]> git.ipfire.org Git - thirdparty/qemu.git/blob - exec.c
Update version for 2.11.2 release
[thirdparty/qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21 #ifndef _WIN32
22 #endif
23
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "qemu/timer.h"
38 #include "qemu/config-file.h"
39 #include "qemu/error-report.h"
40 #if defined(CONFIG_USER_ONLY)
41 #include "qemu.h"
42 #else /* !CONFIG_USER_ONLY */
43 #include "hw/hw.h"
44 #include "exec/memory.h"
45 #include "exec/ioport.h"
46 #include "sysemu/dma.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/hw_accel.h"
49 #include "exec/address-spaces.h"
50 #include "sysemu/xen-mapcache.h"
51 #include "trace-root.h"
52
53 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
54 #include <fcntl.h>
55 #include <linux/falloc.h>
56 #endif
57
58 #endif
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
63
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 #include "exec/log.h"
67
68 #include "migration/vmstate.h"
69
70 #include "qemu/range.h"
71 #ifndef _WIN32
72 #include "qemu/mmap-alloc.h"
73 #endif
74
75 #include "monitor/monitor.h"
76
77 //#define DEBUG_SUBPAGE
78
79 #if !defined(CONFIG_USER_ONLY)
80 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
82 */
83 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
84
85 static MemoryRegion *system_memory;
86 static MemoryRegion *system_io;
87
88 AddressSpace address_space_io;
89 AddressSpace address_space_memory;
90
91 MemoryRegion io_mem_rom, io_mem_notdirty;
92 static MemoryRegion io_mem_unassigned;
93
94 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
95 #define RAM_PREALLOC (1 << 0)
96
97 /* RAM is mmap-ed with MAP_SHARED */
98 #define RAM_SHARED (1 << 1)
99
100 /* Only a portion of RAM (used_length) is actually used, and migrated.
101 * This used_length size can change across reboots.
102 */
103 #define RAM_RESIZEABLE (1 << 2)
104
105 #endif
106
107 #ifdef TARGET_PAGE_BITS_VARY
108 int target_page_bits;
109 bool target_page_bits_decided;
110 #endif
111
112 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
113 /* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
115 __thread CPUState *current_cpu;
116 /* 0 = Do not count executed instructions.
117 1 = Precise instruction counting.
118 2 = Adaptive rate instruction counting. */
119 int use_icount;
120
121 uintptr_t qemu_host_page_size;
122 intptr_t qemu_host_page_mask;
123
124 bool set_preferred_target_page_bits(int bits)
125 {
126 /* The target page size is the lowest common denominator for all
127 * the CPUs in the system, so we can only make it smaller, never
128 * larger. And we can't make it smaller once we've committed to
129 * a particular size.
130 */
131 #ifdef TARGET_PAGE_BITS_VARY
132 assert(bits >= TARGET_PAGE_BITS_MIN);
133 if (target_page_bits == 0 || target_page_bits > bits) {
134 if (target_page_bits_decided) {
135 return false;
136 }
137 target_page_bits = bits;
138 }
139 #endif
140 return true;
141 }
142
143 #if !defined(CONFIG_USER_ONLY)
144
145 static void finalize_target_page_bits(void)
146 {
147 #ifdef TARGET_PAGE_BITS_VARY
148 if (target_page_bits == 0) {
149 target_page_bits = TARGET_PAGE_BITS_MIN;
150 }
151 target_page_bits_decided = true;
152 #endif
153 }
154
155 typedef struct PhysPageEntry PhysPageEntry;
156
157 struct PhysPageEntry {
158 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
159 uint32_t skip : 6;
160 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
161 uint32_t ptr : 26;
162 };
163
164 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
165
166 /* Size of the L2 (and L3, etc) page tables. */
167 #define ADDR_SPACE_BITS 64
168
169 #define P_L2_BITS 9
170 #define P_L2_SIZE (1 << P_L2_BITS)
171
172 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
173
174 typedef PhysPageEntry Node[P_L2_SIZE];
175
176 typedef struct PhysPageMap {
177 struct rcu_head rcu;
178
179 unsigned sections_nb;
180 unsigned sections_nb_alloc;
181 unsigned nodes_nb;
182 unsigned nodes_nb_alloc;
183 Node *nodes;
184 MemoryRegionSection *sections;
185 } PhysPageMap;
186
187 struct AddressSpaceDispatch {
188 MemoryRegionSection *mru_section;
189 /* This is a multi-level map on the physical address space.
190 * The bottom level has pointers to MemoryRegionSections.
191 */
192 PhysPageEntry phys_map;
193 PhysPageMap map;
194 };
195
196 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
197 typedef struct subpage_t {
198 MemoryRegion iomem;
199 FlatView *fv;
200 hwaddr base;
201 uint16_t sub_section[];
202 } subpage_t;
203
204 #define PHYS_SECTION_UNASSIGNED 0
205 #define PHYS_SECTION_NOTDIRTY 1
206 #define PHYS_SECTION_ROM 2
207 #define PHYS_SECTION_WATCH 3
208
209 static void io_mem_init(void);
210 static void memory_map_init(void);
211 static void tcg_commit(MemoryListener *listener);
212
213 static MemoryRegion io_mem_watch;
214
215 /**
216 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
217 * @cpu: the CPU whose AddressSpace this is
218 * @as: the AddressSpace itself
219 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
220 * @tcg_as_listener: listener for tracking changes to the AddressSpace
221 */
222 struct CPUAddressSpace {
223 CPUState *cpu;
224 AddressSpace *as;
225 struct AddressSpaceDispatch *memory_dispatch;
226 MemoryListener tcg_as_listener;
227 };
228
229 struct DirtyBitmapSnapshot {
230 ram_addr_t start;
231 ram_addr_t end;
232 unsigned long dirty[];
233 };
234
235 #endif
236
237 #if !defined(CONFIG_USER_ONLY)
238
239 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
240 {
241 static unsigned alloc_hint = 16;
242 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
243 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
244 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
245 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
246 alloc_hint = map->nodes_nb_alloc;
247 }
248 }
249
250 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
251 {
252 unsigned i;
253 uint32_t ret;
254 PhysPageEntry e;
255 PhysPageEntry *p;
256
257 ret = map->nodes_nb++;
258 p = map->nodes[ret];
259 assert(ret != PHYS_MAP_NODE_NIL);
260 assert(ret != map->nodes_nb_alloc);
261
262 e.skip = leaf ? 0 : 1;
263 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
264 for (i = 0; i < P_L2_SIZE; ++i) {
265 memcpy(&p[i], &e, sizeof(e));
266 }
267 return ret;
268 }
269
270 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
271 hwaddr *index, hwaddr *nb, uint16_t leaf,
272 int level)
273 {
274 PhysPageEntry *p;
275 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
276
277 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
278 lp->ptr = phys_map_node_alloc(map, level == 0);
279 }
280 p = map->nodes[lp->ptr];
281 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
282
283 while (*nb && lp < &p[P_L2_SIZE]) {
284 if ((*index & (step - 1)) == 0 && *nb >= step) {
285 lp->skip = 0;
286 lp->ptr = leaf;
287 *index += step;
288 *nb -= step;
289 } else {
290 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
291 }
292 ++lp;
293 }
294 }
295
296 static void phys_page_set(AddressSpaceDispatch *d,
297 hwaddr index, hwaddr nb,
298 uint16_t leaf)
299 {
300 /* Wildly overreserve - it doesn't matter much. */
301 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
302
303 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
304 }
305
306 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
307 * and update our entry so we can skip it and go directly to the destination.
308 */
309 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
310 {
311 unsigned valid_ptr = P_L2_SIZE;
312 int valid = 0;
313 PhysPageEntry *p;
314 int i;
315
316 if (lp->ptr == PHYS_MAP_NODE_NIL) {
317 return;
318 }
319
320 p = nodes[lp->ptr];
321 for (i = 0; i < P_L2_SIZE; i++) {
322 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
323 continue;
324 }
325
326 valid_ptr = i;
327 valid++;
328 if (p[i].skip) {
329 phys_page_compact(&p[i], nodes);
330 }
331 }
332
333 /* We can only compress if there's only one child. */
334 if (valid != 1) {
335 return;
336 }
337
338 assert(valid_ptr < P_L2_SIZE);
339
340 /* Don't compress if it won't fit in the # of bits we have. */
341 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
342 return;
343 }
344
345 lp->ptr = p[valid_ptr].ptr;
346 if (!p[valid_ptr].skip) {
347 /* If our only child is a leaf, make this a leaf. */
348 /* By design, we should have made this node a leaf to begin with so we
349 * should never reach here.
350 * But since it's so simple to handle this, let's do it just in case we
351 * change this rule.
352 */
353 lp->skip = 0;
354 } else {
355 lp->skip += p[valid_ptr].skip;
356 }
357 }
358
359 void address_space_dispatch_compact(AddressSpaceDispatch *d)
360 {
361 if (d->phys_map.skip) {
362 phys_page_compact(&d->phys_map, d->map.nodes);
363 }
364 }
365
366 static inline bool section_covers_addr(const MemoryRegionSection *section,
367 hwaddr addr)
368 {
369 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
370 * the section must cover the entire address space.
371 */
372 return int128_gethi(section->size) ||
373 range_covers_byte(section->offset_within_address_space,
374 int128_getlo(section->size), addr);
375 }
376
377 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
378 {
379 PhysPageEntry lp = d->phys_map, *p;
380 Node *nodes = d->map.nodes;
381 MemoryRegionSection *sections = d->map.sections;
382 hwaddr index = addr >> TARGET_PAGE_BITS;
383 int i;
384
385 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
386 if (lp.ptr == PHYS_MAP_NODE_NIL) {
387 return &sections[PHYS_SECTION_UNASSIGNED];
388 }
389 p = nodes[lp.ptr];
390 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
391 }
392
393 if (section_covers_addr(&sections[lp.ptr], addr)) {
394 return &sections[lp.ptr];
395 } else {
396 return &sections[PHYS_SECTION_UNASSIGNED];
397 }
398 }
399
400 bool memory_region_is_unassigned(MemoryRegion *mr)
401 {
402 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
403 && mr != &io_mem_watch;
404 }
405
406 /* Called from RCU critical section */
407 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
408 hwaddr addr,
409 bool resolve_subpage)
410 {
411 MemoryRegionSection *section = atomic_read(&d->mru_section);
412 subpage_t *subpage;
413
414 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
415 !section_covers_addr(section, addr)) {
416 section = phys_page_find(d, addr);
417 atomic_set(&d->mru_section, section);
418 }
419 if (resolve_subpage && section->mr->subpage) {
420 subpage = container_of(section->mr, subpage_t, iomem);
421 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
422 }
423 return section;
424 }
425
426 /* Called from RCU critical section */
427 static MemoryRegionSection *
428 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
429 hwaddr *plen, bool resolve_subpage)
430 {
431 MemoryRegionSection *section;
432 MemoryRegion *mr;
433 Int128 diff;
434
435 section = address_space_lookup_region(d, addr, resolve_subpage);
436 /* Compute offset within MemoryRegionSection */
437 addr -= section->offset_within_address_space;
438
439 /* Compute offset within MemoryRegion */
440 *xlat = addr + section->offset_within_region;
441
442 mr = section->mr;
443
444 /* MMIO registers can be expected to perform full-width accesses based only
445 * on their address, without considering adjacent registers that could
446 * decode to completely different MemoryRegions. When such registers
447 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
448 * regions overlap wildly. For this reason we cannot clamp the accesses
449 * here.
450 *
451 * If the length is small (as is the case for address_space_ldl/stl),
452 * everything works fine. If the incoming length is large, however,
453 * the caller really has to do the clamping through memory_access_size.
454 */
455 if (memory_region_is_ram(mr)) {
456 diff = int128_sub(section->size, int128_make64(addr));
457 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
458 }
459 return section;
460 }
461
462 /**
463 * flatview_do_translate - translate an address in FlatView
464 *
465 * @fv: the flat view that we want to translate on
466 * @addr: the address to be translated in above address space
467 * @xlat: the translated address offset within memory region. It
468 * cannot be @NULL.
469 * @plen_out: valid read/write length of the translated address. It
470 * can be @NULL when we don't care about it.
471 * @page_mask_out: page mask for the translated address. This
472 * should only be meaningful for IOMMU translated
473 * addresses, since there may be huge pages that this bit
474 * would tell. It can be @NULL if we don't care about it.
475 * @is_write: whether the translation operation is for write
476 * @is_mmio: whether this can be MMIO, set true if it can
477 *
478 * This function is called from RCU critical section
479 */
480 static MemoryRegionSection flatview_do_translate(FlatView *fv,
481 hwaddr addr,
482 hwaddr *xlat,
483 hwaddr *plen_out,
484 hwaddr *page_mask_out,
485 bool is_write,
486 bool is_mmio,
487 AddressSpace **target_as)
488 {
489 IOMMUTLBEntry iotlb;
490 MemoryRegionSection *section;
491 IOMMUMemoryRegion *iommu_mr;
492 IOMMUMemoryRegionClass *imrc;
493 hwaddr page_mask = (hwaddr)(-1);
494 hwaddr plen = (hwaddr)(-1);
495
496 if (plen_out) {
497 plen = *plen_out;
498 }
499
500 for (;;) {
501 section = address_space_translate_internal(
502 flatview_to_dispatch(fv), addr, &addr,
503 &plen, is_mmio);
504
505 iommu_mr = memory_region_get_iommu(section->mr);
506 if (!iommu_mr) {
507 break;
508 }
509 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
510
511 iotlb = imrc->translate(iommu_mr, addr, is_write ?
