]> git.ipfire.org Git - thirdparty/qemu.git/blob - cpus.c
Merge remote-tracking branch 'remotes/jasowang/tags/net-pull-request' into staging
[thirdparty/qemu.git] / cpus.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* Needed early for CONFIG_BSD etc. */
26 #include "qemu/osdep.h"
27 #include "qemu-common.h"
28 #include "qemu/config-file.h"
29 #include "cpu.h"
30 #include "monitor/monitor.h"
31 #include "qapi/qmp/qerror.h"
32 #include "qemu/error-report.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/block-backend.h"
35 #include "exec/gdbstub.h"
36 #include "sysemu/dma.h"
37 #include "sysemu/hw_accel.h"
38 #include "sysemu/kvm.h"
39 #include "sysemu/hax.h"
40 #include "qmp-commands.h"
41 #include "exec/exec-all.h"
42
43 #include "qemu/thread.h"
44 #include "sysemu/cpus.h"
45 #include "sysemu/qtest.h"
46 #include "qemu/main-loop.h"
47 #include "qemu/bitmap.h"
48 #include "qemu/seqlock.h"
49 #include "tcg.h"
50 #include "qapi-event.h"
51 #include "hw/nmi.h"
52 #include "sysemu/replay.h"
53 #include "hw/boards.h"
54
55 #ifdef CONFIG_LINUX
56
57 #include <sys/prctl.h>
58
59 #ifndef PR_MCE_KILL
60 #define PR_MCE_KILL 33
61 #endif
62
63 #ifndef PR_MCE_KILL_SET
64 #define PR_MCE_KILL_SET 1
65 #endif
66
67 #ifndef PR_MCE_KILL_EARLY
68 #define PR_MCE_KILL_EARLY 1
69 #endif
70
71 #endif /* CONFIG_LINUX */
72
73 int64_t max_delay;
74 int64_t max_advance;
75
76 /* vcpu throttling controls */
77 static QEMUTimer *throttle_timer;
78 static unsigned int throttle_percentage;
79
80 #define CPU_THROTTLE_PCT_MIN 1
81 #define CPU_THROTTLE_PCT_MAX 99
82 #define CPU_THROTTLE_TIMESLICE_NS 10000000
83
84 bool cpu_is_stopped(CPUState *cpu)
85 {
86 return cpu->stopped || !runstate_is_running();
87 }
88
89 static bool cpu_thread_is_idle(CPUState *cpu)
90 {
91 if (cpu->stop || cpu->queued_work_first) {
92 return false;
93 }
94 if (cpu_is_stopped(cpu)) {
95 return true;
96 }
97 if (!cpu->halted || cpu_has_work(cpu) ||
98 kvm_halt_in_kernel()) {
99 return false;
100 }
101 return true;
102 }
103
104 static bool all_cpu_threads_idle(void)
105 {
106 CPUState *cpu;
107
108 CPU_FOREACH(cpu) {
109 if (!cpu_thread_is_idle(cpu)) {
110 return false;
111 }
112 }
113 return true;
114 }
115
116 /***********************************************************/
117 /* guest cycle counter */
118
119 /* Protected by TimersState seqlock */
120
121 static bool icount_sleep = true;
122 static int64_t vm_clock_warp_start = -1;
123 /* Conversion factor from emulated instructions to virtual clock ticks. */
124 static int icount_time_shift;
125 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
126 #define MAX_ICOUNT_SHIFT 10
127
128 static QEMUTimer *icount_rt_timer;
129 static QEMUTimer *icount_vm_timer;
130 static QEMUTimer *icount_warp_timer;
131
132 typedef struct TimersState {
133 /* Protected by BQL. */
134 int64_t cpu_ticks_prev;
135 int64_t cpu_ticks_offset;
136
137 /* cpu_clock_offset can be read out of BQL, so protect it with
138 * this lock.
139 */
140 QemuSeqLock vm_clock_seqlock;
141 int64_t cpu_clock_offset;
142 int32_t cpu_ticks_enabled;
143 int64_t dummy;
144
145 /* Compensate for varying guest execution speed. */
146 int64_t qemu_icount_bias;
147 /* Only written by TCG thread */
148 int64_t qemu_icount;
149 } TimersState;
150
151 static TimersState timers_state;
152 bool mttcg_enabled;
153
154 /*
155 * We default to false if we know other options have been enabled
156 * which are currently incompatible with MTTCG. Otherwise when each
157 * guest (target) has been updated to support:
158 * - atomic instructions
159 * - memory ordering primitives (barriers)
160 * they can set the appropriate CONFIG flags in ${target}-softmmu.mak
161 *
162 * Once a guest architecture has been converted to the new primitives
163 * there are two remaining limitations to check.
164 *
165 * - The guest can't be oversized (e.g. 64 bit guest on 32 bit host)
166 * - The host must have a stronger memory order than the guest
167 *
168 * It may be possible in future to support strong guests on weak hosts
169 * but that will require tagging all load/stores in a guest with their
170 * implicit memory order requirements which would likely slow things
171 * down a lot.
172 */
173
174 static bool check_tcg_memory_orders_compatible(void)
175 {
176 #if defined(TCG_GUEST_DEFAULT_MO) && defined(TCG_TARGET_DEFAULT_MO)
177 return (TCG_GUEST_DEFAULT_MO & ~TCG_TARGET_DEFAULT_MO) == 0;
178 #else
179 return false;
180 #endif
181 }
182
183 static bool default_mttcg_enabled(void)
184 {
185 if (use_icount || TCG_OVERSIZED_GUEST) {
186 return false;
187 } else {
188 #ifdef TARGET_SUPPORTS_MTTCG
189 return check_tcg_memory_orders_compatible();
190 #else
191 return false;
192 #endif
193 }
194 }
195
196 void qemu_tcg_configure(QemuOpts *opts, Error **errp)
197 {
198 const char *t = qemu_opt_get(opts, "thread");
199 if (t) {
200 if (strcmp(t, "multi") == 0) {
201 if (TCG_OVERSIZED_GUEST) {
202 error_setg(errp, "No MTTCG when guest word size > hosts");
203 } else if (use_icount) {
204 error_setg(errp, "No MTTCG when icount is enabled");
205 } else {
206 #ifndef TARGET_SUPPORTS_MTTCG
207 error_report("Guest not yet converted to MTTCG - "
208 "you may get unexpected results");
209 #endif
210 if (!check_tcg_memory_orders_compatible()) {
211 error_report("Guest expects a stronger memory ordering "
212 "than the host provides");
213 error_printf("This may cause strange/hard to debug errors\n");
214 }
215 mttcg_enabled = true;
216 }
217 } else if (strcmp(t, "single") == 0) {
218 mttcg_enabled = false;
219 } else {
220 error_setg(errp, "Invalid 'thread' setting %s", t);
221 }
222 } else {
223 mttcg_enabled = default_mttcg_enabled();
224 }
225 }
226
227 /* The current number of executed instructions is based on what we
228 * originally budgeted minus the current state of the decrementing
229 * icount counters in extra/u16.low.
230 */
231 static int64_t cpu_get_icount_executed(CPUState *cpu)
232 {
233 return cpu->icount_budget - (cpu->icount_decr.u16.low + cpu->icount_extra);
234 }
235
236 /*
237 * Update the global shared timer_state.qemu_icount to take into
238 * account executed instructions. This is done by the TCG vCPU
239 * thread so the main-loop can see time has moved forward.
