }
1660
1661 *psess = sess;
1662
1663 return ret;
1664 }
1665
1666 /* Check to see if a signature algorithm is allowed */
1667 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
1668 {
1669 unsigned char sigalgstr[2];
1670 int secbits;
1671
1672 /* See if sigalgs is recognised and if hash is enabled */
1673 if (!tls1_lookup_md(lu, NULL))
1674 return 0;
1675 /* DSA is not allowed in TLS 1.3 */
1676 if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
1677 return 0;
1678 /* TODO(OpenSSL1.2) fully axe DSA/etc. in ClientHello per TLS 1.3 spec */
1679 if (!s->server && !SSL_IS_DTLS(s) && s->s3.tmp.min_ver >= TLS1_3_VERSION
1680 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
1681 || lu->hash_idx == SSL_MD_MD5_IDX
1682 || lu->hash_idx == SSL_MD_SHA224_IDX))
1683 return 0;
1684
1685 /* See if public key algorithm allowed */
1686 if (ssl_cert_is_disabled(lu->sig_idx))
1687 return 0;
1688
1689 if (lu->sig == NID_id_GostR3410_2012_256
1690 || lu->sig == NID_id_GostR3410_2012_512
1691 || lu->sig == NID_id_GostR3410_2001) {
1692 /* We never allow GOST sig algs on the server with TLSv1.3 */
1693 if (s->server && SSL_IS_TLS13(s))
1694 return 0;
1695 if (!s->server
1696 && s->method->version == TLS_ANY_VERSION
1697 && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
1698 int i, num;
1699 STACK_OF(SSL_CIPHER) *sk;
1700
1701 /*
1702 * We're a client that could negotiate TLSv1.3. We only allow GOST
1703 * sig algs if we could negotiate TLSv1.2 or below and we have GOST
1704 * ciphersuites enabled.
1705 */
1706
1707 if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
1708 return 0;
1709
1710 sk = SSL_get_ciphers(s);
1711 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
1712 for (i = 0; i < num; i++) {
1713 const SSL_CIPHER *c;
1714
1715 c = sk_SSL_CIPHER_value(sk, i);
1716 /* Skip disabled ciphers */
1717 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
1718 continue;
1719
1720 if ((c->algorithm_mkey & SSL_kGOST) != 0)
1721 break;
1722 }
1723 if (i == num)
1724 return 0;
1725 }
1726 }
1727
1728 if (lu->hash == NID_undef)
1729 return 1;
1730 /* Security bits: half digest bits */
1731 secbits = EVP_MD_size(ssl_md(lu->hash_idx)) * 4;
1732 /* Finally see if security callback allows it */
1733 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
1734 sigalgstr[1] = lu->sigalg & 0xff;
1735 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
1736 }
1737
1738 /*
1739 * Get a mask of disabled public key algorithms based on supported signature
1740 * algorithms. For example if no signature algorithm supports RSA then RSA is
1741 * disabled.
1742 */
1743
1744 void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
1745 {
1746 const uint16_t *sigalgs;
1747 size_t i, sigalgslen;
1748 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
1749 /*
1750 * Go through all signature algorithms seeing if we support any
1751 * in disabled_mask.
1752 */
1753 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
1754 for (i = 0; i < sigalgslen; i++, sigalgs++) {
1755 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*sigalgs);
1756 const SSL_CERT_LOOKUP *clu;
1757
1758 if (lu == NULL)
1759 continue;
1760
1761 clu = ssl_cert_lookup_by_idx(lu->sig_idx);
1762 if (clu == NULL)
1763 continue;
1764
1765 /* If algorithm is disabled see if we can enable it */
1766 if ((clu->amask & disabled_mask) != 0
1767 && tls12_sigalg_allowed(s, op, lu))
1768 disabled_mask &= ~clu->amask;
1769 }
1770 *pmask_a |= disabled_mask;
1771 }
1772
1773 int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
1774 const uint16_t *psig, size_t psiglen)
1775 {
1776 size_t i;
1777 int rv = 0;
1778
1779 for (i = 0; i < psiglen; i++, psig++) {
1780 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*psig);
1781
1782 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1783 continue;
1784 if (!WPACKET_put_bytes_u16(pkt, *psig))
1785 return 0;
1786 /*
1787 * If TLS 1.3 must have at least one valid TLS 1.3 message
1788 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
1789 */
1790 if (rv == 0 && (!SSL_IS_TLS13(s)
1791 || (lu->sig != EVP_PKEY_RSA
1792 && lu->hash != NID_sha1
1793 && lu->hash != NID_sha224)))
1794 rv = 1;
1795 }
1796 if (rv == 0)
1797 SSLerr(SSL_F_TLS12_COPY_SIGALGS, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
1798 return rv;
1799 }
1800
1801 /* Given preference and allowed sigalgs set shared sigalgs */
1802 static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
1803 const uint16_t *pref, size_t preflen,
1804 const uint16_t *allow, size_t allowlen)
1805 {
1806 const uint16_t *ptmp, *atmp;
1807 size_t i, j, nmatch = 0;
1808 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
1809 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*ptmp);
1810
1811 /* Skip disabled hashes or signature algorithms */
1812 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
1813 continue;
1814 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
1815 if (*ptmp == *atmp) {
1816 nmatch++;
1817 if (shsig)
1818 *shsig++ = lu;
1819 break;
1820 }
1821 }
1822 }
1823 return nmatch;
1824 }
1825
1826 /* Set shared signature algorithms for SSL structures */
1827 static int tls1_set_shared_sigalgs(SSL *s)
1828 {
1829 const uint16_t *pref, *allow, *conf;
1830 size_t preflen, allowlen, conflen;
1831 size_t nmatch;
