]> git.ipfire.org Git - thirdparty/qemu.git/blob - gdbstub.c
Merge remote-tracking branch 'remotes/ericb/tags/pull-nbd-2019-08-15' into staging
[thirdparty/qemu.git] / gdbstub.c
1 /*
2 * gdb server stub
3 *
4 * This implements a subset of the remote protocol as described in:
5 *
6 * https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html
7 *
8 * Copyright (c) 2003-2005 Fabrice Bellard
9 *
10 * This library is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 *
23 * SPDX-License-Identifier: LGPL-2.0+
24 */
25
26 #include "qemu/osdep.h"
27 #include "qemu-common.h"
28 #include "qapi/error.h"
29 #include "qemu/error-report.h"
30 #include "qemu/ctype.h"
31 #include "qemu/cutils.h"
32 #include "qemu/module.h"
33 #include "trace-root.h"
34 #ifdef CONFIG_USER_ONLY
35 #include "qemu.h"
36 #else
37 #include "monitor/monitor.h"
38 #include "chardev/char.h"
39 #include "chardev/char-fe.h"
40 #include "sysemu/sysemu.h"
41 #include "exec/gdbstub.h"
42 #include "hw/cpu/cluster.h"
43 #include "hw/boards.h"
44 #endif
45
46 #define MAX_PACKET_LENGTH 4096
47
48 #include "qemu/sockets.h"
49 #include "sysemu/hw_accel.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/runstate.h"
52 #include "hw/semihosting/semihost.h"
53 #include "exec/exec-all.h"
54
55 #ifdef CONFIG_USER_ONLY
56 #define GDB_ATTACHED "0"
57 #else
58 #define GDB_ATTACHED "1"
59 #endif
60
61 #ifndef CONFIG_USER_ONLY
62 static int phy_memory_mode;
63 #endif
64
65 static inline int target_memory_rw_debug(CPUState *cpu, target_ulong addr,
66 uint8_t *buf, int len, bool is_write)
67 {
68 CPUClass *cc;
69
70 #ifndef CONFIG_USER_ONLY
71 if (phy_memory_mode) {
72 if (is_write) {
73 cpu_physical_memory_write(addr, buf, len);
74 } else {
75 cpu_physical_memory_read(addr, buf, len);
76 }
77 return 0;
78 }
79 #endif
80
81 cc = CPU_GET_CLASS(cpu);
82 if (cc->memory_rw_debug) {
83 return cc->memory_rw_debug(cpu, addr, buf, len, is_write);
84 }
85 return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
86 }
87
88 /* Return the GDB index for a given vCPU state.
89 *
90 * For user mode this is simply the thread id. In system mode GDB
91 * numbers CPUs from 1 as 0 is reserved as an "any cpu" index.
92 */
93 static inline int cpu_gdb_index(CPUState *cpu)
94 {
95 #if defined(CONFIG_USER_ONLY)
96 TaskState *ts = (TaskState *) cpu->opaque;
97 return ts->ts_tid;
98 #else
99 return cpu->cpu_index + 1;
100 #endif
101 }
102
103 enum {
104 GDB_SIGNAL_0 = 0,
105 GDB_SIGNAL_INT = 2,
106 GDB_SIGNAL_QUIT = 3,
107 GDB_SIGNAL_TRAP = 5,
108 GDB_SIGNAL_ABRT = 6,
109 GDB_SIGNAL_ALRM = 14,
110 GDB_SIGNAL_IO = 23,
111 GDB_SIGNAL_XCPU = 24,
112 GDB_SIGNAL_UNKNOWN = 143
113 };
114
115 #ifdef CONFIG_USER_ONLY
116
117 /* Map target signal numbers to GDB protocol signal numbers and vice
118 * versa. For user emulation's currently supported systems, we can
119 * assume most signals are defined.
120 */
121
122 static int gdb_signal_table[] = {
123 0,
124 TARGET_SIGHUP,
125 TARGET_SIGINT,
126 TARGET_SIGQUIT,
127 TARGET_SIGILL,
128 TARGET_SIGTRAP,
129 TARGET_SIGABRT,
130 -1, /* SIGEMT */
131 TARGET_SIGFPE,
132 TARGET_SIGKILL,
133 TARGET_SIGBUS,
134 TARGET_SIGSEGV,
135 TARGET_SIGSYS,
136 TARGET_SIGPIPE,
137 TARGET_SIGALRM,
138 TARGET_SIGTERM,
139 TARGET_SIGURG,
140 TARGET_SIGSTOP,
141 TARGET_SIGTSTP,
142 TARGET_SIGCONT,
143 TARGET_SIGCHLD,
144 TARGET_SIGTTIN,
145 TARGET_SIGTTOU,
146 TARGET_SIGIO,
147 TARGET_SIGXCPU,
148 TARGET_SIGXFSZ,
149 TARGET_SIGVTALRM,
150 TARGET_SIGPROF,
151 TARGET_SIGWINCH,
152 -1, /* SIGLOST */
153 TARGET_SIGUSR1,
154 TARGET_SIGUSR2,
155 #ifdef TARGET_SIGPWR
156 TARGET_SIGPWR,
157 #else
158 -1,
159 #endif
160 -1, /* SIGPOLL */
161 -1,
162 -1,
163 -1,
164 -1,
165 -1,
166 -1,
167 -1,
168 -1,
169 -1,
170 -1,
171 -1,
172 #ifdef __SIGRTMIN
173 __SIGRTMIN + 1,
174 __SIGRTMIN + 2,
175 __SIGRTMIN + 3,
176 __SIGRTMIN + 4,
177 __SIGRTMIN + 5,
178 __SIGRTMIN + 6,
179 __SIGRTMIN + 7,
180 __SIGRTMIN + 8,
181 __SIGRTMIN + 9,
182 __SIGRTMIN + 10,
183 __SIGRTMIN + 11,
184 __SIGRTMIN + 12,
185 __SIGRTMIN + 13,
