]> git.ipfire.org Git - thirdparty/qemu.git/blame - exec.c
qcow2: Do not mark inactive images corrupt
[thirdparty/qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
54936004 21
f348b6d1 22#include "qemu/cutils.h"
6180a181 23#include "cpu.h"
63c91552 24#include "exec/exec-all.h"
51180423 25#include "exec/target_page.h"
b67d9a52 26#include "tcg.h"
741da0d3 27#include "hw/qdev-core.h"
c7e002c5 28#include "hw/qdev-properties.h"
4485bd26 29#if !defined(CONFIG_USER_ONLY)
47c8ca53 30#include "hw/boards.h"
33c11879 31#include "hw/xen/xen.h"
4485bd26 32#endif
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
1de7afc9
PB
35#include "qemu/timer.h"
36#include "qemu/config-file.h"
75a34036 37#include "qemu/error-report.h"
53a5960a 38#if defined(CONFIG_USER_ONLY)
a9c94277 39#include "qemu.h"
432d268c 40#else /* !CONFIG_USER_ONLY */
741da0d3
PB
41#include "hw/hw.h"
42#include "exec/memory.h"
df43d49c 43#include "exec/ioport.h"
741da0d3 44#include "sysemu/dma.h"
9c607668 45#include "sysemu/numa.h"
79ca7a1b 46#include "sysemu/hw_accel.h"
741da0d3 47#include "exec/address-spaces.h"
9c17d615 48#include "sysemu/xen-mapcache.h"
0ab8ed18 49#include "trace-root.h"
d3a5038c 50
e2fa71f5 51#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
52#include <linux/falloc.h>
53#endif
54
53a5960a 55#endif
0dc3f44a 56#include "qemu/rcu_queue.h"
4840f10e 57#include "qemu/main-loop.h"
5b6dd868 58#include "translate-all.h"
7615936e 59#include "sysemu/replay.h"
0cac1b66 60
022c62cb 61#include "exec/memory-internal.h"
220c3ebd 62#include "exec/ram_addr.h"
508127e2 63#include "exec/log.h"
67d95c15 64
9dfeca7c
BR
65#include "migration/vmstate.h"
66
b35ba30f 67#include "qemu/range.h"
794e8f30
MT
68#ifndef _WIN32
69#include "qemu/mmap-alloc.h"
70#endif
b35ba30f 71
be9b23c4
PX
72#include "monitor/monitor.h"
73
db7b5426 74//#define DEBUG_SUBPAGE
1196be37 75
e2eef170 76#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
77/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
79 */
0d53d9fe 80RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
81
82static MemoryRegion *system_memory;
309cb471 83static MemoryRegion *system_io;
62152b8a 84
f6790af6
AK
85AddressSpace address_space_io;
86AddressSpace address_space_memory;
2673a5da 87
0844e007 88MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 89static MemoryRegion io_mem_unassigned;
0e0df1e2 90
7bd4f430
PB
91/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92#define RAM_PREALLOC (1 << 0)
93
dbcb8981
PB
94/* RAM is mmap-ed with MAP_SHARED */
95#define RAM_SHARED (1 << 1)
96
62be4e3a
MT
97/* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
99 */
100#define RAM_RESIZEABLE (1 << 2)
101
2ce16640
DDAG
102/* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
103 * zero the page and wake waiting processes.
104 * (Set during postcopy)
105 */
106#define RAM_UF_ZEROPAGE (1 << 3)
e2eef170 107#endif
9fa3e853 108
20bccb82
PM
109#ifdef TARGET_PAGE_BITS_VARY
110int target_page_bits;
111bool target_page_bits_decided;
112#endif
113
bdc44640 114struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
115/* current CPU in the current thread. It is only valid inside
116 cpu_exec() */
f240eb6f 117__thread CPUState *current_cpu;
2e70f6ef 118/* 0 = Do not count executed instructions.
bf20dc07 119 1 = Precise instruction counting.
2e70f6ef 120 2 = Adaptive rate instruction counting. */
5708fc66 121int use_icount;
6a00d601 122
a0be0c58
YZ
123uintptr_t qemu_host_page_size;
124intptr_t qemu_host_page_mask;
a0be0c58 125
20bccb82
PM
126bool set_preferred_target_page_bits(int bits)
127{
128 /* The target page size is the lowest common denominator for all
129 * the CPUs in the system, so we can only make it smaller, never
130 * larger. And we can't make it smaller once we've committed to
131 * a particular size.
132 */
133#ifdef TARGET_PAGE_BITS_VARY
134 assert(bits >= TARGET_PAGE_BITS_MIN);
135 if (target_page_bits == 0 || target_page_bits > bits) {
136 if (target_page_bits_decided) {
137 return false;
138 }
139 target_page_bits = bits;
140 }
141#endif
142 return true;
143}
144
e2eef170 145#if !defined(CONFIG_USER_ONLY)
4346ae3e 146
20bccb82
PM
147static void finalize_target_page_bits(void)
148{
149#ifdef TARGET_PAGE_BITS_VARY
150 if (target_page_bits == 0) {
151 target_page_bits = TARGET_PAGE_BITS_MIN;
152 }
153 target_page_bits_decided = true;
154#endif
155}
156
1db8abb1
PB
157typedef struct PhysPageEntry PhysPageEntry;
158
159struct PhysPageEntry {
9736e55b 160 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 161 uint32_t skip : 6;
9736e55b 162 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 163 uint32_t ptr : 26;
1db8abb1
PB
164};
165
8b795765
MT
166#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
167
03f49957 168/* Size of the L2 (and L3, etc) page tables. */
57271d63 169#define ADDR_SPACE_BITS 64
03f49957 170
026736ce 171#define P_L2_BITS 9
03f49957
PB
172#define P_L2_SIZE (1 << P_L2_BITS)
173
174#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
175
176typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 177
53cb28cb 178typedef struct PhysPageMap {
79e2b9ae
PB
179 struct rcu_head rcu;
180
53cb28cb
MA
181 unsigned sections_nb;
182 unsigned sections_nb_alloc;
183 unsigned nodes_nb;
184 unsigned nodes_nb_alloc;
185 Node *nodes;
186 MemoryRegionSection *sections;
187} PhysPageMap;
188
1db8abb1 189struct AddressSpaceDispatch {
729633c2 190 MemoryRegionSection *mru_section;
1db8abb1
PB
191 /* This is a multi-level map on the physical address space.
192 * The bottom level has pointers to MemoryRegionSections.
193 */
194 PhysPageEntry phys_map;
53cb28cb 195 PhysPageMap map;
1db8abb1
PB
196};
197
90260c6c
JK
198#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
199typedef struct subpage_t {
200 MemoryRegion iomem;
16620684 201 FlatView *fv;
90260c6c 202 hwaddr base;
2615fabd 203 uint16_t sub_section[];
90260c6c
JK
204} subpage_t;
205
b41aac4f
LPF
206#define PHYS_SECTION_UNASSIGNED 0
207#define PHYS_SECTION_NOTDIRTY 1
208#define PHYS_SECTION_ROM 2
209#define PHYS_SECTION_WATCH 3
5312bd8b 210
e2eef170 211static void io_mem_init(void);
62152b8a 212static void memory_map_init(void);
09daed84 213static void tcg_commit(MemoryListener *listener);
e2eef170 214
1ec9b909 215static MemoryRegion io_mem_watch;
32857f4d
PM
216
217/**
218 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
219 * @cpu: the CPU whose AddressSpace this is
220 * @as: the AddressSpace itself
221 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
222 * @tcg_as_listener: listener for tracking changes to the AddressSpace
223 */
224struct CPUAddressSpace {
225 CPUState *cpu;
226 AddressSpace *as;
227 struct AddressSpaceDispatch *memory_dispatch;
228 MemoryListener tcg_as_listener;
229};
230
8deaf12c
GH
231struct DirtyBitmapSnapshot {
232 ram_addr_t start;
233 ram_addr_t end;
234 unsigned long dirty[];
235};
236
6658ffb8 237#endif
fd6ce8f6 238
6d9a1304 239#if !defined(CONFIG_USER_ONLY)
d6f2ea22 240
53cb28cb 241static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 242{
101420b8 243 static unsigned alloc_hint = 16;
53cb28cb 244 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 245 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
246 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
247 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 248 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 249 }
f7bf5461
AK
250}
251
db94604b 252static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
253{
254 unsigned i;
8b795765 255 uint32_t ret;
db94604b
PB
256 PhysPageEntry e;
257 PhysPageEntry *p;
f7bf5461 258
53cb28cb 259 ret = map->nodes_nb++;
db94604b 260 p = map->nodes[ret];
f7bf5461 261 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 262 assert(ret != map->nodes_nb_alloc);
db94604b
PB
263
264 e.skip = leaf ? 0 : 1;
265 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 266 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 267 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 268 }
f7bf5461 269 return ret;
d6f2ea22
AK
270}
271
53cb28cb
MA
272static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
273 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 274 int level)
f7bf5461
AK
275{
276 PhysPageEntry *p;
03f49957 277 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 278
9736e55b 279 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 280 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 281 }
db94604b 282 p = map->nodes[lp->ptr];
03f49957 283 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 284
03f49957 285 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 286 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 287 lp->skip = 0;
c19e8800 288 lp->ptr = leaf;
07f07b31
AK
289 *index += step;
290 *nb -= step;
2999097b 291 } else {
53cb28cb 292 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
293 }
294 ++lp;
f7bf5461
AK
295 }
296}
297
ac1970fb 298static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 299 hwaddr index, hwaddr nb,
2999097b 300 uint16_t leaf)
f7bf5461 301{
2999097b 302 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 303 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 304
53cb28cb 305 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
306}
307
b35ba30f
MT
308/* Compact a non leaf page entry. Simply detect that the entry has a single child,
309 * and update our entry so we can skip it and go directly to the destination.
310 */
efee678d 311static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
312{
313 unsigned valid_ptr = P_L2_SIZE;
314 int valid = 0;
315 PhysPageEntry *p;
316 int i;
317
318 if (lp->ptr == PHYS_MAP_NODE_NIL) {
319 return;
320 }
321
322 p = nodes[lp->ptr];
323 for (i = 0; i < P_L2_SIZE; i++) {
324 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
325 continue;
326 }
327
328 valid_ptr = i;
329 valid++;
330 if (p[i].skip) {
efee678d 331 phys_page_compact(&p[i], nodes);
b35ba30f
MT
332 }
333 }
334
335 /* We can only compress if there's only one child. */
336 if (valid != 1) {
337 return;
338 }
339
340 assert(valid_ptr < P_L2_SIZE);
341
342 /* Don't compress if it won't fit in the # of bits we have. */
343 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
344 return;
345 }
346
347 lp->ptr = p[valid_ptr].ptr;
348 if (!p[valid_ptr].skip) {
349 /* If our only child is a leaf, make this a leaf. */
350 /* By design, we should have made this node a leaf to begin with so we
351 * should never reach here.
352 * But since it's so simple to handle this, let's do it just in case we
353 * change this rule.
354 */
355 lp->skip = 0;
356 } else {
357 lp->skip += p[valid_ptr].skip;
358 }
359}
360
8629d3fc 361void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 362{
b35ba30f 363 if (d->phys_map.skip) {
efee678d 364 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
365 }
366}
367
29cb533d
FZ
368static inline bool section_covers_addr(const MemoryRegionSection *section,
369 hwaddr addr)
370{
371 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
372 * the section must cover the entire address space.
373 */
258dfaaa 374 return int128_gethi(section->size) ||
29cb533d 375 range_covers_byte(section->offset_within_address_space,
258dfaaa 376 int128_getlo(section->size), addr);
29cb533d
FZ
377}
378
003a0cf2 379static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 380{
003a0cf2
PX
381 PhysPageEntry lp = d->phys_map, *p;
382 Node *nodes = d->map.nodes;
383 MemoryRegionSection *sections = d->map.sections;
97115a8d 384 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 385 int i;
f1f6e3b8 386
9736e55b 387 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 388 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 389 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 390 }
9affd6fc 391 p = nodes[lp.ptr];
03f49957 392 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 393 }
b35ba30f 394
29cb533d 395 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
396 return &sections[lp.ptr];
397 } else {
398 return &sections[PHYS_SECTION_UNASSIGNED];
399 }
f3705d53
AK
400}
401
e5548617
BS
402bool memory_region_is_unassigned(MemoryRegion *mr)
403{
2a8e7499 404 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 405 && mr != &io_mem_watch;
fd6ce8f6 406}
149f54b5 407
79e2b9ae 408/* Called from RCU critical section */
c7086b4a 409static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
410 hwaddr addr,
411 bool resolve_subpage)
9f029603 412{
729633c2 413 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c
JK
414 subpage_t *subpage;
415
07c114bb
PB
416 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
417 !section_covers_addr(section, addr)) {
003a0cf2 418 section = phys_page_find(d, addr);
07c114bb 419 atomic_set(&d->mru_section, section);
729633c2 420 }
90260c6c
JK
421 if (resolve_subpage && section->mr->subpage) {
422 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 423 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
424 }
425 return section;
9f029603
JK
426}
427
79e2b9ae 428/* Called from RCU critical section */
90260c6c 429static MemoryRegionSection *
c7086b4a 430address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 431 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
432{
433 MemoryRegionSection *section;
965eb2fc 434 MemoryRegion *mr;
a87f3954 435 Int128 diff;
149f54b5 436
c7086b4a 437 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
438 /* Compute offset within MemoryRegionSection */
439 addr -= section->offset_within_address_space;
440
441 /* Compute offset within MemoryRegion */
442 *xlat = addr + section->offset_within_region;
443
965eb2fc 444 mr = section->mr;
b242e0e0
PB
445
446 /* MMIO registers can be expected to perform full-width accesses based only
447 * on their address, without considering adjacent registers that could
448 * decode to completely different MemoryRegions. When such registers
449 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
450 * regions overlap wildly. For this reason we cannot clamp the accesses
451 * here.
452 *
453 * If the length is small (as is the case for address_space_ldl/stl),
454 * everything works fine. If the incoming length is large, however,
455 * the caller really has to do the clamping through memory_access_size.
456 */
965eb2fc 457 if (memory_region_is_ram(mr)) {
e4a511f8 458 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
459 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
460 }
149f54b5
PB
461 return section;
462}
90260c6c 463
d5e5fafd
PX
464/**
465 * flatview_do_translate - translate an address in FlatView
466 *
467 * @fv: the flat view that we want to translate on
468 * @addr: the address to be translated in above address space
469 * @xlat: the translated address offset within memory region. It
470 * cannot be @NULL.
471 * @plen_out: valid read/write length of the translated address. It
472 * can be @NULL when we don't care about it.
473 * @page_mask_out: page mask for the translated address. This
474 * should only be meaningful for IOMMU translated
475 * addresses, since there may be huge pages that this bit
476 * would tell. It can be @NULL if we don't care about it.
477 * @is_write: whether the translation operation is for write
478 * @is_mmio: whether this can be MMIO, set true if it can
479 *
480 * This function is called from RCU critical section
481 */
16620684
AK
482static MemoryRegionSection flatview_do_translate(FlatView *fv,
483 hwaddr addr,
484 hwaddr *xlat,
d5e5fafd
PX
485 hwaddr *plen_out,
486 hwaddr *page_mask_out,
16620684
AK
487 bool is_write,
488 bool is_mmio,
489 AddressSpace **target_as)
052c8fa9 490{
a764040c 491 IOMMUTLBEntry iotlb;
052c8fa9 492 MemoryRegionSection *section;
3df9d748 493 IOMMUMemoryRegion *iommu_mr;
1221a474 494 IOMMUMemoryRegionClass *imrc;
d5e5fafd
PX
495 hwaddr page_mask = (hwaddr)(-1);
496 hwaddr plen = (hwaddr)(-1);
497
498 if (plen_out) {
499 plen = *plen_out;
500 }
052c8fa9
JW
501
502 for (;;) {
16620684
AK
503 section = address_space_translate_internal(
504 flatview_to_dispatch(fv), addr, &addr,
d5e5fafd 505 &plen, is_mmio);
052c8fa9 506
3df9d748
AK
507 iommu_mr = memory_region_get_iommu(section->mr);
508 if (!iommu_mr) {
052c8fa9
JW
509 break;
510 }
1221a474 511 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
052c8fa9 512
1221a474
AK
513 iotlb = imrc->translate(iommu_mr, addr, is_write ?