1832 const SIGALG_LOOKUP **salgs = NULL;
1833 CERT *c = s->cert;
1834 unsigned int is_suiteb = tls1_suiteb(s);
1835
1836 OPENSSL_free(s->shared_sigalgs);
1837 s->shared_sigalgs = NULL;
1838 s->shared_sigalgslen = 0;
1839 /* If client use client signature algorithms if not NULL */
1840 if (!s->server && c->client_sigalgs && !is_suiteb) {
1841 conf = c->client_sigalgs;
1842 conflen = c->client_sigalgslen;
1843 } else if (c->conf_sigalgs && !is_suiteb) {
1844 conf = c->conf_sigalgs;
1845 conflen = c->conf_sigalgslen;
1846 } else
1847 conflen = tls12_get_psigalgs(s, 0, &conf);
1848 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
1849 pref = conf;
1850 preflen = conflen;
1851 allow = s->s3.tmp.peer_sigalgs;
1852 allowlen = s->s3.tmp.peer_sigalgslen;
1853 } else {
1854 allow = conf;
1855 allowlen = conflen;
1856 pref = s->s3.tmp.peer_sigalgs;
1857 preflen = s->s3.tmp.peer_sigalgslen;
1858 }
1859 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
1860 if (nmatch) {
1861 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) {
1862 SSLerr(SSL_F_TLS1_SET_SHARED_SIGALGS, ERR_R_MALLOC_FAILURE);
1863 return 0;
1864 }
1865 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
1866 } else {
1867 salgs = NULL;
1868 }
1869 s->shared_sigalgs = salgs;
1870 s->shared_sigalgslen = nmatch;
1871 return 1;
1872 }
1873
1874 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
1875 {
1876 unsigned int stmp;
1877 size_t size, i;
1878 uint16_t *buf;
1879
1880 size = PACKET_remaining(pkt);
1881
1882 /* Invalid data length */
1883 if (size == 0 || (size & 1) != 0)
1884 return 0;
1885
1886 size >>= 1;
1887
1888 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) {
1889 SSLerr(SSL_F_TLS1_SAVE_U16, ERR_R_MALLOC_FAILURE);
1890 return 0;
1891 }
1892 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
1893 buf[i] = stmp;
1894
1895 if (i != size) {
1896 OPENSSL_free(buf);
1897 return 0;
1898 }
1899
1900 OPENSSL_free(*pdest);
1901 *pdest = buf;
1902 *pdestlen = size;
1903
1904 return 1;
1905 }
1906
1907 int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)
1908 {
1909 /* Extension ignored for inappropriate versions */
1910 if (!SSL_USE_SIGALGS(s))
1911 return 1;
1912 /* Should never happen */
1913 if (s->cert == NULL)
1914 return 0;
1915
1916 if (cert)
1917 return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
1918 &s->s3.tmp.peer_cert_sigalgslen);
1919 else
1920 return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
1921 &s->s3.tmp.peer_sigalgslen);
1922
1923 }
1924
1925 /* Set preferred digest for each key type */
1926
1927 int tls1_process_sigalgs(SSL *s)
1928 {
1929 size_t i;
1930 uint32_t *pvalid = s->s3.tmp.valid_flags;
1931
1932 if (!tls1_set_shared_sigalgs(s))
1933 return 0;
1934
1935 for (i = 0; i < SSL_PKEY_NUM; i++)
1936 pvalid[i] = 0;
1937
1938 for (i = 0; i < s->shared_sigalgslen; i++) {
1939 const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
1940 int idx = sigptr->sig_idx;
1941
1942 /* Ignore PKCS1 based sig algs in TLSv1.3 */
1943 if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
1944 continue;
1945 /* If not disabled indicate we can explicitly sign */
1946 if (pvalid[idx] == 0 && !ssl_cert_is_disabled(idx))
1947 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
1948 }
1949 return 1;
1950 }
1951
1952 int SSL_get_sigalgs(SSL *s, int idx,
1953 int *psign, int *phash, int *psignhash,
1954 unsigned char *rsig, unsigned char *rhash)
1955 {
1956 uint16_t *psig = s->s3.tmp.peer_sigalgs;
1957 size_t numsigalgs = s->s3.tmp.peer_sigalgslen;
1958 if (psig == NULL || numsigalgs > INT_MAX)
1959 return 0;
1960 if (idx >= 0) {
1961 const SIGALG_LOOKUP *lu;
1962
1963 if (idx >= (int)numsigalgs)
1964 return 0;
1965 psig += idx;
1966 if (rhash != NULL)
1967 *rhash = (unsigned char)((*psig >> 8) & 0xff);
1968 if (rsig != NULL)
1969 *rsig = (unsigned char)(*psig & 0xff);
1970 lu = tls1_lookup_sigalg(*psig);
1971 if (psign != NULL)
1972 *psign = lu != NULL ? lu->sig : NID_undef;
1973 if (phash != NULL)
1974 *phash = lu != NULL ? lu->hash : NID_undef;
1975 if (psignhash != NULL)
1976 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
1977 }
1978 return (int)numsigalgs;
1979 }
1980
1981 int SSL_get_shared_sigalgs(SSL *s, int idx,
1982 int *psign, int *phash, int *psignhash,
1983 unsigned char *rsig, unsigned char *rhash)
1984 {
1985 const SIGALG_LOOKUP *shsigalgs;
1986 if (s->shared_sigalgs == NULL
1987 || idx < 0
1988 || idx >= (int)s->shared_sigalgslen
1989 || s->shared_sigalgslen > INT_MAX)
1990 return 0;
1991 shsigalgs = s->shared_sigalgs[idx];
1992 if (phash != NULL)
1993 *phash = shsigalgs->hash;
1994 if (psign != NULL)
1995 *psign = shsigalgs->sig;
1996 if (psignhash != NULL)
1997 *psignhash = shsigalgs->sigandhash;
1998 if (rsig != NULL)
1999 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2000 if (rhash != NULL)
2001 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2002 return (int)s->shared_sigalgslen;
2003 }
2004
2005 /* Maximum possible number of unique entries in sigalgs array */
2006 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2007
2008 typedef struct {
2009 size_t sigalgcnt;
2010 /* TLSEXT_SIGALG_XXX values */
2011 uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2012 } sig_cb_st;
2013
2014 static void get_sigorhash(int *psig, int *phash, const char *str)