186 __SIGRTMIN + 14,
187 __SIGRTMIN + 15,
188 __SIGRTMIN + 16,
189 __SIGRTMIN + 17,
190 __SIGRTMIN + 18,
191 __SIGRTMIN + 19,
192 __SIGRTMIN + 20,
193 __SIGRTMIN + 21,
194 __SIGRTMIN + 22,
195 __SIGRTMIN + 23,
196 __SIGRTMIN + 24,
197 __SIGRTMIN + 25,
198 __SIGRTMIN + 26,
199 __SIGRTMIN + 27,
200 __SIGRTMIN + 28,
201 __SIGRTMIN + 29,
202 __SIGRTMIN + 30,
203 __SIGRTMIN + 31,
204 -1, /* SIGCANCEL */
205 __SIGRTMIN,
206 __SIGRTMIN + 32,
207 __SIGRTMIN + 33,
208 __SIGRTMIN + 34,
209 __SIGRTMIN + 35,
210 __SIGRTMIN + 36,
211 __SIGRTMIN + 37,
212 __SIGRTMIN + 38,
213 __SIGRTMIN + 39,
214 __SIGRTMIN + 40,
215 __SIGRTMIN + 41,
216 __SIGRTMIN + 42,
217 __SIGRTMIN + 43,
218 __SIGRTMIN + 44,
219 __SIGRTMIN + 45,
220 __SIGRTMIN + 46,
221 __SIGRTMIN + 47,
222 __SIGRTMIN + 48,
223 __SIGRTMIN + 49,
224 __SIGRTMIN + 50,
225 __SIGRTMIN + 51,
226 __SIGRTMIN + 52,
227 __SIGRTMIN + 53,
228 __SIGRTMIN + 54,
229 __SIGRTMIN + 55,
230 __SIGRTMIN + 56,
231 __SIGRTMIN + 57,
232 __SIGRTMIN + 58,
233 __SIGRTMIN + 59,
234 __SIGRTMIN + 60,
235 __SIGRTMIN + 61,
236 __SIGRTMIN + 62,
237 __SIGRTMIN + 63,
238 __SIGRTMIN + 64,
239 __SIGRTMIN + 65,
240 __SIGRTMIN + 66,
241 __SIGRTMIN + 67,
242 __SIGRTMIN + 68,
243 __SIGRTMIN + 69,
244 __SIGRTMIN + 70,
245 __SIGRTMIN + 71,
246 __SIGRTMIN + 72,
247 __SIGRTMIN + 73,
248 __SIGRTMIN + 74,
249 __SIGRTMIN + 75,
250 __SIGRTMIN + 76,
251 __SIGRTMIN + 77,
252 __SIGRTMIN + 78,
253 __SIGRTMIN + 79,
254 __SIGRTMIN + 80,
255 __SIGRTMIN + 81,
256 __SIGRTMIN + 82,
257 __SIGRTMIN + 83,
258 __SIGRTMIN + 84,
259 __SIGRTMIN + 85,
260 __SIGRTMIN + 86,
261 __SIGRTMIN + 87,
262 __SIGRTMIN + 88,
263 __SIGRTMIN + 89,
264 __SIGRTMIN + 90,
265 __SIGRTMIN + 91,
266 __SIGRTMIN + 92,
267 __SIGRTMIN + 93,
268 __SIGRTMIN + 94,
269 __SIGRTMIN + 95,
270 -1, /* SIGINFO */
271 -1, /* UNKNOWN */
272 -1, /* DEFAULT */
273 -1,
274 -1,
275 -1,
276 -1,
277 -1,
278 -1
279 #endif
280 };
281 #else
282 /* In system mode we only need SIGINT and SIGTRAP; other signals
283 are not yet supported. */
284
285 enum {
286 TARGET_SIGINT = 2,
287 TARGET_SIGTRAP = 5
288 };
289
290 static int gdb_signal_table[] = {
291 -1,
292 -1,
293 TARGET_SIGINT,
294 -1,
295 -1,
296 TARGET_SIGTRAP
297 };
298 #endif
299
300 #ifdef CONFIG_USER_ONLY
301 static int target_signal_to_gdb (int sig)
302 {
303 int i;
304 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
305 if (gdb_signal_table[i] == sig)
306 return i;
307 return GDB_SIGNAL_UNKNOWN;
308 }
309 #endif
310
311 static int gdb_signal_to_target (int sig)
312 {
313 if (sig < ARRAY_SIZE (gdb_signal_table))
314 return gdb_signal_table[sig];
315 else
316 return -1;
317 }
318
319 typedef struct GDBRegisterState {
320 int base_reg;
321 int num_regs;
322 gdb_reg_cb get_reg;
323 gdb_reg_cb set_reg;
324 const char *xml;
325 struct GDBRegisterState *next;
326 } GDBRegisterState;
327
328 typedef struct GDBProcess {
329 uint32_t pid;
330 bool attached;
331
332 char target_xml[1024];
333 } GDBProcess;
334
335 enum RSState {
336 RS_INACTIVE,
337 RS_IDLE,
338 RS_GETLINE,
339 RS_GETLINE_ESC,
340 RS_GETLINE_RLE,
341 RS_CHKSUM1,
342 RS_CHKSUM2,
343 };
344 typedef struct GDBState {
345 CPUState *c_cpu; /* current CPU for step/continue ops */
346 CPUState *g_cpu; /* current CPU for other ops */
347 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
348 enum RSState state; /* parsing state */
349 char line_buf[MAX_PACKET_LENGTH];
350 int line_buf_index;
351 int line_sum; /* running checksum */
352 int line_csum; /* checksum at the end of the packet */
353 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
354 int last_packet_len;
355 int signal;
356 #ifdef CONFIG_USER_ONLY
357 int fd;
358 int running_state;
359 #else
360 CharBackend chr;
361 Chardev *mon_chr;
362 #endif
363 bool multiprocess;
364 GDBProcess *processes;
365 int process_num;
366 char syscall_buf[256];
367 gdb_syscall_complete_cb current_syscall_cb;
368 } GDBState;
369
370 /* By default use no IRQs and no timers while single stepping so as to
371 * make single stepping like an ICE HW step.
