]> git.ipfire.org Git - thirdparty/qemu.git/blob - accel/tcg/user-exec.c
accel/tcg: Adjust cpu_signal_handler for NetBSD/arm
[thirdparty/qemu.git] / accel / tcg / user-exec.c
1 /*
2 * User emulator execution
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "disas/disas.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg.h"
24 #include "qemu/bitops.h"
25 #include "exec/cpu_ldst.h"
26 #include "translate-all.h"
27 #include "exec/helper-proto.h"
28 #include "qemu/atomic128.h"
29 #include "trace-root.h"
30 #include "trace/mem.h"
31
32 #undef EAX
33 #undef ECX
34 #undef EDX
35 #undef EBX
36 #undef ESP
37 #undef EBP
38 #undef ESI
39 #undef EDI
40 #undef EIP
41 #ifdef __linux__
42 #include <sys/ucontext.h>
43 #endif
44
45 __thread uintptr_t helper_retaddr;
46
47 //#define DEBUG_SIGNAL
48
49 /* exit the current TB from a signal handler. The host registers are
50 restored in a state compatible with the CPU emulator
51 */
52 static void cpu_exit_tb_from_sighandler(CPUState *cpu, sigset_t *old_set)
53 {
54 /* XXX: use siglongjmp ? */
55 sigprocmask(SIG_SETMASK, old_set, NULL);
56 cpu_loop_exit_noexc(cpu);
57 }
58
59 /* 'pc' is the host PC at which the exception was raised. 'address' is
60 the effective address of the memory exception. 'is_write' is 1 if a
61 write caused the exception and otherwise 0'. 'old_set' is the
62 signal set which should be restored */
63 static inline int handle_cpu_signal(uintptr_t pc, siginfo_t *info,
64 int is_write, sigset_t *old_set)
65 {
66 CPUState *cpu = current_cpu;
67 CPUClass *cc;
68 unsigned long address = (unsigned long)info->si_addr;
69 MMUAccessType access_type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD;
70
71 switch (helper_retaddr) {
72 default:
73 /*
74 * Fault during host memory operation within a helper function.
75 * The helper's host return address, saved here, gives us a
76 * pointer into the generated code that will unwind to the
77 * correct guest pc.
78 */
79 pc = helper_retaddr;
80 break;
81
82 case 0:
83 /*
84 * Fault during host memory operation within generated code.
85 * (Or, a unrelated bug within qemu, but we can't tell from here).
86 *
87 * We take the host pc from the signal frame. However, we cannot
88 * use that value directly. Within cpu_restore_state_from_tb, we
89 * assume PC comes from GETPC(), as used by the helper functions,
90 * so we adjust the address by -GETPC_ADJ to form an address that
91 * is within the call insn, so that the address does not accidentially
92 * match the beginning of the next guest insn. However, when the
93 * pc comes from the signal frame it points to the actual faulting
94 * host memory insn and not the return from a call insn.
95 *
96 * Therefore, adjust to compensate for what will be done later
97 * by cpu_restore_state_from_tb.
98 */
99 pc += GETPC_ADJ;
100 break;
101
102 case 1:
103 /*
104 * Fault during host read for translation, or loosely, "execution".
105 *
106 * The guest pc is already pointing to the start of the TB for which
107 * code is being generated. If the guest translator manages the
108 * page crossings correctly, this is exactly the correct address
109 * (and if the translator doesn't handle page boundaries correctly
110 * there's little we can do about that here). Therefore, do not
111 * trigger the unwinder.
112 *
113 * Like tb_gen_code, release the memory lock before cpu_loop_exit.
114 */
115 pc = 0;
116 access_type = MMU_INST_FETCH;
117 mmap_unlock();
118 break;
119 }
120
121 /* For synchronous signals we expect to be coming from the vCPU
122 * thread (so current_cpu should be valid) and either from running
123 * code or during translation which can fault as we cross pages.
124 *
125 * If neither is true then something has gone wrong and we should
126 * abort rather than try and restart the vCPU execution.
127 */
128 if (!cpu || !cpu->running) {
129 printf("qemu:%s received signal outside vCPU context @ pc=0x%"
130 PRIxPTR "\n", __func__, pc);
131 abort();
132 }
133
134 #if defined(DEBUG_SIGNAL)
135 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
136 pc, address, is_write, *(unsigned long *)old_set);
137 #endif
138 /* XXX: locking issue */
139 /* Note that it is important that we don't call page_unprotect() unless
140 * this is really a "write to nonwriteable page" fault, because
141 * page_unprotect() assumes that if it is called for an access to
142 * a page that's writeable this means we had two threads racing and
143 * another thread got there first and already made the page writeable;
144 * so we will retry the access. If we were to call page_unprotect()
145 * for some other kind of fault that should really be passed to the
146 * guest, we'd end up in an infinite loop of retrying the faulting
147 * access.