240 */
241 void cpu_update_icount(CPUState *cpu)
242 {
243 int64_t executed = cpu_get_icount_executed(cpu);
244 cpu->icount_budget -= executed;
245
246 #ifdef CONFIG_ATOMIC64
247 atomic_set__nocheck(&timers_state.qemu_icount,
248 atomic_read__nocheck(&timers_state.qemu_icount) +
249 executed);
250 #else /* FIXME: we need 64bit atomics to do this safely */
251 timers_state.qemu_icount += executed;
252 #endif
253 }
254
255 int64_t cpu_get_icount_raw(void)
256 {
257 CPUState *cpu = current_cpu;
258
259 if (cpu && cpu->running) {
260 if (!cpu->can_do_io) {
261 fprintf(stderr, "Bad icount read\n");
262 exit(1);
263 }
264 /* Take into account what has run */
265 cpu_update_icount(cpu);
266 }
267 #ifdef CONFIG_ATOMIC64
268 return atomic_read__nocheck(&timers_state.qemu_icount);
269 #else /* FIXME: we need 64bit atomics to do this safely */
270 return timers_state.qemu_icount;
271 #endif
272 }
273
274 /* Return the virtual CPU time, based on the instruction counter. */
275 static int64_t cpu_get_icount_locked(void)
276 {
277 int64_t icount = cpu_get_icount_raw();
278 return timers_state.qemu_icount_bias + cpu_icount_to_ns(icount);
279 }
280
281 int64_t cpu_get_icount(void)
282 {
283 int64_t icount;
284 unsigned start;
285
286 do {
287 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
288 icount = cpu_get_icount_locked();
289 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
290
291 return icount;
292 }
293
294 int64_t cpu_icount_to_ns(int64_t icount)
295 {
296 return icount << icount_time_shift;
297 }
298
299 /* return the time elapsed in VM between vm_start and vm_stop. Unless
300 * icount is active, cpu_get_ticks() uses units of the host CPU cycle
301 * counter.
302 *
303 * Caller must hold the BQL
304 */
305 int64_t cpu_get_ticks(void)
306 {
307 int64_t ticks;
308
309 if (use_icount) {
310 return cpu_get_icount();
311 }
312
313 ticks = timers_state.cpu_ticks_offset;
314 if (timers_state.cpu_ticks_enabled) {
315 ticks += cpu_get_host_ticks();
316 }
317
318 if (timers_state.cpu_ticks_prev > ticks) {
319 /* Note: non increasing ticks may happen if the host uses
320 software suspend */
321 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
322 ticks = timers_state.cpu_ticks_prev;
323 }
324
325 timers_state.cpu_ticks_prev = ticks;
326 return ticks;
327 }
328
329 static int64_t cpu_get_clock_locked(void)
330 {
331 int64_t time;
332
333 time = timers_state.cpu_clock_offset;
334 if (timers_state.cpu_ticks_enabled) {
335 time += get_clock();
336 }
337
338 return time;
339 }
340
341 /* Return the monotonic time elapsed in VM, i.e.,
342 * the time between vm_start and vm_stop
343 */
344 int64_t cpu_get_clock(void)
345 {
346 int64_t ti;
347 unsigned start;
348
349 do {
350 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
351 ti = cpu_get_clock_locked();
352 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
353
354 return ti;
355 }
356
357 /* enable cpu_get_ticks()
358 * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
359 */
360 void cpu_enable_ticks(void)
361 {
362 /* Here, the really thing protected by seqlock is cpu_clock_offset. */
363 seqlock_write_begin(&timers_state.vm_clock_seqlock);
364 if (!timers_state.cpu_ticks_enabled) {
365 timers_state.cpu_ticks_offset -= cpu_get_host_ticks();
366 timers_state.cpu_clock_offset -= get_clock();
367 timers_state.cpu_ticks_enabled = 1;
368 }
369 seqlock_write_end(&timers_state.vm_clock_seqlock);
370 }
371
372 /* disable cpu_get_ticks() : the clock is stopped. You must not call
373 * cpu_get_ticks() after that.
374 * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
375 */
376 void cpu_disable_ticks(void)
377 {
378 /* Here, the really thing protected by seqlock is cpu_clock_offset. */
379 seqlock_write_begin(&timers_state.vm_clock_seqlock);
380 if (timers_state.cpu_ticks_enabled) {
381 timers_state.cpu_ticks_offset += cpu_get_host_ticks();
382 timers_state.cpu_clock_offset = cpu_get_clock_locked();
383 timers_state.cpu_ticks_enabled = 0;
384 }
385 seqlock_write_end(&timers_state.vm_clock_seqlock);
386 }
387
388 /* Correlation between real and virtual time is always going to be
389 fairly approximate, so ignore small variation.
390 When the guest is idle real and virtual time will be aligned in
391 the IO wait loop. */
392 #define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)
393
394 static void icount_adjust(void)
395 {
396 int64_t cur_time;
397 int64_t cur_icount;
398 int64_t delta;
399
400 /* Protected by TimersState mutex. */
401 static int64_t last_delta;
402
403 /* If the VM is not running, then do nothing. */
404 if (!runstate_is_running()) {
405 return;
406 }
407
408 seqlock_write_begin(&timers_state.vm_clock_seqlock);
409 cur_time = cpu_get_clock_locked();
410 cur_icount = cpu_get_icount_locked();
411
412 delta = cur_icount - cur_time;
413 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
414 if (delta > 0
415 && last_delta + ICOUNT_WOBBLE < delta * 2
416 && icount_time_shift > 0) {
417 /* The guest is getting too far ahead. Slow time down. */
418 icount_time_shift--;
419 }
420 if (delta < 0
421 && last_delta - ICOUNT_WOBBLE > delta * 2
422 && icount_time_shift < MAX_ICOUNT_SHIFT) {
423 /* The guest is getting too far behind. Speed time up. */
424 icount_time_shift++;
425 }
426 last_delta = delta;
427 timers_state.qemu_icount_bias = cur_icount
428 - (timers_state.qemu_icount << icount_time_shift);
429 seqlock_write_end(&timers_state.vm_clock_seqlock);
430 }
431
432 static void icount_adjust_rt(void *opaque)
433 {
434 timer_mod(icount_rt_timer,
435 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
436 icount_adjust();
437 }
438
439 static void icount_adjust_vm(void *opaque)
440 {
441 timer_mod(icount_vm_timer,
442 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
443 NANOSECONDS_PER_SECOND / 10);
444 icount_adjust();
445 }
446
447 static int64_t qemu_icount_round(int64_t count)
448 {
449 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
450 }
451
452 static void icount_warp_rt(void)
453 {
454 unsigned seq;
455 int64_t warp_start;
456
457 /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start
458 * changes from -1 to another value, so the race here is okay.
459 */
460 do {
461 seq = seqlock_read_begin(&timers_state.vm_clock_seqlock);
462 warp_start = vm_clock_warp_start;
463 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq));
464
465 if (warp_start == -1) {
466 return;
467 }
468
469 seqlock_write_begin(&timers_state.vm_clock_seqlock);
470 if (runstate_is_running()) {
471 int64_t clock = REPLAY_CLOCK(REPLAY_CLOCK_VIRTUAL_RT,
472 cpu_get_clock_locked());
473 int64_t warp_delta;
474
475 warp_delta = clock - vm_clock_warp_start;
476 if (use_icount == 2) {
477 /*
478 * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
479 * far ahead of real time.
480 */
481 int64_t cur_icount = cpu_get_icount_locked();
482 int64_t delta = clock - cur_icount;
483 warp_delta = MIN(warp_delta, delta);
484 }
485 timers_state.qemu_icount_bias += warp_delta;
486 }
487 vm_clock_warp_start = -1;
488 seqlock_write_end(&timers_state.vm_clock_seqlock);
489
490 if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
491 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
492 }
493 }
494
495 static void icount_timer_cb(void *opaque)
496 {
497 /* No need for a checkpoint because the timer already synchronizes
498 * with CHECKPOINT_CLOCK_VIRTUAL_RT.
499 */
500 icount_warp_rt();
501 }
502
503 void qtest_clock_warp(int64_t dest)
504 {
505 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
506 AioContext *aio_context;
507 assert(qtest_enabled());
508 aio_context = qemu_get_aio_context();
509 while (clock < dest) {
510 int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
511 int64_t warp = qemu_soonest_timeout(dest - clock, deadline);
512
513 seqlock_write_begin(&timers_state.vm_clock_seqlock);
514 timers_state.qemu_icount_bias += warp;
515 seqlock_write_end(&timers_state.vm_clock_seqlock);
516
517 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
518 timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]);
519 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
520 }
521 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
522 }
523
524 void qemu_start_warp_timer(void)
525 {
526 int64_t clock;
527 int64_t deadline;
528
529 if (!use_icount) {
530 return;
531 }
532
533 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
534 * do not fire, so computing the deadline does not make sense.