2015 {
2016 if (strcmp(str, "RSA") == 0) {
2017 *psig = EVP_PKEY_RSA;
2018 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2019 *psig = EVP_PKEY_RSA_PSS;
2020 } else if (strcmp(str, "DSA") == 0) {
2021 *psig = EVP_PKEY_DSA;
2022 } else if (strcmp(str, "ECDSA") == 0) {
2023 *psig = EVP_PKEY_EC;
2024 } else {
2025 *phash = OBJ_sn2nid(str);
2026 if (*phash == NID_undef)
2027 *phash = OBJ_ln2nid(str);
2028 }
2029 }
2030 /* Maximum length of a signature algorithm string component */
2031 #define TLS_MAX_SIGSTRING_LEN 40
2032
2033 static int sig_cb(const char *elem, int len, void *arg)
2034 {
2035 sig_cb_st *sarg = arg;
2036 size_t i;
2037 const SIGALG_LOOKUP *s;
2038 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2039 int sig_alg = NID_undef, hash_alg = NID_undef;
2040 if (elem == NULL)
2041 return 0;
2042 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2043 return 0;
2044 if (len > (int)(sizeof(etmp) - 1))
2045 return 0;
2046 memcpy(etmp, elem, len);
2047 etmp[len] = 0;
2048 p = strchr(etmp, '+');
2049 /*
2050 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2051 * if there's no '+' in the provided name, look for the new-style combined
2052 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2053 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2054 * rsa_pss_rsae_* that differ only by public key OID; in such cases
2055 * we will pick the _rsae_ variant, by virtue of them appearing earlier
2056 * in the table.
2057 */
2058 if (p == NULL) {
2059 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2060 i++, s++) {
2061 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2062 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2063 break;
2064 }
2065 }
2066 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2067 return 0;
2068 } else {
2069 *p = 0;
2070 p++;
2071 if (*p == 0)
2072 return 0;
2073 get_sigorhash(&sig_alg, &hash_alg, etmp);
2074 get_sigorhash(&sig_alg, &hash_alg, p);
2075 if (sig_alg == NID_undef || hash_alg == NID_undef)
2076 return 0;
2077 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2078 i++, s++) {
2079 if (s->hash == hash_alg && s->sig == sig_alg) {
2080 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2081 break;
2082 }
2083 }
2084 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2085 return 0;
2086 }
2087
2088 /* Reject duplicates */
2089 for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2090 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2091 sarg->sigalgcnt--;
2092 return 0;
2093 }
2094 }
2095 return 1;
2096 }
2097
2098 /*
2099 * Set supported signature algorithms based on a colon separated list of the
2100 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2101 */
2102 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
2103 {
2104 sig_cb_st sig;
2105 sig.sigalgcnt = 0;
2106 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2107 return 0;
2108 if (c == NULL)
2109 return 1;
2110 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2111 }
2112
2113 int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2114 int client)
2115 {
2116 uint16_t *sigalgs;
2117
2118 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) {
2119 SSLerr(SSL_F_TLS1_SET_RAW_SIGALGS, ERR_R_MALLOC_FAILURE);
2120 return 0;
2121 }
2122 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2123
2124 if (client) {
2125 OPENSSL_free(c->client_sigalgs);
2126 c->client_sigalgs = sigalgs;
2127 c->client_sigalgslen = salglen;
2128 } else {
2129 OPENSSL_free(c->conf_sigalgs);
2130 c->conf_sigalgs = sigalgs;
2131 c->conf_sigalgslen = salglen;
2132 }
2133
2134 return 1;
2135 }
2136
2137 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
2138 {
2139 uint16_t *sigalgs, *sptr;
2140 size_t i;
2141
2142 if (salglen & 1)
2143 return 0;
2144 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) {
2145 SSLerr(SSL_F_TLS1_SET_SIGALGS, ERR_R_MALLOC_FAILURE);
2146 return 0;
2147 }
2148 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
2149 size_t j;
2150 const SIGALG_LOOKUP *curr;
2151 int md_id = *psig_nids++;
2152 int sig_id = *psig_nids++;
2153
2154 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
2155 j++, curr++) {
2156 if (curr->hash == md_id && curr->sig == sig_id) {
2157 *sptr++ = curr->sigalg;
2158 break;
2159 }
2160 }
2161
2162 if (j == OSSL_NELEM(sigalg_lookup_tbl))
2163 goto err;
2164 }
2165
2166 if (client) {
2167 OPENSSL_free(c->client_sigalgs);
2168 c->client_sigalgs = sigalgs;
2169 c->client_sigalgslen = salglen / 2;
2170 } else {
2171 OPENSSL_free(c->conf_sigalgs);
2172 c->conf_sigalgs = sigalgs;
2173 c->conf_sigalgslen = salglen / 2;
2174 }
2175
2176 return 1;
2177
2178 err:
2179 OPENSSL_free(sigalgs);
2180 return 0;
2181 }
2182
2183 static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)
2184 {
2185 int sig_nid, use_pc_sigalgs = 0;
2186 size_t i;
2187 const SIGALG_LOOKUP *sigalg;
2188 size_t sigalgslen;
2189 if (default_nid == -1)
2190 return 1;
2191 sig_nid = X509_get_signature_nid(x);
2192 if (default_nid)
2193 return sig_nid == default_nid ? 1 : 0;
2194
2195 if (SSL_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
2196 /*
2197 * If we're in TLSv1.3 then we only get here if we're checking the
2198 * chain. If the peer has specified peer_cert_sigalgs then we use them
2199 * otherwise we default to normal sigalgs.