148 */
149 if (is_write && info->si_signo == SIGSEGV && info->si_code == SEGV_ACCERR &&
150 h2g_valid(address)) {
151 switch (page_unprotect(h2g(address), pc)) {
152 case 0:
153 /* Fault not caused by a page marked unwritable to protect
154 * cached translations, must be the guest binary's problem.
155 */
156 break;
157 case 1:
158 /* Fault caused by protection of cached translation; TBs
159 * invalidated, so resume execution. Retain helper_retaddr
160 * for a possible second fault.
161 */
162 return 1;
163 case 2:
164 /* Fault caused by protection of cached translation, and the
165 * currently executing TB was modified and must be exited
166 * immediately. Clear helper_retaddr for next execution.
167 */
168 clear_helper_retaddr();
169 cpu_exit_tb_from_sighandler(cpu, old_set);
170 /* NORETURN */
171
172 default:
173 g_assert_not_reached();
174 }
175 }
176
177 /* Convert forcefully to guest address space, invalid addresses
178 are still valid segv ones */
179 address = h2g_nocheck(address);
180
181 /*
182 * There is no way the target can handle this other than raising
183 * an exception. Undo signal and retaddr state prior to longjmp.
184 */
185 sigprocmask(SIG_SETMASK, old_set, NULL);
186 clear_helper_retaddr();
187
188 cc = CPU_GET_CLASS(cpu);
189 cc->tlb_fill(cpu, address, 0, access_type, MMU_USER_IDX, false, pc);
190 g_assert_not_reached();
191 }
192
193 static int probe_access_internal(CPUArchState *env, target_ulong addr,
194 int fault_size, MMUAccessType access_type,
195 bool nonfault, uintptr_t ra)
196 {
197 int flags;
198
199 switch (access_type) {
200 case MMU_DATA_STORE:
201 flags = PAGE_WRITE;
202 break;
203 case MMU_DATA_LOAD:
204 flags = PAGE_READ;
205 break;
206 case MMU_INST_FETCH:
207 flags = PAGE_EXEC;
208 break;
209 default:
210 g_assert_not_reached();
211 }
212
213 if (!guest_addr_valid(addr) || page_check_range(addr, 1, flags) < 0) {
214 if (nonfault) {
215 return TLB_INVALID_MASK;
216 } else {
217 CPUState *cpu = env_cpu(env);
218 CPUClass *cc = CPU_GET_CLASS(cpu);
219 cc->tlb_fill(cpu, addr, fault_size, access_type,
220 MMU_USER_IDX, false, ra);
221 g_assert_not_reached();
222 }
223 }
224 return 0;
225 }
226
227 int probe_access_flags(CPUArchState *env, target_ulong addr,
228 MMUAccessType access_type, int mmu_idx,
229 bool nonfault, void **phost, uintptr_t ra)
230 {
231 int flags;
232
233 flags = probe_access_internal(env, addr, 0, access_type, nonfault, ra);
234 *phost = flags ? NULL : g2h(addr);
235 return flags;
236 }
237
238 void *probe_access(CPUArchState *env, target_ulong addr, int size,
239 MMUAccessType access_type, int mmu_idx, uintptr_t ra)
240 {
241 int flags;
242
243 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
244 flags = probe_access_internal(env, addr, size, access_type, false, ra);
245 g_assert(flags == 0);
246
247 return size ? g2h(addr) : NULL;
248 }
249
250 #if defined(__i386__)
251
252 #if defined(__NetBSD__)
253 #include <ucontext.h>
254
255 #define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
256 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
257 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
258 #define MASK_sig(context) ((context)->uc_sigmask)
259 #elif defined(__FreeBSD__) || defined(__DragonFly__)
260 #include <ucontext.h>
261
262 #define EIP_sig(context) (*((unsigned long *)&(context)->uc_mcontext.mc_eip))
263 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
264 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
265 #define MASK_sig(context) ((context)->uc_sigmask)
266 #elif defined(__OpenBSD__)
267 #define EIP_sig(context) ((context)->sc_eip)
268 #define TRAP_sig(context) ((context)->sc_trapno)
269 #define ERROR_sig(context) ((context)->sc_err)
270 #define MASK_sig(context) ((context)->sc_mask)
271 #else
272 #define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
273 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
274 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
275 #define MASK_sig(context) ((context)->uc_sigmask)
276 #endif
277
278 int cpu_signal_handler(int host_signum, void *pinfo,
279 void *puc)
280 {