535 */
536 if (!runstate_is_running()) {
537 return;
538 }
539
540 /* warp clock deterministically in record/replay mode */
541 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) {
542 return;
543 }
544
545 if (!all_cpu_threads_idle()) {
546 return;
547 }
548
549 if (qtest_enabled()) {
550 /* When testing, qtest commands advance icount. */
551 return;
552 }
553
554 /* We want to use the earliest deadline from ALL vm_clocks */
555 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
556 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
557 if (deadline < 0) {
558 static bool notified;
559 if (!icount_sleep && !notified) {
560 error_report("WARNING: icount sleep disabled and no active timers");
561 notified = true;
562 }
563 return;
564 }
565
566 if (deadline > 0) {
567 /*
568 * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
569 * sleep. Otherwise, the CPU might be waiting for a future timer
570 * interrupt to wake it up, but the interrupt never comes because
571 * the vCPU isn't running any insns and thus doesn't advance the
572 * QEMU_CLOCK_VIRTUAL.
573 */
574 if (!icount_sleep) {
575 /*
576 * We never let VCPUs sleep in no sleep icount mode.
577 * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
578 * to the next QEMU_CLOCK_VIRTUAL event and notify it.
579 * It is useful when we want a deterministic execution time,
580 * isolated from host latencies.
581 */
582 seqlock_write_begin(&timers_state.vm_clock_seqlock);
583 timers_state.qemu_icount_bias += deadline;
584 seqlock_write_end(&timers_state.vm_clock_seqlock);
585 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
586 } else {
587 /*
588 * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
589 * "real" time, (related to the time left until the next event) has
590 * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
591 * This avoids that the warps are visible externally; for example,
592 * you will not be sending network packets continuously instead of
593 * every 100ms.
594 */
595 seqlock_write_begin(&timers_state.vm_clock_seqlock);
596 if (vm_clock_warp_start == -1 || vm_clock_warp_start > clock) {
597 vm_clock_warp_start = clock;
598 }
599 seqlock_write_end(&timers_state.vm_clock_seqlock);
600 timer_mod_anticipate(icount_warp_timer, clock + deadline);
601 }
602 } else if (deadline == 0) {
603 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
604 }
605 }
606
607 static void qemu_account_warp_timer(void)
608 {
609 if (!use_icount || !icount_sleep) {
610 return;
611 }
612
613 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
614 * do not fire, so computing the deadline does not make sense.
615 */
616 if (!runstate_is_running()) {
617 return;
618 }
619
620 /* warp clock deterministically in record/replay mode */
621 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) {
622 return;
623 }
624
625 timer_del(icount_warp_timer);
626 icount_warp_rt();
627 }
628
629 static bool icount_state_needed(void *opaque)
630 {
631 return use_icount;
632 }
633
634 /*
635 * This is a subsection for icount migration.
636 */
637 static const VMStateDescription icount_vmstate_timers = {
638 .name = "timer/icount",
639 .version_id = 1,
640 .minimum_version_id = 1,
641 .needed = icount_state_needed,
642 .fields = (VMStateField[]) {
643 VMSTATE_INT64(qemu_icount_bias, TimersState),
644 VMSTATE_INT64(qemu_icount, TimersState),
645 VMSTATE_END_OF_LIST()
646 }
647 };
648
649 static const VMStateDescription vmstate_timers = {
650 .name = "timer",
651 .version_id = 2,
652 .minimum_version_id = 1,
653 .fields = (VMStateField[]) {
654 VMSTATE_INT64(cpu_ticks_offset, TimersState),
655 VMSTATE_INT64(dummy, TimersState),
656 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
657 VMSTATE_END_OF_LIST()
658 },
659 .subsections = (const VMStateDescription*[]) {
660 &icount_vmstate_timers,
661 NULL
662 }
663 };
664
665 static void cpu_throttle_thread(CPUState *cpu, run_on_cpu_data opaque)
666 {
667 double pct;
668 double throttle_ratio;
669 long sleeptime_ns;
670
671 if (!cpu_throttle_get_percentage()) {
672 return;
673 }
674
675 pct = (double)cpu_throttle_get_percentage()/100;
676 throttle_ratio = pct / (1 - pct);
677 sleeptime_ns = (long)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS);
678
679 qemu_mutex_unlock_iothread();
680 atomic_set(&cpu->throttle_thread_scheduled, 0);
681 g_usleep(sleeptime_ns / 1000); /* Convert ns to us for usleep call */
682 qemu_mutex_lock_iothread();
683 }
684
685 static void cpu_throttle_timer_tick(void *opaque)
686 {
687 CPUState *cpu;
688 double pct;
689
690 /* Stop the timer if needed */
691 if (!cpu_throttle_get_percentage()) {
692 return;
693 }
694 CPU_FOREACH(cpu) {
695 if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) {
696 async_run_on_cpu(cpu, cpu_throttle_thread,
697 RUN_ON_CPU_NULL);
698 }
699 }
700
701 pct = (double)cpu_throttle_get_percentage()/100;
702 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
703 CPU_THROTTLE_TIMESLICE_NS / (1-pct));
704 }
705
706 void cpu_throttle_set(int new_throttle_pct)
707 {
708 /* Ensure throttle percentage is within valid range */
709 new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX);
710 new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN);
711
712 atomic_set(&throttle_percentage, new_throttle_pct);
713
714 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
715 CPU_THROTTLE_TIMESLICE_NS);
716 }
717
718 void cpu_throttle_stop(void)
719 {
720 atomic_set(&throttle_percentage, 0);
721 }
722
723 bool cpu_throttle_active(void)
724 {
725 return (cpu_throttle_get_percentage() != 0);
726 }
727
728 int cpu_throttle_get_percentage(void)
729 {
730 return atomic_read(&throttle_percentage);
731 }
732
733 void cpu_ticks_init(void)
734 {
735 seqlock_init(&timers_state.vm_clock_seqlock);
736 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
737 throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
738 cpu_throttle_timer_tick, NULL);
739 }
740
741 void configure_icount(QemuOpts *opts, Error **errp)
742 {
743 const char *option;
744 char *rem_str = NULL;
745
746 option = qemu_opt_get(opts, "shift");
747 if (!option) {
748 if (qemu_opt_get(opts, "align") != NULL) {
749 error_setg(errp, "Please specify shift option when using align");
750 }
751 return;
752 }
753
754 icount_sleep = qemu_opt_get_bool(opts, "sleep", true);
755 if (icount_sleep) {
756 icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
757 icount_timer_cb, NULL);
758 }
759
760 icount_align_option = qemu_opt_get_bool(opts, "align", false);
761
762 if (icount_align_option && !icount_sleep) {
763 error_setg(errp, "align=on and sleep=off are incompatible");
764 }
765 if (strcmp(option, "auto") != 0) {
766 errno = 0;
767 icount_time_shift = strtol(option, &rem_str, 0);
768 if (errno != 0 || *rem_str != '\0' || !strlen(option)) {
769 error_setg(errp, "icount: Invalid shift value");
770 }
771 use_icount = 1;
772 return;
773 } else if (icount_align_option) {
774 error_setg(errp, "shift=auto and align=on are incompatible");
775 } else if (!icount_sleep) {
776 error_setg(errp, "shift=auto and sleep=off are incompatible");
777 }
778
779 use_icount = 2;
780
781 /* 125MIPS seems a reasonable initial guess at the guest speed.
782 It will be corrected fairly quickly anyway. */
783 icount_time_shift = 3;
784
785 /* Have both realtime and virtual time triggers for speed adjustment.
786 The realtime trigger catches emulated time passing too slowly,
787 the virtual time trigger catches emulated time passing too fast.