512 IOMMU_WO : IOMMU_RO);
513 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
514 | (addr & iotlb.addr_mask));
515 page_mask &= iotlb.addr_mask;
516 plen = MIN(plen, (addr | iotlb.addr_mask) - addr + 1);
517 if (!(iotlb.perm & (1 << is_write))) {
518 goto translate_fail;
519 }
520
521 fv = address_space_to_flatview(iotlb.target_as);
522 *target_as = iotlb.target_as;
523 }
524
525 *xlat = addr;
526
527 if (page_mask == (hwaddr)(-1)) {
528 /* Not behind an IOMMU, use default page size. */
529 page_mask = ~TARGET_PAGE_MASK;
530 }
531
532 if (page_mask_out) {
533 *page_mask_out = page_mask;
534 }
535
536 if (plen_out) {
537 *plen_out = plen;
538 }
539
540 return *section;
541
542 translate_fail:
543 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
544 }
545
546 /* Called from RCU critical section */
547 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
548 bool is_write)
549 {
550 MemoryRegionSection section;
551 hwaddr xlat, page_mask;
552
553 /*
554 * This can never be MMIO, and we don't really care about plen,
555 * but page mask.
556 */
557 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
558 NULL, &page_mask, is_write, false, &as);
559
560 /* Illegal translation */
561 if (section.mr == &io_mem_unassigned) {
562 goto iotlb_fail;
563 }
564
565 /* Convert memory region offset into address space offset */
566 xlat += section.offset_within_address_space -
567 section.offset_within_region;
568
569 return (IOMMUTLBEntry) {
570 .target_as = as,
571 .iova = addr & ~page_mask,
572 .translated_addr = xlat & ~page_mask,
573 .addr_mask = page_mask,
574 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
575 .perm = IOMMU_RW,
576 };
577
578 iotlb_fail:
579 return (IOMMUTLBEntry) {0};
580 }
581
582 /* Called from RCU critical section */
583 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
584 hwaddr *plen, bool is_write)
585 {
586 MemoryRegion *mr;
587 MemoryRegionSection section;
588 AddressSpace *as = NULL;
589
590 /* This can be MMIO, so setup MMIO bit. */
591 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
592 is_write, true, &as);
593 mr = section.mr;
594
595 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
596 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
597 *plen = MIN(page, *plen);
598 }
599
600 return mr;
601 }
602
603 /* Called from RCU critical section */
604 MemoryRegionSection *
605 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
606 hwaddr *xlat, hwaddr *plen)
607 {
608 MemoryRegionSection *section;
609 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
610
611 section = address_space_translate_internal(d, addr, xlat, plen, false);
612
613 assert(!memory_region_is_iommu(section->mr));
614 return section;
615 }
616 #endif
617
618 #if !defined(CONFIG_USER_ONLY)
619
620 static int cpu_common_post_load(void *opaque, int version_id)
621 {
622 CPUState *cpu = opaque;
623
624 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
625 version_id is increased. */
626 cpu->interrupt_request &= ~0x01;
627 tlb_flush(cpu);
628
629 return 0;
630 }
631
632 static int cpu_common_pre_load(void *opaque)
633 {
634 CPUState *cpu = opaque;
635
636 cpu->exception_index = -1;
637
638 return 0;
639 }
640
641 static bool cpu_common_exception_index_needed(void *opaque)
642 {
643 CPUState *cpu = opaque;
644
645 return tcg_enabled() && cpu->exception_index != -1;
646 }
647
648 static const VMStateDescription vmstate_cpu_common_exception_index = {
649 .name = "cpu_common/exception_index",
650 .version_id = 1,
651 .minimum_version_id = 1,
652 .needed = cpu_common_exception_index_needed,
653 .fields = (VMStateField[]) {
654 VMSTATE_INT32(exception_index, CPUState),
655 VMSTATE_END_OF_LIST()
656 }
657 };
658
659 static bool cpu_common_crash_occurred_needed(void *opaque)
660 {
661 CPUState *cpu = opaque;
662
663 return cpu->crash_occurred;
664 }
665
666 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
667 .name = "cpu_common/crash_occurred",
668 .version_id = 1,
669 .minimum_version_id = 1,
670 .needed = cpu_common_crash_occurred_needed,
671 .fields = (VMStateField[]) {
672 VMSTATE_BOOL(crash_occurred, CPUState),
673 VMSTATE_END_OF_LIST()
674 }
675 };
676
677 const VMStateDescription vmstate_cpu_common = {
678 .name = "cpu_common",
679 .version_id = 1,
680 .minimum_version_id = 1,
681 .pre_load = cpu_common_pre_load,
682 .post_load = cpu_common_post_load,
683 .fields = (VMStateField[]) {
684 VMSTATE_UINT32(halted, CPUState),
685 VMSTATE_UINT32(interrupt_request, CPUState),
686 VMSTATE_END_OF_LIST()
687 },
688 .subsections = (const VMStateDescription*[]) {
689 &vmstate_cpu_common_exception_index,
690 &vmstate_cpu_common_crash_occurred,
691 NULL
692 }
693 };
694
695 #endif
696
697 CPUState *qemu_get_cpu(int index)
698 {
699 CPUState *cpu;
700
701 CPU_FOREACH(cpu) {
702 if (cpu->cpu_index == index) {
703 return cpu;
704 }
705 }
706
707 return NULL;
708 }
709
710 #if !defined(CONFIG_USER_ONLY)
711 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
712 {
713 CPUAddressSpace *newas;
714
715 /* Target code should have set num_ases before calling us */
716 assert(asidx < cpu->num_ases);
717
718 if (asidx == 0) {
719 /* address space 0 gets the convenience alias */
720 cpu->as = as;
721 }
722
723 /* KVM cannot currently support multiple address spaces. */
724 assert(asidx == 0 || !kvm_enabled());
725
726 if (!cpu->cpu_ases) {
727 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
728 }
729
730 newas = &cpu->cpu_ases[asidx];
731 newas->cpu = cpu;
732 newas->as = as;
733 if (tcg_enabled()) {
734 newas->tcg_as_listener.commit = tcg_commit;
735 memory_listener_register(&newas->tcg_as_listener, as);
736 }
737 }
738
739 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
740 {
741 /* Return the AddressSpace corresponding to the specified index */
742 return cpu->cpu_ases[asidx].as;
743 }
744 #endif
745
746 void cpu_exec_unrealizefn(CPUState *cpu)
747 {
748 CPUClass *cc = CPU_GET_CLASS(cpu);
749
750 cpu_list_remove(cpu);
751
752 if (cc->vmsd != NULL) {
753 vmstate_unregister(NULL, cc->vmsd, cpu);
754 }
755 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
756 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
757 }
758 }
759
760 Property cpu_common_props[] = {
761 #ifndef CONFIG_USER_ONLY
762 /* Create a memory property for softmmu CPU object,
763 * so users can wire up its memory. (This can't go in qom/cpu.c
764 * because that file is compiled only once for both user-mode
765 * and system builds.) The default if no link is set up is to use
766 * the system address space.
767 */
768 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
769 MemoryRegion *),
770 #endif
771 DEFINE_PROP_END_OF_LIST(),
772 };
773
774 void cpu_exec_initfn(CPUState *cpu)
775 {
776 cpu->as = NULL;
777 cpu->num_ases = 0;
778
779 #ifndef CONFIG_USER_ONLY
780 cpu->thread_id = qemu_get_thread_id();
781 cpu->memory = system_memory;
782 object_ref(OBJECT(cpu->memory));
783 #endif
784 }
785
786 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
787 {
788 CPUClass *cc = CPU_GET_CLASS(cpu);
789 static bool tcg_target_initialized;
790
791 cpu_list_add(cpu);
792
793 if (tcg_enabled() && !tcg_target_initialized) {
794 tcg_target_initialized = true;
795 cc->tcg_initialize();
796 }
797
798 #ifndef CONFIG_USER_ONLY
799 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
800 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
801 }
802 if (cc->vmsd != NULL) {
803 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
804 }
805 #endif
806 }
807
808 #if defined(CONFIG_USER_ONLY)
809 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
810 {
811 mmap_lock();
812 tb_lock();
813 tb_invalidate_phys_page_range(pc, pc + 1, 0);
814 tb_unlock();
815 mmap_unlock();
816 }
817 #else
818 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
819 {
820 MemTxAttrs attrs;
821 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
822 int asidx = cpu_asidx_from_attrs(cpu, attrs);
823 if (phys != -1) {
824 /* Locks grabbed by tb_invalidate_phys_addr */
825 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
826 phys | (pc & ~TARGET_PAGE_MASK));
827 }
828 }
829 #endif
830
831 #if defined(CONFIG_USER_ONLY)
832 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
833
834 {
835 }
836
837 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
838 int flags)
839 {
840 return -ENOSYS;
841 }
842
843 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
844 {
845 }
846
847 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
848 int flags, CPUWatchpoint **watchpoint)
849 {
850 return -ENOSYS;
851 }
852 #else
853 /* Add a watchpoint. */
854 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
855 int flags, CPUWatchpoint **watchpoint)
856 {
857 CPUWatchpoint *wp;
858
859 /* forbid ranges which are empty or run off the end of the address space */
860 if (len == 0 || (addr + len - 1) < addr) {
861 error_report("tried to set invalid watchpoint at %"
862 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
863 return -EINVAL;
864 }
865 wp = g_malloc(sizeof(*wp));
866
867 wp->vaddr = addr;
868 wp->len = len;
869 wp->flags = flags;
870
871 /* keep all GDB-injected watchpoints in front */
872 if (flags & BP_GDB) {
873 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
874 } else {
875 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
876 }
877
878 tlb_flush_page(cpu, addr);
879
880 if (watchpoint)
881 *watchpoint = wp;
882 return 0;
883 }
884
885 /* Remove a specific watchpoint. */
886 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
887 int flags)
888 {
889 CPUWatchpoint *wp;
890
891 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
892 if (addr == wp->vaddr && len == wp->len
893 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
894 cpu_watchpoint_remove_by_ref(cpu, wp);
895 return 0;
896 }
897 }
898 return -ENOENT;
899 }
900
901 /* Remove a specific watchpoint by reference. */
902 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
903 {
904 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
905
906 tlb_flush_page(cpu, watchpoint->vaddr);
907
908 g_free(watchpoint);
909 }
910
911 /* Remove all matching watchpoints. */
912 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
913 {
914 CPUWatchpoint *wp, *next;
915
916 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
917 if (wp->flags & mask) {
918 cpu_watchpoint_remove_by_ref(cpu, wp);
919 }
920 }
921 }
922
923 /* Return true if this watchpoint address matches the specified
924 * access (ie the address range covered by the watchpoint overlaps
925 * partially or completely with the address range covered by the
926 * access).
927 */
928 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
929 vaddr addr,
930 vaddr len)
931 {
932 /* We know the lengths are non-zero, but a little caution is
933 * required to avoid errors in the case where the range ends
934 * exactly at the top of the address space and so addr + len
935 * wraps round to zero.