514 IOMMU_WO : IOMMU_RO);
a764040c
PX
515 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
516 | (addr & iotlb.addr_mask));
d5e5fafd
PX
517 page_mask &= iotlb.addr_mask;
518 plen = MIN(plen, (addr | iotlb.addr_mask) - addr + 1);
052c8fa9 519 if (!(iotlb.perm & (1 << is_write))) {
a764040c 520 goto translate_fail;
052c8fa9
JW
521 }
522
16620684 523 fv = address_space_to_flatview(iotlb.target_as);
e76bb18f 524 *target_as = iotlb.target_as;
052c8fa9
JW
525 }
526
a764040c
PX
527 *xlat = addr;
528
d5e5fafd
PX
529 if (page_mask == (hwaddr)(-1)) {
530 /* Not behind an IOMMU, use default page size. */
531 page_mask = ~TARGET_PAGE_MASK;
532 }
533
534 if (page_mask_out) {
535 *page_mask_out = page_mask;
536 }
537
538 if (plen_out) {
539 *plen_out = plen;
540 }
541
a764040c
PX
542 return *section;
543
544translate_fail:
545 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
052c8fa9
JW
546}
547
548/* Called from RCU critical section */
a764040c
PX
549IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
550 bool is_write)
90260c6c 551{
a764040c 552 MemoryRegionSection section;
076a93d7 553 hwaddr xlat, page_mask;
30951157 554
076a93d7
PX
555 /*
556 * This can never be MMIO, and we don't really care about plen,
557 * but page mask.
558 */
559 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
560 NULL, &page_mask, is_write, false, &as);
30951157 561
a764040c
PX
562 /* Illegal translation */
563 if (section.mr == &io_mem_unassigned) {
564 goto iotlb_fail;
565 }
30951157 566
a764040c
PX
567 /* Convert memory region offset into address space offset */
568 xlat += section.offset_within_address_space -
569 section.offset_within_region;
570
a764040c 571 return (IOMMUTLBEntry) {
e76bb18f 572 .target_as = as,
076a93d7
PX
573 .iova = addr & ~page_mask,
574 .translated_addr = xlat & ~page_mask,
575 .addr_mask = page_mask,
a764040c
PX
576 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
577 .perm = IOMMU_RW,
578 };
579
580iotlb_fail:
581 return (IOMMUTLBEntry) {0};
582}
583
584/* Called from RCU critical section */
16620684
AK
585MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
586 hwaddr *plen, bool is_write)
a764040c
PX
587{
588 MemoryRegion *mr;
589 MemoryRegionSection section;
16620684 590 AddressSpace *as = NULL;
a764040c
PX
591
592 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd
PX
593 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
594 is_write, true, &as);
a764040c
PX
595 mr = section.mr;
596
fe680d0d 597 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 598 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 599 *plen = MIN(page, *plen);
a87f3954
PB
600 }
601
30951157 602 return mr;
90260c6c
JK
603}
604
79e2b9ae 605/* Called from RCU critical section */
90260c6c 606MemoryRegionSection *
d7898cda 607address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 608 hwaddr *xlat, hwaddr *plen)
90260c6c 609{
30951157 610 MemoryRegionSection *section;
f35e44e7 611 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda
PM
612
613 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157 614
3df9d748 615 assert(!memory_region_is_iommu(section->mr));
30951157 616 return section;
90260c6c 617}
5b6dd868 618#endif
fd6ce8f6 619
b170fce3 620#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
621
622static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 623{
259186a7 624 CPUState *cpu = opaque;
a513fe19 625
5b6dd868
BS
626 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
627 version_id is increased. */
259186a7 628 cpu->interrupt_request &= ~0x01;
d10eb08f 629 tlb_flush(cpu);
5b6dd868 630
15a356c4
PD
631 /* loadvm has just updated the content of RAM, bypassing the
632 * usual mechanisms that ensure we flush TBs for writes to
633 * memory we've translated code from. So we must flush all TBs,
634 * which will now be stale.
635 */
636 tb_flush(cpu);
637
5b6dd868 638 return 0;
a513fe19 639}
7501267e 640
6c3bff0e
PD
641static int cpu_common_pre_load(void *opaque)
642{
643 CPUState *cpu = opaque;
644
adee6424 645 cpu->exception_index = -1;
6c3bff0e
PD
646
647 return 0;
648}
649
650static bool cpu_common_exception_index_needed(void *opaque)
651{
652 CPUState *cpu = opaque;
653
adee6424 654 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
655}
656
657static const VMStateDescription vmstate_cpu_common_exception_index = {
658 .name = "cpu_common/exception_index",
659 .version_id = 1,
660 .minimum_version_id = 1,
5cd8cada 661 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
662 .fields = (VMStateField[]) {
663 VMSTATE_INT32(exception_index, CPUState),
664 VMSTATE_END_OF_LIST()
665 }
666};
667
bac05aa9
AS
668static bool cpu_common_crash_occurred_needed(void *opaque)
669{
670 CPUState *cpu = opaque;
671
672 return cpu->crash_occurred;
673}
674
675static const VMStateDescription vmstate_cpu_common_crash_occurred = {
676 .name = "cpu_common/crash_occurred",
677 .version_id = 1,
678 .minimum_version_id = 1,
679 .needed = cpu_common_crash_occurred_needed,
680 .fields = (VMStateField[]) {
681 VMSTATE_BOOL(crash_occurred, CPUState),
682 VMSTATE_END_OF_LIST()
683 }
684};
685
1a1562f5 686const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
687 .name = "cpu_common",
688 .version_id = 1,
689 .minimum_version_id = 1,
6c3bff0e 690 .pre_load = cpu_common_pre_load,
5b6dd868 691 .post_load = cpu_common_post_load,
35d08458 692 .fields = (VMStateField[]) {
259186a7
AF
693 VMSTATE_UINT32(halted, CPUState),
694 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 695 VMSTATE_END_OF_LIST()
6c3bff0e 696 },
5cd8cada
JQ
697 .subsections = (const VMStateDescription*[]) {
698 &vmstate_cpu_common_exception_index,
bac05aa9 699 &vmstate_cpu_common_crash_occurred,
5cd8cada 700 NULL
5b6dd868
BS
701 }
702};
1a1562f5 703
5b6dd868 704#endif
ea041c0e 705
38d8f5c8 706CPUState *qemu_get_cpu(int index)
ea041c0e 707{
bdc44640 708 CPUState *cpu;
ea041c0e 709
bdc44640 710 CPU_FOREACH(cpu) {
55e5c285 711 if (cpu->cpu_index == index) {
bdc44640 712 return cpu;
55e5c285 713 }
ea041c0e 714 }
5b6dd868 715
bdc44640 716 return NULL;
ea041c0e
FB
717}
718
09daed84 719#if !defined(CONFIG_USER_ONLY)
80ceb07a
PX
720void cpu_address_space_init(CPUState *cpu, int asidx,
721 const char *prefix, MemoryRegion *mr)
09daed84 722{
12ebc9a7 723 CPUAddressSpace *newas;
80ceb07a 724 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 725 char *as_name;
80ceb07a
PX
726
727 assert(mr);
87a621d8
PX
728 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
729 address_space_init(as, mr, as_name);
730 g_free(as_name);
12ebc9a7
PM
731
732 /* Target code should have set num_ases before calling us */
733 assert(asidx < cpu->num_ases);
734
56943e8c
PM
735 if (asidx == 0) {
736 /* address space 0 gets the convenience alias */
737 cpu->as = as;
738 }
739
12ebc9a7
PM
740 /* KVM cannot currently support multiple address spaces. */
741 assert(asidx == 0 || !kvm_enabled());
09daed84 742
12ebc9a7
PM
743 if (!cpu->cpu_ases) {
744 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 745 }
32857f4d 746
12ebc9a7
PM
747 newas = &cpu->cpu_ases[asidx];
748 newas->cpu = cpu;
749 newas->as = as;
56943e8c 750 if (tcg_enabled()) {
12ebc9a7
PM
751 newas->tcg_as_listener.commit = tcg_commit;
752 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 753 }
09daed84 754}
651a5bc0
PM
755
756AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
757{
758 /* Return the AddressSpace corresponding to the specified index */
759 return cpu->cpu_ases[asidx].as;
760}
09daed84
EI
761#endif
762
7bbc124e 763void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 764{
9dfeca7c
BR
765 CPUClass *cc = CPU_GET_CLASS(cpu);
766
267f685b 767 cpu_list_remove(cpu);
9dfeca7c
BR
768
769 if (cc->vmsd != NULL) {
770 vmstate_unregister(NULL, cc->vmsd, cpu);
771 }
772 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
773 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
774 }
1c59eb39
BR
775}
776
c7e002c5
FZ
777Property cpu_common_props[] = {
778#ifndef CONFIG_USER_ONLY
779 /* Create a memory property for softmmu CPU object,
780 * so users can wire up its memory. (This can't go in qom/cpu.c
781 * because that file is compiled only once for both user-mode
782 * and system builds.) The default if no link is set up is to use
783 * the system address space.
784 */
785 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
786 MemoryRegion *),
787#endif
788 DEFINE_PROP_END_OF_LIST(),
789};
790
39e329e3 791void cpu_exec_initfn(CPUState *cpu)
ea041c0e 792{
56943e8c 793 cpu->as = NULL;
12ebc9a7 794 cpu->num_ases = 0;
56943e8c 795
291135b5 796#ifndef CONFIG_USER_ONLY
291135b5 797 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
798 cpu->memory = system_memory;
799 object_ref(OBJECT(cpu->memory));
291135b5 800#endif
39e329e3
LV
801}
802
ce5b1bbf 803void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 804{
55c3ceef 805 CPUClass *cc = CPU_GET_CLASS(cpu);
2dda6354 806 static bool tcg_target_initialized;
291135b5 807
267f685b 808 cpu_list_add(cpu);
1bc7e522 809
2dda6354
EC
810 if (tcg_enabled() && !tcg_target_initialized) {
811 tcg_target_initialized = true;
55c3ceef
RH
812 cc->tcg_initialize();
813 }
814
1bc7e522 815#ifndef CONFIG_USER_ONLY
e0d47944 816 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 817 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 818 }
b170fce3 819 if (cc->vmsd != NULL) {
741da0d3 820 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 821 }
741da0d3 822#endif
ea041c0e
FB
823}
824
2278b939
IM
825const char *parse_cpu_model(const char *cpu_model)
826{
827 ObjectClass *oc;
828 CPUClass *cc;
829 gchar **model_pieces;
830 const char *cpu_type;
831
832 model_pieces = g_strsplit(cpu_model, ",", 2);
833
834 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
835 if (oc == NULL) {
836 error_report("unable to find CPU model '%s'", model_pieces[0]);
837 g_strfreev(model_pieces);
838 exit(EXIT_FAILURE);
839 }
840
841 cpu_type = object_class_get_name(oc);
842 cc = CPU_CLASS(oc);
843 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
844 g_strfreev(model_pieces);
845 return cpu_type;
846}
847
406bc339 848#if defined(CONFIG_USER_ONLY)
00b941e5 849static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 850{
406bc339
PK
851 mmap_lock();
852 tb_lock();
853 tb_invalidate_phys_page_range(pc, pc + 1, 0);
854 tb_unlock();
855 mmap_unlock();
856}
857#else
858static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
859{
860 MemTxAttrs attrs;
861 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
862 int asidx = cpu_asidx_from_attrs(cpu, attrs);
863 if (phys != -1) {
864 /* Locks grabbed by tb_invalidate_phys_addr */
865 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
866 phys | (pc & ~TARGET_PAGE_MASK));
867 }
1e7855a5 868}
406bc339 869#endif
d720b93d 870
c527ee8f 871#if defined(CONFIG_USER_ONLY)
75a34036 872void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
873
874{
875}
876
3ee887e8
PM
877int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
878 int flags)
879{
880 return -ENOSYS;
881}
882
883void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
884{
885}
886
75a34036 887int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
888 int flags, CPUWatchpoint **watchpoint)
889{
890 return -ENOSYS;
891}
892#else
6658ffb8 893/* Add a watchpoint. */
75a34036 894int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 895 int flags, CPUWatchpoint **watchpoint)
6658ffb8 896{
c0ce998e 897 CPUWatchpoint *wp;
6658ffb8 898
05068c0d 899 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 900 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
901 error_report("tried to set invalid watchpoint at %"
902 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
903 return -EINVAL;
904 }
7267c094 905 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
906
907 wp->vaddr = addr;
05068c0d 908 wp->len = len;
a1d1bb31
AL
909 wp->flags = flags;
910
2dc9f411 911 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
912 if (flags & BP_GDB) {
913 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
914 } else {
915 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
916 }
6658ffb8 917
31b030d4 918 tlb_flush_page(cpu, addr);
a1d1bb31
AL
919
920 if (watchpoint)
921 *watchpoint = wp;
922 return 0;
6658ffb8
PB
923}
924
a1d1bb31 925/* Remove a specific watchpoint. */
75a34036 926int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 927 int flags)
6658ffb8 928{
a1d1bb31 929 CPUWatchpoint *wp;
6658ffb8 930
ff4700b0 931 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 932 if (addr == wp->vaddr && len == wp->len
6e140f28 933 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 934 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
935 return 0;
936 }
937 }
a1d1bb31 938 return -ENOENT;
6658ffb8
PB
939}
940
a1d1bb31 941/* Remove a specific watchpoint by reference. */
75a34036 942void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 943{
ff4700b0 944 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 945
31b030d4 946 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 947
7267c094 948 g_free(watchpoint);
a1d1bb31
AL
949}
950
951/* Remove all matching watchpoints. */
75a34036 952void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 953{
c0ce998e 954 CPUWatchpoint *wp, *next;
a1d1bb31 955
ff4700b0 956 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
957 if (wp->flags & mask) {
958 cpu_watchpoint_remove_by_ref(cpu, wp);
959 }
c0ce998e 960 }
7d03f82f 961}
05068c0d
PM
962
963/* Return true if this watchpoint address matches the specified
964 * access (ie the address range covered by the watchpoint overlaps
965 * partially or completely with the address range covered by the
966 * access).
967 */
968static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
969 vaddr addr,
970 vaddr len)
971{
972 /* We know the lengths are non-zero, but a little caution is
973 * required to avoid errors in the case where the range ends
974 * exactly at the top of the address space and so addr + len
975 * wraps round to zero.