788 Realtime triggers occur even when idle, so use them less frequently
789 than VM triggers. */
790 icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
791 icount_adjust_rt, NULL);
792 timer_mod(icount_rt_timer,
793 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
794 icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
795 icount_adjust_vm, NULL);
796 timer_mod(icount_vm_timer,
797 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
798 NANOSECONDS_PER_SECOND / 10);
799 }
800
801 /***********************************************************/
802 /* TCG vCPU kick timer
803 *
804 * The kick timer is responsible for moving single threaded vCPU
805 * emulation on to the next vCPU. If more than one vCPU is running a
806 * timer event with force a cpu->exit so the next vCPU can get
807 * scheduled.
808 *
809 * The timer is removed if all vCPUs are idle and restarted again once
810 * idleness is complete.
811 */
812
813 static QEMUTimer *tcg_kick_vcpu_timer;
814 static CPUState *tcg_current_rr_cpu;
815
816 #define TCG_KICK_PERIOD (NANOSECONDS_PER_SECOND / 10)
817
818 static inline int64_t qemu_tcg_next_kick(void)
819 {
820 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + TCG_KICK_PERIOD;
821 }
822
823 /* Kick the currently round-robin scheduled vCPU */
824 static void qemu_cpu_kick_rr_cpu(void)
825 {
826 CPUState *cpu;
827 do {
828 cpu = atomic_mb_read(&tcg_current_rr_cpu);
829 if (cpu) {
830 cpu_exit(cpu);
831 }
832 } while (cpu != atomic_mb_read(&tcg_current_rr_cpu));
833 }
834
835 static void do_nothing(CPUState *cpu, run_on_cpu_data unused)
836 {
837 }
838
839 void qemu_timer_notify_cb(void *opaque, QEMUClockType type)
840 {
841 if (!use_icount || type != QEMU_CLOCK_VIRTUAL) {
842 qemu_notify_event();
843 return;
844 }
845
846 if (!qemu_in_vcpu_thread() && first_cpu) {
847 /* qemu_cpu_kick is not enough to kick a halted CPU out of
848 * qemu_tcg_wait_io_event. async_run_on_cpu, instead,
849 * causes cpu_thread_is_idle to return false. This way,
850 * handle_icount_deadline can run.
851 */
852 async_run_on_cpu(first_cpu, do_nothing, RUN_ON_CPU_NULL);
853 }
854 }
855
856 static void kick_tcg_thread(void *opaque)
857 {
858 timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
859 qemu_cpu_kick_rr_cpu();
860 }
861
862 static void start_tcg_kick_timer(void)
863 {
864 if (!mttcg_enabled && !tcg_kick_vcpu_timer && CPU_NEXT(first_cpu)) {
865 tcg_kick_vcpu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
866 kick_tcg_thread, NULL);
867 timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
868 }
869 }
870
871 static void stop_tcg_kick_timer(void)
872 {
873 if (tcg_kick_vcpu_timer) {
874 timer_del(tcg_kick_vcpu_timer);
875 tcg_kick_vcpu_timer = NULL;
876 }
877 }
878
879 /***********************************************************/
880 void hw_error(const char *fmt, ...)
881 {
882 va_list ap;
883 CPUState *cpu;
884
885 va_start(ap, fmt);
886 fprintf(stderr, "qemu: hardware error: ");
887 vfprintf(stderr, fmt, ap);
888 fprintf(stderr, "\n");
889 CPU_FOREACH(cpu) {
890 fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
891 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU);
892 }
893 va_end(ap);
894 abort();
895 }
896
897 void cpu_synchronize_all_states(void)
898 {
899 CPUState *cpu;
900
901 CPU_FOREACH(cpu) {
902 cpu_synchronize_state(cpu);
903 }
904 }
905
906 void cpu_synchronize_all_post_reset(void)
907 {
908 CPUState *cpu;
909
910 CPU_FOREACH(cpu) {
911 cpu_synchronize_post_reset(cpu);
912 }
913 }
914
915 void cpu_synchronize_all_post_init(void)
916 {
917 CPUState *cpu;
918
919 CPU_FOREACH(cpu) {
920 cpu_synchronize_post_init(cpu);
921 }
922 }
923
924 void cpu_synchronize_all_pre_loadvm(void)
925 {
926 CPUState *cpu;
927
928 CPU_FOREACH(cpu) {
929 cpu_synchronize_pre_loadvm(cpu);
930 }
931 }
932
933 static int do_vm_stop(RunState state)
934 {
935 int ret = 0;
936
937 if (runstate_is_running()) {
938 cpu_disable_ticks();
939 pause_all_vcpus();
940 runstate_set(state);
941 vm_state_notify(0, state);
942 qapi_event_send_stop(&error_abort);
943 }
944
945 bdrv_drain_all();
946 replay_disable_events();
947 ret = bdrv_flush_all();
948
949 return ret;
950 }
951
952 static bool cpu_can_run(CPUState *cpu)
953 {
954 if (cpu->stop) {
955 return false;
956 }
957 if (cpu_is_stopped(cpu)) {
958 return false;
959 }
960 return true;
961 }
962
963 static void cpu_handle_guest_debug(CPUState *cpu)
964 {
965 gdb_set_stop_cpu(cpu);
966 qemu_system_debug_request();
967 cpu->stopped = true;
968 }
969
970 #ifdef CONFIG_LINUX
971 static void sigbus_reraise(void)
972 {
973 sigset_t set;
974 struct sigaction action;
975
976 memset(&action, 0, sizeof(action));
977 action.sa_handler = SIG_DFL;
978 if (!sigaction(SIGBUS, &action, NULL)) {
979 raise(SIGBUS);
980 sigemptyset(&set);
981 sigaddset(&set, SIGBUS);
982 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
983 }
984 perror("Failed to re-raise SIGBUS!\n");
985 abort();
986 }
987
988 static void sigbus_handler(int n, siginfo_t *siginfo, void *ctx)
989 {
990 if (siginfo->si_code != BUS_MCEERR_AO && siginfo->si_code != BUS_MCEERR_AR) {
991 sigbus_reraise();
992 }
993
994 if (current_cpu) {
995 /* Called asynchronously in VCPU thread. */
996 if (kvm_on_sigbus_vcpu(current_cpu, siginfo->si_code, siginfo->si_addr)) {
997 sigbus_reraise();
998 }
999 } else {
1000 /* Called synchronously (via signalfd) in main thread. */
1001 if (kvm_on_sigbus(siginfo->si_code, siginfo->si_addr)) {
1002 sigbus_reraise();
1003 }
1004 }
1005 }
1006
1007 static void qemu_init_sigbus(void)
1008 {
1009 struct sigaction action;
1010
1011 memset(&action, 0, sizeof(action));
1012 action.sa_flags = SA_SIGINFO;
1013 action.sa_sigaction = sigbus_handler;
1014 sigaction(SIGBUS, &action, NULL);
1015
1016 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
1017 }
1018 #else /* !CONFIG_LINUX */
1019 static void qemu_init_sigbus(void)
1020 {
1021 }
1022 #endif /* !CONFIG_LINUX */
1023
1024 static QemuMutex qemu_global_mutex;
1025
1026 static QemuThread io_thread;
1027
1028 /* cpu creation */
1029 static QemuCond qemu_cpu_cond;
1030 /* system init */
1031 static QemuCond qemu_pause_cond;
1032
1033 void qemu_init_cpu_loop(void)
1034 {
1035 qemu_init_sigbus();
1036 qemu_cond_init(&qemu_cpu_cond);
1037 qemu_cond_init(&qemu_pause_cond);
1038 qemu_mutex_init(&qemu_global_mutex);
1039
1040 qemu_thread_get_self(&io_thread);
1041 }
1042
1043 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
1044 {