2200 */
2201 sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
2202 use_pc_sigalgs = 1;
2203 } else {
2204 sigalgslen = s->shared_sigalgslen;
2205 }
2206 for (i = 0; i < sigalgslen; i++) {
2207 sigalg = use_pc_sigalgs
2208 ? tls1_lookup_sigalg(s->s3.tmp.peer_cert_sigalgs[i])
2209 : s->shared_sigalgs[i];
2210 if (sig_nid == sigalg->sigandhash)
2211 return 1;
2212 }
2213 return 0;
2214 }
2215
2216 /* Check to see if a certificate issuer name matches list of CA names */
2217 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
2218 {
2219 X509_NAME *nm;
2220 int i;
2221 nm = X509_get_issuer_name(x);
2222 for (i = 0; i < sk_X509_NAME_num(names); i++) {
2223 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
2224 return 1;
2225 }
2226 return 0;
2227 }
2228
2229 /*
2230 * Check certificate chain is consistent with TLS extensions and is usable by
2231 * server. This servers two purposes: it allows users to check chains before
2232 * passing them to the server and it allows the server to check chains before
2233 * attempting to use them.
2234 */
2235
2236 /* Flags which need to be set for a certificate when strict mode not set */
2237
2238 #define CERT_PKEY_VALID_FLAGS \
2239 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
2240 /* Strict mode flags */
2241 #define CERT_PKEY_STRICT_FLAGS \
2242 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
2243 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
2244
2245 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
2246 int idx)
2247 {
2248 int i;
2249 int rv = 0;
2250 int check_flags = 0, strict_mode;
2251 CERT_PKEY *cpk = NULL;
2252 CERT *c = s->cert;
2253 uint32_t *pvalid;
2254 unsigned int suiteb_flags = tls1_suiteb(s);
2255 /* idx == -1 means checking server chains */
2256 if (idx != -1) {
2257 /* idx == -2 means checking client certificate chains */
2258 if (idx == -2) {
2259 cpk = c->key;
2260 idx = (int)(cpk - c->pkeys);
2261 } else
2262 cpk = c->pkeys + idx;
2263 pvalid = s->s3.tmp.valid_flags + idx;
2264 x = cpk->x509;
2265 pk = cpk->privatekey;
2266 chain = cpk->chain;
2267 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
2268 /* If no cert or key, forget it */
2269 if (!x || !pk)
2270 goto end;
2271 } else {
2272 size_t certidx;
2273
2274 if (!x || !pk)
2275 return 0;
2276
2277 if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
2278 return 0;
2279 idx = certidx;
2280 pvalid = s->s3.tmp.valid_flags + idx;
2281
2282 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
2283 check_flags = CERT_PKEY_STRICT_FLAGS;
2284 else
2285 check_flags = CERT_PKEY_VALID_FLAGS;
2286 strict_mode = 1;
2287 }
2288
2289 if (suiteb_flags) {
2290 int ok;
2291 if (check_flags)
2292 check_flags |= CERT_PKEY_SUITEB;
2293 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
2294 if (ok == X509_V_OK)
2295 rv |= CERT_PKEY_SUITEB;
2296 else if (!check_flags)
2297 goto end;
2298 }
2299
2300 /*
2301 * Check all signature algorithms are consistent with signature
2302 * algorithms extension if TLS 1.2 or later and strict mode.
2303 */
2304 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
2305 int default_nid;
2306 int rsign = 0;
2307 if (s->s3.tmp.peer_cert_sigalgs != NULL
2308 || s->s3.tmp.peer_sigalgs != NULL) {
2309 default_nid = 0;
2310 /* If no sigalgs extension use defaults from RFC5246 */
2311 } else {
2312 switch (idx) {
2313 case SSL_PKEY_RSA:
2314 rsign = EVP_PKEY_RSA;
2315 default_nid = NID_sha1WithRSAEncryption;
2316 break;
2317
2318 case SSL_PKEY_DSA_SIGN:
2319 rsign = EVP_PKEY_DSA;
2320 default_nid = NID_dsaWithSHA1;
2321 break;
2322
2323 case SSL_PKEY_ECC:
2324 rsign = EVP_PKEY_EC;
2325 default_nid = NID_ecdsa_with_SHA1;
2326 break;
2327
2328 case SSL_PKEY_GOST01:
2329 rsign = NID_id_GostR3410_2001;
2330 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
2331 break;
2332
2333 case SSL_PKEY_GOST12_256:
2334 rsign = NID_id_GostR3410_2012_256;
2335 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
2336 break;
2337
2338 case SSL_PKEY_GOST12_512:
2339 rsign = NID_id_GostR3410_2012_512;
2340 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
2341 break;
2342
2343 default:
2344 default_nid = -1;
2345 break;
2346 }
2347 }
2348 /*
2349 * If peer sent no signature algorithms extension and we have set
2350 * preferred signature algorithms check we support sha1.
2351 */
2352 if (default_nid > 0 && c->conf_sigalgs) {
2353 size_t j;
2354 const uint16_t *p = c->conf_sigalgs;
2355 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
2356 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*p);
2357
2358 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
2359 break;
2360 }
2361 if (j == c->conf_sigalgslen) {
2362 if (check_flags)
2363 goto skip_sigs;
2364 else
2365 goto end;
2366 }
2367 }
2368 /* Check signature algorithm of each cert in chain */
2369 if (SSL_IS_TLS13(s)) {
2370 /*
2371 * We only get here if the application has called SSL_check_chain(),
2372 * so check_flags is always set.