976 */
977 vaddr wpend = wp->vaddr + wp->len - 1;
978 vaddr addrend = addr + len - 1;
979
980 return !(addr > wpend || wp->vaddr > addrend);
981}
982
c527ee8f 983#endif
7d03f82f 984
a1d1bb31 985/* Add a breakpoint. */
b3310ab3 986int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 987 CPUBreakpoint **breakpoint)
4c3a88a2 988{
c0ce998e 989 CPUBreakpoint *bp;
3b46e624 990
7267c094 991 bp = g_malloc(sizeof(*bp));
4c3a88a2 992
a1d1bb31
AL
993 bp->pc = pc;
994 bp->flags = flags;
995
2dc9f411 996 /* keep all GDB-injected breakpoints in front */
00b941e5 997 if (flags & BP_GDB) {
f0c3c505 998 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 999 } else {
f0c3c505 1000 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 1001 }
3b46e624 1002
f0c3c505 1003 breakpoint_invalidate(cpu, pc);
a1d1bb31 1004
00b941e5 1005 if (breakpoint) {
a1d1bb31 1006 *breakpoint = bp;
00b941e5 1007 }
4c3a88a2 1008 return 0;
4c3a88a2
FB
1009}
1010
a1d1bb31 1011/* Remove a specific breakpoint. */
b3310ab3 1012int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 1013{
a1d1bb31
AL
1014 CPUBreakpoint *bp;
1015
f0c3c505 1016 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 1017 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 1018 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
1019 return 0;
1020 }
7d03f82f 1021 }
a1d1bb31 1022 return -ENOENT;
7d03f82f
EI
1023}
1024
a1d1bb31 1025/* Remove a specific breakpoint by reference. */
b3310ab3 1026void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 1027{
f0c3c505
AF
1028 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1029
1030 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 1031
7267c094 1032 g_free(breakpoint);
a1d1bb31
AL
1033}
1034
1035/* Remove all matching breakpoints. */
b3310ab3 1036void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1037{
c0ce998e 1038 CPUBreakpoint *bp, *next;
a1d1bb31 1039
f0c3c505 1040 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1041 if (bp->flags & mask) {
1042 cpu_breakpoint_remove_by_ref(cpu, bp);
1043 }
c0ce998e 1044 }
4c3a88a2
FB
1045}
1046
c33a346e
FB
1047/* enable or disable single step mode. EXCP_DEBUG is returned by the
1048 CPU loop after each instruction */
3825b28f 1049void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1050{
ed2803da
AF
1051 if (cpu->singlestep_enabled != enabled) {
1052 cpu->singlestep_enabled = enabled;
1053 if (kvm_enabled()) {
38e478ec 1054 kvm_update_guest_debug(cpu, 0);
ed2803da 1055 } else {
ccbb4d44 1056 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1057 /* XXX: only flush what is necessary */
bbd77c18 1058 tb_flush(cpu);
e22a25c9 1059 }
c33a346e 1060 }
c33a346e
FB
1061}
1062
a47dddd7 1063void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1064{
1065 va_list ap;
493ae1f0 1066 va_list ap2;
7501267e
FB
1067
1068 va_start(ap, fmt);
493ae1f0 1069 va_copy(ap2, ap);
7501267e
FB
1070 fprintf(stderr, "qemu: fatal: ");
1071 vfprintf(stderr, fmt, ap);
1072 fprintf(stderr, "\n");
878096ee 1073 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1074 if (qemu_log_separate()) {
1ee73216 1075 qemu_log_lock();
93fcfe39
AL
1076 qemu_log("qemu: fatal: ");
1077 qemu_log_vprintf(fmt, ap2);
1078 qemu_log("\n");
a0762859 1079 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1080 qemu_log_flush();
1ee73216 1081 qemu_log_unlock();
93fcfe39 1082 qemu_log_close();
924edcae 1083 }
493ae1f0 1084 va_end(ap2);
f9373291 1085 va_end(ap);
7615936e 1086 replay_finish();
fd052bf6
RV
1087#if defined(CONFIG_USER_ONLY)
1088 {
1089 struct sigaction act;
1090 sigfillset(&act.sa_mask);
1091 act.sa_handler = SIG_DFL;
1092 sigaction(SIGABRT, &act, NULL);
1093 }
1094#endif
7501267e
FB
1095 abort();
1096}
1097
0124311e 1098#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1099/* Called from RCU critical section */
041603fe
PB
1100static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1101{
1102 RAMBlock *block;
1103
43771539 1104 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1105 if (block && addr - block->offset < block->max_length) {
68851b98 1106 return block;
041603fe 1107 }
99e15582 1108 RAMBLOCK_FOREACH(block) {
9b8424d5 1109 if (addr - block->offset < block->max_length) {
041603fe
PB
1110 goto found;
1111 }
1112 }
1113
1114 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1115 abort();
1116
1117found:
43771539
PB
1118 /* It is safe to write mru_block outside the iothread lock. This
1119 * is what happens:
1120 *
1121 * mru_block = xxx
1122 * rcu_read_unlock()
1123 * xxx removed from list
1124 * rcu_read_lock()
1125 * read mru_block
1126 * mru_block = NULL;
1127 * call_rcu(reclaim_ramblock, xxx);
1128 * rcu_read_unlock()
1129 *
1130 * atomic_rcu_set is not needed here. The block was already published
1131 * when it was placed into the list. Here we're just making an extra
1132 * copy of the pointer.
1133 */
041603fe
PB
1134 ram_list.mru_block = block;
1135 return block;
1136}
1137
a2f4d5be 1138static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1139{
9a13565d 1140 CPUState *cpu;
041603fe 1141 ram_addr_t start1;
a2f4d5be
JQ
1142 RAMBlock *block;
1143 ram_addr_t end;
1144
1145 end = TARGET_PAGE_ALIGN(start + length);
1146 start &= TARGET_PAGE_MASK;
d24981d3 1147
0dc3f44a 1148 rcu_read_lock();
041603fe
PB
1149 block = qemu_get_ram_block(start);
1150 assert(block == qemu_get_ram_block(end - 1));
1240be24 1151 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1152 CPU_FOREACH(cpu) {
1153 tlb_reset_dirty(cpu, start1, length);
1154 }
0dc3f44a 1155 rcu_read_unlock();
d24981d3
JQ
1156}
1157
5579c7f3 1158/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1159bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1160 ram_addr_t length,
1161 unsigned client)
1ccde1cb 1162{
5b82b703 1163 DirtyMemoryBlocks *blocks;
03eebc9e 1164 unsigned long end, page;
5b82b703 1165 bool dirty = false;
03eebc9e
SH
1166
1167 if (length == 0) {
1168 return false;
1169 }
f23db169 1170
03eebc9e
SH
1171 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1172 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1173
1174 rcu_read_lock();
1175
1176 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1177
1178 while (page < end) {
1179 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1180 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1181 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1182
1183 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1184 offset, num);
1185 page += num;
1186 }
1187
1188 rcu_read_unlock();
03eebc9e
SH
1189
1190 if (dirty && tcg_enabled()) {
a2f4d5be 1191 tlb_reset_dirty_range_all(start, length);
5579c7f3 1192 }
03eebc9e
SH
1193
1194 return dirty;
1ccde1cb
FB
1195}
1196
8deaf12c
GH
1197DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1198 (ram_addr_t start, ram_addr_t length, unsigned client)
1199{
1200 DirtyMemoryBlocks *blocks;
1201 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1202 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1203 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1204 DirtyBitmapSnapshot *snap;
1205 unsigned long page, end, dest;
1206
1207 snap = g_malloc0(sizeof(*snap) +
1208 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1209 snap->start = first;
1210 snap->end = last;
1211
1212 page = first >> TARGET_PAGE_BITS;
1213 end = last >> TARGET_PAGE_BITS;
1214 dest = 0;
1215
1216 rcu_read_lock();
1217
1218 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1219
1220 while (page < end) {
1221 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1222 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1223 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1224
1225 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1226 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1227 offset >>= BITS_PER_LEVEL;
1228
1229 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1230 blocks->blocks[idx] + offset,
1231 num);
1232 page += num;
1233 dest += num >> BITS_PER_LEVEL;
1234 }
1235
1236 rcu_read_unlock();
1237
1238 if (tcg_enabled()) {
1239 tlb_reset_dirty_range_all(start, length);
1240 }
1241
1242 return snap;
1243}
1244
1245bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1246 ram_addr_t start,
1247 ram_addr_t length)
1248{
1249 unsigned long page, end;
1250
1251 assert(start >= snap->start);
1252 assert(start + length <= snap->end);
1253
1254 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1255 page = (start - snap->start) >> TARGET_PAGE_BITS;
1256
1257 while (page < end) {
1258 if (test_bit(page, snap->dirty)) {
1259 return true;
1260 }
1261 page++;
1262 }
1263 return false;
1264}
1265
79e2b9ae 1266/* Called from RCU critical section */
bb0e627a 1267hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1268 MemoryRegionSection *section,
1269 target_ulong vaddr,
1270 hwaddr paddr, hwaddr xlat,
1271 int prot,
1272 target_ulong *address)
e5548617 1273{
a8170e5e 1274 hwaddr iotlb;
e5548617
BS
1275 CPUWatchpoint *wp;
1276
cc5bea60 1277 if (memory_region_is_ram(section->mr)) {
e5548617 1278 /* Normal RAM. */
e4e69794 1279 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1280 if (!section->readonly) {
b41aac4f 1281 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1282 } else {
b41aac4f 1283 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1284 }
1285 } else {
0b8e2c10
PM
1286 AddressSpaceDispatch *d;
1287
16620684 1288 d = flatview_to_dispatch(section->fv);
0b8e2c10 1289 iotlb = section - d->map.sections;
149f54b5 1290 iotlb += xlat;
e5548617
BS
1291 }
1292
1293 /* Make accesses to pages with watchpoints go via the
1294 watchpoint trap routines. */
ff4700b0 1295 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1296 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1297 /* Avoid trapping reads of pages with a write breakpoint. */
1298 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1299 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1300 *address |= TLB_MMIO;
1301 break;
1302 }
1303 }
1304 }
1305
1306 return iotlb;
1307}
9fa3e853
FB
1308#endif /* defined(CONFIG_USER_ONLY) */
1309
e2eef170 1310#if !defined(CONFIG_USER_ONLY)
8da3ff18 1311
c227f099 1312static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1313 uint16_t section);
16620684 1314static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1315
06329cce 1316static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
a2b257d6 1317 qemu_anon_ram_alloc;
91138037
MA
1318
1319/*
1320 * Set a custom physical guest memory alloator.
1321 * Accelerators with unusual needs may need this. Hopefully, we can
1322 * get rid of it eventually.
1323 */
06329cce 1324void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
91138037
MA
1325{
1326 phys_mem_alloc = alloc;
1327}
1328
53cb28cb
MA
1329static uint16_t phys_section_add(PhysPageMap *map,
1330 MemoryRegionSection *section)
5312bd8b 1331{
68f3f65b
PB
1332 /* The physical section number is ORed with a page-aligned
1333 * pointer to produce the iotlb entries. Thus it should
1334 * never overflow into the page-aligned value.
1335 */
53cb28cb 1336 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1337
53cb28cb
MA
1338 if (map->sections_nb == map->sections_nb_alloc) {
1339 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1340 map->sections = g_renew(MemoryRegionSection, map->sections,
1341 map->sections_nb_alloc);
5312bd8b 1342 }
53cb28cb 1343 map->sections[map->sections_nb] = *section;
dfde4e6e 1344 memory_region_ref(section->mr);
53cb28cb 1345 return map->sections_nb++;
5312bd8b
AK
1346}
1347
058bc4b5
PB
1348static void phys_section_destroy(MemoryRegion *mr)
1349{
55b4e80b
DS
1350 bool have_sub_page = mr->subpage;
1351
dfde4e6e
PB
1352 memory_region_unref(mr);
1353
55b4e80b 1354 if (have_sub_page) {
058bc4b5 1355 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1356 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1357 g_free(subpage);
1358 }
1359}
1360
6092666e 1361static void phys_sections_free(PhysPageMap *map)
5312bd8b 1362{
9affd6fc
PB
1363 while (map->sections_nb > 0) {
1364 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1365 phys_section_destroy(section->mr);
1366 }
9affd6fc
PB
1367 g_free(map->sections);
1368 g_free(map->nodes);
5312bd8b
AK
1369}
1370
9950322a 1371static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1372{
9950322a 1373 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1374 subpage_t *subpage;
a8170e5e 1375 hwaddr base = section->offset_within_address_space
0f0cb164 1376 & TARGET_PAGE_MASK;
003a0cf2 1377 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1378 MemoryRegionSection subsection = {
1379 .offset_within_address_space = base,
052e87b0 1380 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1381 };
a8170e5e 1382 hwaddr start, end;
0f0cb164 1383
f3705d53 1384 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1385
f3705d53 1386 if (!(existing->mr->subpage)) {
16620684
AK
1387 subpage = subpage_init(fv, base);
1388 subsection.fv = fv;
0f0cb164 1389 subsection.mr = &subpage->iomem;
ac1970fb 1390 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1391 phys_section_add(&d->map, &subsection));
0f0cb164 1392 } else {
f3705d53 1393 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1394 }
1395 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1396 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1397 subpage_register(subpage, start, end,
1398 phys_section_add(&d->map, section));
0f0cb164
AK
1399}
1400
1401
9950322a 1402static void register_multipage(FlatView *fv,
052e87b0 1403 MemoryRegionSection *section)
33417e70 1404{
9950322a 1405 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1406 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1407 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1408 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1409 TARGET_PAGE_BITS));
dd81124b 1410
733d5ef5
PB
1411 assert(num_pages);
1412 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1413}
1414
8629d3fc 1415void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1416{
99b9cc06 1417 MemoryRegionSection now = *section, remain = *section;
052e87b0 1418 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1419
733d5ef5
PB
1420 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1421 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1422 - now.offset_within_address_space;
1423
052e87b0 1424 now.size = int128_min(int128_make64(left), now.size);
9950322a 1425 register_subpage(fv, &now);
733d5ef5 1426 } else {
052e87b0 1427 now.size = int128_zero();
733d5ef5 1428 }
052e87b0
PB
1429 while (int128_ne(remain.size, now.size)) {
1430 remain.size = int128_sub(remain.size, now.size);
1431 remain.offset_within_address_space += int128_get64(now.size);
1432 remain.offset_within_region += int128_get64(now.size);
69b67646 1433 now = remain;
052e87b0 1434 if (int128_lt(remain.size, page_size)) {
9950322a 1435 register_subpage(fv, &now);
88266249 1436 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1437 now.size = page_size;
9950322a 1438 register_subpage(fv, &now);
69b67646 1439 } else {
052e87b0 1440 now.size = int128_and(now.size, int128_neg(page_size));
9950322a 1441 register_multipage(fv, &now);
69b67646 1442 }
0f0cb164
AK
1443 }
1444}
1445
62a2744c
SY
1446void qemu_flush_coalesced_mmio_buffer(void)
1447{
1448 if (kvm_enabled())
1449 kvm_flush_coalesced_mmio_buffer();
1450}
1451
b2a8658e
UD
1452void qemu_mutex_lock_ramlist(void)
1453{
1454 qemu_mutex_lock(&ram_list.mutex);
1455}
1456
1457void qemu_mutex_unlock_ramlist(void)
1458{
1459 qemu_mutex_unlock(&ram_list.mutex);
1460}
1461
be9b23c4
PX
1462void ram_block_dump(Monitor *mon)
1463{
1464 RAMBlock *block;
1465 char *psize;
1466
1467 rcu_read_lock();
1468 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1469 "Block Name", "PSize", "Offset", "Used", "Total");
1470 RAMBLOCK_FOREACH(block) {
1471 psize = size_to_str(block->page_size);
1472 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1473 " 0x%016" PRIx64 "\n", block->idstr, psize,
1474 (uint64_t)block->offset,
1475 (uint64_t)block->used_length,
1476 (uint64_t)block->max_length);
1477 g_free(psize);
1478 }
1479 rcu_read_unlock();
1480}
1481
9c607668
AK
1482#ifdef __linux__
1483/*
1484 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1485 * may or may not name the same files / on the same filesystem now as
1486 * when we actually open and map them. Iterate over the file
1487 * descriptors instead, and use qemu_fd_getpagesize().