936 */
937 vaddr wpend = wp->vaddr + wp->len - 1;
938 vaddr addrend = addr + len - 1;
939
940 return !(addr > wpend || wp->vaddr > addrend);
941 }
942
943 #endif
944
945 /* Add a breakpoint. */
946 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
947 CPUBreakpoint **breakpoint)
948 {
949 CPUBreakpoint *bp;
950
951 bp = g_malloc(sizeof(*bp));
952
953 bp->pc = pc;
954 bp->flags = flags;
955
956 /* keep all GDB-injected breakpoints in front */
957 if (flags & BP_GDB) {
958 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
959 } else {
960 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
961 }
962
963 breakpoint_invalidate(cpu, pc);
964
965 if (breakpoint) {
966 *breakpoint = bp;
967 }
968 return 0;
969 }
970
971 /* Remove a specific breakpoint. */
972 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
973 {
974 CPUBreakpoint *bp;
975
976 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
977 if (bp->pc == pc && bp->flags == flags) {
978 cpu_breakpoint_remove_by_ref(cpu, bp);
979 return 0;
980 }
981 }
982 return -ENOENT;
983 }
984
985 /* Remove a specific breakpoint by reference. */
986 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
987 {
988 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
989
990 breakpoint_invalidate(cpu, breakpoint->pc);
991
992 g_free(breakpoint);
993 }
994
995 /* Remove all matching breakpoints. */
996 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
997 {
998 CPUBreakpoint *bp, *next;
999
1000 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1001 if (bp->flags & mask) {
1002 cpu_breakpoint_remove_by_ref(cpu, bp);
1003 }
1004 }
1005 }
1006
1007 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1008 CPU loop after each instruction */
1009 void cpu_single_step(CPUState *cpu, int enabled)
1010 {
1011 if (cpu->singlestep_enabled != enabled) {
1012 cpu->singlestep_enabled = enabled;
1013 if (kvm_enabled()) {
1014 kvm_update_guest_debug(cpu, 0);
1015 } else {
1016 /* must flush all the translated code to avoid inconsistencies */
1017 /* XXX: only flush what is necessary */
1018 tb_flush(cpu);
1019 }
1020 }
1021 }
1022
1023 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1024 {
1025 va_list ap;
1026 va_list ap2;
1027
1028 va_start(ap, fmt);
1029 va_copy(ap2, ap);
1030 fprintf(stderr, "qemu: fatal: ");
1031 vfprintf(stderr, fmt, ap);
1032 fprintf(stderr, "\n");
1033 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1034 if (qemu_log_separate()) {
1035 qemu_log_lock();
1036 qemu_log("qemu: fatal: ");
1037 qemu_log_vprintf(fmt, ap2);
1038 qemu_log("\n");
1039 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1040 qemu_log_flush();
1041 qemu_log_unlock();
1042 qemu_log_close();
1043 }
1044 va_end(ap2);
1045 va_end(ap);
1046 replay_finish();
1047 #if defined(CONFIG_USER_ONLY)
1048 {
1049 struct sigaction act;
1050 sigfillset(&act.sa_mask);
1051 act.sa_handler = SIG_DFL;
1052 sigaction(SIGABRT, &act, NULL);
1053 }
1054 #endif
1055 abort();
1056 }
1057
1058 #if !defined(CONFIG_USER_ONLY)
1059 /* Called from RCU critical section */
1060 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1061 {
1062 RAMBlock *block;
1063
1064 block = atomic_rcu_read(&ram_list.mru_block);
1065 if (block && addr - block->offset < block->max_length) {
1066 return block;
1067 }
1068 RAMBLOCK_FOREACH(block) {
1069 if (addr - block->offset < block->max_length) {
1070 goto found;
1071 }
1072 }
1073
1074 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1075 abort();
1076
1077 found:
1078 /* It is safe to write mru_block outside the iothread lock. This
1079 * is what happens:
1080 *
1081 * mru_block = xxx
1082 * rcu_read_unlock()
1083 * xxx removed from list
1084 * rcu_read_lock()
1085 * read mru_block
1086 * mru_block = NULL;
1087 * call_rcu(reclaim_ramblock, xxx);
1088 * rcu_read_unlock()
1089 *
1090 * atomic_rcu_set is not needed here. The block was already published
1091 * when it was placed into the list. Here we're just making an extra
1092 * copy of the pointer.
1093 */
1094 ram_list.mru_block = block;
1095 return block;
1096 }
1097
1098 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1099 {
1100 CPUState *cpu;
1101 ram_addr_t start1;
1102 RAMBlock *block;
1103 ram_addr_t end;
1104
1105 end = TARGET_PAGE_ALIGN(start + length);
1106 start &= TARGET_PAGE_MASK;
1107
1108 rcu_read_lock();
1109 block = qemu_get_ram_block(start);
1110 assert(block == qemu_get_ram_block(end - 1));
1111 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1112 CPU_FOREACH(cpu) {
1113 tlb_reset_dirty(cpu, start1, length);
1114 }
1115 rcu_read_unlock();
1116 }
1117
1118 /* Note: start and end must be within the same ram block. */
1119 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1120 ram_addr_t length,
1121 unsigned client)
1122 {
1123 DirtyMemoryBlocks *blocks;
1124 unsigned long end, page;
1125 bool dirty = false;
1126
1127 if (length == 0) {
1128 return false;
1129 }
1130
1131 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1132 page = start >> TARGET_PAGE_BITS;
1133
1134 rcu_read_lock();
1135
1136 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1137
1138 while (page < end) {
1139 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1140 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1141 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1142
1143 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1144 offset, num);
1145 page += num;
1146 }
1147
1148 rcu_read_unlock();
1149
1150 if (dirty && tcg_enabled()) {
1151 tlb_reset_dirty_range_all(start, length);
1152 }
1153
1154 return dirty;
1155 }
1156
1157 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1158 (ram_addr_t start, ram_addr_t length, unsigned client)
1159 {
1160 DirtyMemoryBlocks *blocks;
1161 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1162 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1163 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1164 DirtyBitmapSnapshot *snap;
1165 unsigned long page, end, dest;
1166
1167 snap = g_malloc0(sizeof(*snap) +
1168 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1169 snap->start = first;
1170 snap->end = last;
1171
1172 page = first >> TARGET_PAGE_BITS;
1173 end = last >> TARGET_PAGE_BITS;
1174 dest = 0;
1175
1176 rcu_read_lock();
1177
1178 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1179
1180 while (page < end) {
1181 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1182 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1183 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1184
1185 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1186 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1187 offset >>= BITS_PER_LEVEL;
1188
1189 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1190 blocks->blocks[idx] + offset,
1191 num);
1192 page += num;
1193 dest += num >> BITS_PER_LEVEL;
1194 }
1195
1196 rcu_read_unlock();
1197
1198 if (tcg_enabled()) {
1199 tlb_reset_dirty_range_all(start, length);
1200 }
1201
1202 return snap;
1203 }
1204
1205 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1206 ram_addr_t start,
1207 ram_addr_t length)
1208 {
1209 unsigned long page, end;
1210
1211 assert(start >= snap->start);
1212 assert(start + length <= snap->end);
1213
1214 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1215 page = (start - snap->start) >> TARGET_PAGE_BITS;
1216
1217 while (page < end) {
1218 if (test_bit(page, snap->dirty)) {
1219 return true;
1220 }
1221 page++;
1222 }
1223 return false;
1224 }
1225
1226 /* Called from RCU critical section */
1227 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1228 MemoryRegionSection *section,
1229 target_ulong vaddr,
1230 hwaddr paddr, hwaddr xlat,
1231 int prot,
1232 target_ulong *address)
1233 {
1234 hwaddr iotlb;
1235 CPUWatchpoint *wp;
1236
1237 if (memory_region_is_ram(section->mr)) {
1238 /* Normal RAM. */
1239 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1240 if (!section->readonly) {
1241 iotlb |= PHYS_SECTION_NOTDIRTY;
1242 } else {
1243 iotlb |= PHYS_SECTION_ROM;
1244 }
1245 } else {
1246 AddressSpaceDispatch *d;
1247
1248 d = flatview_to_dispatch(section->fv);
1249 iotlb = section - d->map.sections;
1250 iotlb += xlat;
1251 }
1252
1253 /* Make accesses to pages with watchpoints go via the
1254 watchpoint trap routines. */
1255 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1256 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1257 /* Avoid trapping reads of pages with a write breakpoint. */
1258 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1259 iotlb = PHYS_SECTION_WATCH + paddr;
1260 *address |= TLB_MMIO;
1261 break;
1262 }
1263 }
1264 }
1265
1266 return iotlb;
1267 }
1268 #endif /* defined(CONFIG_USER_ONLY) */
1269
1270 #if !defined(CONFIG_USER_ONLY)
1271
1272 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1273 uint16_t section);
1274 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1275
1276 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1277 qemu_anon_ram_alloc;
1278
1279 /*
1280 * Set a custom physical guest memory alloator.
1281 * Accelerators with unusual needs may need this. Hopefully, we can
1282 * get rid of it eventually.
1283 */
1284 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1285 {
1286 phys_mem_alloc = alloc;
1287 }
1288
1289 static uint16_t phys_section_add(PhysPageMap *map,
1290 MemoryRegionSection *section)
1291 {
1292 /* The physical section number is ORed with a page-aligned
1293 * pointer to produce the iotlb entries. Thus it should
1294 * never overflow into the page-aligned value.
1295 */
1296 assert(map->sections_nb < TARGET_PAGE_SIZE);
1297
1298 if (map->sections_nb == map->sections_nb_alloc) {
1299 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1300 map->sections = g_renew(MemoryRegionSection, map->sections,
1301 map->sections_nb_alloc);
1302 }
1303 map->sections[map->sections_nb] = *section;
1304 memory_region_ref(section->mr);
1305 return map->sections_nb++;
1306 }
1307
1308 static void phys_section_destroy(MemoryRegion *mr)
1309 {
1310 bool have_sub_page = mr->subpage;
1311
1312 memory_region_unref(mr);
1313
1314 if (have_sub_page) {
1315 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1316 object_unref(OBJECT(&subpage->iomem));
1317 g_free(subpage);
1318 }
1319 }
1320
1321 static void phys_sections_free(PhysPageMap *map)
1322 {
1323 while (map->sections_nb > 0) {
1324 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1325 phys_section_destroy(section->mr);
1326 }
1327 g_free(map->sections);
1328 g_free(map->nodes);
1329 }
1330
1331 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1332 {
1333 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1334 subpage_t *subpage;
1335 hwaddr base = section->offset_within_address_space
1336 & TARGET_PAGE_MASK;
1337 MemoryRegionSection *existing = phys_page_find(d, base);
1338 MemoryRegionSection subsection = {
1339 .offset_within_address_space = base,
1340 .size = int128_make64(TARGET_PAGE_SIZE),
1341 };
1342 hwaddr start, end;
1343
1344 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1345
1346 if (!(existing->mr->subpage)) {
1347 subpage = subpage_init(fv, base);
1348 subsection.fv = fv;
1349 subsection.mr = &subpage->iomem;
1350 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1351 phys_section_add(&d->map, &subsection));
1352 } else {
1353 subpage = container_of(existing->mr, subpage_t, iomem);
1354 }
1355 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1356 end = start + int128_get64(section->size) - 1;
1357 subpage_register(subpage, start, end,
1358 phys_section_add(&d->map, section));
1359 }
1360
1361
1362 static void register_multipage(FlatView *fv,
1363 MemoryRegionSection *section)
1364 {
1365 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1366 hwaddr start_addr = section->offset_within_address_space;
1367 uint16_t section_index = phys_section_add(&d->map, section);
1368 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1369 TARGET_PAGE_BITS));
1370
1371 assert(num_pages);
1372 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1373 }
1374
1375 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1376 {
1377 MemoryRegionSection now = *section, remain = *section;
1378 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1379
1380 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1381 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1382 - now.offset_within_address_space;
1383
1384 now.size = int128_min(int128_make64(left), now.size);
1385 register_subpage(fv, &now);
1386 } else {
1387 now.size = int128_zero();
1388 }
1389 while (int128_ne(remain.size, now.size)) {
1390 remain.size = int128_sub(remain.size, now.size);
1391 remain.offset_within_address_space += int128_get64(now.size);
1392 remain.offset_within_region += int128_get64(now.size);
1393 now = remain;
1394 if (int128_lt(remain.size, page_size)) {
1395 register_subpage(fv, &now);
1396 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1397 now.size = page_size;
1398 register_subpage(fv, &now);
1399 } else {
1400 now.size = int128_and(now.size, int128_neg(page_size));
1401 register_multipage(fv, &now);
1402 }
1403 }
1404 }
1405
1406 void qemu_flush_coalesced_mmio_buffer(void)
1407 {
1408 if (kvm_enabled())
1409 kvm_flush_coalesced_mmio_buffer();
1410 }
1411
1412 void qemu_mutex_lock_ramlist(void)
1413 {
1414 qemu_mutex_lock(&ram_list.mutex);
1415 }
1416
1417 void qemu_mutex_unlock_ramlist(void)
1418 {
1419 qemu_mutex_unlock(&ram_list.mutex);
1420 }
1421
1422 void ram_block_dump(Monitor *mon)
1423 {
1424 RAMBlock *block;
1425 char *psize;
1426
1427 rcu_read_lock();
1428 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1429 "Block Name", "PSize", "Offset", "Used", "Total");
1430 RAMBLOCK_FOREACH(block) {
1431 psize = size_to_str(block->page_size);
1432 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1433 " 0x%016" PRIx64 "\n", block->idstr, psize,
1434 (uint64_t)block->offset,
1435 (uint64_t)block->used_length,
1436 (uint64_t)block->max_length);
1437 g_free(psize);
1438 }
1439 rcu_read_unlock();
1440 }
1441
1442 #ifdef __linux__
1443 /*
1444 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1445 * may or may not name the same files / on the same filesystem now as
1446 * when we actually open and map them. Iterate over the file
1447 * descriptors instead, and use qemu_fd_getpagesize().