281 siginfo_t *info = pinfo;
282 #if defined(__NetBSD__) || defined(__FreeBSD__) || defined(__DragonFly__)
283 ucontext_t *uc = puc;
284 #elif defined(__OpenBSD__)
285 struct sigcontext *uc = puc;
286 #else
287 ucontext_t *uc = puc;
288 #endif
289 unsigned long pc;
290 int trapno;
291
292 #ifndef REG_EIP
293 /* for glibc 2.1 */
294 #define REG_EIP EIP
295 #define REG_ERR ERR
296 #define REG_TRAPNO TRAPNO
297 #endif
298 pc = EIP_sig(uc);
299 trapno = TRAP_sig(uc);
300 return handle_cpu_signal(pc, info,
301 trapno == 0xe ? (ERROR_sig(uc) >> 1) & 1 : 0,
302 &MASK_sig(uc));
303 }
304
305 #elif defined(__x86_64__)
306
307 #ifdef __NetBSD__
308 #define PC_sig(context) _UC_MACHINE_PC(context)
309 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
310 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
311 #define MASK_sig(context) ((context)->uc_sigmask)
312 #elif defined(__OpenBSD__)
313 #define PC_sig(context) ((context)->sc_rip)
314 #define TRAP_sig(context) ((context)->sc_trapno)
315 #define ERROR_sig(context) ((context)->sc_err)
316 #define MASK_sig(context) ((context)->sc_mask)
317 #elif defined(__FreeBSD__) || defined(__DragonFly__)
318 #include <ucontext.h>
319
320 #define PC_sig(context) (*((unsigned long *)&(context)->uc_mcontext.mc_rip))
321 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
322 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
323 #define MASK_sig(context) ((context)->uc_sigmask)
324 #else
325 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
326 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
327 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
328 #define MASK_sig(context) ((context)->uc_sigmask)
329 #endif
330
331 int cpu_signal_handler(int host_signum, void *pinfo,
332 void *puc)
333 {
334 siginfo_t *info = pinfo;
335 unsigned long pc;
336 #if defined(__NetBSD__) || defined(__FreeBSD__) || defined(__DragonFly__)
337 ucontext_t *uc = puc;
338 #elif defined(__OpenBSD__)
339 struct sigcontext *uc = puc;
340 #else
341 ucontext_t *uc = puc;
342 #endif
343
344 pc = PC_sig(uc);
345 return handle_cpu_signal(pc, info,
346 TRAP_sig(uc) == 0xe ? (ERROR_sig(uc) >> 1) & 1 : 0,
347 &MASK_sig(uc));
348 }
349
350 #elif defined(_ARCH_PPC)
351
352 /***********************************************************************
353 * signal context platform-specific definitions
354 * From Wine
355 */
356 #ifdef linux
357 /* All Registers access - only for local access */
358 #define REG_sig(reg_name, context) \
359 ((context)->uc_mcontext.regs->reg_name)
360 /* Gpr Registers access */
361 #define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
362 /* Program counter */
363 #define IAR_sig(context) REG_sig(nip, context)
364 /* Machine State Register (Supervisor) */
365 #define MSR_sig(context) REG_sig(msr, context)
366 /* Count register */
367 #define CTR_sig(context) REG_sig(ctr, context)
368 /* User's integer exception register */
369 #define XER_sig(context) REG_sig(xer, context)
370 /* Link register */
371 #define LR_sig(context) REG_sig(link, context)
372 /* Condition register */
373 #define CR_sig(context) REG_sig(ccr, context)
374
375 /* Float Registers access */
376 #define FLOAT_sig(reg_num, context) \
377 (((double *)((char *)((context)->uc_mcontext.regs + 48 * 4)))[reg_num])
378 #define FPSCR_sig(context) \
379 (*(int *)((char *)((context)->uc_mcontext.regs + (48 + 32 * 2) * 4)))
380 /* Exception Registers access */
381 #define DAR_sig(context) REG_sig(dar, context)
382 #define DSISR_sig(context) REG_sig(dsisr, context)
383 #define TRAP_sig(context) REG_sig(trap, context)
384 #endif /* linux */
385
386 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
387 #include <ucontext.h>
388 #define IAR_sig(context) ((context)->uc_mcontext.mc_srr0)
389 #define MSR_sig(context) ((context)->uc_mcontext.mc_srr1)
390 #define CTR_sig(context) ((context)->uc_mcontext.mc_ctr)
391 #define XER_sig(context) ((context)->uc_mcontext.mc_xer)
392 #define LR_sig(context) ((context)->uc_mcontext.mc_lr)
393 #define CR_sig(context) ((context)->uc_mcontext.mc_cr)
394 /* Exception Registers access */