1045 do_run_on_cpu(cpu, func, data, &qemu_global_mutex);
1046 }
1047
1048 static void qemu_kvm_destroy_vcpu(CPUState *cpu)
1049 {
1050 if (kvm_destroy_vcpu(cpu) < 0) {
1051 error_report("kvm_destroy_vcpu failed");
1052 exit(EXIT_FAILURE);
1053 }
1054 }
1055
1056 static void qemu_tcg_destroy_vcpu(CPUState *cpu)
1057 {
1058 }
1059
1060 static void qemu_wait_io_event_common(CPUState *cpu)
1061 {
1062 atomic_mb_set(&cpu->thread_kicked, false);
1063 if (cpu->stop) {
1064 cpu->stop = false;
1065 cpu->stopped = true;
1066 qemu_cond_broadcast(&qemu_pause_cond);
1067 }
1068 process_queued_cpu_work(cpu);
1069 }
1070
1071 static bool qemu_tcg_should_sleep(CPUState *cpu)
1072 {
1073 if (mttcg_enabled) {
1074 return cpu_thread_is_idle(cpu);
1075 } else {
1076 return all_cpu_threads_idle();
1077 }
1078 }
1079
1080 static void qemu_tcg_wait_io_event(CPUState *cpu)
1081 {
1082 while (qemu_tcg_should_sleep(cpu)) {
1083 stop_tcg_kick_timer();
1084 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1085 }
1086
1087 start_tcg_kick_timer();
1088
1089 qemu_wait_io_event_common(cpu);
1090 }
1091
1092 static void qemu_kvm_wait_io_event(CPUState *cpu)
1093 {
1094 while (cpu_thread_is_idle(cpu)) {
1095 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1096 }
1097
1098 qemu_wait_io_event_common(cpu);
1099 }
1100
1101 static void *qemu_kvm_cpu_thread_fn(void *arg)
1102 {
1103 CPUState *cpu = arg;
1104 int r;
1105
1106 rcu_register_thread();
1107
1108 qemu_mutex_lock_iothread();
1109 qemu_thread_get_self(cpu->thread);
1110 cpu->thread_id = qemu_get_thread_id();
1111 cpu->can_do_io = 1;
1112 current_cpu = cpu;
1113
1114 r = kvm_init_vcpu(cpu);
1115 if (r < 0) {
1116 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
1117 exit(1);
1118 }
1119
1120 kvm_init_cpu_signals(cpu);
1121
1122 /* signal CPU creation */
1123 cpu->created = true;
1124 qemu_cond_signal(&qemu_cpu_cond);
1125
1126 do {
1127 if (cpu_can_run(cpu)) {
1128 r = kvm_cpu_exec(cpu);
1129 if (r == EXCP_DEBUG) {
1130 cpu_handle_guest_debug(cpu);
1131 }
1132 }
1133 qemu_kvm_wait_io_event(cpu);
1134 } while (!cpu->unplug || cpu_can_run(cpu));
1135
1136 qemu_kvm_destroy_vcpu(cpu);
1137 cpu->created = false;
1138 qemu_cond_signal(&qemu_cpu_cond);
1139 qemu_mutex_unlock_iothread();
1140 return NULL;
1141 }
1142
1143 static void *qemu_dummy_cpu_thread_fn(void *arg)
1144 {
1145 #ifdef _WIN32
1146 fprintf(stderr, "qtest is not supported under Windows\n");
1147 exit(1);
1148 #else
1149 CPUState *cpu = arg;
1150 sigset_t waitset;
1151 int r;
1152
1153 rcu_register_thread();
1154
1155 qemu_mutex_lock_iothread();
1156 qemu_thread_get_self(cpu->thread);
1157 cpu->thread_id = qemu_get_thread_id();
1158 cpu->can_do_io = 1;
1159 current_cpu = cpu;
1160
1161 sigemptyset(&waitset);
1162 sigaddset(&waitset, SIG_IPI);
1163
1164 /* signal CPU creation */
1165 cpu->created = true;
1166 qemu_cond_signal(&qemu_cpu_cond);
1167
1168 while (1) {
1169 qemu_mutex_unlock_iothread();
1170 do {
1171 int sig;
1172 r = sigwait(&waitset, &sig);
1173 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
1174 if (r == -1) {
1175 perror("sigwait");
1176 exit(1);
1177 }
1178 qemu_mutex_lock_iothread();
1179 qemu_wait_io_event_common(cpu);
1180 }
1181
1182 return NULL;
1183 #endif
1184 }
1185
1186 static int64_t tcg_get_icount_limit(void)
1187 {
1188 int64_t deadline;
1189
1190 if (replay_mode != REPLAY_MODE_PLAY) {
1191 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1192
1193 /* Maintain prior (possibly buggy) behaviour where if no deadline
1194 * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
1195 * INT32_MAX nanoseconds ahead, we still use INT32_MAX
1196 * nanoseconds.
1197 */
1198 if ((deadline < 0) || (deadline > INT32_MAX)) {
1199 deadline = INT32_MAX;
1200 }
1201
1202 return qemu_icount_round(deadline);
1203 } else {
1204 return replay_get_instructions();
1205 }
1206 }
1207
1208 static void handle_icount_deadline(void)
1209 {
1210 assert(qemu_in_vcpu_thread());
1211 if (use_icount) {
1212 int64_t deadline =
1213 qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1214
1215 if (deadline == 0) {
1216 /* Wake up other AioContexts. */
1217 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
1218 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
1219 }
1220 }
1221 }
1222
1223 static void prepare_icount_for_run(CPUState *cpu)
1224 {
1225 if (use_icount) {
1226 int insns_left;
1227
1228 /* These should always be cleared by process_icount_data after
1229 * each vCPU execution. However u16.high can be raised
1230 * asynchronously by cpu_exit/cpu_interrupt/tcg_handle_interrupt
1231 */
1232 g_assert(cpu->icount_decr.u16.low == 0);
1233 g_assert(cpu->icount_extra == 0);
1234
1235 cpu->icount_budget = tcg_get_icount_limit();
1236 insns_left = MIN(0xffff, cpu->icount_budget);
1237 cpu->icount_decr.u16.low = insns_left;
1238 cpu->icount_extra = cpu->icount_budget - insns_left;
1239 }
1240 }
1241
1242 static void process_icount_data(CPUState *cpu)
1243 {
1244 if (use_icount) {
1245 /* Account for executed instructions */
1246 cpu_update_icount(cpu);
1247
1248 /* Reset the counters */
1249 cpu->icount_decr.u16.low = 0;
1250 cpu->icount_extra = 0;
1251 cpu->icount_budget = 0;
1252
1253 replay_account_executed_instructions();
1254 }
1255 }
1256
1257
1258 static int tcg_cpu_exec(CPUState *cpu)
1259 {
1260 int ret;
1261 #ifdef CONFIG_PROFILER
1262 int64_t ti;
1263 #endif
1264
1265 #ifdef CONFIG_PROFILER
1266 ti = profile_getclock();
1267 #endif
1268 qemu_mutex_unlock_iothread();
1269 cpu_exec_start(cpu);
1270 ret = cpu_exec(cpu);
1271 cpu_exec_end(cpu);
1272 qemu_mutex_lock_iothread();
1273 #ifdef CONFIG_PROFILER
1274 tcg_time += profile_getclock() - ti;
1275 #endif
1276 return ret;
1277 }
1278
1279 /* Destroy any remaining vCPUs which have been unplugged and have
1280 * finished running
1281 */
1282 static void deal_with_unplugged_cpus(void)
1283 {
1284 CPUState *cpu;
1285
1286 CPU_FOREACH(cpu) {
1287 if (cpu->unplug && !cpu_can_run(cpu)) {
1288 qemu_tcg_destroy_vcpu(cpu);
1289 cpu->created = false;
1290 qemu_cond_signal(&qemu_cpu_cond);
1291 break;
1292 }
1293 }
1294 }
1295
1296 /* Single-threaded TCG
1297 *
1298 * In the single-threaded case each vCPU is simulated in turn. If
1299 * there is more than a single vCPU we create a simple timer to kick
1300 * the vCPU and ensure we don't get stuck in a tight loop in one vCPU.
1301 * This is done explicitly rather than relying on side-effects
1302 * elsewhere.