1448 */
1449 static int find_max_supported_pagesize(Object *obj, void *opaque)
1450 {
1451 char *mem_path;
1452 long *hpsize_min = opaque;
1453
1454 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1455 mem_path = object_property_get_str(obj, "mem-path", NULL);
1456 if (mem_path) {
1457 long hpsize = qemu_mempath_getpagesize(mem_path);
1458 g_free(mem_path);
1459 if (hpsize < *hpsize_min) {
1460 *hpsize_min = hpsize;
1461 }
1462 } else {
1463 *hpsize_min = getpagesize();
1464 }
1465 }
1466
1467 return 0;
1468 }
1469
1470 long qemu_getrampagesize(void)
1471 {
1472 long hpsize = LONG_MAX;
1473 long mainrampagesize;
1474 Object *memdev_root;
1475
1476 if (mem_path) {
1477 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1478 } else {
1479 mainrampagesize = getpagesize();
1480 }
1481
1482 /* it's possible we have memory-backend objects with
1483 * hugepage-backed RAM. these may get mapped into system
1484 * address space via -numa parameters or memory hotplug
1485 * hooks. we want to take these into account, but we
1486 * also want to make sure these supported hugepage
1487 * sizes are applicable across the entire range of memory
1488 * we may boot from, so we take the min across all
1489 * backends, and assume normal pages in cases where a
1490 * backend isn't backed by hugepages.
1491 */
1492 memdev_root = object_resolve_path("/objects", NULL);
1493 if (memdev_root) {
1494 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1495 }
1496 if (hpsize == LONG_MAX) {
1497 /* No additional memory regions found ==> Report main RAM page size */
1498 return mainrampagesize;
1499 }
1500
1501 /* If NUMA is disabled or the NUMA nodes are not backed with a
1502 * memory-backend, then there is at least one node using "normal" RAM,
1503 * so if its page size is smaller we have got to report that size instead.
1504 */
1505 if (hpsize > mainrampagesize &&
1506 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1507 static bool warned;
1508 if (!warned) {
1509 error_report("Huge page support disabled (n/a for main memory).");
1510 warned = true;
1511 }
1512 return mainrampagesize;
1513 }
1514
1515 return hpsize;
1516 }
1517 #else
1518 long qemu_getrampagesize(void)
1519 {
1520 return getpagesize();
1521 }
1522 #endif
1523
1524 #ifdef __linux__
1525 static int64_t get_file_size(int fd)
1526 {
1527 int64_t size = lseek(fd, 0, SEEK_END);
1528 if (size < 0) {
1529 return -errno;
1530 }
1531 return size;
1532 }
1533
1534 static int file_ram_open(const char *path,
1535 const char *region_name,
1536 bool *created,
1537 Error **errp)
1538 {
1539 char *filename;
1540 char *sanitized_name;
1541 char *c;
1542 int fd = -1;
1543
1544 *created = false;
1545 for (;;) {
1546 fd = open(path, O_RDWR);
1547 if (fd >= 0) {
1548 /* @path names an existing file, use it */
1549 break;
1550 }
1551 if (errno == ENOENT) {
1552 /* @path names a file that doesn't exist, create it */
1553 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1554 if (fd >= 0) {
1555 *created = true;
1556 break;
1557 }
1558 } else if (errno == EISDIR) {
1559 /* @path names a directory, create a file there */
1560 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1561 sanitized_name = g_strdup(region_name);
1562 for (c = sanitized_name; *c != '\0'; c++) {
1563 if (*c == '/') {
1564 *c = '_';
1565 }
1566 }
1567
1568 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1569 sanitized_name);
1570 g_free(sanitized_name);
1571
1572 fd = mkstemp(filename);
1573 if (fd >= 0) {
1574 unlink(filename);
1575 g_free(filename);
1576 break;
1577 }
1578 g_free(filename);
1579 }
1580 if (errno != EEXIST && errno != EINTR) {
1581 error_setg_errno(errp, errno,
1582 "can't open backing store %s for guest RAM",
1583 path);
1584 return -1;
1585 }
1586 /*
1587 * Try again on EINTR and EEXIST. The latter happens when
1588 * something else creates the file between our two open().
1589 */
1590 }
1591
1592 return fd;
1593 }
1594
1595 static void *file_ram_alloc(RAMBlock *block,
1596 ram_addr_t memory,
1597 int fd,
1598 bool truncate,
1599 Error **errp)
1600 {
1601 void *area;
1602
1603 block->page_size = qemu_fd_getpagesize(fd);
1604 block->mr->align = block->page_size;
1605 #if defined(__s390x__)
1606 if (kvm_enabled()) {
1607 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1608 }
1609 #endif
1610
1611 if (memory < block->page_size) {
1612 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1613 "or larger than page size 0x%zx",
1614 memory, block->page_size);
1615 return NULL;
1616 }
1617
1618 memory = ROUND_UP(memory, block->page_size);
1619
1620 /*
1621 * ftruncate is not supported by hugetlbfs in older
1622 * hosts, so don't bother bailing out on errors.
1623 * If anything goes wrong with it under other filesystems,
1624 * mmap will fail.
1625 *
1626 * Do not truncate the non-empty backend file to avoid corrupting
1627 * the existing data in the file. Disabling shrinking is not
1628 * enough. For example, the current vNVDIMM implementation stores
1629 * the guest NVDIMM labels at the end of the backend file. If the
1630 * backend file is later extended, QEMU will not be able to find
1631 * those labels. Therefore, extending the non-empty backend file
1632 * is disabled as well.
1633 */
1634 if (truncate && ftruncate(fd, memory)) {
1635 perror("ftruncate");
1636 }
1637
1638 area = qemu_ram_mmap(fd, memory, block->mr->align,
1639 block->flags & RAM_SHARED);
1640 if (area == MAP_FAILED) {
1641 error_setg_errno(errp, errno,
1642 "unable to map backing store for guest RAM");
1643 return NULL;
1644 }
1645
1646 if (mem_prealloc) {
1647 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1648 if (errp && *errp) {
1649 qemu_ram_munmap(area, memory);
1650 return NULL;
1651 }
1652 }
1653
1654 block->fd = fd;
1655 return area;
1656 }
1657 #endif
1658
1659 /* Called with the ramlist lock held. */
1660 static ram_addr_t find_ram_offset(ram_addr_t size)
1661 {
1662 RAMBlock *block, *next_block;
1663 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1664
1665 assert(size != 0); /* it would hand out same offset multiple times */
1666
1667 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1668 return 0;
1669 }
1670
1671 RAMBLOCK_FOREACH(block) {
1672 ram_addr_t end, next = RAM_ADDR_MAX;
1673
1674 end = block->offset + block->max_length;
1675
1676 RAMBLOCK_FOREACH(next_block) {
1677 if (next_block->offset >= end) {
1678 next = MIN(next, next_block->offset);
1679 }
1680 }
1681 if (next - end >= size && next - end < mingap) {
1682 offset = end;
1683 mingap = next - end;
1684 }
1685 }
1686
1687 if (offset == RAM_ADDR_MAX) {
1688 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1689 (uint64_t)size);
1690 abort();
1691 }
1692
1693 return offset;
1694 }
1695
1696 unsigned long last_ram_page(void)
1697 {
1698 RAMBlock *block;
1699 ram_addr_t last = 0;
1700
1701 rcu_read_lock();
1702 RAMBLOCK_FOREACH(block) {
1703 last = MAX(last, block->offset + block->max_length);
1704 }
1705 rcu_read_unlock();
1706 return last >> TARGET_PAGE_BITS;
1707 }
1708
1709 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1710 {
1711 int ret;
1712
1713 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1714 if (!machine_dump_guest_core(current_machine)) {
1715 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1716 if (ret) {
1717 perror("qemu_madvise");
1718 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1719 "but dump_guest_core=off specified\n");
1720 }
1721 }
1722 }
1723
1724 const char *qemu_ram_get_idstr(RAMBlock *rb)
1725 {
1726 return rb->idstr;
1727 }
1728
1729 bool qemu_ram_is_shared(RAMBlock *rb)
1730 {
1731 return rb->flags & RAM_SHARED;
1732 }
1733
1734 /* Called with iothread lock held. */
1735 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1736 {
1737 RAMBlock *block;
1738
1739 assert(new_block);
1740 assert(!new_block->idstr[0]);
1741
1742 if (dev) {
1743 char *id = qdev_get_dev_path(dev);
1744 if (id) {
1745 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1746 g_free(id);
1747 }
1748 }
1749 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1750
1751 rcu_read_lock();
1752 RAMBLOCK_FOREACH(block) {
1753 if (block != new_block &&
1754 !strcmp(block->idstr, new_block->idstr)) {
1755 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1756 new_block->idstr);
1757 abort();
1758 }
1759 }
1760 rcu_read_unlock();
1761 }
1762
1763 /* Called with iothread lock held. */
1764 void qemu_ram_unset_idstr(RAMBlock *block)
1765 {
1766 /* FIXME: arch_init.c assumes that this is not called throughout
1767 * migration. Ignore the problem since hot-unplug during migration
1768 * does not work anyway.
1769 */
1770 if (block) {
1771 memset(block->idstr, 0, sizeof(block->idstr));
1772 }
1773 }
1774
1775 size_t qemu_ram_pagesize(RAMBlock *rb)
1776 {
1777 return rb->page_size;
1778 }
1779
1780 /* Returns the largest size of page in use */
1781 size_t qemu_ram_pagesize_largest(void)
1782 {
1783 RAMBlock *block;
1784 size_t largest = 0;
1785
1786 RAMBLOCK_FOREACH(block) {
1787 largest = MAX(largest, qemu_ram_pagesize(block));
1788 }
1789
1790 return largest;
1791 }
1792
1793 static int memory_try_enable_merging(void *addr, size_t len)
1794 {
1795 if (!machine_mem_merge(current_machine)) {
1796 /* disabled by the user */
1797 return 0;
1798 }
1799
1800 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1801 }
1802
1803 /* Only legal before guest might have detected the memory size: e.g. on
1804 * incoming migration, or right after reset.
1805 *
1806 * As memory core doesn't know how is memory accessed, it is up to
1807 * resize callback to update device state and/or add assertions to detect
1808 * misuse, if necessary.
1809 */
1810 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1811 {
1812 assert(block);
1813
1814 newsize = HOST_PAGE_ALIGN(newsize);
1815
1816 if (block->used_length == newsize) {
1817 return 0;
1818 }
1819
1820 if (!(block->flags & RAM_RESIZEABLE)) {
1821 error_setg_errno(errp, EINVAL,
1822 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1823 " in != 0x" RAM_ADDR_FMT, block->idstr,
1824 newsize, block->used_length);
1825 return -EINVAL;
1826 }
1827
1828 if (block->max_length < newsize) {
1829 error_setg_errno(errp, EINVAL,
1830 "Length too large: %s: 0x" RAM_ADDR_FMT
1831 " > 0x" RAM_ADDR_FMT, block->idstr,
1832 newsize, block->max_length);
1833 return -EINVAL;
1834 }
1835
1836 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1837 block->used_length = newsize;
1838 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1839 DIRTY_CLIENTS_ALL);
1840 memory_region_set_size(block->mr, newsize);
1841 if (block->resized) {
1842 block->resized(block->idstr, newsize, block->host);
1843 }
1844 return 0;
1845 }
1846
1847 /* Called with ram_list.mutex held */
1848 static void dirty_memory_extend(ram_addr_t old_ram_size,
1849 ram_addr_t new_ram_size)
1850 {
1851 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1852 DIRTY_MEMORY_BLOCK_SIZE);
1853 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1854 DIRTY_MEMORY_BLOCK_SIZE);
1855 int i;
1856
1857 /* Only need to extend if block count increased */
1858 if (new_num_blocks <= old_num_blocks) {
1859 return;
1860 }
1861
1862 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1863 DirtyMemoryBlocks *old_blocks;
1864 DirtyMemoryBlocks *new_blocks;
1865 int j;
1866
1867 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1868 new_blocks = g_malloc(sizeof(*new_blocks) +
1869 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1870
1871 if (old_num_blocks) {
1872 memcpy(new_blocks->blocks, old_blocks->blocks,
1873 old_num_blocks * sizeof(old_blocks->blocks[0]));
1874 }
1875
1876 for (j = old_num_blocks; j < new_num_blocks; j++) {
1877 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1878 }
1879
1880 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1881
1882 if (old_blocks) {
1883 g_free_rcu(old_blocks, rcu);
1884 }
1885 }
1886 }
1887
1888 static void ram_block_add(RAMBlock *new_block, Error **errp)
1889 {
1890 RAMBlock *block;
1891 RAMBlock *last_block = NULL;
1892 ram_addr_t old_ram_size, new_ram_size;
1893 Error *err = NULL;
1894
1895 old_ram_size = last_ram_page();
1896
1897 qemu_mutex_lock_ramlist();
1898 new_block->offset = find_ram_offset(new_block->max_length);
1899
1900 if (!new_block->host) {
1901 if (xen_enabled()) {
1902 xen_ram_alloc(new_block->offset, new_block->max_length,
1903 new_block->mr, &err);
1904 if (err) {
1905 error_propagate(errp, err);
1906 qemu_mutex_unlock_ramlist();
1907 return;
1908 }
1909 } else {
1910 new_block->host = phys_mem_alloc(new_block->max_length,
1911 &new_block->mr->align);
1912 if (!new_block->host) {
1913 error_setg_errno(errp, errno,
1914 "cannot set up guest memory '%s'",
1915 memory_region_name(new_block->mr));
1916 qemu_mutex_unlock_ramlist();
1917 return;
1918 }
1919 memory_try_enable_merging(new_block->host, new_block->max_length);
1920 }
1921 }
1922
1923 new_ram_size = MAX(old_ram_size,
1924 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1925 if (new_ram_size > old_ram_size) {
1926 dirty_memory_extend(old_ram_size, new_ram_size);
1927 }
1928 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1929 * QLIST (which has an RCU-friendly variant) does not have insertion at
1930 * tail, so save the last element in last_block.