395 #define DAR_sig(context) ((context)->uc_mcontext.mc_dar)
396 #define DSISR_sig(context) ((context)->uc_mcontext.mc_dsisr)
397 #define TRAP_sig(context) ((context)->uc_mcontext.mc_exc)
398 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */
399
400 int cpu_signal_handler(int host_signum, void *pinfo,
401 void *puc)
402 {
403 siginfo_t *info = pinfo;
404 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
405 ucontext_t *uc = puc;
406 #else
407 ucontext_t *uc = puc;
408 #endif
409 unsigned long pc;
410 int is_write;
411
412 pc = IAR_sig(uc);
413 is_write = 0;
414 #if 0
415 /* ppc 4xx case */
416 if (DSISR_sig(uc) & 0x00800000) {
417 is_write = 1;
418 }
419 #else
420 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000)) {
421 is_write = 1;
422 }
423 #endif
424 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
425 }
426
427 #elif defined(__alpha__)
428
429 int cpu_signal_handler(int host_signum, void *pinfo,
430 void *puc)
431 {
432 siginfo_t *info = pinfo;
433 ucontext_t *uc = puc;
434 uint32_t *pc = uc->uc_mcontext.sc_pc;
435 uint32_t insn = *pc;
436 int is_write = 0;
437
438 /* XXX: need kernel patch to get write flag faster */
439 switch (insn >> 26) {
440 case 0x0d: /* stw */
441 case 0x0e: /* stb */
442 case 0x0f: /* stq_u */
443 case 0x24: /* stf */
444 case 0x25: /* stg */
445 case 0x26: /* sts */
446 case 0x27: /* stt */
447 case 0x2c: /* stl */
448 case 0x2d: /* stq */
449 case 0x2e: /* stl_c */
450 case 0x2f: /* stq_c */
451 is_write = 1;
452 }
453
454 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
455 }
456 #elif defined(__sparc__)
457
458 int cpu_signal_handler(int host_signum, void *pinfo,
459 void *puc)
460 {
461 siginfo_t *info = pinfo;
462 int is_write;
463 uint32_t insn;
464 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
465 uint32_t *regs = (uint32_t *)(info + 1);
466 void *sigmask = (regs + 20);
467 /* XXX: is there a standard glibc define ? */
468 unsigned long pc = regs[1];
469 #else
470 #ifdef __linux__
471 struct sigcontext *sc = puc;
472 unsigned long pc = sc->sigc_regs.tpc;
473 void *sigmask = (void *)sc->sigc_mask;
474 #elif defined(__OpenBSD__)
475 struct sigcontext *uc = puc;
476 unsigned long pc = uc->sc_pc;
477 void *sigmask = (void *)(long)uc->sc_mask;
478 #elif defined(__NetBSD__)
479 ucontext_t *uc = puc;
480 unsigned long pc = _UC_MACHINE_PC(uc);
481 void *sigmask = (void *)&uc->uc_sigmask;
482 #endif
483 #endif
484
485 /* XXX: need kernel patch to get write flag faster */
486 is_write = 0;
487 insn = *(uint32_t *)pc;
488 if ((insn >> 30) == 3) {
489 switch ((insn >> 19) & 0x3f) {
490 case 0x05: /* stb */
491 case 0x15: /* stba */
492 case 0x06: /* sth */
493 case 0x16: /* stha */
494 case 0x04: /* st */
495 case 0x14: /* sta */
496 case 0x07: /* std */
497 case 0x17: /* stda */
498 case 0x0e: /* stx */
499 case 0x1e: /* stxa */
500 case 0x24: /* stf */
501 case 0x34: /* stfa */
502 case 0x27: /* stdf */
503 case 0x37: /* stdfa */
504 case 0x26: /* stqf */
505 case 0x36: /* stqfa */
506 case 0x25: /* stfsr */
507 case 0x3c: /* casa */
508 case 0x3e: /* casxa */
509 is_write = 1;
510 break;
511 }
512 }
513 return handle_cpu_signal(pc, info, is_write, sigmask);
514 }
515
516 #elif defined(__arm__)
517
518 #if defined(__NetBSD__)
519 #include <ucontext.h>
520 #include <sys/siginfo.h>
521 #endif
522
523 int cpu_signal_handler(int host_signum, void *pinfo,
524 void *puc)
525 {
526 siginfo_t *info = pinfo;
527 #if defined(__NetBSD__)
528 ucontext_t *uc = puc;
529 siginfo_t *si = pinfo;
530 #else
531 ucontext_t *uc = puc;
532 #endif
533 unsigned long pc;
534 uint32_t fsr;
535 int is_write;
536
537 #if defined(__NetBSD__)
538 pc = uc->uc_mcontext.__gregs[_REG_R15];
539 #elif defined(__GLIBC__) && (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
540 pc = uc->uc_mcontext.gregs[R15];
541 #else
542 pc = uc->uc_mcontext.arm_pc;
543 #endif
544
545 #ifdef __NetBSD__
546 fsr = si->si_trap;
547 #else
548 fsr = uc->uc_mcontext.error_code;
549 #endif
550 /*
551 * In the FSR, bit 11 is WnR, assuming a v6 or
552 * later processor. On v5 we will always report
553 * this as a read, which will fail later.