372 */
373 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
374
375 static GDBState *gdbserver_state;
376
377 bool gdb_has_xml;
378
379 #ifdef CONFIG_USER_ONLY
380 /* XXX: This is not thread safe. Do we care? */
381 static int gdbserver_fd = -1;
382
383 static int get_char(GDBState *s)
384 {
385 uint8_t ch;
386 int ret;
387
388 for(;;) {
389 ret = qemu_recv(s->fd, &ch, 1, 0);
390 if (ret < 0) {
391 if (errno == ECONNRESET)
392 s->fd = -1;
393 if (errno != EINTR)
394 return -1;
395 } else if (ret == 0) {
396 close(s->fd);
397 s->fd = -1;
398 return -1;
399 } else {
400 break;
401 }
402 }
403 return ch;
404 }
405 #endif
406
407 static enum {
408 GDB_SYS_UNKNOWN,
409 GDB_SYS_ENABLED,
410 GDB_SYS_DISABLED,
411 } gdb_syscall_mode;
412
413 /* Decide if either remote gdb syscalls or native file IO should be used. */
414 int use_gdb_syscalls(void)
415 {
416 SemihostingTarget target = semihosting_get_target();
417 if (target == SEMIHOSTING_TARGET_NATIVE) {
418 /* -semihosting-config target=native */
419 return false;
420 } else if (target == SEMIHOSTING_TARGET_GDB) {
421 /* -semihosting-config target=gdb */
422 return true;
423 }
424
425 /* -semihosting-config target=auto */
426 /* On the first call check if gdb is connected and remember. */
427 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
428 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
429 : GDB_SYS_DISABLED);
430 }
431 return gdb_syscall_mode == GDB_SYS_ENABLED;
432 }
433
434 /* Resume execution. */
435 static inline void gdb_continue(GDBState *s)
436 {
437
438 #ifdef CONFIG_USER_ONLY
439 s->running_state = 1;
440 trace_gdbstub_op_continue();
441 #else
442 if (!runstate_needs_reset()) {
443 trace_gdbstub_op_continue();
444 vm_start();
445 }
446 #endif
447 }
448
449 /*
450 * Resume execution, per CPU actions. For user-mode emulation it's
451 * equivalent to gdb_continue.
452 */
453 static int gdb_continue_partial(GDBState *s, char *newstates)
454 {
455 CPUState *cpu;
456 int res = 0;
457 #ifdef CONFIG_USER_ONLY
458 /*
459 * This is not exactly accurate, but it's an improvement compared to the
460 * previous situation, where only one CPU would be single-stepped.
461 */
462 CPU_FOREACH(cpu) {
463 if (newstates[cpu->cpu_index] == 's') {
464 trace_gdbstub_op_stepping(cpu->cpu_index);
465 cpu_single_step(cpu, sstep_flags);
466 }
467 }
468 s->running_state = 1;
469 #else
470 int flag = 0;
471
472 if (!runstate_needs_reset()) {
473 if (vm_prepare_start()) {
474 return 0;
475 }
476
477 CPU_FOREACH(cpu) {
478 switch (newstates[cpu->cpu_index]) {
479 case 0:
480 case 1:
481 break; /* nothing to do here */
482 case 's':
483 trace_gdbstub_op_stepping(cpu->cpu_index);
484 cpu_single_step(cpu, sstep_flags);
485 cpu_resume(cpu);
486 flag = 1;
487 break;
488 case 'c':
489 trace_gdbstub_op_continue_cpu(cpu->cpu_index);
490 cpu_resume(cpu);
491 flag = 1;
492 break;
493 default:
494 res = -1;
495 break;
496 }
497 }
498 }
499 if (flag) {
500 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
501 }
502 #endif
503 return res;
504 }
505
506 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
507 {
508 #ifdef CONFIG_USER_ONLY
509 int ret;
510
511 while (len > 0) {
512 ret = send(s->fd, buf, len, 0);
513 if (ret < 0) {
514 if (errno != EINTR)
515 return;
516 } else {
517 buf += ret;
518 len -= ret;
519 }
520 }
521 #else
522 /* XXX this blocks entire thread. Rewrite to use
523 * qemu_chr_fe_write and background I/O callbacks */
524 qemu_chr_fe_write_all(&s->chr, buf, len);
525 #endif
526 }
527
528 static inline int fromhex(int v)
529 {
530 if (v >= '0' && v <= '9')
531 return v - '0';
532 else if (v >= 'A' && v <= 'F')
533 return v - 'A' + 10;
534 else if (v >= 'a' && v <= 'f')
535 return v - 'a' + 10;
536 else
537 return 0;
538 }
539
540 static inline int tohex(int v)
541 {
542 if (v < 10)
543 return v + '0';
544 else
545 return v - 10 + 'a';
546 }
547
548 /* writes 2*len+1 bytes in buf */
549 static void memtohex(char *buf, const uint8_t *mem, int len)
550 {
551 int i, c;