1931 */
1932 RAMBLOCK_FOREACH(block) {
1933 last_block = block;
1934 if (block->max_length < new_block->max_length) {
1935 break;
1936 }
1937 }
1938 if (block) {
1939 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1940 } else if (last_block) {
1941 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1942 } else { /* list is empty */
1943 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1944 }
1945 ram_list.mru_block = NULL;
1946
1947 /* Write list before version */
1948 smp_wmb();
1949 ram_list.version++;
1950 qemu_mutex_unlock_ramlist();
1951
1952 cpu_physical_memory_set_dirty_range(new_block->offset,
1953 new_block->used_length,
1954 DIRTY_CLIENTS_ALL);
1955
1956 if (new_block->host) {
1957 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1958 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1959 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1960 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1961 ram_block_notify_add(new_block->host, new_block->max_length);
1962 }
1963 }
1964
1965 #ifdef __linux__
1966 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1967 bool share, int fd,
1968 Error **errp)
1969 {
1970 RAMBlock *new_block;
1971 Error *local_err = NULL;
1972 int64_t file_size;
1973
1974 if (xen_enabled()) {
1975 error_setg(errp, "-mem-path not supported with Xen");
1976 return NULL;
1977 }
1978
1979 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1980 error_setg(errp,
1981 "host lacks kvm mmu notifiers, -mem-path unsupported");
1982 return NULL;
1983 }
1984
1985 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1986 /*
1987 * file_ram_alloc() needs to allocate just like
1988 * phys_mem_alloc, but we haven't bothered to provide
1989 * a hook there.
1990 */
1991 error_setg(errp,
1992 "-mem-path not supported with this accelerator");
1993 return NULL;
1994 }
1995
1996 size = HOST_PAGE_ALIGN(size);
1997 file_size = get_file_size(fd);
1998 if (file_size > 0 && file_size < size) {
1999 error_setg(errp, "backing store %s size 0x%" PRIx64
2000 " does not match 'size' option 0x" RAM_ADDR_FMT,
2001 mem_path, file_size, size);
2002 return NULL;
2003 }
2004
2005 new_block = g_malloc0(sizeof(*new_block));
2006 new_block->mr = mr;
2007 new_block->used_length = size;
2008 new_block->max_length = size;
2009 new_block->flags = share ? RAM_SHARED : 0;
2010 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2011 if (!new_block->host) {
2012 g_free(new_block);
2013 return NULL;
2014 }
2015
2016 ram_block_add(new_block, &local_err);
2017 if (local_err) {
2018 g_free(new_block);
2019 error_propagate(errp, local_err);
2020 return NULL;
2021 }
2022 return new_block;
2023
2024 }
2025
2026
2027 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2028 bool share, const char *mem_path,
2029 Error **errp)
2030 {
2031 int fd;
2032 bool created;
2033 RAMBlock *block;
2034
2035 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2036 if (fd < 0) {
2037 return NULL;
2038 }
2039
2040 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2041 if (!block) {
2042 if (created) {
2043 unlink(mem_path);
2044 }
2045 close(fd);
2046 return NULL;
2047 }
2048
2049 return block;
2050 }
2051 #endif
2052
2053 static
2054 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2055 void (*resized)(const char*,
2056 uint64_t length,
2057 void *host),
2058 void *host, bool resizeable,
2059 MemoryRegion *mr, Error **errp)
2060 {
2061 RAMBlock *new_block;
2062 Error *local_err = NULL;
2063
2064 size = HOST_PAGE_ALIGN(size);
2065 max_size = HOST_PAGE_ALIGN(max_size);
2066 new_block = g_malloc0(sizeof(*new_block));
2067 new_block->mr = mr;
2068 new_block->resized = resized;
2069 new_block->used_length = size;
2070 new_block->max_length = max_size;
2071 assert(max_size >= size);
2072 new_block->fd = -1;
2073 new_block->page_size = getpagesize();
2074 new_block->host = host;
2075 if (host) {
2076 new_block->flags |= RAM_PREALLOC;
2077 }
2078 if (resizeable) {
2079 new_block->flags |= RAM_RESIZEABLE;
2080 }
2081 ram_block_add(new_block, &local_err);
2082 if (local_err) {
2083 g_free(new_block);
2084 error_propagate(errp, local_err);
2085 return NULL;
2086 }
2087 return new_block;
2088 }
2089
2090 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2091 MemoryRegion *mr, Error **errp)
2092 {
2093 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
2094 }
2095
2096 RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
2097 {
2098 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
2099 }
2100
2101 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2102 void (*resized)(const char*,
2103 uint64_t length,
2104 void *host),
2105 MemoryRegion *mr, Error **errp)
2106 {
2107 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
2108 }
2109
2110 static void reclaim_ramblock(RAMBlock *block)
2111 {
2112 if (block->flags & RAM_PREALLOC) {
2113 ;
2114 } else if (xen_enabled()) {
2115 xen_invalidate_map_cache_entry(block->host);
2116 #ifndef _WIN32
2117 } else if (block->fd >= 0) {
2118 qemu_ram_munmap(block->host, block->max_length);
2119 close(block->fd);
2120 #endif
2121 } else {
2122 qemu_anon_ram_free(block->host, block->max_length);
2123 }
2124 g_free(block);
2125 }
2126
2127 void qemu_ram_free(RAMBlock *block)
2128 {
2129 if (!block) {
2130 return;
2131 }
2132
2133 if (block->host) {
2134 ram_block_notify_remove(block->host, block->max_length);
2135 }
2136
2137 qemu_mutex_lock_ramlist();
2138 QLIST_REMOVE_RCU(block, next);
2139 ram_list.mru_block = NULL;
2140 /* Write list before version */
2141 smp_wmb();
2142 ram_list.version++;
2143 call_rcu(block, reclaim_ramblock, rcu);
2144 qemu_mutex_unlock_ramlist();
2145 }
2146
2147 #ifndef _WIN32
2148 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2149 {
2150 RAMBlock *block;
2151 ram_addr_t offset;
2152 int flags;
2153 void *area, *vaddr;
2154
2155 RAMBLOCK_FOREACH(block) {
2156 offset = addr - block->offset;
2157 if (offset < block->max_length) {
2158 vaddr = ramblock_ptr(block, offset);
2159 if (block->flags & RAM_PREALLOC) {
2160 ;
2161 } else if (xen_enabled()) {
2162 abort();
2163 } else {
2164 flags = MAP_FIXED;
2165 if (block->fd >= 0) {
2166 flags |= (block->flags & RAM_SHARED ?
2167 MAP_SHARED : MAP_PRIVATE);
2168 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2169 flags, block->fd, offset);
2170 } else {
2171 /*
2172 * Remap needs to match alloc. Accelerators that
2173 * set phys_mem_alloc never remap. If they did,
2174 * we'd need a remap hook here.
2175 */
2176 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2177
2178 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2179 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2180 flags, -1, 0);
2181 }
2182 if (area != vaddr) {
2183 fprintf(stderr, "Could not remap addr: "
2184 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
2185 length, addr);
2186 exit(1);
2187 }
2188 memory_try_enable_merging(vaddr, length);
2189 qemu_ram_setup_dump(vaddr, length);
2190 }
2191 }
2192 }
2193 }
2194 #endif /* !_WIN32 */
2195
2196 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2197 * This should not be used for general purpose DMA. Use address_space_map
2198 * or address_space_rw instead. For local memory (e.g. video ram) that the
2199 * device owns, use memory_region_get_ram_ptr.
2200 *
2201 * Called within RCU critical section.
2202 */
2203 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2204 {
2205 RAMBlock *block = ram_block;
2206
2207 if (block == NULL) {
2208 block = qemu_get_ram_block(addr);
2209 addr -= block->offset;
2210 }
2211
2212 if (xen_enabled() && block->host == NULL) {
2213 /* We need to check if the requested address is in the RAM
2214 * because we don't want to map the entire memory in QEMU.
2215 * In that case just map until the end of the page.
2216 */
2217 if (block->offset == 0) {
2218 return xen_map_cache(addr, 0, 0, false);
2219 }
2220
2221 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2222 }
2223 return ramblock_ptr(block, addr);
2224 }
2225
2226 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2227 * but takes a size argument.
2228 *
2229 * Called within RCU critical section.
2230 */
2231 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2232 hwaddr *size, bool lock)
2233 {
2234 RAMBlock *block = ram_block;
2235 if (*size == 0) {
2236 return NULL;
2237 }
2238
2239 if (block == NULL) {
2240 block = qemu_get_ram_block(addr);
2241 addr -= block->offset;
2242 }
2243 *size = MIN(*size, block->max_length - addr);
2244
2245 if (xen_enabled() && block->host == NULL) {
2246 /* We need to check if the requested address is in the RAM
2247 * because we don't want to map the entire memory in QEMU.
2248 * In that case just map the requested area.
2249 */
2250 if (block->offset == 0) {
2251 return xen_map_cache(addr, *size, lock, lock);
2252 }
2253
2254 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2255 }
2256
2257 return ramblock_ptr(block, addr);
2258 }
2259
2260 /*
2261 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2262 * in that RAMBlock.
2263 *
2264 * ptr: Host pointer to look up
2265 * round_offset: If true round the result offset down to a page boundary
2266 * *ram_addr: set to result ram_addr
2267 * *offset: set to result offset within the RAMBlock
2268 *
2269 * Returns: RAMBlock (or NULL if not found)
2270 *
2271 * By the time this function returns, the returned pointer is not protected
2272 * by RCU anymore. If the caller is not within an RCU critical section and
2273 * does not hold the iothread lock, it must have other means of protecting the
2274 * pointer, such as a reference to the region that includes the incoming
2275 * ram_addr_t.
2276 */
2277 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2278 ram_addr_t *offset)
2279 {
2280 RAMBlock *block;
2281 uint8_t *host = ptr;
2282
2283 if (xen_enabled()) {
2284 ram_addr_t ram_addr;
2285 rcu_read_lock();
2286 ram_addr = xen_ram_addr_from_mapcache(ptr);
2287 block = qemu_get_ram_block(ram_addr);
2288 if (block) {
2289 *offset = ram_addr - block->offset;
2290 }
2291 rcu_read_unlock();
2292 return block;
2293 }
2294
2295 rcu_read_lock();
2296 block = atomic_rcu_read(&ram_list.mru_block);
2297 if (block && block->host && host - block->host < block->max_length) {
2298 goto found;
2299 }
2300
2301 RAMBLOCK_FOREACH(block) {
2302 /* This case append when the block is not mapped. */
2303 if (block->host == NULL) {
2304 continue;
2305 }
2306 if (host - block->host < block->max_length) {
2307 goto found;
2308 }
2309 }
2310
2311 rcu_read_unlock();
2312 return NULL;
2313
2314 found:
2315 *offset = (host - block->host);
2316 if (round_offset) {
2317 *offset &= TARGET_PAGE_MASK;
2318 }
2319 rcu_read_unlock();
2320 return block;
2321 }
2322
2323 /*
2324 * Finds the named RAMBlock
2325 *
2326 * name: The name of RAMBlock to find
2327 *
2328 * Returns: RAMBlock (or NULL if not found)
2329 */
2330 RAMBlock *qemu_ram_block_by_name(const char *name)
2331 {
2332 RAMBlock *block;
2333
2334 RAMBLOCK_FOREACH(block) {
2335 if (!strcmp(name, block->idstr)) {
2336 return block;
2337 }
2338 }
2339
2340 return NULL;
2341 }
2342
2343 /* Some of the softmmu routines need to translate from a host pointer
2344 (typically a TLB entry) back to a ram offset. */
2345 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2346 {
2347 RAMBlock *block;
2348 ram_addr_t offset;
2349
2350 block = qemu_ram_block_from_host(ptr, false, &offset);
2351 if (!block) {
2352 return RAM_ADDR_INVALID;
2353 }
2354
2355 return block->offset + offset;
2356 }
2357
2358 /* Called within RCU critical section. */
2359 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2360 CPUState *cpu,
2361 vaddr mem_vaddr,
2362 ram_addr_t ram_addr,
2363 unsigned size)
2364 {
2365 ndi->cpu = cpu;
2366 ndi->ram_addr = ram_addr;
2367 ndi->mem_vaddr = mem_vaddr;
2368 ndi->size = size;
2369 ndi->locked = false;
2370
2371 assert(tcg_enabled());
2372 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2373 ndi->locked = true;
2374 tb_lock();
2375 tb_invalidate_phys_page_fast(ram_addr, size);
2376 }
2377 }
2378
2379 /* Called within RCU critical section. */
2380 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2381 {
2382 if (ndi->locked) {
2383 tb_unlock();
2384 }
2385
2386 /* Set both VGA and migration bits for simplicity and to remove
2387 * the notdirty callback faster.