554 */
555 is_write = extract32(fsr, 11, 1);
556 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
557 }
558
559 #elif defined(__aarch64__)
560
561 #ifndef ESR_MAGIC
562 /* Pre-3.16 kernel headers don't have these, so provide fallback definitions */
563 #define ESR_MAGIC 0x45535201
564 struct esr_context {
565 struct _aarch64_ctx head;
566 uint64_t esr;
567 };
568 #endif
569
570 static inline struct _aarch64_ctx *first_ctx(ucontext_t *uc)
571 {
572 return (struct _aarch64_ctx *)&uc->uc_mcontext.__reserved;
573 }
574
575 static inline struct _aarch64_ctx *next_ctx(struct _aarch64_ctx *hdr)
576 {
577 return (struct _aarch64_ctx *)((char *)hdr + hdr->size);
578 }
579
580 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
581 {
582 siginfo_t *info = pinfo;
583 ucontext_t *uc = puc;
584 uintptr_t pc = uc->uc_mcontext.pc;
585 bool is_write;
586 struct _aarch64_ctx *hdr;
587 struct esr_context const *esrctx = NULL;
588
589 /* Find the esr_context, which has the WnR bit in it */
590 for (hdr = first_ctx(uc); hdr->magic; hdr = next_ctx(hdr)) {
591 if (hdr->magic == ESR_MAGIC) {
592 esrctx = (struct esr_context const *)hdr;
593 break;
594 }
595 }
596
597 if (esrctx) {
598 /* For data aborts ESR.EC is 0b10010x: then bit 6 is the WnR bit */
599 uint64_t esr = esrctx->esr;
600 is_write = extract32(esr, 27, 5) == 0x12 && extract32(esr, 6, 1) == 1;
601 } else {
602 /*
603 * Fall back to parsing instructions; will only be needed
604 * for really ancient (pre-3.16) kernels.
605 */
606 uint32_t insn = *(uint32_t *)pc;
607
608 is_write = ((insn & 0xbfff0000) == 0x0c000000 /* C3.3.1 */
609 || (insn & 0xbfe00000) == 0x0c800000 /* C3.3.2 */
610 || (insn & 0xbfdf0000) == 0x0d000000 /* C3.3.3 */
611 || (insn & 0xbfc00000) == 0x0d800000 /* C3.3.4 */
612 || (insn & 0x3f400000) == 0x08000000 /* C3.3.6 */
613 || (insn & 0x3bc00000) == 0x39000000 /* C3.3.13 */
614 || (insn & 0x3fc00000) == 0x3d800000 /* ... 128bit */
615 /* Ignore bits 10, 11 & 21, controlling indexing. */
616 || (insn & 0x3bc00000) == 0x38000000 /* C3.3.8-12 */
617 || (insn & 0x3fe00000) == 0x3c800000 /* ... 128bit */
618 /* Ignore bits 23 & 24, controlling indexing. */
619 || (insn & 0x3a400000) == 0x28000000); /* C3.3.7,14-16 */
620 }
621 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
622 }
623
624 #elif defined(__s390__)
625
626 int cpu_signal_handler(int host_signum, void *pinfo,
627 void *puc)
628 {
629 siginfo_t *info = pinfo;
630 ucontext_t *uc = puc;
631 unsigned long pc;
632 uint16_t *pinsn;
633 int is_write = 0;
634
635 pc = uc->uc_mcontext.psw.addr;
636
637 /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead
638 of the normal 2 arguments. The 3rd argument contains the "int_code"
639 from the hardware which does in fact contain the is_write value.
640 The rt signal handler, as far as I can tell, does not give this value
641 at all. Not that we could get to it from here even if it were. */
642 /* ??? This is not even close to complete, since it ignores all
643 of the read-modify-write instructions. */
644 pinsn = (uint16_t *)pc;
645 switch (pinsn[0] >> 8) {
646 case 0x50: /* ST */
647 case 0x42: /* STC */
648 case 0x40: /* STH */
649 is_write = 1;
650 break;
651 case 0xc4: /* RIL format insns */
652 switch (pinsn[0] & 0xf) {
653 case 0xf: /* STRL */
654 case 0xb: /* STGRL */
655 case 0x7: /* STHRL */
656 is_write = 1;
657 }
658 break;
659 case 0xe3: /* RXY format insns */
660 switch (pinsn[2] & 0xff) {
661 case 0x50: /* STY */
662 case 0x24: /* STG */
663 case 0x72: /* STCY */
664 case 0x70: /* STHY */
665 case 0x8e: /* STPQ */
666 case 0x3f: /* STRVH */
667 case 0x3e: /* STRV */
668 case 0x2f: /* STRVG */
669 is_write = 1;
670 }
671 break;
672 }
673 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
674 }
675
676 #elif defined(__mips__)
677
678 int cpu_signal_handler(int host_signum, void *pinfo,
679 void *puc)
680 {
681 siginfo_t *info = pinfo;
682 ucontext_t *uc = puc;
683 greg_t pc = uc->uc_mcontext.pc;
684 int is_write;
685
686 /* XXX: compute is_write */
687 is_write = 0;
688 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
689 }
690
691 #elif defined(__riscv)
692
693 int cpu_signal_handler(int host_signum, void *pinfo,
694 void *puc)
695 {
696 siginfo_t *info = pinfo;
697 ucontext_t *uc = puc;
698 greg_t pc = uc->uc_mcontext.__gregs[REG_PC];
699 uint32_t insn = *(uint32_t *)pc;
700 int is_write = 0;
701