552 char *q;
553 q = buf;
554 for(i = 0; i < len; i++) {
555 c = mem[i];
556 *q++ = tohex(c >> 4);
557 *q++ = tohex(c & 0xf);
558 }
559 *q = '\0';
560 }
561
562 static void hextomem(uint8_t *mem, const char *buf, int len)
563 {
564 int i;
565
566 for(i = 0; i < len; i++) {
567 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
568 buf += 2;
569 }
570 }
571
572 static void hexdump(const char *buf, int len,
573 void (*trace_fn)(size_t ofs, char const *text))
574 {
575 char line_buffer[3 * 16 + 4 + 16 + 1];
576
577 size_t i;
578 for (i = 0; i < len || (i & 0xF); ++i) {
579 size_t byte_ofs = i & 15;
580
581 if (byte_ofs == 0) {
582 memset(line_buffer, ' ', 3 * 16 + 4 + 16);
583 line_buffer[3 * 16 + 4 + 16] = 0;
584 }
585
586 size_t col_group = (i >> 2) & 3;
587 size_t hex_col = byte_ofs * 3 + col_group;
588 size_t txt_col = 3 * 16 + 4 + byte_ofs;
589
590 if (i < len) {
591 char value = buf[i];
592
593 line_buffer[hex_col + 0] = tohex((value >> 4) & 0xF);
594 line_buffer[hex_col + 1] = tohex((value >> 0) & 0xF);
595 line_buffer[txt_col + 0] = (value >= ' ' && value < 127)
596 ? value
597 : '.';
598 }
599
600 if (byte_ofs == 0xF)
601 trace_fn(i & -16, line_buffer);
602 }
603 }
604
605 /* return -1 if error, 0 if OK */
606 static int put_packet_binary(GDBState *s, const char *buf, int len, bool dump)
607 {
608 int csum, i;
609 uint8_t *p;
610
611 if (dump && trace_event_get_state_backends(TRACE_GDBSTUB_IO_BINARYREPLY)) {
612 hexdump(buf, len, trace_gdbstub_io_binaryreply);
613 }
614
615 for(;;) {
616 p = s->last_packet;
617 *(p++) = '$';
618 memcpy(p, buf, len);
619 p += len;
620 csum = 0;
621 for(i = 0; i < len; i++) {
622 csum += buf[i];
623 }
624 *(p++) = '#';
625 *(p++) = tohex((csum >> 4) & 0xf);
626 *(p++) = tohex((csum) & 0xf);
627
628 s->last_packet_len = p - s->last_packet;
629 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
630
631 #ifdef CONFIG_USER_ONLY
632 i = get_char(s);
633 if (i < 0)
634 return -1;
635 if (i == '+')
636 break;
637 #else
638 break;
639 #endif
640 }
641 return 0;
642 }
643
644 /* return -1 if error, 0 if OK */
645 static int put_packet(GDBState *s, const char *buf)
646 {
647 trace_gdbstub_io_reply(buf);
648
649 return put_packet_binary(s, buf, strlen(buf), false);
650 }
651
652 /* Encode data using the encoding for 'x' packets. */
653 static int memtox(char *buf, const char *mem, int len)
654 {
655 char *p = buf;
656 char c;
657
658 while (len--) {
659 c = *(mem++);
660 switch (c) {
661 case '#': case '$': case '*': case '}':
662 *(p++) = '}';
663 *(p++) = c ^ 0x20;
664 break;
665 default:
666 *(p++) = c;
667 break;
668 }
669 }
670 return p - buf;
671 }
672
673 static uint32_t gdb_get_cpu_pid(const GDBState *s, CPUState *cpu)
674 {
675 /* TODO: In user mode, we should use the task state PID */
676 if (cpu->cluster_index == UNASSIGNED_CLUSTER_INDEX) {
677 /* Return the default process' PID */
678 return s->processes[s->process_num - 1].pid;
679 }
680 return cpu->cluster_index + 1;
681 }
682
683 static GDBProcess *gdb_get_process(const GDBState *s, uint32_t pid)
684 {
685 int i;
686
687 if (!pid) {
688 /* 0 means any process, we take the first one */
689 return &s->processes[0];
690 }
691
692 for (i = 0; i < s->process_num; i++) {
693 if (s->processes[i].pid == pid) {
694 return &s->processes[i];
695 }
696 }
697
698 return NULL;
699 }
700
701 static GDBProcess *gdb_get_cpu_process(const GDBState *s, CPUState *cpu)
702 {
703 return gdb_get_process(s, gdb_get_cpu_pid(s, cpu));
704 }
705
706 static CPUState *find_cpu(uint32_t thread_id)
707 {
708 CPUState *cpu;
709
710 CPU_FOREACH(cpu) {
711 if (cpu_gdb_index(cpu) == thread_id) {
712 return cpu;
713 }
714 }
715
716 return NULL;
717 }
718
719 static CPUState *get_first_cpu_in_process(const GDBState *s,
720 GDBProcess *process)
721 {
722 CPUState *cpu;
723
724 CPU_FOREACH(cpu) {
725 if (gdb_get_cpu_pid(s, cpu) == process->pid) {
726 return cpu;
727 }
728 }
729
730 return NULL;
731 }
732
733 static CPUState *gdb_next_cpu_in_process(const GDBState *s, CPUState *cpu)