2388 */
2389 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2390 DIRTY_CLIENTS_NOCODE);
2391 /* we remove the notdirty callback only if the code has been
2392 flushed */
2393 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2394 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2395 }
2396 }
2397
2398 /* Called within RCU critical section. */
2399 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2400 uint64_t val, unsigned size)
2401 {
2402 NotDirtyInfo ndi;
2403
2404 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2405 ram_addr, size);
2406
2407 switch (size) {
2408 case 1:
2409 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2410 break;
2411 case 2:
2412 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2413 break;
2414 case 4:
2415 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2416 break;
2417 case 8:
2418 stq_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2419 break;
2420 default:
2421 abort();
2422 }
2423 memory_notdirty_write_complete(&ndi);
2424 }
2425
2426 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2427 unsigned size, bool is_write)
2428 {
2429 return is_write;
2430 }
2431
2432 static const MemoryRegionOps notdirty_mem_ops = {
2433 .write = notdirty_mem_write,
2434 .valid.accepts = notdirty_mem_accepts,
2435 .endianness = DEVICE_NATIVE_ENDIAN,
2436 .valid = {
2437 .min_access_size = 1,
2438 .max_access_size = 8,
2439 .unaligned = false,
2440 },
2441 .impl = {
2442 .min_access_size = 1,
2443 .max_access_size = 8,
2444 .unaligned = false,
2445 },
2446 };
2447
2448 /* Generate a debug exception if a watchpoint has been hit. */
2449 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2450 {
2451 CPUState *cpu = current_cpu;
2452 CPUClass *cc = CPU_GET_CLASS(cpu);
2453 target_ulong vaddr;
2454 CPUWatchpoint *wp;
2455
2456 assert(tcg_enabled());
2457 if (cpu->watchpoint_hit) {
2458 /* We re-entered the check after replacing the TB. Now raise
2459 * the debug interrupt so that is will trigger after the
2460 * current instruction. */
2461 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2462 return;
2463 }
2464 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2465 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2466 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2467 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2468 && (wp->flags & flags)) {
2469 if (flags == BP_MEM_READ) {
2470 wp->flags |= BP_WATCHPOINT_HIT_READ;
2471 } else {
2472 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2473 }
2474 wp->hitaddr = vaddr;
2475 wp->hitattrs = attrs;
2476 if (!cpu->watchpoint_hit) {
2477 if (wp->flags & BP_CPU &&
2478 !cc->debug_check_watchpoint(cpu, wp)) {
2479 wp->flags &= ~BP_WATCHPOINT_HIT;
2480 continue;
2481 }
2482 cpu->watchpoint_hit = wp;
2483
2484 /* Both tb_lock and iothread_mutex will be reset when
2485 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2486 * back into the cpu_exec main loop.
2487 */
2488 tb_lock();
2489 tb_check_watchpoint(cpu);
2490 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2491 cpu->exception_index = EXCP_DEBUG;
2492 cpu_loop_exit(cpu);
2493 } else {
2494 /* Force execution of one insn next time. */
2495 cpu->cflags_next_tb = 1 | curr_cflags();
2496 cpu_loop_exit_noexc(cpu);
2497 }
2498 }
2499 } else {
2500 wp->flags &= ~BP_WATCHPOINT_HIT;
2501 }
2502 }
2503 }
2504
2505 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2506 so these check for a hit then pass through to the normal out-of-line
2507 phys routines. */
2508 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2509 unsigned size, MemTxAttrs attrs)
2510 {
2511 MemTxResult res;
2512 uint64_t data;
2513 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2514 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2515
2516 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2517 switch (size) {
2518 case 1:
2519 data = address_space_ldub(as, addr, attrs, &res);
2520 break;
2521 case 2:
2522 data = address_space_lduw(as, addr, attrs, &res);
2523 break;
2524 case 4:
2525 data = address_space_ldl(as, addr, attrs, &res);
2526 break;
2527 case 8:
2528 data = address_space_ldq(as, addr, attrs, &res);
2529 break;
2530 default: abort();
2531 }
2532 *pdata = data;
2533 return res;
2534 }
2535
2536 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2537 uint64_t val, unsigned size,
2538 MemTxAttrs attrs)
2539 {
2540 MemTxResult res;
2541 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2542 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2543
2544 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2545 switch (size) {
2546 case 1:
2547 address_space_stb(as, addr, val, attrs, &res);
2548 break;
2549 case 2:
2550 address_space_stw(as, addr, val, attrs, &res);
2551 break;
2552 case 4:
2553 address_space_stl(as, addr, val, attrs, &res);
2554 break;
2555 case 8:
2556 address_space_stq(as, addr, val, attrs, &res);
2557 break;
2558 default: abort();
2559 }
2560 return res;
2561 }
2562
2563 static const MemoryRegionOps watch_mem_ops = {
2564 .read_with_attrs = watch_mem_read,
2565 .write_with_attrs = watch_mem_write,
2566 .endianness = DEVICE_NATIVE_ENDIAN,
2567 .valid = {
2568 .min_access_size = 1,
2569 .max_access_size = 8,
2570 .unaligned = false,
2571 },
2572 .impl = {
2573 .min_access_size = 1,
2574 .max_access_size = 8,
2575 .unaligned = false,
2576 },
2577 };
2578
2579 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2580 MemTxAttrs attrs, uint8_t *buf, int len);
2581 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2582 const uint8_t *buf, int len);
2583 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2584 bool is_write);
2585
2586 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2587 unsigned len, MemTxAttrs attrs)
2588 {
2589 subpage_t *subpage = opaque;
2590 uint8_t buf[8];
2591 MemTxResult res;
2592
2593 #if defined(DEBUG_SUBPAGE)
2594 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2595 subpage, len, addr);
2596 #endif
2597 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2598 if (res) {
2599 return res;
2600 }
2601 switch (len) {
2602 case 1:
2603 *data = ldub_p(buf);
2604 return MEMTX_OK;
2605 case 2:
2606 *data = lduw_p(buf);
2607 return MEMTX_OK;
2608 case 4:
2609 *data = ldl_p(buf);
2610 return MEMTX_OK;
2611 case 8:
2612 *data = ldq_p(buf);
2613 return MEMTX_OK;
2614 default:
2615 abort();
2616 }
2617 }
2618
2619 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2620 uint64_t value, unsigned len, MemTxAttrs attrs)
2621 {
2622 subpage_t *subpage = opaque;
2623 uint8_t buf[8];
2624
2625 #if defined(DEBUG_SUBPAGE)
2626 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2627 " value %"PRIx64"\n",
2628 __func__, subpage, len, addr, value);
2629 #endif
2630 switch (len) {
2631 case 1:
2632 stb_p(buf, value);
2633 break;
2634 case 2:
2635 stw_p(buf, value);
2636 break;
2637 case 4:
2638 stl_p(buf, value);
2639 break;
2640 case 8:
2641 stq_p(buf, value);
2642 break;
2643 default:
2644 abort();
2645 }
2646 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2647 }
2648
2649 static bool subpage_accepts(void *opaque, hwaddr addr,
2650 unsigned len, bool is_write)
2651 {
2652 subpage_t *subpage = opaque;
2653 #if defined(DEBUG_SUBPAGE)
2654 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2655 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2656 #endif
2657
2658 return flatview_access_valid(subpage->fv, addr + subpage->base,
2659 len, is_write);
2660 }
2661
2662 static const MemoryRegionOps subpage_ops = {
2663 .read_with_attrs = subpage_read,
2664 .write_with_attrs = subpage_write,
2665 .impl.min_access_size = 1,
2666 .impl.max_access_size = 8,
2667 .valid.min_access_size = 1,
2668 .valid.max_access_size = 8,
2669 .valid.accepts = subpage_accepts,
2670 .endianness = DEVICE_NATIVE_ENDIAN,
2671 };
2672
2673 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2674 uint16_t section)
2675 {
2676 int idx, eidx;
2677
2678 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2679 return -1;
2680 idx = SUBPAGE_IDX(start);
2681 eidx = SUBPAGE_IDX(end);
2682 #if defined(DEBUG_SUBPAGE)
2683 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2684 __func__, mmio, start, end, idx, eidx, section);
2685 #endif
2686 for (; idx <= eidx; idx++) {
2687 mmio->sub_section[idx] = section;
2688 }
2689
2690 return 0;
2691 }
2692
2693 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2694 {
2695 subpage_t *mmio;
2696
2697 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2698 mmio->fv = fv;
2699 mmio->base = base;
2700 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2701 NULL, TARGET_PAGE_SIZE);
2702 mmio->iomem.subpage = true;
2703 #if defined(DEBUG_SUBPAGE)
2704 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2705 mmio, base, TARGET_PAGE_SIZE);
2706 #endif
2707 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2708
2709 return mmio;
2710 }
2711
2712 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2713 {
2714 assert(fv);
2715 MemoryRegionSection section = {
2716 .fv = fv,
2717 .mr = mr,
2718 .offset_within_address_space = 0,
2719 .offset_within_region = 0,
2720 .size = int128_2_64(),
2721 };
2722
2723 return phys_section_add(map, &section);
2724 }
2725
2726 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2727 {
2728 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2729 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2730 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2731 MemoryRegionSection *sections = d->map.sections;
2732
2733 return sections[index & ~TARGET_PAGE_MASK].mr;
2734 }
2735
2736 static void io_mem_init(void)
2737 {
2738 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2739 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2740 NULL, UINT64_MAX);
2741
2742 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2743 * which can be called without the iothread mutex.
2744 */
2745 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2746 NULL, UINT64_MAX);
2747 memory_region_clear_global_locking(&io_mem_notdirty);
2748
2749 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2750 NULL, UINT64_MAX);
2751 }
2752
2753 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2754 {
2755 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2756 uint16_t n;
2757
2758 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2759 assert(n == PHYS_SECTION_UNASSIGNED);
2760 n = dummy_section(&d->map, fv, &io_mem_notdirty);
2761 assert(n == PHYS_SECTION_NOTDIRTY);
2762 n = dummy_section(&d->map, fv, &io_mem_rom);
2763 assert(n == PHYS_SECTION_ROM);
2764 n = dummy_section(&d->map, fv, &io_mem_watch);
2765 assert(n == PHYS_SECTION_WATCH);
2766
2767 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2768
2769 return d;
2770 }
2771
2772 void address_space_dispatch_free(AddressSpaceDispatch *d)
2773 {
2774 phys_sections_free(&d->map);
2775 g_free(d);
2776 }
2777
2778 static void tcg_commit(MemoryListener *listener)
2779 {
2780 CPUAddressSpace *cpuas;
2781 AddressSpaceDispatch *d;
2782
2783 /* since each CPU stores ram addresses in its TLB cache, we must
2784 reset the modified entries */
2785 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2786 cpu_reloading_memory_map();
2787 /* The CPU and TLB are protected by the iothread lock.
2788 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2789 * may have split the RCU critical section.
2790 */
2791 d = address_space_to_dispatch(cpuas->as);
2792 atomic_rcu_set(&cpuas->memory_dispatch, d);
2793 tlb_flush(cpuas->cpu);
2794 }
2795
2796 static void memory_map_init(void)
2797 {
2798 system_memory = g_malloc(sizeof(*system_memory));
2799
2800 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2801 address_space_init(&address_space_memory, system_memory, "memory");
2802
2803 system_io = g_malloc(sizeof(*system_io));
2804 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2805 65536);
2806 address_space_init(&address_space_io, system_io, "I/O");
2807 }
2808
2809 MemoryRegion *get_system_memory(void)
2810 {
2811 return system_memory;
2812 }
2813
2814 MemoryRegion *get_system_io(void)
2815 {
2816 return system_io;
2817 }
2818
2819 #endif /* !defined(CONFIG_USER_ONLY) */
2820
2821 /* physical memory access (slow version, mainly for debug) */
2822 #if defined(CONFIG_USER_ONLY)
2823 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2824 uint8_t *buf, int len, int is_write)
2825 {
2826 int l, flags;
2827 target_ulong page;
2828 void * p;
2829
2830 while (len > 0) {
2831 page = addr & TARGET_PAGE_MASK;
2832 l = (page + TARGET_PAGE_SIZE) - addr;
2833 if (l > len)
2834 l = len;
2835 flags = page_get_flags(page);
2836 if (!(flags & PAGE_VALID))
2837 return -1;
2838 if (is_write) {
2839 if (!(flags & PAGE_WRITE))
2840 return -1;
2841 /* XXX: this code should not depend on lock_user */
2842 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2843 return -1;
2844 memcpy(p, buf, l);
2845 unlock_user(p, addr, l);
2846 } else {
2847 if (!(flags & PAGE_READ))
2848 return -1;
2849 /* XXX: this code should not depend on lock_user */
2850 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2851 return -1;
2852 memcpy(buf, p, l);
2853 unlock_user(p, addr, 0);
2854 }
2855 len -= l;
2856 buf += l;
2857 addr += l;
2858 }
2859 return 0;
2860 }
2861
2862 #else
2863
2864 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2865 hwaddr length)
2866 {
2867 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2868 addr += memory_region_get_ram_addr(mr);
2869
2870 /* No early return if dirty_log_mask is or becomes 0, because
2871 * cpu_physical_memory_set_dirty_range will still call
2872 * xen_modified_memory.