702 /* Detect store by reading the instruction at the program
703 counter. Note: we currently only generate 32-bit
704 instructions so we thus only detect 32-bit stores */
705 switch (((insn >> 0) & 0b11)) {
706 case 3:
707 switch (((insn >> 2) & 0b11111)) {
708 case 8:
709 switch (((insn >> 12) & 0b111)) {
710 case 0: /* sb */
711 case 1: /* sh */
712 case 2: /* sw */
713 case 3: /* sd */
714 case 4: /* sq */
715 is_write = 1;
716 break;
717 default:
718 break;
719 }
720 break;
721 case 9:
722 switch (((insn >> 12) & 0b111)) {
723 case 2: /* fsw */
724 case 3: /* fsd */
725 case 4: /* fsq */
726 is_write = 1;
727 break;
728 default:
729 break;
730 }
731 break;
732 default:
733 break;
734 }
735 }
736
737 /* Check for compressed instructions */
738 switch (((insn >> 13) & 0b111)) {
739 case 7:
740 switch (insn & 0b11) {
741 case 0: /*c.sd */
742 case 2: /* c.sdsp */
743 is_write = 1;
744 break;
745 default:
746 break;
747 }
748 break;
749 case 6:
750 switch (insn & 0b11) {
751 case 0: /* c.sw */
752 case 3: /* c.swsp */
753 is_write = 1;
754 break;
755 default:
756 break;
757 }
758 break;
759 default:
760 break;
761 }
762
763 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
764 }
765
766 #else
767
768 #error host CPU specific signal handler needed
769
770 #endif
771
772 /* The softmmu versions of these helpers are in cputlb.c. */
773
774 uint32_t cpu_ldub_data(CPUArchState *env, abi_ptr ptr)
775 {
776 uint32_t ret;
777 uint16_t meminfo = trace_mem_get_info(MO_UB, MMU_USER_IDX, false);
778
779 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
780 ret = ldub_p(g2h(ptr));
781 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
782 return ret;
783 }
784
785 int cpu_ldsb_data(CPUArchState *env, abi_ptr ptr)
786 {
787 int ret;
788 uint16_t meminfo = trace_mem_get_info(MO_SB, MMU_USER_IDX, false);
789
790 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
791 ret = ldsb_p(g2h(ptr));
792 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
793 return ret;
794 }
795
796 uint32_t cpu_lduw_be_data(CPUArchState *env, abi_ptr ptr)
797 {
798 uint32_t ret;
799 uint16_t meminfo = trace_mem_get_info(MO_BEUW, MMU_USER_IDX, false);
800
801 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
802 ret = lduw_be_p(g2h(ptr));
803 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
804 return ret;
805 }
806
807 int cpu_ldsw_be_data(CPUArchState *env, abi_ptr ptr)
808 {
809 int ret;
810 uint16_t meminfo = trace_mem_get_info(MO_BESW, MMU_USER_IDX, false);
811
812 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
813 ret = ldsw_be_p(g2h(ptr));
814 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
815 return ret;
816 }
817
818 uint32_t cpu_ldl_be_data(CPUArchState *env, abi_ptr ptr)
819 {
820 uint32_t ret;
821 uint16_t meminfo = trace_mem_get_info(MO_BEUL, MMU_USER_IDX, false);
822
823 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
824 ret = ldl_be_p(g2h(ptr));
825 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
826 return ret;
827 }
828
829 uint64_t cpu_ldq_be_data(CPUArchState *env, abi_ptr ptr)
830 {
831 uint64_t ret;
832 uint16_t meminfo = trace_mem_get_info(MO_BEQ, MMU_USER_IDX, false);
833
834 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
835 ret = ldq_be_p(g2h(ptr));
836 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
837 return ret;
838 }
839
840 uint32_t cpu_lduw_le_data(CPUArchState *env, abi_ptr ptr)
841 {
842 uint32_t ret;
843 uint16_t meminfo = trace_mem_get_info(MO_LEUW, MMU_USER_IDX, false);
844
845 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
846 ret = lduw_le_p(g2h(ptr));
847 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
848 return ret;
849 }
850
851 int cpu_ldsw_le_data(CPUArchState *env, abi_ptr ptr)
852 {
853 int ret;
854 uint16_t meminfo = trace_mem_get_info(MO_LESW, MMU_USER_IDX, false);
855
856 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
857 ret = ldsw_le_p(g2h(ptr));
858 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
859 return ret;
860 }
861
862 uint32_t cpu_ldl_le_data(CPUArchState *env, abi_ptr ptr)
863 {
864 uint32_t ret;
865 uint16_t meminfo = trace_mem_get_info(MO_LEUL, MMU_USER_IDX, false);
866
867 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
868 ret = ldl_le_p(g2h(ptr));
869 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
870 return ret;
871 }
872
873 uint64_t cpu_ldq_le_data(CPUArchState *env, abi_ptr ptr)