2373 */
2374 if (find_sig_alg(s, x, pk) != NULL)
2375 rv |= CERT_PKEY_EE_SIGNATURE;
2376 } else if (!tls1_check_sig_alg(s, x, default_nid)) {
2377 if (!check_flags)
2378 goto end;
2379 } else
2380 rv |= CERT_PKEY_EE_SIGNATURE;
2381 rv |= CERT_PKEY_CA_SIGNATURE;
2382 for (i = 0; i < sk_X509_num(chain); i++) {
2383 if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
2384 if (check_flags) {
2385 rv &= ~CERT_PKEY_CA_SIGNATURE;
2386 break;
2387 } else
2388 goto end;
2389 }
2390 }
2391 }
2392 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2393 else if (check_flags)
2394 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2395 skip_sigs:
2396 /* Check cert parameters are consistent */
2397 if (tls1_check_cert_param(s, x, 1))
2398 rv |= CERT_PKEY_EE_PARAM;
2399 else if (!check_flags)
2400 goto end;
2401 if (!s->server)
2402 rv |= CERT_PKEY_CA_PARAM;
2403 /* In strict mode check rest of chain too */
2404 else if (strict_mode) {
2405 rv |= CERT_PKEY_CA_PARAM;
2406 for (i = 0; i < sk_X509_num(chain); i++) {
2407 X509 *ca = sk_X509_value(chain, i);
2408 if (!tls1_check_cert_param(s, ca, 0)) {
2409 if (check_flags) {
2410 rv &= ~CERT_PKEY_CA_PARAM;
2411 break;
2412 } else
2413 goto end;
2414 }
2415 }
2416 }
2417 if (!s->server && strict_mode) {
2418 STACK_OF(X509_NAME) *ca_dn;
2419 int check_type = 0;
2420 switch (EVP_PKEY_id(pk)) {
2421 case EVP_PKEY_RSA:
2422 check_type = TLS_CT_RSA_SIGN;
2423 break;
2424 case EVP_PKEY_DSA:
2425 check_type = TLS_CT_DSS_SIGN;
2426 break;
2427 case EVP_PKEY_EC:
2428 check_type = TLS_CT_ECDSA_SIGN;
2429 break;
2430 }
2431 if (check_type) {
2432 const uint8_t *ctypes = s->s3.tmp.ctype;
2433 size_t j;
2434
2435 for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
2436 if (*ctypes == check_type) {
2437 rv |= CERT_PKEY_CERT_TYPE;
2438 break;
2439 }
2440 }
2441 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2442 goto end;
2443 } else {
2444 rv |= CERT_PKEY_CERT_TYPE;
2445 }
2446
2447 ca_dn = s->s3.tmp.peer_ca_names;
2448
2449 if (!sk_X509_NAME_num(ca_dn))
2450 rv |= CERT_PKEY_ISSUER_NAME;
2451
2452 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2453 if (ssl_check_ca_name(ca_dn, x))
2454 rv |= CERT_PKEY_ISSUER_NAME;
2455 }
2456 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2457 for (i = 0; i < sk_X509_num(chain); i++) {
2458 X509 *xtmp = sk_X509_value(chain, i);
2459 if (ssl_check_ca_name(ca_dn, xtmp)) {
2460 rv |= CERT_PKEY_ISSUER_NAME;
2461 break;
2462 }
2463 }
2464 }
2465 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2466 goto end;
2467 } else
2468 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2469
2470 if (!check_flags || (rv & check_flags) == check_flags)
2471 rv |= CERT_PKEY_VALID;
2472
2473 end:
2474
2475 if (TLS1_get_version(s) >= TLS1_2_VERSION)
2476 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2477 else
2478 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2479
2480 /*
2481 * When checking a CERT_PKEY structure all flags are irrelevant if the
2482 * chain is invalid.
2483 */
2484 if (!check_flags) {
2485 if (rv & CERT_PKEY_VALID) {
2486 *pvalid = rv;
2487 } else {
2488 /* Preserve sign and explicit sign flag, clear rest */
2489 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2490 return 0;
2491 }
2492 }
2493 return rv;
2494 }
2495
2496 /* Set validity of certificates in an SSL structure */
2497 void tls1_set_cert_validity(SSL *s)
2498 {
2499 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2500 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
2501 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2502 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2503 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2504 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2505 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2506 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
2507 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
2508 }
2509
2510 /* User level utility function to check a chain is suitable */
2511 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2512 {
2513 return tls1_check_chain(s, x, pk, chain, -1);
2514 }
2515
2516 #ifndef OPENSSL_NO_DH
2517 DH *ssl_get_auto_dh(SSL *s)
2518 {
2519 int dh_secbits = 80;
2520 if (s->cert->dh_tmp_auto == 2)
2521 return DH_get_1024_160();
2522 if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2523 if (s->s3.tmp.new_cipher->strength_bits == 256)
2524 dh_secbits = 128;
2525 else
2526 dh_secbits = 80;
2527 } else {
2528 if (s->s3.tmp.cert == NULL)
2529 return NULL;
2530 dh_secbits = EVP_PKEY_security_bits(s->s3.tmp.cert->privatekey);
2531 }
2532
2533 if (dh_secbits >= 128) {
2534 DH *dhp = DH_new();
2535 BIGNUM *p, *g;
2536 if (dhp == NULL)
2537 return NULL;
2538 g = BN_new();
2539 if (g == NULL || !BN_set_word(g, 2)) {
2540 DH_free(dhp);
2541 BN_free(g);
2542 return NULL;
2543 }
2544 if (dh_secbits >= 192)
2545 p = BN_get_rfc3526_prime_8192(NULL);
2546 else
2547 p = BN_get_rfc3526_prime_3072(NULL);
2548 if (p == NULL || !DH_set0_pqg(dhp, p, NULL, g)) {
2549 DH_free(dhp);
2550 BN_free(p);
2551 BN_free(g);
2552 return NULL;
2553 }
2554 return dhp;
2555 }
2556 if (dh_secbits >= 112)
2557 return DH_get_2048_224();
2558 return DH_get_1024_160();
2559 }
2560 #endif
2561
2562 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2563 {
2564 int secbits = -1;
2565 EVP_PKEY *pkey = X509_get0_pubkey(x);
2566 if (pkey) {
2567 /*
2568 * If no parameters this will return -1 and fail using the default
2569 * security callback for any non-zero security level. This will
2570 * reject keys which omit parameters but this only affects DSA and
2571 * omission of parameters is never (?) done in practice.