1488 */
1489static int find_max_supported_pagesize(Object *obj, void *opaque)
1490{
1491 char *mem_path;
1492 long *hpsize_min = opaque;
1493
1494 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1495 mem_path = object_property_get_str(obj, "mem-path", NULL);
1496 if (mem_path) {
1497 long hpsize = qemu_mempath_getpagesize(mem_path);
72a841d2 1498 g_free(mem_path);
9c607668
AK
1499 if (hpsize < *hpsize_min) {
1500 *hpsize_min = hpsize;
1501 }
1502 } else {
1503 *hpsize_min = getpagesize();
1504 }
1505 }
1506
1507 return 0;
1508}
1509
1510long qemu_getrampagesize(void)
1511{
1512 long hpsize = LONG_MAX;
1513 long mainrampagesize;
1514 Object *memdev_root;
1515
1516 if (mem_path) {
1517 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1518 } else {
1519 mainrampagesize = getpagesize();
1520 }
1521
1522 /* it's possible we have memory-backend objects with
1523 * hugepage-backed RAM. these may get mapped into system
1524 * address space via -numa parameters or memory hotplug
1525 * hooks. we want to take these into account, but we
1526 * also want to make sure these supported hugepage
1527 * sizes are applicable across the entire range of memory
1528 * we may boot from, so we take the min across all
1529 * backends, and assume normal pages in cases where a
1530 * backend isn't backed by hugepages.
1531 */
1532 memdev_root = object_resolve_path("/objects", NULL);
1533 if (memdev_root) {
1534 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1535 }
1536 if (hpsize == LONG_MAX) {
1537 /* No additional memory regions found ==> Report main RAM page size */
1538 return mainrampagesize;
1539 }
1540
1541 /* If NUMA is disabled or the NUMA nodes are not backed with a
1542 * memory-backend, then there is at least one node using "normal" RAM,
1543 * so if its page size is smaller we have got to report that size instead.
1544 */
1545 if (hpsize > mainrampagesize &&
1546 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1547 static bool warned;
1548 if (!warned) {
1549 error_report("Huge page support disabled (n/a for main memory).");
1550 warned = true;
1551 }
1552 return mainrampagesize;
1553 }
1554
1555 return hpsize;
1556}
1557#else
1558long qemu_getrampagesize(void)
1559{
1560 return getpagesize();
1561}
1562#endif
1563
e1e84ba0 1564#ifdef __linux__
d6af99c9
HZ
1565static int64_t get_file_size(int fd)
1566{
1567 int64_t size = lseek(fd, 0, SEEK_END);
1568 if (size < 0) {
1569 return -errno;
1570 }
1571 return size;
1572}
1573
8d37b030
MAL
1574static int file_ram_open(const char *path,
1575 const char *region_name,
1576 bool *created,
1577 Error **errp)
c902760f
MT
1578{
1579 char *filename;
8ca761f6
PF
1580 char *sanitized_name;
1581 char *c;
5c3ece79 1582 int fd = -1;
c902760f 1583
8d37b030 1584 *created = false;
fd97fd44
MA
1585 for (;;) {
1586 fd = open(path, O_RDWR);
1587 if (fd >= 0) {
1588 /* @path names an existing file, use it */
1589 break;
8d31d6b6 1590 }
fd97fd44
MA
1591 if (errno == ENOENT) {
1592 /* @path names a file that doesn't exist, create it */
1593 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1594 if (fd >= 0) {
8d37b030 1595 *created = true;
fd97fd44
MA
1596 break;
1597 }
1598 } else if (errno == EISDIR) {
1599 /* @path names a directory, create a file there */
1600 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1601 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1602 for (c = sanitized_name; *c != '\0'; c++) {
1603 if (*c == '/') {
1604 *c = '_';
1605 }
1606 }
8ca761f6 1607
fd97fd44
MA
1608 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1609 sanitized_name);
1610 g_free(sanitized_name);
8d31d6b6 1611
fd97fd44
MA
1612 fd = mkstemp(filename);
1613 if (fd >= 0) {
1614 unlink(filename);
1615 g_free(filename);
1616 break;
1617 }
1618 g_free(filename);
8d31d6b6 1619 }
fd97fd44
MA
1620 if (errno != EEXIST && errno != EINTR) {
1621 error_setg_errno(errp, errno,
1622 "can't open backing store %s for guest RAM",
1623 path);
8d37b030 1624 return -1;
fd97fd44
MA
1625 }
1626 /*
1627 * Try again on EINTR and EEXIST. The latter happens when
1628 * something else creates the file between our two open().
1629 */
8d31d6b6 1630 }
c902760f 1631
8d37b030
MAL
1632 return fd;
1633}
1634
1635static void *file_ram_alloc(RAMBlock *block,
1636 ram_addr_t memory,
1637 int fd,
1638 bool truncate,
1639 Error **errp)
1640{
1641 void *area;
1642
863e9621 1643 block->page_size = qemu_fd_getpagesize(fd);
98376843
HZ
1644 if (block->mr->align % block->page_size) {
1645 error_setg(errp, "alignment 0x%" PRIx64
1646 " must be multiples of page size 0x%zx",
1647 block->mr->align, block->page_size);
1648 return NULL;
1649 }
1650 block->mr->align = MAX(block->page_size, block->mr->align);
8360668e
HZ
1651#if defined(__s390x__)
1652 if (kvm_enabled()) {
1653 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1654 }
1655#endif
fd97fd44 1656
863e9621 1657 if (memory < block->page_size) {
fd97fd44 1658 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1659 "or larger than page size 0x%zx",
1660 memory, block->page_size);
8d37b030 1661 return NULL;
1775f111
HZ
1662 }
1663
863e9621 1664 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1665
1666 /*
1667 * ftruncate is not supported by hugetlbfs in older
1668 * hosts, so don't bother bailing out on errors.
1669 * If anything goes wrong with it under other filesystems,
1670 * mmap will fail.
d6af99c9
HZ
1671 *
1672 * Do not truncate the non-empty backend file to avoid corrupting
1673 * the existing data in the file. Disabling shrinking is not
1674 * enough. For example, the current vNVDIMM implementation stores
1675 * the guest NVDIMM labels at the end of the backend file. If the
1676 * backend file is later extended, QEMU will not be able to find
1677 * those labels. Therefore, extending the non-empty backend file
1678 * is disabled as well.
c902760f 1679 */
8d37b030 1680 if (truncate && ftruncate(fd, memory)) {
9742bf26 1681 perror("ftruncate");
7f56e740 1682 }
c902760f 1683
d2f39add
DD
1684 area = qemu_ram_mmap(fd, memory, block->mr->align,
1685 block->flags & RAM_SHARED);
c902760f 1686 if (area == MAP_FAILED) {
7f56e740 1687 error_setg_errno(errp, errno,
fd97fd44 1688 "unable to map backing store for guest RAM");
8d37b030 1689 return NULL;
c902760f 1690 }
ef36fa14
MT
1691
1692 if (mem_prealloc) {
1e356fc1 1693 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
056b68af 1694 if (errp && *errp) {
8d37b030
MAL
1695 qemu_ram_munmap(area, memory);
1696 return NULL;
056b68af 1697 }
ef36fa14
MT
1698 }
1699
04b16653 1700 block->fd = fd;
c902760f
MT
1701 return area;
1702}
1703#endif
1704
154cc9ea
DDAG
1705/* Allocate space within the ram_addr_t space that governs the
1706 * dirty bitmaps.
1707 * Called with the ramlist lock held.
1708 */
d17b5288 1709static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1710{
1711 RAMBlock *block, *next_block;
3e837b2c 1712 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1713
49cd9ac6
SH
1714 assert(size != 0); /* it would hand out same offset multiple times */
1715
0dc3f44a 1716 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1717 return 0;
0d53d9fe 1718 }
04b16653 1719
99e15582 1720 RAMBLOCK_FOREACH(block) {
154cc9ea 1721 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1722
801110ab
DDAG
1723 /* Align blocks to start on a 'long' in the bitmap
1724 * which makes the bitmap sync'ing take the fast path.
1725 */
154cc9ea 1726 candidate = block->offset + block->max_length;
801110ab 1727 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1728
154cc9ea
DDAG
1729 /* Search for the closest following block
1730 * and find the gap.
1731 */
99e15582 1732 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1733 if (next_block->offset >= candidate) {
04b16653
AW
1734 next = MIN(next, next_block->offset);
1735 }
1736 }
154cc9ea
DDAG
1737
1738 /* If it fits remember our place and remember the size
1739 * of gap, but keep going so that we might find a smaller
1740 * gap to fill so avoiding fragmentation.
1741 */
1742 if (next - candidate >= size && next - candidate < mingap) {
1743 offset = candidate;
1744 mingap = next - candidate;
04b16653 1745 }
154cc9ea
DDAG
1746
1747 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 1748 }
3e837b2c
AW
1749
1750 if (offset == RAM_ADDR_MAX) {
1751 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1752 (uint64_t)size);
1753 abort();
1754 }
1755
154cc9ea
DDAG
1756 trace_find_ram_offset(size, offset);
1757
04b16653
AW
1758 return offset;
1759}
1760
b8c48993 1761unsigned long last_ram_page(void)
d17b5288
AW
1762{
1763 RAMBlock *block;
1764 ram_addr_t last = 0;
1765
0dc3f44a 1766 rcu_read_lock();
99e15582 1767 RAMBLOCK_FOREACH(block) {
62be4e3a 1768 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1769 }
0dc3f44a 1770 rcu_read_unlock();
b8c48993 1771 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1772}
1773
ddb97f1d
JB
1774static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1775{
1776 int ret;
ddb97f1d
JB
1777
1778 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1779 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1780 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1781 if (ret) {
1782 perror("qemu_madvise");
1783 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1784 "but dump_guest_core=off specified\n");
1785 }
1786 }
1787}
1788
422148d3
DDAG
1789const char *qemu_ram_get_idstr(RAMBlock *rb)
1790{
1791 return rb->idstr;
1792}
1793
463a4ac2
DDAG
1794bool qemu_ram_is_shared(RAMBlock *rb)
1795{
1796 return rb->flags & RAM_SHARED;
1797}
1798
2ce16640
DDAG
1799/* Note: Only set at the start of postcopy */
1800bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1801{
1802 return rb->flags & RAM_UF_ZEROPAGE;
1803}
1804
1805void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1806{
1807 rb->flags |= RAM_UF_ZEROPAGE;
1808}
1809
ae3a7047 1810/* Called with iothread lock held. */
fa53a0e5 1811void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 1812{
fa53a0e5 1813 RAMBlock *block;
20cfe881 1814
c5705a77
AK
1815 assert(new_block);
1816 assert(!new_block->idstr[0]);
84b89d78 1817
09e5ab63
AL
1818 if (dev) {
1819 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1820 if (id) {
1821 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1822 g_free(id);
84b89d78
CM
1823 }
1824 }
1825 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1826
ab0a9956 1827 rcu_read_lock();
99e15582 1828 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
1829 if (block != new_block &&
1830 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1831 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1832 new_block->idstr);
1833 abort();
1834 }
1835 }
0dc3f44a 1836 rcu_read_unlock();
c5705a77
AK
1837}
1838
ae3a7047 1839/* Called with iothread lock held. */
fa53a0e5 1840void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 1841{
ae3a7047
MD
1842 /* FIXME: arch_init.c assumes that this is not called throughout
1843 * migration. Ignore the problem since hot-unplug during migration
1844 * does not work anyway.
1845 */
20cfe881
HT
1846 if (block) {
1847 memset(block->idstr, 0, sizeof(block->idstr));
1848 }
1849}
1850
863e9621
DDAG
1851size_t qemu_ram_pagesize(RAMBlock *rb)
1852{
1853 return rb->page_size;
1854}
1855
67f11b5c
DDAG
1856/* Returns the largest size of page in use */
1857size_t qemu_ram_pagesize_largest(void)
1858{
1859 RAMBlock *block;
1860 size_t largest = 0;
1861
99e15582 1862 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
1863 largest = MAX(largest, qemu_ram_pagesize(block));
1864 }
1865
1866 return largest;
1867}
1868
8490fc78
LC
1869static int memory_try_enable_merging(void *addr, size_t len)
1870{
75cc7f01 1871 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1872 /* disabled by the user */
1873 return 0;
1874 }
1875
1876 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1877}
1878
62be4e3a
MT
1879/* Only legal before guest might have detected the memory size: e.g. on
1880 * incoming migration, or right after reset.
1881 *
1882 * As memory core doesn't know how is memory accessed, it is up to
1883 * resize callback to update device state and/or add assertions to detect
1884 * misuse, if necessary.
1885 */
fa53a0e5 1886int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 1887{
62be4e3a
MT
1888 assert(block);
1889
4ed023ce 1890 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1891
62be4e3a
MT
1892 if (block->used_length == newsize) {
1893 return 0;
1894 }
1895
1896 if (!(block->flags & RAM_RESIZEABLE)) {
1897 error_setg_errno(errp, EINVAL,
1898 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1899 " in != 0x" RAM_ADDR_FMT, block->idstr,
1900 newsize, block->used_length);
1901 return -EINVAL;
1902 }
1903
1904 if (block->max_length < newsize) {
1905 error_setg_errno(errp, EINVAL,
1906 "Length too large: %s: 0x" RAM_ADDR_FMT
1907 " > 0x" RAM_ADDR_FMT, block->idstr,
1908 newsize, block->max_length);
1909 return -EINVAL;
1910 }
1911
1912 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1913 block->used_length = newsize;
58d2707e
PB
1914 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1915 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1916 memory_region_set_size(block->mr, newsize);
1917 if (block->resized) {
1918 block->resized(block->idstr, newsize, block->host);
1919 }
1920 return 0;
1921}
1922
5b82b703
SH
1923/* Called with ram_list.mutex held */
1924static void dirty_memory_extend(ram_addr_t old_ram_size,
1925 ram_addr_t new_ram_size)
1926{
1927 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1928 DIRTY_MEMORY_BLOCK_SIZE);
1929 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1930 DIRTY_MEMORY_BLOCK_SIZE);
1931 int i;
1932
1933 /* Only need to extend if block count increased */
1934 if (new_num_blocks <= old_num_blocks) {
1935 return;
1936 }
1937
1938 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1939 DirtyMemoryBlocks *old_blocks;
1940 DirtyMemoryBlocks *new_blocks;
1941 int j;
1942
1943 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1944 new_blocks = g_malloc(sizeof(*new_blocks) +
1945 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1946
1947 if (old_num_blocks) {
1948 memcpy(new_blocks->blocks, old_blocks->blocks,
1949 old_num_blocks * sizeof(old_blocks->blocks[0]));
1950 }
1951
1952 for (j = old_num_blocks; j < new_num_blocks; j++) {
1953 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1954 }
1955
1956 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1957
1958 if (old_blocks) {
1959 g_free_rcu(old_blocks, rcu);
1960 }
1961 }
1962}
1963
06329cce 1964static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
c5705a77 1965{
e1c57ab8 1966 RAMBlock *block;
0d53d9fe 1967 RAMBlock *last_block = NULL;
2152f5ca 1968 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1969 Error *err = NULL;
2152f5ca 1970
b8c48993 1971 old_ram_size = last_ram_page();
c5705a77 1972
b2a8658e 1973 qemu_mutex_lock_ramlist();
9b8424d5 1974 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1975
1976 if (!new_block->host) {
1977 if (xen_enabled()) {
9b8424d5 1978 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1979 new_block->mr, &err);
1980 if (err) {
1981 error_propagate(errp, err);
1982 qemu_mutex_unlock_ramlist();
39c350ee 1983 return;
37aa7a0e 1984 }
e1c57ab8 1985 } else {
9b8424d5 1986 new_block->host = phys_mem_alloc(new_block->max_length,
06329cce 1987 &new_block->mr->align, shared);
39228250 1988 if (!new_block->host) {
ef701d7b
HT
1989 error_setg_errno(errp, errno,
1990 "cannot set up guest memory '%s'",
1991 memory_region_name(new_block->mr));
1992 qemu_mutex_unlock_ramlist();
39c350ee 1993 return;
39228250 1994 }
9b8424d5 1995 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1996 }
c902760f 1997 }
94a6b54f 1998
dd631697
LZ
1999 new_ram_size = MAX(old_ram_size,
2000 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2001 if (new_ram_size > old_ram_size) {
5b82b703 2002 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 2003 }
0d53d9fe
MD
2004 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2005 * QLIST (which has an RCU-friendly variant) does not have insertion at
2006 * tail, so save the last element in last_block.