734 {
735 uint32_t pid = gdb_get_cpu_pid(s, cpu);
736 cpu = CPU_NEXT(cpu);
737
738 while (cpu) {
739 if (gdb_get_cpu_pid(s, cpu) == pid) {
740 break;
741 }
742
743 cpu = CPU_NEXT(cpu);
744 }
745
746 return cpu;
747 }
748
749 /* Return the cpu following @cpu, while ignoring unattached processes. */
750 static CPUState *gdb_next_attached_cpu(const GDBState *s, CPUState *cpu)
751 {
752 cpu = CPU_NEXT(cpu);
753
754 while (cpu) {
755 if (gdb_get_cpu_process(s, cpu)->attached) {
756 break;
757 }
758
759 cpu = CPU_NEXT(cpu);
760 }
761
762 return cpu;
763 }
764
765 /* Return the first attached cpu */
766 static CPUState *gdb_first_attached_cpu(const GDBState *s)
767 {
768 CPUState *cpu = first_cpu;
769 GDBProcess *process = gdb_get_cpu_process(s, cpu);
770
771 if (!process->attached) {
772 return gdb_next_attached_cpu(s, cpu);
773 }
774
775 return cpu;
776 }
777
778 static CPUState *gdb_get_cpu(const GDBState *s, uint32_t pid, uint32_t tid)
779 {
780 GDBProcess *process;
781 CPUState *cpu;
782
783 if (!pid && !tid) {
784 /* 0 means any process/thread, we take the first attached one */
785 return gdb_first_attached_cpu(s);
786 } else if (pid && !tid) {
787 /* any thread in a specific process */
788 process = gdb_get_process(s, pid);
789
790 if (process == NULL) {
791 return NULL;
792 }
793
794 if (!process->attached) {
795 return NULL;
796 }
797
798 return get_first_cpu_in_process(s, process);
799 } else {
800 /* a specific thread */
801 cpu = find_cpu(tid);
802
803 if (cpu == NULL) {
804 return NULL;
805 }
806
807 process = gdb_get_cpu_process(s, cpu);
808
809 if (pid && process->pid != pid) {
810 return NULL;
811 }
812
813 if (!process->attached) {
814 return NULL;
815 }
816
817 return cpu;
818 }
819 }
820
821 static const char *get_feature_xml(const GDBState *s, const char *p,
822 const char **newp, GDBProcess *process)
823 {
824 size_t len;
825 int i;
826 const char *name;
827 CPUState *cpu = get_first_cpu_in_process(s, process);
828 CPUClass *cc = CPU_GET_CLASS(cpu);
829
830 len = 0;
831 while (p[len] && p[len] != ':')
832 len++;
833 *newp = p + len;
834
835 name = NULL;
836 if (strncmp(p, "target.xml", len) == 0) {
837 char *buf = process->target_xml;
838 const size_t buf_sz = sizeof(process->target_xml);
839
840 /* Generate the XML description for this CPU. */
841 if (!buf[0]) {
842 GDBRegisterState *r;
843
844 pstrcat(buf, buf_sz,
845 "<?xml version=\"1.0\"?>"
846 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
847 "<target>");
848 if (cc->gdb_arch_name) {
849 gchar *arch = cc->gdb_arch_name(cpu);
850 pstrcat(buf, buf_sz, "<architecture>");
851 pstrcat(buf, buf_sz, arch);
852 pstrcat(buf, buf_sz, "</architecture>");
853 g_free(arch);
854 }
855 pstrcat(buf, buf_sz, "<xi:include href=\"");
856 pstrcat(buf, buf_sz, cc->gdb_core_xml_file);
857 pstrcat(buf, buf_sz, "\"/>");
858 for (r = cpu->gdb_regs; r; r = r->next) {
859 pstrcat(buf, buf_sz, "<xi:include href=\"");
860 pstrcat(buf, buf_sz, r->xml);
861 pstrcat(buf, buf_sz, "\"/>");
862 }
863 pstrcat(buf, buf_sz, "</target>");
864 }
865 return buf;
866 }
867 if (cc->gdb_get_dynamic_xml) {
868 char *xmlname = g_strndup(p, len);
869 const char *xml = cc->gdb_get_dynamic_xml(cpu, xmlname);
870
871 g_free(xmlname);
872 if (xml) {
873 return xml;
874 }
875 }
876 for (i = 0; ; i++) {
877 name = xml_builtin[i][0];
878 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
879 break;
880 }
881 return name ? xml_builtin[i][1] : NULL;
882 }
883
884 static int gdb_read_register(CPUState *cpu, uint8_t *mem_buf, int reg)
885 {
886 CPUClass *cc = CPU_GET_CLASS(cpu);
887 CPUArchState *env = cpu->env_ptr;
888 GDBRegisterState *r;
889
890 if (reg < cc->gdb_num_core_regs) {
891 return cc->gdb_read_register(cpu, mem_buf, reg);
892 }
893
894 for (r = cpu->gdb_regs; r; r = r->next) {
895 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
896 return r->get_reg(env, mem_buf, reg - r->base_reg);
897 }
898 }
899 return 0;
900 }
901