2873 */
2874 if (dirty_log_mask) {
2875 dirty_log_mask =
2876 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2877 }
2878 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2879 assert(tcg_enabled());
2880 tb_lock();
2881 tb_invalidate_phys_range(addr, addr + length);
2882 tb_unlock();
2883 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2884 }
2885 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2886 }
2887
2888 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2889 {
2890 unsigned access_size_max = mr->ops->valid.max_access_size;
2891
2892 /* Regions are assumed to support 1-4 byte accesses unless
2893 otherwise specified. */
2894 if (access_size_max == 0) {
2895 access_size_max = 4;
2896 }
2897
2898 /* Bound the maximum access by the alignment of the address. */
2899 if (!mr->ops->impl.unaligned) {
2900 unsigned align_size_max = addr & -addr;
2901 if (align_size_max != 0 && align_size_max < access_size_max) {
2902 access_size_max = align_size_max;
2903 }
2904 }
2905
2906 /* Don't attempt accesses larger than the maximum. */
2907 if (l > access_size_max) {
2908 l = access_size_max;
2909 }
2910 l = pow2floor(l);
2911
2912 return l;
2913 }
2914
2915 static bool prepare_mmio_access(MemoryRegion *mr)
2916 {
2917 bool unlocked = !qemu_mutex_iothread_locked();
2918 bool release_lock = false;
2919
2920 if (unlocked && mr->global_locking) {
2921 qemu_mutex_lock_iothread();
2922 unlocked = false;
2923 release_lock = true;
2924 }
2925 if (mr->flush_coalesced_mmio) {
2926 if (unlocked) {
2927 qemu_mutex_lock_iothread();
2928 }
2929 qemu_flush_coalesced_mmio_buffer();
2930 if (unlocked) {
2931 qemu_mutex_unlock_iothread();
2932 }
2933 }
2934
2935 return release_lock;
2936 }
2937
2938 /* Called within RCU critical section. */
2939 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2940 MemTxAttrs attrs,
2941 const uint8_t *buf,
2942 int len, hwaddr addr1,
2943 hwaddr l, MemoryRegion *mr)
2944 {
2945 uint8_t *ptr;
2946 uint64_t val;
2947 MemTxResult result = MEMTX_OK;
2948 bool release_lock = false;
2949
2950 for (;;) {
2951 if (!memory_access_is_direct(mr, true)) {
2952 release_lock |= prepare_mmio_access(mr);
2953 l = memory_access_size(mr, l, addr1);
2954 /* XXX: could force current_cpu to NULL to avoid
2955 potential bugs */
2956 switch (l) {
2957 case 8:
2958 /* 64 bit write access */
2959 val = ldq_p(buf);
2960 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2961 attrs);
2962 break;
2963 case 4:
2964 /* 32 bit write access */
2965 val = (uint32_t)ldl_p(buf);
2966 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2967 attrs);
2968 break;
2969 case 2:
2970 /* 16 bit write access */
2971 val = lduw_p(buf);
2972 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2973 attrs);
2974 break;
2975 case 1:
2976 /* 8 bit write access */
2977 val = ldub_p(buf);
2978 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2979 attrs);
2980 break;
2981 default:
2982 abort();
2983 }
2984 } else {
2985 /* RAM case */
2986 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2987 memcpy(ptr, buf, l);
2988 invalidate_and_set_dirty(mr, addr1, l);
2989 }
2990
2991 if (release_lock) {
2992 qemu_mutex_unlock_iothread();
2993 release_lock = false;
2994 }
2995
2996 len -= l;
2997 buf += l;
2998 addr += l;
2999
3000 if (!len) {
3001 break;
3002 }
3003
3004 l = len;
3005 mr = flatview_translate(fv, addr, &addr1, &l, true);
3006 }
3007
3008 return result;
3009 }
3010
3011 /* Called from RCU critical section. */
3012 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3013 const uint8_t *buf, int len)
3014 {
3015 hwaddr l;
3016 hwaddr addr1;
3017 MemoryRegion *mr;
3018 MemTxResult result = MEMTX_OK;
3019
3020 l = len;
3021 mr = flatview_translate(fv, addr, &addr1, &l, true);
3022 result = flatview_write_continue(fv, addr, attrs, buf, len,
3023 addr1, l, mr);
3024
3025 return result;
3026 }
3027
3028 /* Called within RCU critical section. */
3029 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3030 MemTxAttrs attrs, uint8_t *buf,
3031 int len, hwaddr addr1, hwaddr l,
3032 MemoryRegion *mr)
3033 {
3034 uint8_t *ptr;
3035 uint64_t val;
3036 MemTxResult result = MEMTX_OK;
3037 bool release_lock = false;
3038
3039 for (;;) {
3040 if (!memory_access_is_direct(mr, false)) {
3041 /* I/O case */
3042 release_lock |= prepare_mmio_access(mr);
3043 l = memory_access_size(mr, l, addr1);
3044 switch (l) {
3045 case 8:
3046 /* 64 bit read access */
3047 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
3048 attrs);
3049 stq_p(buf, val);
3050 break;
3051 case 4:
3052 /* 32 bit read access */
3053 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3054 attrs);
3055 stl_p(buf, val);
3056 break;
3057 case 2:
3058 /* 16 bit read access */
3059 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3060 attrs);
3061 stw_p(buf, val);
3062 break;
3063 case 1:
3064 /* 8 bit read access */
3065 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3066 attrs);
3067 stb_p(buf, val);
3068 break;
3069 default:
3070 abort();
3071 }
3072 } else {
3073 /* RAM case */
3074 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3075 memcpy(buf, ptr, l);
3076 }
3077
3078 if (release_lock) {
3079 qemu_mutex_unlock_iothread();
3080 release_lock = false;
3081 }
3082
3083 len -= l;
3084 buf += l;
3085 addr += l;
3086
3087 if (!len) {
3088 break;
3089 }
3090
3091 l = len;
3092 mr = flatview_translate(fv, addr, &addr1, &l, false);
3093 }
3094
3095 return result;
3096 }
3097
3098 /* Called from RCU critical section. */
3099 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3100 MemTxAttrs attrs, uint8_t *buf, int len)
3101 {
3102 hwaddr l;
3103 hwaddr addr1;
3104 MemoryRegion *mr;
3105
3106 l = len;
3107 mr = flatview_translate(fv, addr, &addr1, &l, false);
3108 return flatview_read_continue(fv, addr, attrs, buf, len,
3109 addr1, l, mr);
3110 }
3111
3112 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3113 MemTxAttrs attrs, uint8_t *buf, int len)
3114 {
3115 MemTxResult result = MEMTX_OK;
3116 FlatView *fv;
3117
3118 if (len > 0) {
3119 rcu_read_lock();
3120 fv = address_space_to_flatview(as);
3121 result = flatview_read(fv, addr, attrs, buf, len);
3122 rcu_read_unlock();
3123 }
3124
3125 return result;
3126 }
3127
3128 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3129 MemTxAttrs attrs,
3130 const uint8_t *buf, int len)
3131 {
3132 MemTxResult result = MEMTX_OK;
3133 FlatView *fv;
3134
3135 if (len > 0) {
3136 rcu_read_lock();
3137 fv = address_space_to_flatview(as);
3138 result = flatview_write(fv, addr, attrs, buf, len);
3139 rcu_read_unlock();
3140 }
3141
3142 return result;
3143 }
3144
3145 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3146 uint8_t *buf, int len, bool is_write)
3147 {
3148 if (is_write) {
3149 return address_space_write(as, addr, attrs, buf, len);
3150 } else {
3151 return address_space_read_full(as, addr, attrs, buf, len);
3152 }
3153 }
3154
3155 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3156 int len, int is_write)
3157 {
3158 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3159 buf, len, is_write);
3160 }
3161
3162 enum write_rom_type {
3163 WRITE_DATA,
3164 FLUSH_CACHE,
3165 };
3166
3167 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3168 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3169 {
3170 hwaddr l;
3171 uint8_t *ptr;
3172 hwaddr addr1;
3173 MemoryRegion *mr;
3174
3175 rcu_read_lock();
3176 while (len > 0) {
3177 l = len;
3178 mr = address_space_translate(as, addr, &addr1, &l, true);
3179
3180 if (!(memory_region_is_ram(mr) ||
3181 memory_region_is_romd(mr))) {
3182 l = memory_access_size(mr, l, addr1);
3183 } else {
3184 /* ROM/RAM case */
3185 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3186 switch (type) {
3187 case WRITE_DATA:
3188 memcpy(ptr, buf, l);
3189 invalidate_and_set_dirty(mr, addr1, l);
3190 break;
3191 case FLUSH_CACHE:
3192 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3193 break;
3194 }
3195 }
3196 len -= l;
3197 buf += l;
3198 addr += l;
3199 }
3200 rcu_read_unlock();
3201 }
3202
3203 /* used for ROM loading : can write in RAM and ROM */
3204 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3205 const uint8_t *buf, int len)
3206 {
3207 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3208 }
3209
3210 void cpu_flush_icache_range(hwaddr start, int len)
3211 {
3212 /*
3213 * This function should do the same thing as an icache flush that was
3214 * triggered from within the guest. For TCG we are always cache coherent,
3215 * so there is no need to flush anything. For KVM / Xen we need to flush
3216 * the host's instruction cache at least.
3217 */
3218 if (tcg_enabled()) {
3219 return;
3220 }
3221
3222 cpu_physical_memory_write_rom_internal(&address_space_memory,
3223 start, NULL, len, FLUSH_CACHE);
3224 }
3225
3226 typedef struct {
3227 MemoryRegion *mr;
3228 void *buffer;
3229 hwaddr addr;
3230 hwaddr len;
3231 bool in_use;
3232 } BounceBuffer;
3233
3234 static BounceBuffer bounce;
3235
3236 typedef struct MapClient {
3237 QEMUBH *bh;
3238 QLIST_ENTRY(MapClient) link;
3239 } MapClient;
3240
3241 QemuMutex map_client_list_lock;
3242 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3243 = QLIST_HEAD_INITIALIZER(map_client_list);
3244
3245 static void cpu_unregister_map_client_do(MapClient *client)
3246 {
3247 QLIST_REMOVE(client, link);
3248 g_free(client);
3249 }
3250
3251 static void cpu_notify_map_clients_locked(void)
3252 {
3253 MapClient *client;
3254
3255 while (!QLIST_EMPTY(&map_client_list)) {
3256 client = QLIST_FIRST(&map_client_list);
3257 qemu_bh_schedule(client->bh);
3258 cpu_unregister_map_client_do(client);
3259 }
3260 }
3261
3262 void cpu_register_map_client(QEMUBH *bh)
3263 {
3264 MapClient *client = g_malloc(sizeof(*client));
3265
3266 qemu_mutex_lock(&map_client_list_lock);
3267 client->bh = bh;
3268 QLIST_INSERT_HEAD(&map_client_list, client, link);
3269 if (!atomic_read(&bounce.in_use)) {
3270 cpu_notify_map_clients_locked();
3271 }
3272 qemu_mutex_unlock(&map_client_list_lock);
3273 }
3274
3275 void cpu_exec_init_all(void)
3276 {
3277 qemu_mutex_init(&ram_list.mutex);
3278 /* The data structures we set up here depend on knowing the page size,
3279 * so no more changes can be made after this point.
3280 * In an ideal world, nothing we did before we had finished the
3281 * machine setup would care about the target page size, and we could
3282 * do this much later, rather than requiring board models to state
3283 * up front what their requirements are.
3284 */
3285 finalize_target_page_bits();
3286 io_mem_init();
3287 memory_map_init();
3288 qemu_mutex_init(&map_client_list_lock);
3289 }
3290
3291 void cpu_unregister_map_client(QEMUBH *bh)
3292 {
3293 MapClient *client;
3294
3295 qemu_mutex_lock(&map_client_list_lock);
3296 QLIST_FOREACH(client, &map_client_list, link) {
3297 if (client->bh == bh) {
3298 cpu_unregister_map_client_do(client);
3299 break;
3300 }
3301 }
3302 qemu_mutex_unlock(&map_client_list_lock);
3303 }
3304
3305 static void cpu_notify_map_clients(void)
3306 {
3307 qemu_mutex_lock(&map_client_list_lock);
3308 cpu_notify_map_clients_locked();
3309 qemu_mutex_unlock(&map_client_list_lock);
3310 }
3311
3312 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3313 bool is_write)
3314 {
3315 MemoryRegion *mr;
3316 hwaddr l, xlat;
3317
3318 while (len > 0) {
3319 l = len;
3320 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3321 if (!memory_access_is_direct(mr, is_write)) {
3322 l = memory_access_size(mr, l, addr);
3323 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
3324 return false;
3325 }
3326 }
3327
3328 len -= l;
3329 addr += l;
3330 }
3331 return true;
3332 }
3333
3334 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3335 int len, bool is_write)
3336 {
3337 FlatView *fv;
3338 bool result;
3339
3340 rcu_read_lock();
3341 fv = address_space_to_flatview(as);
3342 result = flatview_access_valid(fv, addr, len, is_write);
3343 rcu_read_unlock();
3344 return result;
3345 }
3346
3347 static hwaddr
3348 flatview_extend_translation(FlatView *fv, hwaddr addr,
3349 hwaddr target_len,
3350 MemoryRegion *mr, hwaddr base, hwaddr len,
3351 bool is_write)
3352 {
3353 hwaddr done = 0;
3354 hwaddr xlat;
3355 MemoryRegion *this_mr;
3356
3357 for (;;) {
3358 target_len -= len;
3359 addr += len;
3360 done += len;
3361 if (target_len == 0) {
3362 return done;
3363 }
3364
3365 len = target_len;
3366 this_mr = flatview_translate(fv, addr, &xlat,
3367 &len, is_write);
3368 if (this_mr != mr || xlat != base + done) {
3369 return done;
3370 }
3371 }
3372 }
3373
3374 /* Map a physical memory region into a host virtual address.