2007 */
99e15582 2008 RAMBLOCK_FOREACH(block) {
0d53d9fe 2009 last_block = block;
9b8424d5 2010 if (block->max_length < new_block->max_length) {
abb26d63
PB
2011 break;
2012 }
2013 }
2014 if (block) {
0dc3f44a 2015 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 2016 } else if (last_block) {
0dc3f44a 2017 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 2018 } else { /* list is empty */
0dc3f44a 2019 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 2020 }
0d6d3c87 2021 ram_list.mru_block = NULL;
94a6b54f 2022
0dc3f44a
MD
2023 /* Write list before version */
2024 smp_wmb();
f798b07f 2025 ram_list.version++;
b2a8658e 2026 qemu_mutex_unlock_ramlist();
f798b07f 2027
9b8424d5 2028 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
2029 new_block->used_length,
2030 DIRTY_CLIENTS_ALL);
94a6b54f 2031
a904c911
PB
2032 if (new_block->host) {
2033 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2034 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 2035 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 2036 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 2037 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 2038 }
94a6b54f 2039}
e9a1ab19 2040
0b183fc8 2041#ifdef __linux__
38b3362d
MAL
2042RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2043 bool share, int fd,
2044 Error **errp)
e1c57ab8
PB
2045{
2046 RAMBlock *new_block;
ef701d7b 2047 Error *local_err = NULL;
8d37b030 2048 int64_t file_size;
e1c57ab8
PB
2049
2050 if (xen_enabled()) {
7f56e740 2051 error_setg(errp, "-mem-path not supported with Xen");
528f46af 2052 return NULL;
e1c57ab8
PB
2053 }
2054
e45e7ae2
MAL
2055 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2056 error_setg(errp,
2057 "host lacks kvm mmu notifiers, -mem-path unsupported");
2058 return NULL;
2059 }
2060
e1c57ab8
PB
2061 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2062 /*
2063 * file_ram_alloc() needs to allocate just like
2064 * phys_mem_alloc, but we haven't bothered to provide
2065 * a hook there.
2066 */
7f56e740
PB
2067 error_setg(errp,
2068 "-mem-path not supported with this accelerator");
528f46af 2069 return NULL;
e1c57ab8
PB
2070 }
2071
4ed023ce 2072 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2073 file_size = get_file_size(fd);
2074 if (file_size > 0 && file_size < size) {
2075 error_setg(errp, "backing store %s size 0x%" PRIx64
2076 " does not match 'size' option 0x" RAM_ADDR_FMT,
2077 mem_path, file_size, size);
8d37b030
MAL
2078 return NULL;
2079 }
2080
e1c57ab8
PB
2081 new_block = g_malloc0(sizeof(*new_block));
2082 new_block->mr = mr;
9b8424d5
MT
2083 new_block->used_length = size;
2084 new_block->max_length = size;
dbcb8981 2085 new_block->flags = share ? RAM_SHARED : 0;
8d37b030 2086 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2087 if (!new_block->host) {
2088 g_free(new_block);
528f46af 2089 return NULL;
7f56e740
PB
2090 }
2091
06329cce 2092 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2093 if (local_err) {
2094 g_free(new_block);
2095 error_propagate(errp, local_err);
528f46af 2096 return NULL;
ef701d7b 2097 }
528f46af 2098 return new_block;
38b3362d
MAL
2099
2100}
2101
2102
2103RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2104 bool share, const char *mem_path,
2105 Error **errp)
2106{
2107 int fd;
2108 bool created;
2109 RAMBlock *block;
2110
2111 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2112 if (fd < 0) {
2113 return NULL;
2114 }
2115
2116 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2117 if (!block) {
2118 if (created) {
2119 unlink(mem_path);
2120 }
2121 close(fd);
2122 return NULL;
2123 }
2124
2125 return block;
e1c57ab8 2126}
0b183fc8 2127#endif
e1c57ab8 2128
62be4e3a 2129static
528f46af
FZ
2130RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2131 void (*resized)(const char*,
2132 uint64_t length,
2133 void *host),
06329cce 2134 void *host, bool resizeable, bool share,
528f46af 2135 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2136{
2137 RAMBlock *new_block;
ef701d7b 2138 Error *local_err = NULL;
e1c57ab8 2139
4ed023ce
DDAG
2140 size = HOST_PAGE_ALIGN(size);
2141 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2142 new_block = g_malloc0(sizeof(*new_block));
2143 new_block->mr = mr;
62be4e3a 2144 new_block->resized = resized;
9b8424d5
MT
2145 new_block->used_length = size;
2146 new_block->max_length = max_size;
62be4e3a 2147 assert(max_size >= size);
e1c57ab8 2148 new_block->fd = -1;
863e9621 2149 new_block->page_size = getpagesize();
e1c57ab8
PB
2150 new_block->host = host;
2151 if (host) {
7bd4f430 2152 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2153 }
62be4e3a
MT
2154 if (resizeable) {
2155 new_block->flags |= RAM_RESIZEABLE;
2156 }
06329cce 2157 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2158 if (local_err) {
2159 g_free(new_block);
2160 error_propagate(errp, local_err);
528f46af 2161 return NULL;
ef701d7b 2162 }
528f46af 2163 return new_block;
e1c57ab8
PB
2164}
2165
528f46af 2166RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2167 MemoryRegion *mr, Error **errp)
2168{
06329cce
MA
2169 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2170 false, mr, errp);
62be4e3a
MT
2171}
2172
06329cce
MA
2173RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2174 MemoryRegion *mr, Error **errp)
6977dfe6 2175{
06329cce
MA
2176 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2177 share, mr, errp);
62be4e3a
MT
2178}
2179
528f46af 2180RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2181 void (*resized)(const char*,
2182 uint64_t length,
2183 void *host),
2184 MemoryRegion *mr, Error **errp)
2185{
06329cce
MA
2186 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2187 false, mr, errp);
6977dfe6
YT
2188}
2189
43771539
PB
2190static void reclaim_ramblock(RAMBlock *block)
2191{
2192 if (block->flags & RAM_PREALLOC) {
2193 ;
2194 } else if (xen_enabled()) {
2195 xen_invalidate_map_cache_entry(block->host);
2196#ifndef _WIN32
2197 } else if (block->fd >= 0) {
2f3a2bb1 2198 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
2199 close(block->fd);
2200#endif
2201 } else {
2202 qemu_anon_ram_free(block->host, block->max_length);
2203 }
2204 g_free(block);
2205}
2206
f1060c55 2207void qemu_ram_free(RAMBlock *block)
e9a1ab19 2208{
85bc2a15
MAL
2209 if (!block) {
2210 return;
2211 }
2212
0987d735
PB
2213 if (block->host) {
2214 ram_block_notify_remove(block->host, block->max_length);
2215 }
2216
b2a8658e 2217 qemu_mutex_lock_ramlist();
f1060c55
FZ
2218 QLIST_REMOVE_RCU(block, next);
2219 ram_list.mru_block = NULL;
2220 /* Write list before version */
2221 smp_wmb();
2222 ram_list.version++;
2223 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2224 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2225}
2226
cd19cfa2
HY
2227#ifndef _WIN32
2228void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2229{
2230 RAMBlock *block;
2231 ram_addr_t offset;
2232 int flags;
2233 void *area, *vaddr;
2234
99e15582 2235 RAMBLOCK_FOREACH(block) {
cd19cfa2 2236 offset = addr - block->offset;
9b8424d5 2237 if (offset < block->max_length) {
1240be24 2238 vaddr = ramblock_ptr(block, offset);
7bd4f430 2239 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2240 ;
dfeaf2ab
MA
2241 } else if (xen_enabled()) {
2242 abort();
cd19cfa2
HY
2243 } else {
2244 flags = MAP_FIXED;
3435f395 2245 if (block->fd >= 0) {
dbcb8981
PB
2246 flags |= (block->flags & RAM_SHARED ?
2247 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2248 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2249 flags, block->fd, offset);
cd19cfa2 2250 } else {
2eb9fbaa
MA
2251 /*
2252 * Remap needs to match alloc. Accelerators that
2253 * set phys_mem_alloc never remap. If they did,
2254 * we'd need a remap hook here.
2255 */
2256 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2257
cd19cfa2
HY
2258 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2259 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2260 flags, -1, 0);
cd19cfa2
HY
2261 }
2262 if (area != vaddr) {
493d89bf
AF
2263 error_report("Could not remap addr: "
2264 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2265 length, addr);
cd19cfa2
HY
2266 exit(1);
2267 }
8490fc78 2268 memory_try_enable_merging(vaddr, length);
ddb97f1d 2269 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2270 }
cd19cfa2
HY
2271 }
2272 }
2273}
2274#endif /* !_WIN32 */
2275
1b5ec234 2276/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2277 * This should not be used for general purpose DMA. Use address_space_map
2278 * or address_space_rw instead. For local memory (e.g. video ram) that the
2279 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2280 *
49b24afc 2281 * Called within RCU critical section.
1b5ec234 2282 */
0878d0e1 2283void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2284{
3655cb9c
GA
2285 RAMBlock *block = ram_block;
2286
2287 if (block == NULL) {
2288 block = qemu_get_ram_block(addr);
0878d0e1 2289 addr -= block->offset;
3655cb9c 2290 }
ae3a7047
MD
2291
2292 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2293 /* We need to check if the requested address is in the RAM
2294 * because we don't want to map the entire memory in QEMU.
2295 * In that case just map until the end of the page.
2296 */
2297 if (block->offset == 0) {
1ff7c598 2298 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2299 }
ae3a7047 2300
1ff7c598 2301 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2302 }
0878d0e1 2303 return ramblock_ptr(block, addr);
dc828ca1
PB
2304}
2305
0878d0e1 2306/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2307 * but takes a size argument.
0dc3f44a 2308 *
e81bcda5 2309 * Called within RCU critical section.
ae3a7047 2310 */
3655cb9c 2311static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2312 hwaddr *size, bool lock)
38bee5dc 2313{
3655cb9c 2314 RAMBlock *block = ram_block;
8ab934f9
SS
2315 if (*size == 0) {
2316 return NULL;
2317 }
e81bcda5 2318
3655cb9c
GA
2319 if (block == NULL) {
2320 block = qemu_get_ram_block(addr);
0878d0e1 2321 addr -= block->offset;
3655cb9c 2322 }
0878d0e1 2323 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2324
2325 if (xen_enabled() && block->host == NULL) {
2326 /* We need to check if the requested address is in the RAM
2327 * because we don't want to map the entire memory in QEMU.
2328 * In that case just map the requested area.
2329 */
2330 if (block->offset == 0) {
f5aa69bd 2331 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2332 }
2333
f5aa69bd 2334 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2335 }
e81bcda5 2336
0878d0e1 2337 return ramblock_ptr(block, addr);
38bee5dc
SS
2338}
2339
f90bb71b
DDAG
2340/* Return the offset of a hostpointer within a ramblock */
2341ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2342{
2343 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2344 assert((uintptr_t)host >= (uintptr_t)rb->host);
2345 assert(res < rb->max_length);
2346
2347 return res;
2348}
2349
422148d3
DDAG
2350/*
2351 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2352 * in that RAMBlock.
2353 *
2354 * ptr: Host pointer to look up
2355 * round_offset: If true round the result offset down to a page boundary
2356 * *ram_addr: set to result ram_addr
2357 * *offset: set to result offset within the RAMBlock
2358 *
2359 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2360 *
2361 * By the time this function returns, the returned pointer is not protected
2362 * by RCU anymore. If the caller is not within an RCU critical section and
2363 * does not hold the iothread lock, it must have other means of protecting the
2364 * pointer, such as a reference to the region that includes the incoming
2365 * ram_addr_t.
2366 */
422148d3 2367RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2368 ram_addr_t *offset)
5579c7f3 2369{
94a6b54f
PB
2370 RAMBlock *block;
2371 uint8_t *host = ptr;
2372
868bb33f 2373 if (xen_enabled()) {
f615f396 2374 ram_addr_t ram_addr;
0dc3f44a 2375 rcu_read_lock();
f615f396
PB
2376 ram_addr = xen_ram_addr_from_mapcache(ptr);
2377 block = qemu_get_ram_block(ram_addr);
422148d3 2378 if (block) {
d6b6aec4 2379 *offset = ram_addr - block->offset;
422148d3 2380 }
0dc3f44a 2381 rcu_read_unlock();
422148d3 2382 return block;
712c2b41
SS
2383 }
2384
0dc3f44a
MD
2385 rcu_read_lock();
2386 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2387 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2388 goto found;
2389 }
2390
99e15582 2391 RAMBLOCK_FOREACH(block) {
432d268c
JN
2392 /* This case append when the block is not mapped. */
2393 if (block->host == NULL) {
2394 continue;
2395 }
9b8424d5 2396 if (host - block->host < block->max_length) {
23887b79 2397 goto found;
f471a17e 2398 }
94a6b54f 2399 }
432d268c 2400
0dc3f44a 2401 rcu_read_unlock();
1b5ec234 2402 return NULL;
23887b79
PB
2403
2404found:
422148d3
DDAG
2405 *offset = (host - block->host);
2406 if (round_offset) {
2407 *offset &= TARGET_PAGE_MASK;
2408 }
0dc3f44a 2409 rcu_read_unlock();
422148d3
DDAG
2410 return block;
2411}
2412
e3dd7493
DDAG
2413/*
2414 * Finds the named RAMBlock
2415 *
2416 * name: The name of RAMBlock to find
2417 *
2418 * Returns: RAMBlock (or NULL if not found)
2419 */
2420RAMBlock *qemu_ram_block_by_name(const char *name)
2421{
2422 RAMBlock *block;
2423
99e15582 2424 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2425 if (!strcmp(name, block->idstr)) {
2426 return block;
2427 }
2428 }
2429
2430 return NULL;
2431}
2432
422148d3
DDAG
2433/* Some of the softmmu routines need to translate from a host pointer
2434 (typically a TLB entry) back to a ram offset. */
07bdaa41 2435ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2436{
2437 RAMBlock *block;
f615f396 2438 ram_addr_t offset;
422148d3 2439
f615f396 2440 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2441 if (!block) {
07bdaa41 2442 return RAM_ADDR_INVALID;
422148d3
DDAG
2443 }
2444
07bdaa41 2445 return block->offset + offset;
e890261f 2446}
f471a17e 2447
27266271
PM
2448/* Called within RCU critical section. */
2449void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2450 CPUState *cpu,
2451 vaddr mem_vaddr,
2452 ram_addr_t ram_addr,
2453 unsigned size)
2454{
2455 ndi->cpu = cpu;
2456 ndi->ram_addr = ram_addr;
2457 ndi->mem_vaddr = mem_vaddr;
2458 ndi->size = size;
2459 ndi->locked = false;
ba051fb5 2460
5aa1ef71 2461 assert(tcg_enabled());
52159192 2462 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
27266271 2463 ndi->locked = true;
ba051fb5 2464 tb_lock();
0e0df1e2 2465 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 2466 }
27266271
PM
2467}
2468
2469/* Called within RCU critical section. */
2470void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2471{
2472 if (ndi->locked) {
2473 tb_unlock();
2474 }
2475
2476 /* Set both VGA and migration bits for simplicity and to remove
2477 * the notdirty callback faster.