902 static int gdb_write_register(CPUState *cpu, uint8_t *mem_buf, int reg)
903 {
904 CPUClass *cc = CPU_GET_CLASS(cpu);
905 CPUArchState *env = cpu->env_ptr;
906 GDBRegisterState *r;
907
908 if (reg < cc->gdb_num_core_regs) {
909 return cc->gdb_write_register(cpu, mem_buf, reg);
910 }
911
912 for (r = cpu->gdb_regs; r; r = r->next) {
913 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
914 return r->set_reg(env, mem_buf, reg - r->base_reg);
915 }
916 }
917 return 0;
918 }
919
920 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
921 specifies the first register number and these registers are included in
922 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
923 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
924 */
925
926 void gdb_register_coprocessor(CPUState *cpu,
927 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
928 int num_regs, const char *xml, int g_pos)
929 {
930 GDBRegisterState *s;
931 GDBRegisterState **p;
932
933 p = &cpu->gdb_regs;
934 while (*p) {
935 /* Check for duplicates. */
936 if (strcmp((*p)->xml, xml) == 0)
937 return;
938 p = &(*p)->next;
939 }
940
941 s = g_new0(GDBRegisterState, 1);
942 s->base_reg = cpu->gdb_num_regs;
943 s->num_regs = num_regs;
944 s->get_reg = get_reg;
945 s->set_reg = set_reg;
946 s->xml = xml;
947
948 /* Add to end of list. */
949 cpu->gdb_num_regs += num_regs;
950 *p = s;
951 if (g_pos) {
952 if (g_pos != s->base_reg) {
953 error_report("Error: Bad gdb register numbering for '%s', "
954 "expected %d got %d", xml, g_pos, s->base_reg);
955 } else {
956 cpu->gdb_num_g_regs = cpu->gdb_num_regs;
957 }
958 }
959 }
960
961 #ifndef CONFIG_USER_ONLY
962 /* Translate GDB watchpoint type to a flags value for cpu_watchpoint_* */
963 static inline int xlat_gdb_type(CPUState *cpu, int gdbtype)
964 {
965 static const int xlat[] = {
966 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
967 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
968 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
969 };
970
971 CPUClass *cc = CPU_GET_CLASS(cpu);
972 int cputype = xlat[gdbtype];
973
974 if (cc->gdb_stop_before_watchpoint) {
975 cputype |= BP_STOP_BEFORE_ACCESS;
976 }
977 return cputype;
978 }
979 #endif
980
981 static int gdb_breakpoint_insert(int type, target_ulong addr, target_ulong len)
982 {
983 CPUState *cpu;
984 int err = 0;
985
986 if (kvm_enabled()) {
987 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
988 }
989
990 switch (type) {
991 case GDB_BREAKPOINT_SW:
992 case GDB_BREAKPOINT_HW:
993 CPU_FOREACH(cpu) {
994 err = cpu_breakpoint_insert(cpu, addr, BP_GDB, NULL);
995 if (err) {
996 break;
997 }
998 }
999 return err;
1000 #ifndef CONFIG_USER_ONLY
1001 case GDB_WATCHPOINT_WRITE:
1002 case GDB_WATCHPOINT_READ:
1003 case GDB_WATCHPOINT_ACCESS:
1004 CPU_FOREACH(cpu) {
1005 err = cpu_watchpoint_insert(cpu, addr, len,
1006 xlat_gdb_type(cpu, type), NULL);
1007 if (err) {
1008 break;
1009 }
1010 }
1011 return err;
1012 #endif
1013 default:
1014 return -ENOSYS;
1015 }
1016 }
1017
1018 static int gdb_breakpoint_remove(int type, target_ulong addr, target_ulong len)
1019 {
1020 CPUState *cpu;
1021 int err = 0;
1022
1023 if (kvm_enabled()) {
1024 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1025 }
1026
1027 switch (type) {
1028 case GDB_BREAKPOINT_SW:
1029 case GDB_BREAKPOINT_HW:
1030 CPU_FOREACH(cpu) {
1031 err = cpu_breakpoint_remove(cpu, addr, BP_GDB);
1032 if (err) {
1033 break;
1034 }
1035 }
1036 return err;
1037 #ifndef CONFIG_USER_ONLY
1038 case GDB_WATCHPOINT_WRITE:
1039 case GDB_WATCHPOINT_READ:
1040 case GDB_WATCHPOINT_ACCESS:
1041 CPU_FOREACH(cpu) {
1042 err = cpu_watchpoint_remove(cpu, addr, len,
1043 xlat_gdb_type(cpu, type));
1044 if (err)
1045 break;
1046 }
1047 return err;
1048 #endif
1049 default:
1050 return -ENOSYS;
1051 }
1052 }
1053
1054 static inline void gdb_cpu_breakpoint_remove_all(CPUState *cpu)
1055 {
1056 cpu_breakpoint_remove_all(cpu, BP_GDB);
1057 #ifndef CONFIG_USER_ONLY
1058 cpu_watchpoint_remove_all(cpu, BP_GDB);
1059 #endif
1060 }
1061