2572 */
2573 secbits = EVP_PKEY_security_bits(pkey);
2574 }
2575 if (s)
2576 return ssl_security(s, op, secbits, 0, x);
2577 else
2578 return ssl_ctx_security(ctx, op, secbits, 0, x);
2579 }
2580
2581 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2582 {
2583 /* Lookup signature algorithm digest */
2584 int secbits, nid, pknid;
2585 /* Don't check signature if self signed */
2586 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
2587 return 1;
2588 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
2589 secbits = -1;
2590 /* If digest NID not defined use signature NID */
2591 if (nid == NID_undef)
2592 nid = pknid;
2593 if (s)
2594 return ssl_security(s, op, secbits, nid, x);
2595 else
2596 return ssl_ctx_security(ctx, op, secbits, nid, x);
2597 }
2598
2599 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
2600 {
2601 if (vfy)
2602 vfy = SSL_SECOP_PEER;
2603 if (is_ee) {
2604 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
2605 return SSL_R_EE_KEY_TOO_SMALL;
2606 } else {
2607 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
2608 return SSL_R_CA_KEY_TOO_SMALL;
2609 }
2610 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
2611 return SSL_R_CA_MD_TOO_WEAK;
2612 return 1;
2613 }
2614
2615 /*
2616 * Check security of a chain, if |sk| includes the end entity certificate then
2617 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
2618 * one to the peer. Return values: 1 if ok otherwise error code to use
2619 */
2620
2621 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
2622 {
2623 int rv, start_idx, i;
2624 if (x == NULL) {
2625 x = sk_X509_value(sk, 0);
2626 start_idx = 1;
2627 } else
2628 start_idx = 0;
2629
2630 rv = ssl_security_cert(s, NULL, x, vfy, 1);
2631 if (rv != 1)
2632 return rv;
2633
2634 for (i = start_idx; i < sk_X509_num(sk); i++) {
2635 x = sk_X509_value(sk, i);
2636 rv = ssl_security_cert(s, NULL, x, vfy, 0);
2637 if (rv != 1)
2638 return rv;
2639 }
2640 return 1;
2641 }
2642
2643 /*
2644 * For TLS 1.2 servers check if we have a certificate which can be used
2645 * with the signature algorithm "lu" and return index of certificate.
2646 */
2647
2648 static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
2649 {
2650 int sig_idx = lu->sig_idx;
2651 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
2652
2653 /* If not recognised or not supported by cipher mask it is not suitable */
2654 if (clu == NULL
2655 || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
2656 || (clu->nid == EVP_PKEY_RSA_PSS
2657 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
2658 return -1;
2659
2660 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
2661 }
2662
2663 /*
2664 * Checks the given cert against signature_algorithm_cert restrictions sent by
2665 * the peer (if any) as well as whether the hash from the sigalg is usable with
2666 * the key.
2667 * Returns true if the cert is usable and false otherwise.
2668 */
2669 static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
2670 EVP_PKEY *pkey)
2671 {
2672 const SIGALG_LOOKUP *lu;
2673 int mdnid, pknid, supported;
2674 size_t i;
2675
2676 /*
2677 * If the given EVP_PKEY cannot supporting signing with this sigalg,
2678 * the answer is simply 'no'.
2679 */
2680 ERR_set_mark();
2681 supported = EVP_PKEY_supports_digest_nid(pkey, sig->hash);
2682 ERR_pop_to_mark();
2683 if (supported == 0)
2684 return 0;
2685
2686 /*
2687 * The TLS 1.3 signature_algorithms_cert extension places restrictions
2688 * on the sigalg with which the certificate was signed (by its issuer).
2689 */
2690 if (s->s3.tmp.peer_cert_sigalgs != NULL) {
2691 if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
2692 return 0;
2693 for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
2694 lu = tls1_lookup_sigalg(s->s3.tmp.peer_cert_sigalgs[i]);
2695 if (lu == NULL)
2696 continue;
2697
2698 /*
2699 * TODO this does not differentiate between the
2700 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
2701 * have a chain here that lets us look at the key OID in the
2702 * signing certificate.
2703 */
2704 if (mdnid == lu->hash && pknid == lu->sig)
2705 return 1;
2706 }
2707 return 0;
2708 }
2709
2710 /*
2711 * Without signat_algorithms_cert, any certificate for which we have
2712 * a viable public key is permitted.
2713 */
2714 return 1;
2715 }
2716
2717 /*
2718 * Returns true if |s| has a usable certificate configured for use
2719 * with signature scheme |sig|.
2720 * "Usable" includes a check for presence as well as applying
2721 * the signature_algorithm_cert restrictions sent by the peer (if any).
2722 * Returns false if no usable certificate is found.
2723 */
2724 static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)
2725 {
2726 /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
2727 if (idx == -1)
2728 idx = sig->sig_idx;
2729 if (!ssl_has_cert(s, idx))
2730 return 0;
2731
2732 return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
2733 s->cert->pkeys[idx].privatekey);
2734 }
2735
2736 /*
2737 * Returns true if the supplied cert |x| and key |pkey| is usable with the
2738 * specified signature scheme |sig|, or false otherwise.
2739 */
2740 static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
2741 EVP_PKEY *pkey)
2742 {
2743 size_t idx;
2744
2745 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
2746 return 0;
2747
2748 /* Check the key is consistent with the sig alg */
2749 if ((int)idx != sig->sig_idx)
2750 return 0;
2751
2752 return check_cert_usable(s, sig, x, pkey);
2753 }
2754
2755 /*
2756 * Find a signature scheme that works with the supplied certificate |x| and key
2757 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
2758 * available certs/keys to find one that works.