1303 */
1304
1305 static void *qemu_tcg_rr_cpu_thread_fn(void *arg)
1306 {
1307 CPUState *cpu = arg;
1308
1309 rcu_register_thread();
1310
1311 qemu_mutex_lock_iothread();
1312 qemu_thread_get_self(cpu->thread);
1313
1314 CPU_FOREACH(cpu) {
1315 cpu->thread_id = qemu_get_thread_id();
1316 cpu->created = true;
1317 cpu->can_do_io = 1;
1318 }
1319 qemu_cond_signal(&qemu_cpu_cond);
1320
1321 /* wait for initial kick-off after machine start */
1322 while (first_cpu->stopped) {
1323 qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
1324
1325 /* process any pending work */
1326 CPU_FOREACH(cpu) {
1327 current_cpu = cpu;
1328 qemu_wait_io_event_common(cpu);
1329 }
1330 }
1331
1332 start_tcg_kick_timer();
1333
1334 cpu = first_cpu;
1335
1336 /* process any pending work */
1337 cpu->exit_request = 1;
1338
1339 while (1) {
1340 /* Account partial waits to QEMU_CLOCK_VIRTUAL. */
1341 qemu_account_warp_timer();
1342
1343 /* Run the timers here. This is much more efficient than
1344 * waking up the I/O thread and waiting for completion.
1345 */
1346 handle_icount_deadline();
1347
1348 if (!cpu) {
1349 cpu = first_cpu;
1350 }
1351
1352 while (cpu && !cpu->queued_work_first && !cpu->exit_request) {
1353
1354 atomic_mb_set(&tcg_current_rr_cpu, cpu);
1355 current_cpu = cpu;
1356
1357 qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
1358 (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
1359
1360 if (cpu_can_run(cpu)) {
1361 int r;
1362
1363 prepare_icount_for_run(cpu);
1364
1365 r = tcg_cpu_exec(cpu);
1366
1367 process_icount_data(cpu);
1368
1369 if (r == EXCP_DEBUG) {
1370 cpu_handle_guest_debug(cpu);
1371 break;
1372 } else if (r == EXCP_ATOMIC) {
1373 qemu_mutex_unlock_iothread();
1374 cpu_exec_step_atomic(cpu);
1375 qemu_mutex_lock_iothread();
1376 break;
1377 }
1378 } else if (cpu->stop) {
1379 if (cpu->unplug) {
1380 cpu = CPU_NEXT(cpu);
1381 }
1382 break;
1383 }
1384
1385 cpu = CPU_NEXT(cpu);
1386 } /* while (cpu && !cpu->exit_request).. */
1387
1388 /* Does not need atomic_mb_set because a spurious wakeup is okay. */
1389 atomic_set(&tcg_current_rr_cpu, NULL);
1390
1391 if (cpu && cpu->exit_request) {
1392 atomic_mb_set(&cpu->exit_request, 0);
1393 }
1394
1395 qemu_tcg_wait_io_event(cpu ? cpu : QTAILQ_FIRST(&cpus));
1396 deal_with_unplugged_cpus();
1397 }
1398
1399 return NULL;
1400 }
1401
1402 static void *qemu_hax_cpu_thread_fn(void *arg)
1403 {
1404 CPUState *cpu = arg;
1405 int r;
1406
1407 qemu_mutex_lock_iothread();
1408 qemu_thread_get_self(cpu->thread);
1409
1410 cpu->thread_id = qemu_get_thread_id();
1411 cpu->created = true;
1412 cpu->halted = 0;
1413 current_cpu = cpu;
1414
1415 hax_init_vcpu(cpu);
1416 qemu_cond_signal(&qemu_cpu_cond);
1417
1418 while (1) {
1419 if (cpu_can_run(cpu)) {
1420 r = hax_smp_cpu_exec(cpu);
1421 if (r == EXCP_DEBUG) {
1422 cpu_handle_guest_debug(cpu);
1423 }
1424 }
1425
1426 while (cpu_thread_is_idle(cpu)) {
1427 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1428 }
1429 #ifdef _WIN32
1430 SleepEx(0, TRUE);
1431 #endif
1432 qemu_wait_io_event_common(cpu);
1433 }
1434 return NULL;
1435 }
1436
1437 #ifdef _WIN32
1438 static void CALLBACK dummy_apc_func(ULONG_PTR unused)
1439 {
1440 }
1441 #endif
1442
1443 /* Multi-threaded TCG
1444 *
1445 * In the multi-threaded case each vCPU has its own thread. The TLS
1446 * variable current_cpu can be used deep in the code to find the
1447 * current CPUState for a given thread.
1448 */
1449
1450 static void *qemu_tcg_cpu_thread_fn(void *arg)
1451 {
1452 CPUState *cpu = arg;
1453
1454 g_assert(!use_icount);
1455
1456 rcu_register_thread();
1457
1458 qemu_mutex_lock_iothread();
1459 qemu_thread_get_self(cpu->thread);
1460
1461 cpu->thread_id = qemu_get_thread_id();
1462 cpu->created = true;
1463 cpu->can_do_io = 1;
1464 current_cpu = cpu;
1465 qemu_cond_signal(&qemu_cpu_cond);
1466
1467 /* process any pending work */
1468 cpu->exit_request = 1;
1469
1470 while (1) {
1471 if (cpu_can_run(cpu)) {
1472 int r;
1473 r = tcg_cpu_exec(cpu);
1474 switch (r) {
1475 case EXCP_DEBUG:
1476 cpu_handle_guest_debug(cpu);
1477 break;
1478 case EXCP_HALTED:
1479 /* during start-up the vCPU is reset and the thread is
1480 * kicked several times. If we don't ensure we go back
1481 * to sleep in the halted state we won't cleanly
1482 * start-up when the vCPU is enabled.
1483 *
1484 * cpu->halted should ensure we sleep in wait_io_event
1485 */
1486 g_assert(cpu->halted);
1487 break;
1488 case EXCP_ATOMIC:
1489 qemu_mutex_unlock_iothread();
1490 cpu_exec_step_atomic(cpu);
1491 qemu_mutex_lock_iothread();
1492 default:
1493 /* Ignore everything else? */
1494 break;
1495 }
1496 } else if (cpu->unplug) {
1497 qemu_tcg_destroy_vcpu(cpu);
1498 cpu->created = false;
1499 qemu_cond_signal(&qemu_cpu_cond);
1500 qemu_mutex_unlock_iothread();
1501 return NULL;
1502 }
1503
1504 atomic_mb_set(&cpu->exit_request, 0);
1505 qemu_tcg_wait_io_event(cpu);
1506 }
1507
1508 return NULL;
1509 }
1510
1511 static void qemu_cpu_kick_thread(CPUState *cpu)
1512 {
1513 #ifndef _WIN32
1514 int err;
1515
1516 if (cpu->thread_kicked) {
1517 return;
1518 }
1519 cpu->thread_kicked = true;
1520 err = pthread_kill(cpu->thread->thread, SIG_IPI);
1521 if (err) {
1522 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
1523 exit(1);
1524 }
1525 #else /* _WIN32 */
1526 if (!qemu_cpu_is_self(cpu)) {
1527 if (!QueueUserAPC(dummy_apc_func, cpu->hThread, 0)) {
1528 fprintf(stderr, "%s: QueueUserAPC failed with error %lu\n",
1529 __func__, GetLastError());
1530 exit(1);
1531 }
1532 }
1533 #endif
1534 }
1535
1536 void qemu_cpu_kick(CPUState *cpu)
1537 {
1538 qemu_cond_broadcast(cpu->halt_cond);
1539 if (tcg_enabled()) {
1540 cpu_exit(cpu);
1541 /* NOP unless doing single-thread RR */
1542 qemu_cpu_kick_rr_cpu();
1543 } else {
1544 if (hax_enabled()) {
1545 /*
1546 * FIXME: race condition with the exit_request check in
1547 * hax_vcpu_hax_exec
1548 */
1549 cpu->exit_request = 1;
1550 }
1551 qemu_cpu_kick_thread(cpu);
1552 }
1553 }
1554
1555 void qemu_cpu_kick_self(void)
1556 {
1557 assert(current_cpu);
1558 qemu_cpu_kick_thread(current_cpu);
1559 }
1560
1561 bool qemu_cpu_is_self(CPUState *cpu)
1562 {
1563 return qemu_thread_is_self(cpu->thread);
1564 }
1565
1566 bool qemu_in_vcpu_thread(void)
1567 {
1568 return current_cpu && qemu_cpu_is_self(current_cpu);
1569 }
1570
1571 static __thread bool iothread_locked = false;
1572
1573 bool qemu_mutex_iothread_locked(void)