1062 static void gdb_process_breakpoint_remove_all(const GDBState *s, GDBProcess *p)
1063 {
1064 CPUState *cpu = get_first_cpu_in_process(s, p);
1065
1066 while (cpu) {
1067 gdb_cpu_breakpoint_remove_all(cpu);
1068 cpu = gdb_next_cpu_in_process(s, cpu);
1069 }
1070 }
1071
1072 static void gdb_breakpoint_remove_all(void)
1073 {
1074 CPUState *cpu;
1075
1076 if (kvm_enabled()) {
1077 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1078 return;
1079 }
1080
1081 CPU_FOREACH(cpu) {
1082 gdb_cpu_breakpoint_remove_all(cpu);
1083 }
1084 }
1085
1086 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1087 {
1088 CPUState *cpu = s->c_cpu;
1089
1090 cpu_synchronize_state(cpu);
1091 cpu_set_pc(cpu, pc);
1092 }
1093
1094 static char *gdb_fmt_thread_id(const GDBState *s, CPUState *cpu,
1095 char *buf, size_t buf_size)
1096 {
1097 if (s->multiprocess) {
1098 snprintf(buf, buf_size, "p%02x.%02x",
1099 gdb_get_cpu_pid(s, cpu), cpu_gdb_index(cpu));
1100 } else {
1101 snprintf(buf, buf_size, "%02x", cpu_gdb_index(cpu));
1102 }
1103
1104 return buf;
1105 }
1106
1107 typedef enum GDBThreadIdKind {
1108 GDB_ONE_THREAD = 0,
1109 GDB_ALL_THREADS, /* One process, all threads */
1110 GDB_ALL_PROCESSES,
1111 GDB_READ_THREAD_ERR
1112 } GDBThreadIdKind;
1113
1114 static GDBThreadIdKind read_thread_id(const char *buf, const char **end_buf,
1115 uint32_t *pid, uint32_t *tid)
1116 {
1117 unsigned long p, t;
1118 int ret;
1119
1120 if (*buf == 'p') {
1121 buf++;
1122 ret = qemu_strtoul(buf, &buf, 16, &p);
1123
1124 if (ret) {
1125 return GDB_READ_THREAD_ERR;
1126 }
1127
1128 /* Skip '.' */
1129 buf++;
1130 } else {
1131 p = 1;
1132 }
1133
1134 ret = qemu_strtoul(buf, &buf, 16, &t);
1135
1136 if (ret) {
1137 return GDB_READ_THREAD_ERR;
1138 }
1139
1140 *end_buf = buf;
1141
1142 if (p == -1) {
1143 return GDB_ALL_PROCESSES;
1144 }
1145
1146 if (pid) {
1147 *pid = p;
1148 }
1149
1150 if (t == -1) {
1151 return GDB_ALL_THREADS;
1152 }
1153
1154 if (tid) {
1155 *tid = t;
1156 }
1157
1158 return GDB_ONE_THREAD;
1159 }
1160
1161 /**
1162 * gdb_handle_vcont - Parses and handles a vCont packet.
1163 * returns -ENOTSUP if a command is unsupported, -EINVAL or -ERANGE if there is
1164 * a format error, 0 on success.
1165 */
1166 static int gdb_handle_vcont(GDBState *s, const char *p)
1167 {
1168 int res, signal = 0;
1169 char cur_action;
1170 char *newstates;
1171 unsigned long tmp;
1172 uint32_t pid, tid;
1173 GDBProcess *process;
1174 CPUState *cpu;
1175 GDBThreadIdKind kind;
1176 #ifdef CONFIG_USER_ONLY
1177 int max_cpus = 1; /* global variable max_cpus exists only in system mode */
1178
1179 CPU_FOREACH(cpu) {
1180 max_cpus = max_cpus <= cpu->cpu_index ? cpu->cpu_index + 1 : max_cpus;
1181 }
1182 #else
1183 MachineState *ms = MACHINE(qdev_get_machine());
1184 unsigned int max_cpus = ms->smp.max_cpus;
1185 #endif
1186 /* uninitialised CPUs stay 0 */
1187 newstates = g_new0(char, max_cpus);
1188
1189 /* mark valid CPUs with 1 */
1190 CPU_FOREACH(cpu) {
1191 newstates[cpu->cpu_index] = 1;
1192 }
1193
1194 /*
1195 * res keeps track of what error we are returning, with -ENOTSUP meaning
1196 * that the command is unknown or unsupported, thus returning an empty
1197 * packet, while -EINVAL and -ERANGE cause an E22 packet, due to invalid,
1198 * or incorrect parameters passed.
1199 */
1200 res = 0;
1201 while (*p) {
1202 if (*p++ != ';') {
1203 res = -ENOTSUP;
1204 goto out;
1205 }
1206
1207 cur_action = *p++;
1208 if (cur_action == 'C' || cur_action == 'S') {
1209 cur_action = qemu_tolower(cur_action);
1210 res = qemu_strtoul(p + 1, &p, 16, &tmp);
1211 if (res) {
1212 goto out;
1213 }
1214 signal = gdb_signal_to_target(tmp);
1215 } else if (cur_action != 'c' && cur_action != 's') {
1216 /* unknown/invalid/unsupported command */
1217 res = -ENOTSUP;
1218 goto out;
1219 }
1220
1221 if (*p == '\0' || *p == ';') {
1222 /*
1223 * No thread specifier, action is on "all threads". The
1224 * specification is unclear regarding the process to act on. We
1225 * choose all processes.