2759 */
2760 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)
2761 {
2762 const SIGALG_LOOKUP *lu = NULL;
2763 size_t i;
2764 #ifndef OPENSSL_NO_EC
2765 int curve = -1;
2766 #endif
2767 EVP_PKEY *tmppkey;
2768
2769 /* Look for a shared sigalgs matching possible certificates */
2770 for (i = 0; i < s->shared_sigalgslen; i++) {
2771 lu = s->shared_sigalgs[i];
2772
2773 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
2774 if (lu->hash == NID_sha1
2775 || lu->hash == NID_sha224
2776 || lu->sig == EVP_PKEY_DSA
2777 || lu->sig == EVP_PKEY_RSA)
2778 continue;
2779 /* Check that we have a cert, and signature_algorithms_cert */
2780 if (!tls1_lookup_md(lu, NULL))
2781 continue;
2782 if ((pkey == NULL && !has_usable_cert(s, lu, -1))
2783 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
2784 continue;
2785
2786 tmppkey = (pkey != NULL) ? pkey
2787 : s->cert->pkeys[lu->sig_idx].privatekey;
2788
2789 if (lu->sig == EVP_PKEY_EC) {
2790 #ifndef OPENSSL_NO_EC
2791 if (curve == -1) {
2792 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(tmppkey);
2793 curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
2794 }
2795 if (lu->curve != NID_undef && curve != lu->curve)
2796 continue;
2797 #else
2798 continue;
2799 #endif
2800 } else if (lu->sig == EVP_PKEY_RSA_PSS) {
2801 /* validate that key is large enough for the signature algorithm */
2802 if (!rsa_pss_check_min_key_size(EVP_PKEY_get0(tmppkey), lu))
2803 continue;
2804 }
2805 break;
2806 }
2807
2808 if (i == s->shared_sigalgslen)
2809 return NULL;
2810
2811 return lu;
2812 }
2813
2814 /*
2815 * Choose an appropriate signature algorithm based on available certificates
2816 * Sets chosen certificate and signature algorithm.
2817 *
2818 * For servers if we fail to find a required certificate it is a fatal error,
2819 * an appropriate error code is set and a TLS alert is sent.
2820 *
2821 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
2822 * a fatal error: we will either try another certificate or not present one
2823 * to the server. In this case no error is set.
2824 */
2825 int tls_choose_sigalg(SSL *s, int fatalerrs)
2826 {
2827 const SIGALG_LOOKUP *lu = NULL;
2828 int sig_idx = -1;
2829
2830 s->s3.tmp.cert = NULL;
2831 s->s3.tmp.sigalg = NULL;
2832
2833 if (SSL_IS_TLS13(s)) {
2834 lu = find_sig_alg(s, NULL, NULL);
2835 if (lu == NULL) {
2836 if (!fatalerrs)
2837 return 1;
2838 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS_CHOOSE_SIGALG,
2839 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2840 return 0;
2841 }
2842 } else {
2843 /* If ciphersuite doesn't require a cert nothing to do */
2844 if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
2845 return 1;
2846 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
2847 return 1;
2848
2849 if (SSL_USE_SIGALGS(s)) {
2850 size_t i;
2851 if (s->s3.tmp.peer_sigalgs != NULL) {
2852 #ifndef OPENSSL_NO_EC
2853 int curve;
2854
2855 /* For Suite B need to match signature algorithm to curve */
2856 if (tls1_suiteb(s)) {
2857 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(s->cert->pkeys[SSL_PKEY_ECC].privatekey);
2858 curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
2859 } else {
2860 curve = -1;
2861 }
2862 #endif
2863
2864 /*
2865 * Find highest preference signature algorithm matching
2866 * cert type
2867 */
2868 for (i = 0; i < s->shared_sigalgslen; i++) {
2869 lu = s->shared_sigalgs[i];
2870
2871 if (s->server) {
2872 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
2873 continue;
2874 } else {
2875 int cc_idx = s->cert->key - s->cert->pkeys;
2876
2877 sig_idx = lu->sig_idx;
2878 if (cc_idx != sig_idx)
2879 continue;
2880 }
2881 /* Check that we have a cert, and sig_algs_cert */
2882 if (!has_usable_cert(s, lu, sig_idx))
2883 continue;
2884 if (lu->sig == EVP_PKEY_RSA_PSS) {
2885 /* validate that key is large enough for the signature algorithm */
2886 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
2887
2888 if (!rsa_pss_check_min_key_size(EVP_PKEY_get0(pkey), lu))
2889 continue;
2890 }
2891 #ifndef OPENSSL_NO_EC
2892 if (curve == -1 || lu->curve == curve)
2893 #endif
2894 break;
2895 }
2896 #ifndef OPENSSL_NO_GOST
2897 /*
2898 * Some Windows-based implementations do not send GOST algorithms indication
2899 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
2900 * we have to assume GOST support.