3375 * May map a subset of the requested range, given by and returned in *plen.
3376 * May return NULL if resources needed to perform the mapping are exhausted.
3377 * Use only for reads OR writes - not for read-modify-write operations.
3378 * Use cpu_register_map_client() to know when retrying the map operation is
3379 * likely to succeed.
3380 */
3381 void *address_space_map(AddressSpace *as,
3382 hwaddr addr,
3383 hwaddr *plen,
3384 bool is_write)
3385 {
3386 hwaddr len = *plen;
3387 hwaddr l, xlat;
3388 MemoryRegion *mr;
3389 void *ptr;
3390 FlatView *fv;
3391
3392 if (len == 0) {
3393 return NULL;
3394 }
3395
3396 l = len;
3397 rcu_read_lock();
3398 fv = address_space_to_flatview(as);
3399 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3400
3401 if (!memory_access_is_direct(mr, is_write)) {
3402 if (atomic_xchg(&bounce.in_use, true)) {
3403 rcu_read_unlock();
3404 return NULL;
3405 }
3406 /* Avoid unbounded allocations */
3407 l = MIN(l, TARGET_PAGE_SIZE);
3408 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3409 bounce.addr = addr;
3410 bounce.len = l;
3411
3412 memory_region_ref(mr);
3413 bounce.mr = mr;
3414 if (!is_write) {
3415 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3416 bounce.buffer, l);
3417 }
3418
3419 rcu_read_unlock();
3420 *plen = l;
3421 return bounce.buffer;
3422 }
3423
3424
3425 memory_region_ref(mr);
3426 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3427 l, is_write);
3428 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3429 rcu_read_unlock();
3430
3431 return ptr;
3432 }
3433
3434 /* Unmaps a memory region previously mapped by address_space_map().
3435 * Will also mark the memory as dirty if is_write == 1. access_len gives
3436 * the amount of memory that was actually read or written by the caller.
3437 */
3438 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3439 int is_write, hwaddr access_len)
3440 {
3441 if (buffer != bounce.buffer) {
3442 MemoryRegion *mr;
3443 ram_addr_t addr1;
3444
3445 mr = memory_region_from_host(buffer, &addr1);
3446 assert(mr != NULL);
3447 if (is_write) {
3448 invalidate_and_set_dirty(mr, addr1, access_len);
3449 }
3450 if (xen_enabled()) {
3451 xen_invalidate_map_cache_entry(buffer);
3452 }
3453 memory_region_unref(mr);
3454 return;
3455 }
3456 if (is_write) {
3457 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3458 bounce.buffer, access_len);
3459 }
3460 qemu_vfree(bounce.buffer);
3461 bounce.buffer = NULL;
3462 memory_region_unref(bounce.mr);
3463 atomic_mb_set(&bounce.in_use, false);
3464 cpu_notify_map_clients();
3465 }
3466
3467 void *cpu_physical_memory_map(hwaddr addr,
3468 hwaddr *plen,
3469 int is_write)
3470 {
3471 return address_space_map(&address_space_memory, addr, plen, is_write);
3472 }
3473
3474 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3475 int is_write, hwaddr access_len)
3476 {
3477 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3478 }
3479
3480 #define ARG1_DECL AddressSpace *as
3481 #define ARG1 as
3482 #define SUFFIX
3483 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3484 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3485 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3486 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3487 #define RCU_READ_LOCK(...) rcu_read_lock()
3488 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3489 #include "memory_ldst.inc.c"
3490
3491 int64_t address_space_cache_init(MemoryRegionCache *cache,
3492 AddressSpace *as,
3493 hwaddr addr,
3494 hwaddr len,
3495 bool is_write)
3496 {
3497 cache->len = len;
3498 cache->as = as;
3499 cache->xlat = addr;
3500 return len;
3501 }
3502
3503 void address_space_cache_invalidate(MemoryRegionCache *cache,
3504 hwaddr addr,
3505 hwaddr access_len)
3506 {
3507 }
3508
3509 void address_space_cache_destroy(MemoryRegionCache *cache)
3510 {
3511 cache->as = NULL;
3512 }
3513
3514 #define ARG1_DECL MemoryRegionCache *cache
3515 #define ARG1 cache
3516 #define SUFFIX _cached
3517 #define TRANSLATE(addr, ...) \
3518 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
3519 #define IS_DIRECT(mr, is_write) true
3520 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3521 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3522 #define RCU_READ_LOCK() rcu_read_lock()
3523 #define RCU_READ_UNLOCK() rcu_read_unlock()
3524 #include "memory_ldst.inc.c"
3525
3526 /* virtual memory access for debug (includes writing to ROM) */
3527 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3528 uint8_t *buf, int len, int is_write)
3529 {
3530 int l;
3531 hwaddr phys_addr;
3532 target_ulong page;
3533
3534 cpu_synchronize_state(cpu);
3535 while (len > 0) {
3536 int asidx;
3537 MemTxAttrs attrs;
3538
3539 page = addr & TARGET_PAGE_MASK;
3540 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3541 asidx = cpu_asidx_from_attrs(cpu, attrs);
3542 /* if no physical page mapped, return an error */
3543 if (phys_addr == -1)
3544 return -1;
3545 l = (page + TARGET_PAGE_SIZE) - addr;
3546 if (l > len)
3547 l = len;
3548 phys_addr += (addr & ~TARGET_PAGE_MASK);
3549 if (is_write) {
3550 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3551 phys_addr, buf, l);
3552 } else {
3553 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3554 MEMTXATTRS_UNSPECIFIED,
3555 buf, l, 0);
3556 }
3557 len -= l;
3558 buf += l;
3559 addr += l;
3560 }
3561 return 0;
3562 }
3563
3564 /*
3565 * Allows code that needs to deal with migration bitmaps etc to still be built
3566 * target independent.
3567 */
3568 size_t qemu_target_page_size(void)
3569 {
3570 return TARGET_PAGE_SIZE;
3571 }
3572
3573 int qemu_target_page_bits(void)
3574 {
3575 return TARGET_PAGE_BITS;
3576 }
3577
3578 int qemu_target_page_bits_min(void)
3579 {
3580 return TARGET_PAGE_BITS_MIN;
3581 }
3582 #endif
3583
3584 /*
3585 * A helper function for the _utterly broken_ virtio device model to find out if
3586 * it's running on a big endian machine. Don't do this at home kids!
3587 */
3588 bool target_words_bigendian(void);
3589 bool target_words_bigendian(void)
3590 {
3591 #if defined(TARGET_WORDS_BIGENDIAN)
3592 return true;
3593 #else
3594 return false;
3595 #endif
3596 }
3597
3598 #ifndef CONFIG_USER_ONLY
3599 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3600 {
3601 MemoryRegion*mr;
3602 hwaddr l = 1;
3603 bool res;
3604
3605 rcu_read_lock();
3606 mr = address_space_translate(&address_space_memory,
3607 phys_addr, &phys_addr, &l, false);
3608
3609 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3610 rcu_read_unlock();
3611 return res;
3612 }
3613
3614 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3615 {
3616 RAMBlock *block;
3617 int ret = 0;
3618
3619 rcu_read_lock();
3620 RAMBLOCK_FOREACH(block) {
3621 ret = func(block->idstr, block->host, block->offset,
3622 block->used_length, opaque);
3623 if (ret) {
3624 break;
3625 }
3626 }
3627 rcu_read_unlock();
3628 return ret;
3629 }
3630
3631 /*
3632 * Unmap pages of memory from start to start+length such that
3633 * they a) read as 0, b) Trigger whatever fault mechanism
3634 * the OS provides for postcopy.
3635 * The pages must be unmapped by the end of the function.
3636 * Returns: 0 on success, none-0 on failure
3637 *
3638 */
3639 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3640 {
3641 int ret = -1;
3642
3643 uint8_t *host_startaddr = rb->host + start;
3644
3645 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3646 error_report("ram_block_discard_range: Unaligned start address: %p",
3647 host_startaddr);
3648 goto err;
3649 }
3650
3651 if ((start + length) <= rb->used_length) {
3652 uint8_t *host_endaddr = host_startaddr + length;
3653 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3654 error_report("ram_block_discard_range: Unaligned end address: %p",
3655 host_endaddr);
3656 goto err;
3657 }
3658
3659 errno = ENOTSUP; /* If we are missing MADVISE etc */
3660
3661 if (rb->page_size == qemu_host_page_size) {
3662 #if defined(CONFIG_MADVISE)
3663 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3664 * freeing the page.
3665 */
3666 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3667 #endif
3668 } else {
3669 /* Huge page case - unfortunately it can't do DONTNEED, but
3670 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3671 * huge page file.
3672 */
3673 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3674 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3675 start, length);
3676 #endif
3677 }
3678 if (ret) {
3679 ret = -errno;
3680 error_report("ram_block_discard_range: Failed to discard range "
3681 "%s:%" PRIx64 " +%zx (%d)",
3682 rb->idstr, start, length, ret);
3683 }
3684 } else {
3685 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3686 "/%zx/" RAM_ADDR_FMT")",
3687 rb->idstr, start, length, rb->used_length);
3688 }
3689
3690 err:
3691 return ret;
3692 }
3693
3694 #endif
3695
3696 void page_size_init(void)
3697 {
3698 /* NOTE: we can always suppose that qemu_host_page_size >=
3699 TARGET_PAGE_SIZE */
3700 if (qemu_host_page_size == 0) {
3701 qemu_host_page_size = qemu_real_host_page_size;
3702 }
3703 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3704 qemu_host_page_size = TARGET_PAGE_SIZE;
3705 }
3706 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3707 }
3708
3709 #if !defined(CONFIG_USER_ONLY)
3710
3711 static void mtree_print_phys_entries(fprintf_function mon, void *f,
3712 int start, int end, int skip, int ptr)
3713 {
3714 if (start == end - 1) {
3715 mon(f, "\t%3d ", start);
3716 } else {
3717 mon(f, "\t%3d..%-3d ", start, end - 1);
3718 }
3719 mon(f, " skip=%d ", skip);
3720 if (ptr == PHYS_MAP_NODE_NIL) {
3721 mon(f, " ptr=NIL");
3722 } else if (!skip) {
3723 mon(f, " ptr=#%d", ptr);
3724 } else {
3725 mon(f, " ptr=[%d]", ptr);
3726 }
3727 mon(f, "\n");
3728 }
3729
3730 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3731 int128_sub((size), int128_one())) : 0)
3732
3733 void mtree_print_dispatch(fprintf_function mon, void *f,
3734 AddressSpaceDispatch *d, MemoryRegion *root)
3735 {
3736 int i;
3737
3738 mon(f, " Dispatch\n");
3739 mon(f, " Physical sections\n");
3740
3741 for (i = 0; i < d->map.sections_nb; ++i) {
3742 MemoryRegionSection *s = d->map.sections + i;
3743 const char *names[] = { " [unassigned]", " [not dirty]",
3744 " [ROM]", " [watch]" };
3745
3746 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
3747 i,
3748 s->offset_within_address_space,
3749 s->offset_within_address_space + MR_SIZE(s->mr->size),
3750 s->mr->name ? s->mr->name : "(noname)",
3751 i < ARRAY_SIZE(names) ? names[i] : "",
3752 s->mr == root ? " [ROOT]" : "",
3753 s == d->mru_section ? " [MRU]" : "",
3754 s->mr->is_iommu ? " [iommu]" : "");
3755
3756 if (s->mr->alias) {
3757 mon(f, " alias=%s", s->mr->alias->name ?
3758 s->mr->alias->name : "noname");
3759 }
3760 mon(f, "\n");
3761 }
3762
3763 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3764 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3765 for (i = 0; i < d->map.nodes_nb; ++i) {
3766 int j, jprev;
3767 PhysPageEntry prev;
3768 Node *n = d->map.nodes + i;
3769
3770 mon(f, " [%d]\n", i);
3771
3772 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3773 PhysPageEntry *pe = *n + j;
3774
3775 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3776 continue;
3777 }
3778
3779 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3780
3781 jprev = j;
3782 prev = *pe;
3783 }
3784
3785 if (jprev != ARRAY_SIZE(*n)) {
3786 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3787 }
3788 }
3789 }
3790
3791 #endif