1574 {
1575 return iothread_locked;
1576 }
1577
1578 void qemu_mutex_lock_iothread(void)
1579 {
1580 g_assert(!qemu_mutex_iothread_locked());
1581 qemu_mutex_lock(&qemu_global_mutex);
1582 iothread_locked = true;
1583 }
1584
1585 void qemu_mutex_unlock_iothread(void)
1586 {
1587 g_assert(qemu_mutex_iothread_locked());
1588 iothread_locked = false;
1589 qemu_mutex_unlock(&qemu_global_mutex);
1590 }
1591
1592 static bool all_vcpus_paused(void)
1593 {
1594 CPUState *cpu;
1595
1596 CPU_FOREACH(cpu) {
1597 if (!cpu->stopped) {
1598 return false;
1599 }
1600 }
1601
1602 return true;
1603 }
1604
1605 void pause_all_vcpus(void)
1606 {
1607 CPUState *cpu;
1608
1609 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
1610 CPU_FOREACH(cpu) {
1611 cpu->stop = true;
1612 qemu_cpu_kick(cpu);
1613 }
1614
1615 if (qemu_in_vcpu_thread()) {
1616 cpu_stop_current();
1617 }
1618
1619 while (!all_vcpus_paused()) {
1620 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
1621 CPU_FOREACH(cpu) {
1622 qemu_cpu_kick(cpu);
1623 }
1624 }
1625 }
1626
1627 void cpu_resume(CPUState *cpu)
1628 {
1629 cpu->stop = false;
1630 cpu->stopped = false;
1631 qemu_cpu_kick(cpu);
1632 }
1633
1634 void resume_all_vcpus(void)
1635 {
1636 CPUState *cpu;
1637
1638 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
1639 CPU_FOREACH(cpu) {
1640 cpu_resume(cpu);
1641 }
1642 }
1643
1644 void cpu_remove(CPUState *cpu)
1645 {
1646 cpu->stop = true;
1647 cpu->unplug = true;
1648 qemu_cpu_kick(cpu);
1649 }
1650
1651 void cpu_remove_sync(CPUState *cpu)
1652 {
1653 cpu_remove(cpu);
1654 while (cpu->created) {
1655 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1656 }
1657 }
1658
1659 /* For temporary buffers for forming a name */
1660 #define VCPU_THREAD_NAME_SIZE 16
1661
1662 static void qemu_tcg_init_vcpu(CPUState *cpu)
1663 {
1664 char thread_name[VCPU_THREAD_NAME_SIZE];
1665 static QemuCond *single_tcg_halt_cond;
1666 static QemuThread *single_tcg_cpu_thread;
1667
1668 if (qemu_tcg_mttcg_enabled() || !single_tcg_cpu_thread) {
1669 cpu->thread = g_malloc0(sizeof(QemuThread));
1670 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1671 qemu_cond_init(cpu->halt_cond);
1672
1673 if (qemu_tcg_mttcg_enabled()) {
1674 /* create a thread per vCPU with TCG (MTTCG) */
1675 parallel_cpus = true;
1676 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG",
1677 cpu->cpu_index);
1678
1679 qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn,
1680 cpu, QEMU_THREAD_JOINABLE);
1681
1682 } else {
1683 /* share a single thread for all cpus with TCG */
1684 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "ALL CPUs/TCG");
1685 qemu_thread_create(cpu->thread, thread_name,
1686 qemu_tcg_rr_cpu_thread_fn,
1687 cpu, QEMU_THREAD_JOINABLE);
1688
1689 single_tcg_halt_cond = cpu->halt_cond;
1690 single_tcg_cpu_thread = cpu->thread;
1691 }
1692 #ifdef _WIN32
1693 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1694 #endif
1695 while (!cpu->created) {
1696 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1697 }
1698 } else {
1699 /* For non-MTTCG cases we share the thread */
1700 cpu->thread = single_tcg_cpu_thread;
1701 cpu->halt_cond = single_tcg_halt_cond;
1702 }
1703 }
1704
1705 static void qemu_hax_start_vcpu(CPUState *cpu)
1706 {
1707 char thread_name[VCPU_THREAD_NAME_SIZE];
1708
1709 cpu->thread = g_malloc0(sizeof(QemuThread));
1710 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1711 qemu_cond_init(cpu->halt_cond);
1712
1713 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HAX",
1714 cpu->cpu_index);
1715 qemu_thread_create(cpu->thread, thread_name, qemu_hax_cpu_thread_fn,
1716 cpu, QEMU_THREAD_JOINABLE);
1717 #ifdef _WIN32
1718 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1719 #endif
1720 while (!cpu->created) {
1721 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1722 }
1723 }
1724
1725 static void qemu_kvm_start_vcpu(CPUState *cpu)
1726 {
1727 char thread_name[VCPU_THREAD_NAME_SIZE];
1728
1729 cpu->thread = g_malloc0(sizeof(QemuThread));
1730 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1731 qemu_cond_init(cpu->halt_cond);
1732 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM",
1733 cpu->cpu_index);
1734 qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn,
1735 cpu, QEMU_THREAD_JOINABLE);
1736 while (!cpu->created) {
1737 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1738 }
1739 }
1740
1741 static void qemu_dummy_start_vcpu(CPUState *cpu)
1742 {
1743 char thread_name[VCPU_THREAD_NAME_SIZE];
1744
1745 cpu->thread = g_malloc0(sizeof(QemuThread));
1746 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1747 qemu_cond_init(cpu->halt_cond);
1748 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY",
1749 cpu->cpu_index);
1750 qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu,
1751 QEMU_THREAD_JOINABLE);
1752 while (!cpu->created) {
1753 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1754 }
1755 }
1756
1757 void qemu_init_vcpu(CPUState *cpu)
1758 {
1759 cpu->nr_cores = smp_cores;
1760 cpu->nr_threads = smp_threads;
1761 cpu->stopped = true;
1762
1763 if (!cpu->as) {
1764 /* If the target cpu hasn't set up any address spaces itself,
1765 * give it the default one.
1766 */
1767 AddressSpace *as = address_space_init_shareable(cpu->memory,
1768 "cpu-memory");
1769 cpu->num_ases = 1;
1770 cpu_address_space_init(cpu, as, 0);
1771 }
1772
1773 if (kvm_enabled()) {
1774 qemu_kvm_start_vcpu(cpu);
1775 } else if (hax_enabled()) {
1776 qemu_hax_start_vcpu(cpu);
1777 } else if (tcg_enabled()) {
1778 qemu_tcg_init_vcpu(cpu);
1779 } else {
1780 qemu_dummy_start_vcpu(cpu);
1781 }
1782 }
1783
1784 void cpu_stop_current(void)
1785 {
1786 if (current_cpu) {
1787 current_cpu->stop = false;
1788 current_cpu->stopped = true;
1789 cpu_exit(current_cpu);
1790 qemu_cond_broadcast(&qemu_pause_cond);
1791 }
1792 }
1793
1794 int vm_stop(RunState state)
1795 {
1796 if (qemu_in_vcpu_thread()) {
1797 qemu_system_vmstop_request_prepare();
1798 qemu_system_vmstop_request(state);
1799 /*
1800 * FIXME: should not return to device code in case
1801 * vm_stop() has been requested.
1802 */
1803 cpu_stop_current();
1804 return 0;
1805 }
1806
1807 return do_vm_stop(state);
1808 }
1809
1810 /**
1811 * Prepare for (re)starting the VM.
1812 * Returns -1 if the vCPUs are not to be restarted (e.g. if they are already
1813 * running or in case of an error condition), 0 otherwise.