2901 */
2902 if (i == s->shared_sigalgslen && s->s3.tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) {
2903 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
2904 if (!fatalerrs)
2905 return 1;
2906 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2907 SSL_F_TLS_CHOOSE_SIGALG,
2908 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2909 return 0;
2910 } else {
2911 i = 0;
2912 sig_idx = lu->sig_idx;
2913 }
2914 }
2915 #endif
2916 if (i == s->shared_sigalgslen) {
2917 if (!fatalerrs)
2918 return 1;
2919 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2920 SSL_F_TLS_CHOOSE_SIGALG,
2921 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2922 return 0;
2923 }
2924 } else {
2925 /*
2926 * If we have no sigalg use defaults
2927 */
2928 const uint16_t *sent_sigs;
2929 size_t sent_sigslen;
2930
2931 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
2932 if (!fatalerrs)
2933 return 1;
2934 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG,
2935 ERR_R_INTERNAL_ERROR);
2936 return 0;
2937 }
2938
2939 /* Check signature matches a type we sent */
2940 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2941 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2942 if (lu->sigalg == *sent_sigs
2943 && has_usable_cert(s, lu, lu->sig_idx))
2944 break;
2945 }
2946 if (i == sent_sigslen) {
2947 if (!fatalerrs)
2948 return 1;
2949 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
2950 SSL_F_TLS_CHOOSE_SIGALG,
2951 SSL_R_WRONG_SIGNATURE_TYPE);
2952 return 0;
2953 }
2954 }
2955 } else {
2956 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
2957 if (!fatalerrs)
2958 return 1;
2959 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG,
2960 ERR_R_INTERNAL_ERROR);
2961 return 0;
2962 }
2963 }
2964 }
2965 if (sig_idx == -1)
2966 sig_idx = lu->sig_idx;
2967 s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
2968 s->cert->key = s->s3.tmp.cert;
2969 s->s3.tmp.sigalg = lu;
2970 return 1;
2971 }
2972
2973 int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
2974 {
2975 if (mode != TLSEXT_max_fragment_length_DISABLED
2976 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
2977 SSLerr(SSL_F_SSL_CTX_SET_TLSEXT_MAX_FRAGMENT_LENGTH,
2978 SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
2979 return 0;
2980 }
2981
2982 ctx->ext.max_fragment_len_mode = mode;
2983 return 1;
2984 }
2985
2986 int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
2987 {
2988 if (mode != TLSEXT_max_fragment_length_DISABLED
2989 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
2990 SSLerr(SSL_F_SSL_SET_TLSEXT_MAX_FRAGMENT_LENGTH,
2991 SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
2992 return 0;
2993 }
2994
2995 ssl->ext.max_fragment_len_mode = mode;
2996 return 1;
2997 }
2998
2999 uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3000 {
3001 return session->ext.max_fragment_len_mode;
3002 }
3003
3004 /*
3005 * Helper functions for HMAC access with legacy support included.
3006 */
3007 SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3008 {
3009 SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3010 EVP_MAC *mac = NULL;
3011
3012 if (ret == NULL)
3013 return NULL;
3014 #ifndef OPENSSL_NO_DEPRECATED_3_0
3015 if (ctx->ext.ticket_key_evp_cb == NULL
3016 && ctx->ext.ticket_key_cb != NULL) {
3017 ret->old_ctx = HMAC_CTX_new();
3018 if (ret->old_ctx == NULL)
3019 goto err;
3020 return ret;
3021 }
3022 #endif
3023 mac = EVP_MAC_fetch(ctx->libctx, "HMAC", NULL);
3024 if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3025 goto err;
3026 EVP_MAC_free(mac);
3027 return ret;
3028 err:
3029 EVP_MAC_CTX_free(ret->ctx);
3030 EVP_MAC_free(mac);
3031 OPENSSL_free(ret);
3032 return NULL;
3033 }
3034
3035 void ssl_hmac_free(SSL_HMAC *ctx)
3036 {
3037 if (ctx != NULL) {
3038 EVP_MAC_CTX_free(ctx->ctx);
3039 #ifndef OPENSSL_NO_DEPRECATED_3_0
3040 HMAC_CTX_free(ctx->old_ctx);
3041 #endif
3042 OPENSSL_free(ctx);
3043 }
3044 }
3045
3046 #ifndef OPENSSL_NO_DEPRECATED_3_0
3047 HMAC_CTX *ssl_hmac_get0_HMAC_CTX(SSL_HMAC *ctx)
3048 {
3049 return ctx->old_ctx;
3050 }
3051 #endif
3052
3053 EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3054 {
3055 return ctx->ctx;
3056 }
3057
3058 int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3059 {
3060 OSSL_PARAM params[3], *p = params;
3061
3062 if (ctx->ctx != NULL) {
3063 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3064 *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_KEY, key, len);
3065 *p = OSSL_PARAM_construct_end();
3066 if (EVP_MAC_CTX_set_params(ctx->ctx, params) && EVP_MAC_init(ctx->ctx))
3067 return 1;
3068 }
3069 #ifndef OPENSSL_NO_DEPRECATED_3_0
3070 if (ctx->old_ctx != NULL)
3071 return HMAC_Init_ex(ctx->old_ctx, key, len,
3072 EVP_get_digestbyname(md), NULL);
3073 #endif
3074 return 0;
3075 }
3076
3077 int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3078 {
3079 if (ctx->ctx != NULL)
3080 return EVP_MAC_update(ctx->ctx, data, len);
3081 #ifndef OPENSSL_NO_DEPRECATED_3_0
3082 if (ctx->old_ctx != NULL)
3083 return HMAC_Update(ctx->old_ctx, data, len);
3084 #endif
3085 return 0;
3086 }
3087
3088 int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
3089 size_t max_size)
3090 {
3091 if (ctx->ctx != NULL)
3092 return EVP_MAC_final(ctx->ctx, md, len, max_size);
3093 #ifndef OPENSSL_NO_DEPRECATED_3_0
3094 if (ctx->old_ctx != NULL) {
3095 unsigned int l;
3096
3097 if (HMAC_Final(ctx->old_ctx, md, &l) > 0) {
3098 if (len != NULL)
3099 *len = l;
3100 return 1;
3101 }
3102 }
3103 #endif
3104 return 0;
3105 }
3106
3107 size_t ssl_hmac_size(const SSL_HMAC *ctx)
3108 {
3109 if (ctx->ctx != NULL)
3110 return EVP_MAC_size(ctx->ctx);
3111 #ifndef OPENSSL_NO_DEPRECATED_3_0
3112 if (ctx->old_ctx != NULL)
3113 return HMAC_size(ctx->old_ctx);
3114 #endif
3115 return 0;
3116 }
3117