874 {
875 uint64_t ret;
876 uint16_t meminfo = trace_mem_get_info(MO_LEQ, MMU_USER_IDX, false);
877
878 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
879 ret = ldq_le_p(g2h(ptr));
880 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
881 return ret;
882 }
883
884 uint32_t cpu_ldub_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
885 {
886 uint32_t ret;
887
888 set_helper_retaddr(retaddr);
889 ret = cpu_ldub_data(env, ptr);
890 clear_helper_retaddr();
891 return ret;
892 }
893
894 int cpu_ldsb_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
895 {
896 int ret;
897
898 set_helper_retaddr(retaddr);
899 ret = cpu_ldsb_data(env, ptr);
900 clear_helper_retaddr();
901 return ret;
902 }
903
904 uint32_t cpu_lduw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
905 {
906 uint32_t ret;
907
908 set_helper_retaddr(retaddr);
909 ret = cpu_lduw_be_data(env, ptr);
910 clear_helper_retaddr();
911 return ret;
912 }
913
914 int cpu_ldsw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
915 {
916 int ret;
917
918 set_helper_retaddr(retaddr);
919 ret = cpu_ldsw_be_data(env, ptr);
920 clear_helper_retaddr();
921 return ret;
922 }
923
924 uint32_t cpu_ldl_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
925 {
926 uint32_t ret;
927
928 set_helper_retaddr(retaddr);
929 ret = cpu_ldl_be_data(env, ptr);
930 clear_helper_retaddr();
931 return ret;
932 }
933
934 uint64_t cpu_ldq_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
935 {
936 uint64_t ret;
937
938 set_helper_retaddr(retaddr);
939 ret = cpu_ldq_be_data(env, ptr);
940 clear_helper_retaddr();
941 return ret;
942 }
943
944 uint32_t cpu_lduw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
945 {
946 uint32_t ret;
947
948 set_helper_retaddr(retaddr);
949 ret = cpu_lduw_le_data(env, ptr);
950 clear_helper_retaddr();
951 return ret;
952 }
953
954 int cpu_ldsw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
955 {
956 int ret;
957
958 set_helper_retaddr(retaddr);
959 ret = cpu_ldsw_le_data(env, ptr);
960 clear_helper_retaddr();
961 return ret;
962 }
963
964 uint32_t cpu_ldl_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
965 {
966 uint32_t ret;
967
968 set_helper_retaddr(retaddr);
969 ret = cpu_ldl_le_data(env, ptr);
970 clear_helper_retaddr();
971 return ret;
972 }
973
974 uint64_t cpu_ldq_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
975 {
976 uint64_t ret;
977
978 set_helper_retaddr(retaddr);
979 ret = cpu_ldq_le_data(env, ptr);
980 clear_helper_retaddr();
981 return ret;
982 }
983
984 void cpu_stb_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
985 {
986 uint16_t meminfo = trace_mem_get_info(MO_UB, MMU_USER_IDX, true);
987
988 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
989 stb_p(g2h(ptr), val);
990 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
991 }
992
993 void cpu_stw_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
994 {
995 uint16_t meminfo = trace_mem_get_info(MO_BEUW, MMU_USER_IDX, true);
996
997 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
998 stw_be_p(g2h(ptr), val);
999 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1000 }
1001
1002 void cpu_stl_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1003 {
1004 uint16_t meminfo = trace_mem_get_info(MO_BEUL, MMU_USER_IDX, true);
1005
1006 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1007 stl_be_p(g2h(ptr), val);
1008 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1009 }
1010
1011 void cpu_stq_be_data(CPUArchState *env, abi_ptr ptr, uint64_t val)
1012 {
1013 uint16_t meminfo = trace_mem_get_info(MO_BEQ, MMU_USER_IDX, true);
1014
1015 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1016 stq_be_p(g2h(ptr), val);
1017 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1018 }
1019
1020 void cpu_stw_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1021 {
1022 uint16_t meminfo = trace_mem_get_info(MO_LEUW, MMU_USER_IDX, true);
1023
1024 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1025 stw_le_p(g2h(ptr), val);
1026 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1027 }
1028
1029 void cpu_stl_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1030 {
1031 uint16_t meminfo = trace_mem_get_info(MO_LEUL, MMU_USER_IDX, true);
1032
1033 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1034 stl_le_p(g2h(ptr), val);
1035 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1036 }