2478 */
2479 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2480 DIRTY_CLIENTS_NOCODE);
2481 /* we remove the notdirty callback only if the code has been
2482 flushed */
2483 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2484 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2485 }
2486}
2487
2488/* Called within RCU critical section. */
2489static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2490 uint64_t val, unsigned size)
2491{
2492 NotDirtyInfo ndi;
2493
2494 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2495 ram_addr, size);
2496
0e0df1e2
AK
2497 switch (size) {
2498 case 1:
0878d0e1 2499 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2500 break;
2501 case 2:
0878d0e1 2502 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2503 break;
2504 case 4:
0878d0e1 2505 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2 2506 break;
ad52878f
AB
2507 case 8:
2508 stq_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2509 break;
0e0df1e2
AK
2510 default:
2511 abort();
3a7d929e 2512 }
27266271 2513 memory_notdirty_write_complete(&ndi);
9fa3e853
FB
2514}
2515
b018ddf6
PB
2516static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2517 unsigned size, bool is_write)
2518{
2519 return is_write;
2520}
2521
0e0df1e2 2522static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2523 .write = notdirty_mem_write,
b018ddf6 2524 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2525 .endianness = DEVICE_NATIVE_ENDIAN,
ad52878f
AB
2526 .valid = {
2527 .min_access_size = 1,
2528 .max_access_size = 8,
2529 .unaligned = false,
2530 },
2531 .impl = {
2532 .min_access_size = 1,
2533 .max_access_size = 8,
2534 .unaligned = false,
2535 },
1ccde1cb
FB
2536};
2537
0f459d16 2538/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2539static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2540{
93afeade 2541 CPUState *cpu = current_cpu;
568496c0 2542 CPUClass *cc = CPU_GET_CLASS(cpu);
0f459d16 2543 target_ulong vaddr;
a1d1bb31 2544 CPUWatchpoint *wp;
0f459d16 2545
5aa1ef71 2546 assert(tcg_enabled());
ff4700b0 2547 if (cpu->watchpoint_hit) {
06d55cc1
AL
2548 /* We re-entered the check after replacing the TB. Now raise
2549 * the debug interrupt so that is will trigger after the
2550 * current instruction. */
93afeade 2551 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2552 return;
2553 }
93afeade 2554 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2555 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2556 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2557 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2558 && (wp->flags & flags)) {
08225676
PM
2559 if (flags == BP_MEM_READ) {
2560 wp->flags |= BP_WATCHPOINT_HIT_READ;
2561 } else {
2562 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2563 }
2564 wp->hitaddr = vaddr;
66b9b43c 2565 wp->hitattrs = attrs;
ff4700b0 2566 if (!cpu->watchpoint_hit) {
568496c0
SF
2567 if (wp->flags & BP_CPU &&
2568 !cc->debug_check_watchpoint(cpu, wp)) {
2569 wp->flags &= ~BP_WATCHPOINT_HIT;
2570 continue;
2571 }
ff4700b0 2572 cpu->watchpoint_hit = wp;
a5e99826 2573
8d04fb55
JK
2574 /* Both tb_lock and iothread_mutex will be reset when
2575 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2576 * back into the cpu_exec main loop.
a5e99826
FK
2577 */
2578 tb_lock();
239c51a5 2579 tb_check_watchpoint(cpu);
6e140f28 2580 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2581 cpu->exception_index = EXCP_DEBUG;
5638d180 2582 cpu_loop_exit(cpu);
6e140f28 2583 } else {
9b990ee5
RH
2584 /* Force execution of one insn next time. */
2585 cpu->cflags_next_tb = 1 | curr_cflags();
6886b980 2586 cpu_loop_exit_noexc(cpu);
6e140f28 2587 }
06d55cc1 2588 }
6e140f28
AL
2589 } else {
2590 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2591 }
2592 }
2593}
2594
6658ffb8
PB
2595/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2596 so these check for a hit then pass through to the normal out-of-line
2597 phys routines. */
66b9b43c
PM
2598static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2599 unsigned size, MemTxAttrs attrs)
6658ffb8 2600{
66b9b43c
PM
2601 MemTxResult res;
2602 uint64_t data;
79ed0416
PM
2603 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2604 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2605
2606 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2607 switch (size) {
66b9b43c 2608 case 1:
79ed0416 2609 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2610 break;
2611 case 2:
79ed0416 2612 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2613 break;
2614 case 4:
79ed0416 2615 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2616 break;
306526b5
PB
2617 case 8:
2618 data = address_space_ldq(as, addr, attrs, &res);
2619 break;
1ec9b909
AK
2620 default: abort();
2621 }
66b9b43c
PM
2622 *pdata = data;
2623 return res;
6658ffb8
PB
2624}
2625
66b9b43c
PM
2626static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2627 uint64_t val, unsigned size,
2628 MemTxAttrs attrs)
6658ffb8 2629{
66b9b43c 2630 MemTxResult res;
79ed0416
PM
2631 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2632 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2633
2634 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2635 switch (size) {
67364150 2636 case 1:
79ed0416 2637 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2638 break;
2639 case 2:
79ed0416 2640 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2641 break;
2642 case 4:
79ed0416 2643 address_space_stl(as, addr, val, attrs, &res);
67364150 2644 break;
306526b5
PB
2645 case 8:
2646 address_space_stq(as, addr, val, attrs, &res);
2647 break;
1ec9b909
AK
2648 default: abort();
2649 }
66b9b43c 2650 return res;
6658ffb8
PB
2651}
2652
1ec9b909 2653static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2654 .read_with_attrs = watch_mem_read,
2655 .write_with_attrs = watch_mem_write,
1ec9b909 2656 .endianness = DEVICE_NATIVE_ENDIAN,
306526b5
PB
2657 .valid = {
2658 .min_access_size = 1,
2659 .max_access_size = 8,
2660 .unaligned = false,
2661 },
2662 .impl = {
2663 .min_access_size = 1,
2664 .max_access_size = 8,
2665 .unaligned = false,
2666 },
6658ffb8 2667};
6658ffb8 2668
b2a44fca
PB
2669static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2670 MemTxAttrs attrs, uint8_t *buf, int len);
16620684
AK
2671static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2672 const uint8_t *buf, int len);
2673static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2674 bool is_write);
2675
f25a49e0
PM
2676static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2677 unsigned len, MemTxAttrs attrs)
db7b5426 2678{
acc9d80b 2679 subpage_t *subpage = opaque;
ff6cff75 2680 uint8_t buf[8];
5c9eb028 2681 MemTxResult res;
791af8c8 2682
db7b5426 2683#if defined(DEBUG_SUBPAGE)
016e9d62 2684 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2685 subpage, len, addr);
db7b5426 2686#endif
16620684 2687 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2688 if (res) {
2689 return res;
f25a49e0 2690 }
acc9d80b
JK
2691 switch (len) {
2692 case 1:
f25a49e0
PM
2693 *data = ldub_p(buf);
2694 return MEMTX_OK;
acc9d80b 2695 case 2:
f25a49e0
PM
2696 *data = lduw_p(buf);
2697 return MEMTX_OK;
acc9d80b 2698 case 4:
f25a49e0
PM
2699 *data = ldl_p(buf);
2700 return MEMTX_OK;
ff6cff75 2701 case 8:
f25a49e0
PM
2702 *data = ldq_p(buf);
2703 return MEMTX_OK;
acc9d80b
JK
2704 default:
2705 abort();
2706 }
db7b5426
BS
2707}
2708
f25a49e0
PM
2709static MemTxResult subpage_write(void *opaque, hwaddr addr,
2710 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2711{
acc9d80b 2712 subpage_t *subpage = opaque;
ff6cff75 2713 uint8_t buf[8];
acc9d80b 2714
db7b5426 2715#if defined(DEBUG_SUBPAGE)
016e9d62 2716 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2717 " value %"PRIx64"\n",
2718 __func__, subpage, len, addr, value);
db7b5426 2719#endif
acc9d80b
JK
2720 switch (len) {
2721 case 1:
2722 stb_p(buf, value);
2723 break;
2724 case 2:
2725 stw_p(buf, value);
2726 break;
2727 case 4:
2728 stl_p(buf, value);
2729 break;
ff6cff75
PB
2730 case 8:
2731 stq_p(buf, value);
2732 break;
acc9d80b
JK
2733 default:
2734 abort();
2735 }
16620684 2736 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2737}
2738
c353e4cc 2739static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2740 unsigned len, bool is_write)
c353e4cc 2741{
acc9d80b 2742 subpage_t *subpage = opaque;
c353e4cc 2743#if defined(DEBUG_SUBPAGE)
016e9d62 2744 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2745 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2746#endif
2747
16620684
AK
2748 return flatview_access_valid(subpage->fv, addr + subpage->base,
2749 len, is_write);
c353e4cc
PB
2750}
2751
70c68e44 2752static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2753 .read_with_attrs = subpage_read,
2754 .write_with_attrs = subpage_write,
ff6cff75
PB
2755 .impl.min_access_size = 1,
2756 .impl.max_access_size = 8,
2757 .valid.min_access_size = 1,
2758 .valid.max_access_size = 8,
c353e4cc 2759 .valid.accepts = subpage_accepts,
70c68e44 2760 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2761};
2762
c227f099 2763static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2764 uint16_t section)
db7b5426
BS
2765{
2766 int idx, eidx;
2767
2768 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2769 return -1;
2770 idx = SUBPAGE_IDX(start);
2771 eidx = SUBPAGE_IDX(end);
2772#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2773 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2774 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2775#endif
db7b5426 2776 for (; idx <= eidx; idx++) {
5312bd8b 2777 mmio->sub_section[idx] = section;
db7b5426
BS
2778 }
2779
2780 return 0;
2781}
2782
16620684 2783static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 2784{
c227f099 2785 subpage_t *mmio;
db7b5426 2786
2615fabd 2787 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 2788 mmio->fv = fv;
1eec614b 2789 mmio->base = base;
2c9b15ca 2790 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2791 NULL, TARGET_PAGE_SIZE);
b3b00c78 2792 mmio->iomem.subpage = true;
db7b5426 2793#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2794 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2795 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2796#endif
b41aac4f 2797 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2798
2799 return mmio;
2800}
2801
16620684 2802static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 2803{
16620684 2804 assert(fv);
5312bd8b 2805 MemoryRegionSection section = {
16620684 2806 .fv = fv,
5312bd8b
AK
2807 .mr = mr,
2808 .offset_within_address_space = 0,
2809 .offset_within_region = 0,
052e87b0 2810 .size = int128_2_64(),
5312bd8b
AK
2811 };
2812
53cb28cb 2813 return phys_section_add(map, &section);
5312bd8b
AK
2814}
2815
8af36743
PM
2816static void readonly_mem_write(void *opaque, hwaddr addr,
2817 uint64_t val, unsigned size)
2818{
2819 /* Ignore any write to ROM. */
2820}
2821
2822static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2823 unsigned size, bool is_write)
2824{
2825 return is_write;
2826}
2827
2828/* This will only be used for writes, because reads are special cased
2829 * to directly access the underlying host ram.
2830 */
2831static const MemoryRegionOps readonly_mem_ops = {
2832 .write = readonly_mem_write,
2833 .valid.accepts = readonly_mem_accepts,
2834 .endianness = DEVICE_NATIVE_ENDIAN,
2835 .valid = {
2836 .min_access_size = 1,
2837 .max_access_size = 8,
2838 .unaligned = false,
2839 },
2840 .impl = {
2841 .min_access_size = 1,
2842 .max_access_size = 8,
2843 .unaligned = false,
2844 },
2845};
2846
a54c87b6 2847MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2848{
a54c87b6
PM
2849 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2850 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2851 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2852 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2853
2854 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2855}
2856
e9179ce1
AK
2857static void io_mem_init(void)
2858{
8af36743
PM
2859 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
2860 NULL, NULL, UINT64_MAX);
2c9b15ca 2861 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2862 NULL, UINT64_MAX);
8d04fb55
JK
2863
2864 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2865 * which can be called without the iothread mutex.
2866 */
2c9b15ca 2867 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2868 NULL, UINT64_MAX);
8d04fb55
JK
2869 memory_region_clear_global_locking(&io_mem_notdirty);
2870
2c9b15ca 2871 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2872 NULL, UINT64_MAX);
e9179ce1
AK
2873}
2874
8629d3fc 2875AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 2876{
53cb28cb
MA
2877 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2878 uint16_t n;
2879
16620684 2880 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 2881 assert(n == PHYS_SECTION_UNASSIGNED);
16620684 2882 n = dummy_section(&d->map, fv, &io_mem_notdirty);
53cb28cb 2883 assert(n == PHYS_SECTION_NOTDIRTY);
16620684 2884 n = dummy_section(&d->map, fv, &io_mem_rom);
53cb28cb 2885 assert(n == PHYS_SECTION_ROM);
16620684 2886 n = dummy_section(&d->map, fv, &io_mem_watch);
53cb28cb 2887 assert(n == PHYS_SECTION_WATCH);
00752703 2888
9736e55b 2889 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
2890
2891 return d;
00752703
PB
2892}
2893
66a6df1d 2894void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
2895{
2896 phys_sections_free(&d->map);
2897 g_free(d);
2898}
2899
1d71148e 2900static void tcg_commit(MemoryListener *listener)
50c1e149 2901{
32857f4d
PM
2902 CPUAddressSpace *cpuas;
2903 AddressSpaceDispatch *d;
117712c3
AK
2904
2905 /* since each CPU stores ram addresses in its TLB cache, we must
2906 reset the modified entries */
32857f4d
PM
2907 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2908 cpu_reloading_memory_map();
2909 /* The CPU and TLB are protected by the iothread lock.
2910 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2911 * may have split the RCU critical section.
2912 */
66a6df1d 2913 d = address_space_to_dispatch(cpuas->as);
f35e44e7 2914 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2915 tlb_flush(cpuas->cpu);
50c1e149
AK
2916}
2917
62152b8a
AK
2918static void memory_map_init(void)
2919{
7267c094 2920 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2921
57271d63 2922 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2923 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2924
7267c094 2925 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2926 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2927 65536);
7dca8043 2928 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2929}
2930
2931MemoryRegion *get_system_memory(void)
2932{
2933 return system_memory;
2934}
2935
309cb471
AK
2936MemoryRegion *get_system_io(void)
2937{
2938 return system_io;
2939}
2940
e2eef170
PB
2941#endif /* !defined(CONFIG_USER_ONLY) */
2942
13eb76e0
FB
2943/* physical memory access (slow version, mainly for debug) */
2944#if defined(CONFIG_USER_ONLY)
f17ec444 2945int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2946 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2947{
2948 int l, flags;
2949 target_ulong page;
53a5960a 2950 void * p;
13eb76e0
FB
2951
2952 while (len > 0) {
2953 page = addr & TARGET_PAGE_MASK;
2954 l = (page + TARGET_PAGE_SIZE) - addr;
2955 if (l > len)
2956 l = len;
2957 flags = page_get_flags(page);
2958 if (!(flags & PAGE_VALID))
a68fe89c 2959 return -1;
13eb76e0
FB
2960 if (is_write) {
2961 if (!(flags & PAGE_WRITE))
a68fe89c 2962 return -1;
579a97f7 2963 /* XXX: this code should not depend on lock_user */
72fb7daa 2964 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2965 return -1;
72fb7daa
AJ
2966 memcpy(p, buf, l);
2967 unlock_user(p, addr, l);
13eb76e0
FB
2968 } else {
2969 if (!(flags & PAGE_READ))
a68fe89c 2970 return -1;
579a97f7 2971 /* XXX: this code should not depend on lock_user */
72fb7daa 2972 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2973 return -1;
72fb7daa 2974 memcpy(buf, p, l);
5b257578 2975 unlock_user(p, addr, 0);
13eb76e0
FB
2976 }
2977 len -= l;
2978 buf += l;
2979 addr += l;
2980 }
a68fe89c 2981 return 0;
13eb76e0 2982}
8df1cd07 2983
13eb76e0 2984#else
51d7a9eb 2985
845b6214 2986static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2987 hwaddr length)
51d7a9eb 2988{
e87f7778 2989 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
2990 addr += memory_region_get_ram_addr(mr);
2991
e87f7778
PB
2992 /* No early return if dirty_log_mask is or becomes 0, because
2993 * cpu_physical_memory_set_dirty_range will still call
2994 * xen_modified_memory.