1814 */
1815 int vm_prepare_start(void)
1816 {
1817 RunState requested;
1818 int res = 0;
1819
1820 qemu_vmstop_requested(&requested);
1821 if (runstate_is_running() && requested == RUN_STATE__MAX) {
1822 return -1;
1823 }
1824
1825 /* Ensure that a STOP/RESUME pair of events is emitted if a
1826 * vmstop request was pending. The BLOCK_IO_ERROR event, for
1827 * example, according to documentation is always followed by
1828 * the STOP event.
1829 */
1830 if (runstate_is_running()) {
1831 qapi_event_send_stop(&error_abort);
1832 res = -1;
1833 } else {
1834 replay_enable_events();
1835 cpu_enable_ticks();
1836 runstate_set(RUN_STATE_RUNNING);
1837 vm_state_notify(1, RUN_STATE_RUNNING);
1838 }
1839
1840 /* We are sending this now, but the CPUs will be resumed shortly later */
1841 qapi_event_send_resume(&error_abort);
1842 return res;
1843 }
1844
1845 void vm_start(void)
1846 {
1847 if (!vm_prepare_start()) {
1848 resume_all_vcpus();
1849 }
1850 }
1851
1852 /* does a state transition even if the VM is already stopped,
1853 current state is forgotten forever */
1854 int vm_stop_force_state(RunState state)
1855 {
1856 if (runstate_is_running()) {
1857 return vm_stop(state);
1858 } else {
1859 runstate_set(state);
1860
1861 bdrv_drain_all();
1862 /* Make sure to return an error if the flush in a previous vm_stop()
1863 * failed. */
1864 return bdrv_flush_all();
1865 }
1866 }
1867
1868 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1869 {
1870 /* XXX: implement xxx_cpu_list for targets that still miss it */
1871 #if defined(cpu_list)
1872 cpu_list(f, cpu_fprintf);
1873 #endif
1874 }
1875
1876 CpuInfoList *qmp_query_cpus(Error **errp)
1877 {
1878 MachineState *ms = MACHINE(qdev_get_machine());
1879 MachineClass *mc = MACHINE_GET_CLASS(ms);
1880 CpuInfoList *head = NULL, *cur_item = NULL;
1881 CPUState *cpu;
1882
1883 CPU_FOREACH(cpu) {
1884 CpuInfoList *info;
1885 #if defined(TARGET_I386)
1886 X86CPU *x86_cpu = X86_CPU(cpu);
1887 CPUX86State *env = &x86_cpu->env;
1888 #elif defined(TARGET_PPC)
1889 PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu);
1890 CPUPPCState *env = &ppc_cpu->env;
1891 #elif defined(TARGET_SPARC)
1892 SPARCCPU *sparc_cpu = SPARC_CPU(cpu);
1893 CPUSPARCState *env = &sparc_cpu->env;
1894 #elif defined(TARGET_MIPS)
1895 MIPSCPU *mips_cpu = MIPS_CPU(cpu);
1896 CPUMIPSState *env = &mips_cpu->env;
1897 #elif defined(TARGET_TRICORE)
1898 TriCoreCPU *tricore_cpu = TRICORE_CPU(cpu);
1899 CPUTriCoreState *env = &tricore_cpu->env;
1900 #endif
1901
1902 cpu_synchronize_state(cpu);
1903
1904 info = g_malloc0(sizeof(*info));
1905 info->value = g_malloc0(sizeof(*info->value));
1906 info->value->CPU = cpu->cpu_index;
1907 info->value->current = (cpu == first_cpu);
1908 info->value->halted = cpu->halted;
1909 info->value->qom_path = object_get_canonical_path(OBJECT(cpu));
1910 info->value->thread_id = cpu->thread_id;
1911 #if defined(TARGET_I386)
1912 info->value->arch = CPU_INFO_ARCH_X86;
1913 info->value->u.x86.pc = env->eip + env->segs[R_CS].base;
1914 #elif defined(TARGET_PPC)
1915 info->value->arch = CPU_INFO_ARCH_PPC;
1916 info->value->u.ppc.nip = env->nip;
1917 #elif defined(TARGET_SPARC)
1918 info->value->arch = CPU_INFO_ARCH_SPARC;
1919 info->value->u.q_sparc.pc = env->pc;
1920 info->value->u.q_sparc.npc = env->npc;
1921 #elif defined(TARGET_MIPS)
1922 info->value->arch = CPU_INFO_ARCH_MIPS;
1923 info->value->u.q_mips.PC = env->active_tc.PC;
1924 #elif defined(TARGET_TRICORE)
1925 info->value->arch = CPU_INFO_ARCH_TRICORE;
1926 info->value->u.tricore.PC = env->PC;
1927 #else
1928 info->value->arch = CPU_INFO_ARCH_OTHER;
1929 #endif
1930 info->value->has_props = !!mc->cpu_index_to_instance_props;
1931 if (info->value->has_props) {
1932 CpuInstanceProperties *props;
1933 props = g_malloc0(sizeof(*props));
1934 *props = mc->cpu_index_to_instance_props(ms, cpu->cpu_index);
1935 info->value->props = props;
1936 }
1937
1938 /* XXX: waiting for the qapi to support GSList */
1939 if (!cur_item) {
1940 head = cur_item = info;
1941 } else {
1942 cur_item->next = info;
1943 cur_item = info;
1944 }
1945 }
1946
1947 return head;
1948 }
1949
1950 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1951 bool has_cpu, int64_t cpu_index, Error **errp)
1952 {
1953 FILE *f;
1954 uint32_t l;
1955 CPUState *cpu;
1956 uint8_t buf[1024];
1957 int64_t orig_addr = addr, orig_size = size;
1958
1959 if (!has_cpu) {
1960 cpu_index = 0;
1961 }
1962
1963 cpu = qemu_get_cpu(cpu_index);
1964 if (cpu == NULL) {
1965 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1966 "a CPU number");
1967 return;
1968 }
1969
1970 f = fopen(filename, "wb");
1971 if (!f) {
1972 error_setg_file_open(errp, errno, filename);
1973 return;
1974 }
1975
1976 while (size != 0) {
1977 l = sizeof(buf);
1978 if (l > size)
1979 l = size;
1980 if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) {
1981 error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64
1982 " specified", orig_addr, orig_size);
1983 goto exit;
1984 }
1985 if (fwrite(buf, 1, l, f) != l) {
1986 error_setg(errp, QERR_IO_ERROR);
1987 goto exit;
1988 }
1989 addr += l;
1990 size -= l;
1991 }
1992
1993 exit:
1994 fclose(f);
1995 }
1996
1997 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1998 Error **errp)
1999 {
2000 FILE *f;
2001 uint32_t l;
2002 uint8_t buf[1024];
2003
2004 f = fopen(filename, "wb");
2005 if (!f) {
2006 error_setg_file_open(errp, errno, filename);
2007 return;
2008 }
2009
2010 while (size != 0) {
2011 l = sizeof(buf);
2012 if (l > size)
2013 l = size;
2014 cpu_physical_memory_read(addr, buf, l);
2015 if (fwrite(buf, 1, l, f) != l) {
2016 error_setg(errp, QERR_IO_ERROR);
2017 goto exit;
2018 }
2019 addr += l;
2020 size -= l;
2021 }
2022
2023 exit:
2024 fclose(f);
2025 }
2026
2027 void qmp_inject_nmi(Error **errp)
2028 {
2029 nmi_monitor_handle(monitor_get_cpu_index(), errp);
2030 }
2031
2032 void dump_drift_info(FILE *f, fprintf_function cpu_fprintf)
2033 {
2034 if (!use_icount) {
2035 return;
2036 }
2037
2038 cpu_fprintf(f, "Host - Guest clock %"PRIi64" ms\n",
2039 (cpu_get_clock() - cpu_get_icount())/SCALE_MS);
2040 if (icount_align_option) {
2041 cpu_fprintf(f, "Max guest delay %"PRIi64" ms\n", -max_delay/SCALE_MS);
2042 cpu_fprintf(f, "Max guest advance %"PRIi64" ms\n", max_advance/SCALE_MS);
2043 } else {
2044 cpu_fprintf(f, "Max guest delay NA\n");
2045 cpu_fprintf(f, "Max guest advance NA\n");
2046 }
2047 }