1037
1038 void cpu_stq_le_data(CPUArchState *env, abi_ptr ptr, uint64_t val)
1039 {
1040 uint16_t meminfo = trace_mem_get_info(MO_LEQ, MMU_USER_IDX, true);
1041
1042 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1043 stq_le_p(g2h(ptr), val);
1044 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1045 }
1046
1047 void cpu_stb_data_ra(CPUArchState *env, abi_ptr ptr,
1048 uint32_t val, uintptr_t retaddr)
1049 {
1050 set_helper_retaddr(retaddr);
1051 cpu_stb_data(env, ptr, val);
1052 clear_helper_retaddr();
1053 }
1054
1055 void cpu_stw_be_data_ra(CPUArchState *env, abi_ptr ptr,
1056 uint32_t val, uintptr_t retaddr)
1057 {
1058 set_helper_retaddr(retaddr);
1059 cpu_stw_be_data(env, ptr, val);
1060 clear_helper_retaddr();
1061 }
1062
1063 void cpu_stl_be_data_ra(CPUArchState *env, abi_ptr ptr,
1064 uint32_t val, uintptr_t retaddr)
1065 {
1066 set_helper_retaddr(retaddr);
1067 cpu_stl_be_data(env, ptr, val);
1068 clear_helper_retaddr();
1069 }
1070
1071 void cpu_stq_be_data_ra(CPUArchState *env, abi_ptr ptr,
1072 uint64_t val, uintptr_t retaddr)
1073 {
1074 set_helper_retaddr(retaddr);
1075 cpu_stq_be_data(env, ptr, val);
1076 clear_helper_retaddr();
1077 }
1078
1079 void cpu_stw_le_data_ra(CPUArchState *env, abi_ptr ptr,
1080 uint32_t val, uintptr_t retaddr)
1081 {
1082 set_helper_retaddr(retaddr);
1083 cpu_stw_le_data(env, ptr, val);
1084 clear_helper_retaddr();
1085 }
1086
1087 void cpu_stl_le_data_ra(CPUArchState *env, abi_ptr ptr,
1088 uint32_t val, uintptr_t retaddr)
1089 {
1090 set_helper_retaddr(retaddr);
1091 cpu_stl_le_data(env, ptr, val);
1092 clear_helper_retaddr();
1093 }
1094
1095 void cpu_stq_le_data_ra(CPUArchState *env, abi_ptr ptr,
1096 uint64_t val, uintptr_t retaddr)
1097 {
1098 set_helper_retaddr(retaddr);
1099 cpu_stq_le_data(env, ptr, val);
1100 clear_helper_retaddr();
1101 }
1102
1103 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr)
1104 {
1105 uint32_t ret;
1106
1107 set_helper_retaddr(1);
1108 ret = ldub_p(g2h(ptr));
1109 clear_helper_retaddr();
1110 return ret;
1111 }
1112
1113 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr)
1114 {
1115 uint32_t ret;
1116
1117 set_helper_retaddr(1);
1118 ret = lduw_p(g2h(ptr));
1119 clear_helper_retaddr();
1120 return ret;
1121 }
1122
1123 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr)
1124 {
1125 uint32_t ret;
1126
1127 set_helper_retaddr(1);
1128 ret = ldl_p(g2h(ptr));
1129 clear_helper_retaddr();
1130 return ret;
1131 }
1132
1133 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr)
1134 {
1135 uint64_t ret;
1136
1137 set_helper_retaddr(1);
1138 ret = ldq_p(g2h(ptr));
1139 clear_helper_retaddr();
1140 return ret;
1141 }
1142
1143 /* Do not allow unaligned operations to proceed. Return the host address. */
1144 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1145 int size, uintptr_t retaddr)
1146 {
1147 /* Enforce qemu required alignment. */
1148 if (unlikely(addr & (size - 1))) {
1149 cpu_loop_exit_atomic(env_cpu(env), retaddr);
1150 }
1151 void *ret = g2h(addr);
1152 set_helper_retaddr(retaddr);
1153 return ret;
1154 }
1155
1156 /* Macro to call the above, with local variables from the use context. */
1157 #define ATOMIC_MMU_DECLS do {} while (0)
1158 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, DATA_SIZE, GETPC())
1159 #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0)
1160 #define ATOMIC_MMU_IDX MMU_USER_IDX
1161
1162 #define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
1163 #define EXTRA_ARGS
1164
1165 #include "atomic_common.inc.c"
1166
1167 #define DATA_SIZE 1
1168 #include "atomic_template.h"
1169
1170 #define DATA_SIZE 2
1171 #include "atomic_template.h"
1172
1173 #define DATA_SIZE 4
1174 #include "atomic_template.h"
1175
1176 #ifdef CONFIG_ATOMIC64
1177 #define DATA_SIZE 8
1178 #include "atomic_template.h"
1179 #endif
1180
1181 /* The following is only callable from other helpers, and matches up
1182 with the softmmu version. */
1183
1184 #if HAVE_ATOMIC128 || HAVE_CMPXCHG128
1185
1186 #undef EXTRA_ARGS
1187 #undef ATOMIC_NAME
1188 #undef ATOMIC_MMU_LOOKUP
1189
1190 #define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr
1191 #define ATOMIC_NAME(X) \
1192 HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
1193 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, DATA_SIZE, retaddr)
1194
1195 #define DATA_SIZE 16
1196 #include "atomic_template.h"
1197 #endif