2995 */
2996 if (dirty_log_mask) {
2997 dirty_log_mask =
2998 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2999 }
3000 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 3001 assert(tcg_enabled());
ba051fb5 3002 tb_lock();
e87f7778 3003 tb_invalidate_phys_range(addr, addr + length);
ba051fb5 3004 tb_unlock();
e87f7778 3005 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 3006 }
e87f7778 3007 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
3008}
3009
23326164 3010static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 3011{
e1622f4b 3012 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
3013
3014 /* Regions are assumed to support 1-4 byte accesses unless
3015 otherwise specified. */
23326164
RH
3016 if (access_size_max == 0) {
3017 access_size_max = 4;
3018 }
3019
3020 /* Bound the maximum access by the alignment of the address. */
3021 if (!mr->ops->impl.unaligned) {
3022 unsigned align_size_max = addr & -addr;
3023 if (align_size_max != 0 && align_size_max < access_size_max) {
3024 access_size_max = align_size_max;
3025 }
82f2563f 3026 }
23326164
RH
3027
3028 /* Don't attempt accesses larger than the maximum. */
3029 if (l > access_size_max) {
3030 l = access_size_max;
82f2563f 3031 }
6554f5c0 3032 l = pow2floor(l);
23326164
RH
3033
3034 return l;
82f2563f
PB
3035}
3036
4840f10e 3037static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 3038{
4840f10e
JK
3039 bool unlocked = !qemu_mutex_iothread_locked();
3040 bool release_lock = false;
3041
3042 if (unlocked && mr->global_locking) {
3043 qemu_mutex_lock_iothread();
3044 unlocked = false;
3045 release_lock = true;
3046 }
125b3806 3047 if (mr->flush_coalesced_mmio) {
4840f10e
JK
3048 if (unlocked) {
3049 qemu_mutex_lock_iothread();
3050 }
125b3806 3051 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
3052 if (unlocked) {
3053 qemu_mutex_unlock_iothread();
3054 }
125b3806 3055 }
4840f10e
JK
3056
3057 return release_lock;
125b3806
PB
3058}
3059
a203ac70 3060/* Called within RCU critical section. */
16620684
AK
3061static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3062 MemTxAttrs attrs,
3063 const uint8_t *buf,
3064 int len, hwaddr addr1,
3065 hwaddr l, MemoryRegion *mr)
13eb76e0 3066{
13eb76e0 3067 uint8_t *ptr;
791af8c8 3068 uint64_t val;
3b643495 3069 MemTxResult result = MEMTX_OK;
4840f10e 3070 bool release_lock = false;
3b46e624 3071
a203ac70 3072 for (;;) {
eb7eeb88
PB
3073 if (!memory_access_is_direct(mr, true)) {
3074 release_lock |= prepare_mmio_access(mr);
3075 l = memory_access_size(mr, l, addr1);
3076 /* XXX: could force current_cpu to NULL to avoid
3077 potential bugs */
3078 switch (l) {
3079 case 8:
3080 /* 64 bit write access */
3081 val = ldq_p(buf);
3082 result |= memory_region_dispatch_write(mr, addr1, val, 8,
3083 attrs);
3084 break;
3085 case 4:
3086 /* 32 bit write access */
6da67de6 3087 val = (uint32_t)ldl_p(buf);
eb7eeb88
PB
3088 result |= memory_region_dispatch_write(mr, addr1, val, 4,
3089 attrs);
3090 break;
3091 case 2:
3092 /* 16 bit write access */
3093 val = lduw_p(buf);
3094 result |= memory_region_dispatch_write(mr, addr1, val, 2,
3095 attrs);
3096 break;
3097 case 1:
3098 /* 8 bit write access */
3099 val = ldub_p(buf);
3100 result |= memory_region_dispatch_write(mr, addr1, val, 1,
3101 attrs);
3102 break;
3103 default:
3104 abort();
13eb76e0
FB
3105 }
3106 } else {
eb7eeb88 3107 /* RAM case */
f5aa69bd 3108 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3109 memcpy(ptr, buf, l);
3110 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 3111 }
4840f10e
JK
3112
3113 if (release_lock) {
3114 qemu_mutex_unlock_iothread();
3115 release_lock = false;
3116 }
3117
13eb76e0
FB
3118 len -= l;
3119 buf += l;
3120 addr += l;
a203ac70
PB
3121
3122 if (!len) {
3123 break;
3124 }
3125
3126 l = len;
16620684 3127 mr = flatview_translate(fv, addr, &addr1, &l, true);
13eb76e0 3128 }
fd8aaa76 3129
3b643495 3130 return result;
13eb76e0 3131}
8df1cd07 3132
4c6ebbb3 3133/* Called from RCU critical section. */
16620684
AK
3134static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3135 const uint8_t *buf, int len)
ac1970fb 3136{
eb7eeb88 3137 hwaddr l;
eb7eeb88
PB
3138 hwaddr addr1;
3139 MemoryRegion *mr;
3140 MemTxResult result = MEMTX_OK;
eb7eeb88 3141
4c6ebbb3
PB
3142 l = len;
3143 mr = flatview_translate(fv, addr, &addr1, &l, true);
3144 result = flatview_write_continue(fv, addr, attrs, buf, len,
3145 addr1, l, mr);
a203ac70
PB
3146
3147 return result;
3148}
3149
3150/* Called within RCU critical section. */
16620684
AK
3151MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3152 MemTxAttrs attrs, uint8_t *buf,
3153 int len, hwaddr addr1, hwaddr l,
3154 MemoryRegion *mr)
a203ac70
PB
3155{
3156 uint8_t *ptr;
3157 uint64_t val;
3158 MemTxResult result = MEMTX_OK;
3159 bool release_lock = false;
eb7eeb88 3160
a203ac70 3161 for (;;) {
eb7eeb88
PB
3162 if (!memory_access_is_direct(mr, false)) {
3163 /* I/O case */
3164 release_lock |= prepare_mmio_access(mr);
3165 l = memory_access_size(mr, l, addr1);
3166 switch (l) {
3167 case 8:
3168 /* 64 bit read access */
3169 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
3170 attrs);
3171 stq_p(buf, val);
3172 break;
3173 case 4:
3174 /* 32 bit read access */
3175 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3176 attrs);
3177 stl_p(buf, val);
3178 break;
3179 case 2:
3180 /* 16 bit read access */
3181 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3182 attrs);
3183 stw_p(buf, val);
3184 break;
3185 case 1:
3186 /* 8 bit read access */
3187 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3188 attrs);
3189 stb_p(buf, val);
3190 break;
3191 default:
3192 abort();
3193 }
3194 } else {
3195 /* RAM case */
f5aa69bd 3196 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3197 memcpy(buf, ptr, l);
3198 }
3199
3200 if (release_lock) {
3201 qemu_mutex_unlock_iothread();
3202 release_lock = false;
3203 }
3204
3205 len -= l;
3206 buf += l;
3207 addr += l;
a203ac70
PB
3208
3209 if (!len) {
3210 break;
3211 }
3212
3213 l = len;
16620684 3214 mr = flatview_translate(fv, addr, &addr1, &l, false);
a203ac70
PB
3215 }
3216
3217 return result;
3218}
3219
b2a44fca
PB
3220/* Called from RCU critical section. */
3221static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3222 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
3223{
3224 hwaddr l;
3225 hwaddr addr1;
3226 MemoryRegion *mr;
eb7eeb88 3227
b2a44fca
PB
3228 l = len;
3229 mr = flatview_translate(fv, addr, &addr1, &l, false);
3230 return flatview_read_continue(fv, addr, attrs, buf, len,
3231 addr1, l, mr);
ac1970fb
AK
3232}
3233
b2a44fca
PB
3234MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3235 MemTxAttrs attrs, uint8_t *buf, int len)
3236{
3237 MemTxResult result = MEMTX_OK;
3238 FlatView *fv;
3239
3240 if (len > 0) {
3241 rcu_read_lock();
3242 fv = address_space_to_flatview(as);
3243 result = flatview_read(fv, addr, attrs, buf, len);
3244 rcu_read_unlock();
3245 }
3246
3247 return result;
3248}
3249
4c6ebbb3
PB
3250MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3251 MemTxAttrs attrs,
3252 const uint8_t *buf, int len)
3253{
3254 MemTxResult result = MEMTX_OK;
3255 FlatView *fv;
3256
3257 if (len > 0) {
3258 rcu_read_lock();
3259 fv = address_space_to_flatview(as);
3260 result = flatview_write(fv, addr, attrs, buf, len);
3261 rcu_read_unlock();
3262 }
3263
3264 return result;
3265}
3266
db84fd97
PB
3267MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3268 uint8_t *buf, int len, bool is_write)
3269{
3270 if (is_write) {
3271 return address_space_write(as, addr, attrs, buf, len);
3272 } else {
3273 return address_space_read_full(as, addr, attrs, buf, len);
3274 }
3275}
3276
a8170e5e 3277void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
3278 int len, int is_write)
3279{
5c9eb028
PM
3280 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3281 buf, len, is_write);
ac1970fb
AK
3282}
3283
582b55a9
AG
3284enum write_rom_type {
3285 WRITE_DATA,
3286 FLUSH_CACHE,
3287};
3288
2a221651 3289static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 3290 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 3291{
149f54b5 3292 hwaddr l;
d0ecd2aa 3293 uint8_t *ptr;
149f54b5 3294 hwaddr addr1;
5c8a00ce 3295 MemoryRegion *mr;
3b46e624 3296
41063e1e 3297 rcu_read_lock();
d0ecd2aa 3298 while (len > 0) {
149f54b5 3299 l = len;
2a221651 3300 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 3301
5c8a00ce
PB
3302 if (!(memory_region_is_ram(mr) ||
3303 memory_region_is_romd(mr))) {
b242e0e0 3304 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3305 } else {
d0ecd2aa 3306 /* ROM/RAM case */
0878d0e1 3307 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3308 switch (type) {
3309 case WRITE_DATA:
3310 memcpy(ptr, buf, l);
845b6214 3311 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3312 break;
3313 case FLUSH_CACHE:
3314 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3315 break;
3316 }
d0ecd2aa
FB
3317 }
3318 len -= l;
3319 buf += l;
3320 addr += l;
3321 }
41063e1e 3322 rcu_read_unlock();
d0ecd2aa
FB
3323}
3324
582b55a9 3325/* used for ROM loading : can write in RAM and ROM */
2a221651 3326void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
3327 const uint8_t *buf, int len)
3328{
2a221651 3329 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
3330}
3331
3332void cpu_flush_icache_range(hwaddr start, int len)
3333{
3334 /*
3335 * This function should do the same thing as an icache flush that was
3336 * triggered from within the guest. For TCG we are always cache coherent,
3337 * so there is no need to flush anything. For KVM / Xen we need to flush
3338 * the host's instruction cache at least.
3339 */
3340 if (tcg_enabled()) {
3341 return;
3342 }
3343
2a221651
EI
3344 cpu_physical_memory_write_rom_internal(&address_space_memory,
3345 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
3346}
3347
6d16c2f8 3348typedef struct {
d3e71559 3349 MemoryRegion *mr;
6d16c2f8 3350 void *buffer;
a8170e5e
AK
3351 hwaddr addr;
3352 hwaddr len;
c2cba0ff 3353 bool in_use;
6d16c2f8
AL
3354} BounceBuffer;
3355
3356static BounceBuffer bounce;
3357
ba223c29 3358typedef struct MapClient {
e95205e1 3359 QEMUBH *bh;
72cf2d4f 3360 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3361} MapClient;
3362
38e047b5 3363QemuMutex map_client_list_lock;
72cf2d4f
BS
3364static QLIST_HEAD(map_client_list, MapClient) map_client_list
3365 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3366
e95205e1
FZ
3367static void cpu_unregister_map_client_do(MapClient *client)
3368{
3369 QLIST_REMOVE(client, link);
3370 g_free(client);
3371}
3372
33b6c2ed
FZ
3373static void cpu_notify_map_clients_locked(void)
3374{
3375 MapClient *client;
3376
3377 while (!QLIST_EMPTY(&map_client_list)) {
3378 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3379 qemu_bh_schedule(client->bh);
3380 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3381 }
3382}
3383
e95205e1 3384void cpu_register_map_client(QEMUBH *bh)
ba223c29 3385{
7267c094 3386 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3387
38e047b5 3388 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3389 client->bh = bh;
72cf2d4f 3390 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3391 if (!atomic_read(&bounce.in_use)) {
3392 cpu_notify_map_clients_locked();
3393 }
38e047b5 3394 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3395}
3396
38e047b5 3397void cpu_exec_init_all(void)
ba223c29 3398{
38e047b5 3399 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3400 /* The data structures we set up here depend on knowing the page size,
3401 * so no more changes can be made after this point.
3402 * In an ideal world, nothing we did before we had finished the
3403 * machine setup would care about the target page size, and we could
3404 * do this much later, rather than requiring board models to state
3405 * up front what their requirements are.
3406 */
3407 finalize_target_page_bits();
38e047b5 3408 io_mem_init();
680a4783 3409 memory_map_init();
38e047b5 3410 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3411}
3412
e95205e1 3413void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3414{
3415 MapClient *client;
3416
e95205e1
FZ
3417 qemu_mutex_lock(&map_client_list_lock);
3418 QLIST_FOREACH(client, &map_client_list, link) {
3419 if (client->bh == bh) {
3420 cpu_unregister_map_client_do(client);
3421 break;
3422 }
ba223c29 3423 }
e95205e1 3424 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3425}
3426
3427static void cpu_notify_map_clients(void)
3428{
38e047b5 3429 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3430 cpu_notify_map_clients_locked();
38e047b5 3431 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3432}
3433
16620684
AK
3434static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3435 bool is_write)
51644ab7 3436{
5c8a00ce 3437 MemoryRegion *mr;
51644ab7
PB
3438 hwaddr l, xlat;
3439
3440 while (len > 0) {
3441 l = len;
16620684 3442 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
5c8a00ce
PB
3443 if (!memory_access_is_direct(mr, is_write)) {
3444 l = memory_access_size(mr, l, addr);
3445 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
3446 return false;
3447 }
3448 }
3449
3450 len -= l;
3451 addr += l;
3452 }
3453 return true;
3454}
3455
16620684
AK
3456bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3457 int len, bool is_write)
3458{
11e732a5
PB
3459 FlatView *fv;
3460 bool result;
3461
3462 rcu_read_lock();
3463 fv = address_space_to_flatview(as);
3464 result = flatview_access_valid(fv, addr, len, is_write);
3465 rcu_read_unlock();
3466 return result;
16620684
AK
3467}
3468
715c31ec 3469static hwaddr
16620684
AK
3470flatview_extend_translation(FlatView *fv, hwaddr addr,
3471 hwaddr target_len,
715c31ec
PB
3472 MemoryRegion *mr, hwaddr base, hwaddr len,
3473 bool is_write)
3474{
3475 hwaddr done = 0;
3476 hwaddr xlat;
3477 MemoryRegion *this_mr;
3478
3479 for (;;) {
3480 target_len -= len;
3481 addr += len;
3482 done += len;
3483 if (target_len == 0) {
3484 return done;
3485 }
3486
3487 len = target_len;
16620684
AK
3488 this_mr = flatview_translate(fv, addr, &xlat,
3489 &len, is_write);
715c31ec
PB
3490 if (this_mr != mr || xlat != base + done) {
3491 return done;
3492 }
3493 }
3494}
3495
6d16c2f8
AL
3496/* Map a physical memory region into a host virtual address.
3497 * May map a subset of the requested range, given by and returned in *plen.
3498 * May return NULL if resources needed to perform the mapping are exhausted.
3499 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3500 * Use cpu_register_map_client() to know when retrying the map operation is
3501 * likely to succeed.
6d16c2f8 3502 */
ac1970fb 3503void *address_space_map(AddressSpace *as,
a8170e5e
AK
3504 hwaddr addr,
3505 hwaddr *plen,
ac1970fb 3506 bool is_write)
6d16c2f8 3507{
a8170e5e 3508 hwaddr len = *plen;
715c31ec
PB
3509 hwaddr l, xlat;
3510 MemoryRegion *mr;
e81bcda5 3511 void *ptr;
ad0c60fa 3512 FlatView *fv;
6d16c2f8 3513
e3127ae0
PB
3514 if (len == 0) {
3515 return NULL;
3516 }
38bee5dc 3517
e3127ae0 3518 l = len;
41063e1e 3519 rcu_read_lock();
ad0c60fa 3520 fv = address_space_to_flatview(as);
16620684 3521 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
41063e1e 3522
e3127ae0 3523 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3524 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3525 rcu_read_unlock();
e3127ae0 3526 return NULL;
6d16c2f8 3527 }
e85d9db5
KW
3528 /* Avoid unbounded allocations */
3529 l = MIN(l, TARGET_PAGE_SIZE);
3530 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3531 bounce.addr = addr;
3532 bounce.len = l;
d3e71559
PB
3533
3534 memory_region_ref(mr);
3535 bounce.mr = mr;
e3127ae0 3536 if (!is_write) {
16620684 3537 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3538 bounce.buffer, l);
8ab934f9 3539 }
6d16c2f8 3540
41063e1e 3541 rcu_read_unlock();
e3127ae0
PB
3542 *plen = l;
3543 return bounce.buffer;
3544 }
3545
e3127ae0 3546
d3e71559 3547 memory_region_ref(mr);
16620684
AK
3548 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3549 l, is_write);
f5aa69bd 3550 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3551 rcu_read_unlock();
3552
3553 return ptr;
6d16c2f8
AL
3554}
3555
ac1970fb 3556/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3557 * Will also mark the memory as dirty if is_write == 1. access_len gives
3558 * the amount of memory that was actually read or written by the caller.
3559 */
a8170e5e
AK
3560void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3561 int is_write, hwaddr access_len)
6d16c2f8
AL
3562{
3563 if (buffer != bounce.buffer) {
d3e71559
PB
3564 MemoryRegion *mr;
3565 ram_addr_t addr1;
3566
07bdaa41 3567 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3568 assert(mr != NULL);
6d16c2f8 3569 if (is_write) {
845b6214 3570 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3571 }
868bb33f 3572 if (xen_enabled()) {
e41d7c69 3573 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3574 }
d3e71559 3575 memory_region_unref(mr);
6d16c2f8
AL
3576 return;
3577 }
3578 if (is_write) {
5c9eb028
PM
3579 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3580 bounce.buffer, access_len);
6d16c2f8 3581 }
f8a83245 3582 qemu_vfree(bounce.buffer);
6d16c2f8 3583 bounce.buffer = NULL;
d3e71559 3584 memory_region_unref(bounce.mr);
c2cba0ff 3585 atomic_mb_set(&bounce.in_use, false);
ba223c29 3586 cpu_notify_map_clients();
6d16c2f8 3587}
d0ecd2aa 3588
a8170e5e
AK
3589void *cpu_physical_memory_map(hwaddr addr,
3590 hwaddr *plen,
ac1970fb
AK
3591 int is_write)
3592{
3593 return address_space_map(&address_space_memory, addr, plen, is_write);
3594}
3595
a8170e5e
AK
3596void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3597 int is_write, hwaddr access_len)
ac1970fb
AK
3598{
3599 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3600}
3601
0ce265ff
PB
3602#define ARG1_DECL AddressSpace *as
3603#define ARG1 as
3604#define SUFFIX
3605#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3606#define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3607#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3608#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3609#define RCU_READ_LOCK(...) rcu_read_lock()
3610#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3611#include "memory_ldst.inc.c"
1e78bcc1 3612
1f4e496e
PB
3613int64_t address_space_cache_init(MemoryRegionCache *cache,
3614 AddressSpace *as,
3615 hwaddr addr,
3616 hwaddr len,
3617 bool is_write)
3618{
90c4fe5f
PB
3619 cache->len = len;
3620 cache->as = as;
3621 cache->xlat = addr;
3622 return len;
1f4e496e
PB
3623}
3624
3625void address_space_cache_invalidate(MemoryRegionCache *cache,
3626 hwaddr addr,
3627 hwaddr access_len)
3628{
1f4e496e
PB
3629}
3630
3631void address_space_cache_destroy(MemoryRegionCache *cache)
3632{
90c4fe5f 3633 cache->as = NULL;
1f4e496e
PB
3634}
3635
3636#define ARG1_DECL MemoryRegionCache *cache
3637#define ARG1 cache
3638#define SUFFIX _cached
90c4fe5f
PB
3639#define TRANSLATE(addr, ...) \
3640 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
1f4e496e 3641#define IS_DIRECT(mr, is_write) true
90c4fe5f
PB
3642#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3643#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3644#define RCU_READ_LOCK() rcu_read_lock()
3645#define RCU_READ_UNLOCK() rcu_read_unlock()
1f4e496e
PB
3646#include "memory_ldst.inc.c"
3647
5e2972fd 3648/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3649int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3650 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3651{
3652 int l;
a8170e5e 3653 hwaddr phys_addr;
9b3c35e0 3654 target_ulong page;
13eb76e0 3655
79ca7a1b 3656 cpu_synchronize_state(cpu);
13eb76e0 3657 while (len > 0) {
5232e4c7
PM
3658 int asidx;
3659 MemTxAttrs attrs;
3660
13eb76e0 3661 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3662 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3663 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3664 /* if no physical page mapped, return an error */
3665 if (phys_addr == -1)
3666 return -1;
3667 l = (page + TARGET_PAGE_SIZE) - addr;
3668 if (l > len)
3669 l = len;
5e2972fd 3670 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3671 if (is_write) {
5232e4c7
PM
3672 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3673 phys_addr, buf, l);
2e38847b 3674 } else {
5232e4c7
PM
3675 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3676 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3677 buf, l, 0);
2e38847b 3678 }
13eb76e0
FB
3679 len -= l;
3680 buf += l;
3681 addr += l;
3682 }
3683 return 0;
3684}
038629a6
DDAG
3685
3686/*
3687 * Allows code that needs to deal with migration bitmaps etc to still be built
3688 * target independent.
3689 */
20afaed9 3690size_t qemu_target_page_size(void)
038629a6 3691{
20afaed9 3692 return TARGET_PAGE_SIZE;
038629a6
DDAG
3693}
3694
46d702b1
JQ
3695int qemu_target_page_bits(void)
3696{
3697 return TARGET_PAGE_BITS;
3698}
3699
3700int qemu_target_page_bits_min(void)
3701{
3702 return TARGET_PAGE_BITS_MIN;
3703}
a68fe89c 3704#endif
13eb76e0 3705
8e4a424b
BS
3706/*
3707 * A helper function for the _utterly broken_ virtio device model to find out if
3708 * it's running on a big endian machine. Don't do this at home kids!
3709 */
98ed8ecf
GK
3710bool target_words_bigendian(void);
3711bool target_words_bigendian(void)
8e4a424b
BS
3712{
3713#if defined(TARGET_WORDS_BIGENDIAN)
3714 return true;
3715#else
3716 return false;
3717#endif
3718}
3719
76f35538 3720#ifndef CONFIG_USER_ONLY
a8170e5e 3721bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3722{
5c8a00ce 3723 MemoryRegion*mr;
149f54b5 3724 hwaddr l = 1;
41063e1e 3725 bool res;
76f35538 3726
41063e1e 3727 rcu_read_lock();
5c8a00ce
PB
3728 mr = address_space_translate(&address_space_memory,
3729 phys_addr, &phys_addr, &l, false);
76f35538 3730
41063e1e
PB
3731 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3732 rcu_read_unlock();
3733 return res;
76f35538 3734}
bd2fa51f 3735
e3807054 3736int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3737{
3738 RAMBlock *block;
e3807054 3739 int ret = 0;
bd2fa51f 3740
0dc3f44a 3741 rcu_read_lock();
99e15582 3742 RAMBLOCK_FOREACH(block) {
e3807054
DDAG
3743 ret = func(block->idstr, block->host, block->offset,
3744 block->used_length, opaque);
3745 if (ret) {
3746 break;
3747 }
bd2fa51f 3748 }
0dc3f44a 3749 rcu_read_unlock();
e3807054 3750 return ret;
bd2fa51f 3751}
d3a5038c
DDAG
3752
3753/*
3754 * Unmap pages of memory from start to start+length such that
3755 * they a) read as 0, b) Trigger whatever fault mechanism
3756 * the OS provides for postcopy.
3757 * The pages must be unmapped by the end of the function.
3758 * Returns: 0 on success, none-0 on failure
3759 *
3760 */
3761int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3762{
3763 int ret = -1;
3764
3765 uint8_t *host_startaddr = rb->host + start;
3766
3767 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3768 error_report("ram_block_discard_range: Unaligned start address: %p",
3769 host_startaddr);
3770 goto err;
3771 }
3772
3773 if ((start + length) <= rb->used_length) {
db144f70 3774 bool need_madvise, need_fallocate;
d3a5038c
DDAG
3775 uint8_t *host_endaddr = host_startaddr + length;
3776 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3777 error_report("ram_block_discard_range: Unaligned end address: %p",
3778 host_endaddr);
3779 goto err;
3780 }
3781
3782 errno = ENOTSUP; /* If we are missing MADVISE etc */
3783
db144f70
DDAG
3784 /* The logic here is messy;
3785 * madvise DONTNEED fails for hugepages
3786 * fallocate works on hugepages and shmem
3787 */
3788 need_madvise = (rb->page_size == qemu_host_page_size);
3789 need_fallocate = rb->fd != -1;
3790 if (need_fallocate) {
3791 /* For a file, this causes the area of the file to be zero'd
3792 * if read, and for hugetlbfs also causes it to be unmapped
3793 * so a userfault will trigger.
e2fa71f5
DDAG
3794 */
3795#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3796 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3797 start, length);
db144f70
DDAG
3798 if (ret) {
3799 ret = -errno;
3800 error_report("ram_block_discard_range: Failed to fallocate "
3801 "%s:%" PRIx64 " +%zx (%d)",
3802 rb->idstr, start, length, ret);
3803 goto err;
3804 }
3805#else
3806 ret = -ENOSYS;
3807 error_report("ram_block_discard_range: fallocate not available/file"
3808 "%s:%" PRIx64 " +%zx (%d)",
3809 rb->idstr, start, length, ret);
3810 goto err;
e2fa71f5
DDAG
3811#endif
3812 }
db144f70
DDAG
3813 if (need_madvise) {
3814 /* For normal RAM this causes it to be unmapped,
3815 * for shared memory it causes the local mapping to disappear
3816 * and to fall back on the file contents (which we just
3817 * fallocate'd away).
3818 */
3819#if defined(CONFIG_MADVISE)
3820 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3821 if (ret) {
3822 ret = -errno;
3823 error_report("ram_block_discard_range: Failed to discard range "
3824 "%s:%" PRIx64 " +%zx (%d)",
3825 rb->idstr, start, length, ret);
3826 goto err;
3827 }
3828#else
3829 ret = -ENOSYS;
3830 error_report("ram_block_discard_range: MADVISE not available"
d3a5038c
DDAG
3831 "%s:%" PRIx64 " +%zx (%d)",
3832 rb->idstr, start, length, ret);
db144f70
DDAG
3833 goto err;
3834#endif
d3a5038c 3835 }
db144f70
DDAG
3836 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3837 need_madvise, need_fallocate, ret);
d3a5038c
DDAG
3838 } else {
3839 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3840 "/%zx/" RAM_ADDR_FMT")",
3841 rb->idstr, start, length, rb->used_length);
3842 }
3843
3844err:
3845 return ret;
3846}
3847
ec3f8c99 3848#endif
a0be0c58
YZ
3849
3850void page_size_init(void)
3851{
3852 /* NOTE: we can always suppose that qemu_host_page_size >=
3853 TARGET_PAGE_SIZE */
a0be0c58
YZ
3854 if (qemu_host_page_size == 0) {
3855 qemu_host_page_size = qemu_real_host_page_size;
3856 }
3857 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3858 qemu_host_page_size = TARGET_PAGE_SIZE;
3859 }
3860 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3861}
5e8fd947
AK
3862
3863#if !defined(CONFIG_USER_ONLY)
3864
3865static void mtree_print_phys_entries(fprintf_function mon, void *f,
3866 int start, int end, int skip, int ptr)
3867{
3868 if (start == end - 1) {
3869 mon(f, "\t%3d ", start);
3870 } else {
3871 mon(f, "\t%3d..%-3d ", start, end - 1);
3872 }
3873 mon(f, " skip=%d ", skip);
3874 if (ptr == PHYS_MAP_NODE_NIL) {
3875 mon(f, " ptr=NIL");
3876 } else if (!skip) {
3877 mon(f, " ptr=#%d", ptr);
3878 } else {
3879 mon(f, " ptr=[%d]", ptr);
3880 }
3881 mon(f, "\n");
3882}
3883
3884#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3885 int128_sub((size), int128_one())) : 0)
3886
3887void mtree_print_dispatch(fprintf_function mon, void *f,
3888 AddressSpaceDispatch *d, MemoryRegion *root)
3889{
3890 int i;
3891
3892 mon(f, " Dispatch\n");
3893 mon(f, " Physical sections\n");
3894
3895 for (i = 0; i < d->map.sections_nb; ++i) {
3896 MemoryRegionSection *s = d->map.sections + i;
3897 const char *names[] = { " [unassigned]", " [not dirty]",
3898 " [ROM]", " [watch]" };
3899
3900 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
3901 i,
3902 s->offset_within_address_space,
3903 s->offset_within_address_space + MR_SIZE(s->mr->size),
3904 s->mr->name ? s->mr->name : "(noname)",
3905 i < ARRAY_SIZE(names) ? names[i] : "",
3906 s->mr == root ? " [ROOT]" : "",
3907 s == d->mru_section ? " [MRU]" : "",
3908 s->mr->is_iommu ? " [iommu]" : "");
3909
3910 if (s->mr->alias) {
3911 mon(f, " alias=%s", s->mr->alias->name ?
3912 s->mr->alias->name : "noname");
3913 }
3914 mon(f, "\n");
3915 }
3916
3917 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3918 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3919 for (i = 0; i < d->map.nodes_nb; ++i) {
3920 int j, jprev;
3921 PhysPageEntry prev;
3922 Node *n = d->map.nodes + i;
3923
3924 mon(f, " [%d]\n", i);
3925
3926 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3927 PhysPageEntry *pe = *n + j;
3928
3929 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3930 continue;
3931 }
3932
3933 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3934
3935 jprev = j;
3936 prev = *pe;
3937 }
3938
3939 if (jprev != ARRAY_SIZE(*n)) {
3940 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3941 }
3942 }
3943}
3944
3945#endif