1226 */
1227 kind = GDB_ALL_PROCESSES;
1228 } else if (*p++ == ':') {
1229 kind = read_thread_id(p, &p, &pid, &tid);
1230 } else {
1231 res = -ENOTSUP;
1232 goto out;
1233 }
1234
1235 switch (kind) {
1236 case GDB_READ_THREAD_ERR:
1237 res = -EINVAL;
1238 goto out;
1239
1240 case GDB_ALL_PROCESSES:
1241 cpu = gdb_first_attached_cpu(s);
1242 while (cpu) {
1243 if (newstates[cpu->cpu_index] == 1) {
1244 newstates[cpu->cpu_index] = cur_action;
1245 }
1246
1247 cpu = gdb_next_attached_cpu(s, cpu);
1248 }
1249 break;
1250
1251 case GDB_ALL_THREADS:
1252 process = gdb_get_process(s, pid);
1253
1254 if (!process->attached) {
1255 res = -EINVAL;
1256 goto out;
1257 }
1258
1259 cpu = get_first_cpu_in_process(s, process);
1260 while (cpu) {
1261 if (newstates[cpu->cpu_index] == 1) {
1262 newstates[cpu->cpu_index] = cur_action;
1263 }
1264
1265 cpu = gdb_next_cpu_in_process(s, cpu);
1266 }
1267 break;
1268
1269 case GDB_ONE_THREAD:
1270 cpu = gdb_get_cpu(s, pid, tid);
1271
1272 /* invalid CPU/thread specified */
1273 if (!cpu) {
1274 res = -EINVAL;
1275 goto out;
1276 }
1277
1278 /* only use if no previous match occourred */
1279 if (newstates[cpu->cpu_index] == 1) {
1280 newstates[cpu->cpu_index] = cur_action;
1281 }
1282 break;
1283 }
1284 }
1285 s->signal = signal;
1286 gdb_continue_partial(s, newstates);
1287
1288 out:
1289 g_free(newstates);
1290
1291 return res;
1292 }
1293
1294 typedef union GdbCmdVariant {
1295 const char *data;
1296 uint8_t opcode;
1297 unsigned long val_ul;
1298 unsigned long long val_ull;
1299 struct {
1300 GDBThreadIdKind kind;
1301 uint32_t pid;
1302 uint32_t tid;
1303 } thread_id;
1304 } GdbCmdVariant;
1305
1306 static const char *cmd_next_param(const char *param, const char delimiter)
1307 {
1308 static const char all_delimiters[] = ",;:=";
1309 char curr_delimiters[2] = {0};
1310 const char *delimiters;
1311
1312 if (delimiter == '?') {
1313 delimiters = all_delimiters;
1314 } else if (delimiter == '0') {
1315 return strchr(param, '\0');
1316 } else if (delimiter == '.' && *param) {
1317 return param + 1;
1318 } else {
1319 curr_delimiters[0] = delimiter;
1320 delimiters = curr_delimiters;
1321 }
1322
1323 param += strcspn(param, delimiters);
1324 if (*param) {
1325 param++;
1326 }
1327 return param;
1328 }
1329
1330 static int cmd_parse_params(const char *data, const char *schema,
1331 GdbCmdVariant *params, int *num_params)
1332 {
1333 int curr_param;
1334 const char *curr_schema, *curr_data;
1335
1336 *num_params = 0;
1337
1338 if (!schema) {
1339 return 0;
1340 }
1341
1342 curr_schema = schema;
1343 curr_param = 0;
1344 curr_data = data;
1345 while (curr_schema[0] && curr_schema[1] && *curr_data) {
1346 switch (curr_schema[0]) {
1347 case 'l':
1348 if (qemu_strtoul(curr_data, &curr_data, 16,
1349 &params[curr_param].val_ul)) {
1350 return -EINVAL;
1351 }
1352 curr_param++;
1353 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1354 break;
1355 case 'L':
1356 if (qemu_strtou64(curr_data, &curr_data, 16,
1357 (uint64_t *)&params[curr_param].val_ull)) {
1358 return -EINVAL;
1359 }
1360 curr_param++;
1361 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1362 break;
1363 case 's':
1364 params[curr_param].data = curr_data;
1365 curr_param++;
1366 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1367 break;
1368 case 'o':
1369 params[curr_param].opcode = *(uint8_t *)curr_data;
1370 curr_param++;
1371 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1372 break;
1373 case 't':
1374 params[curr_param].thread_id.kind =
1375 read_thread_id(curr_data, &curr_data,
1376 &params[curr_param].thread_id.pid,
1377 &params[curr_param].thread_id.tid);
1378 curr_param++;
1379 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1380 break;
1381 case '?':
1382 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1383 break;
1384 default:
1385 return -EINVAL;
1386 }
1387 curr_schema += 2;
1388 }
1389
1390 *num_params = curr_param;
1391 return 0;
1392 }
1393
1394 typedef struct GdbCmdContext {
1395 GDBState *s;
1396 GdbCmdVariant *params;
1397 int num_params;
1398 uint8_t mem_buf[MAX_PACKET_LENGTH];
1399 char str_buf[MAX_PACKET_LENGTH + 1];
1400 } GdbCmdContext;
1401
1402 typedef void (*GdbCmdHandler)(GdbCmdContext *gdb_ctx, void *user_ctx);
1403
1404 /*
1405 * cmd_startswith -> cmd is compared using startswith
1406 *
1407 *
1408 * schema definitions:
1409 * Each schema parameter entry consists of 2 chars,
1410 * the first char represents the parameter type handling
1411 * the second char represents the delimiter for the next parameter
1412 *
1413 * Currently supported schema types:
1414 * 'l' -> unsigned long (stored in .val_ul)
1415 * 'L' -> unsigned long long (stored in .val_ull)
1416 * 's' -> string (stored in .data)
1417 * 'o' -> single char (stored in .opcode)
1418 * 't' -> thread id (stored in .thread_id)
1419 * '?' -> skip according to delimiter
1420 *
1421 * Currently supported delimiters:
1422 * '?' -> Stop at any delimiter (",;:=\0")
1423 * '0' -> Stop at "\0"
1424 * '.' -> Skip 1 char unless reached "\0"
1425 * Any other value is treated as the delimiter value itself
1426 */
1427 typedef struct GdbCmdParseEntry {
1428 GdbCmdHandler handler;
1429 const char *cmd;
1430 bool cmd_startswith;
1431 const char *schema;
1432 } GdbCmdParseEntry;
1433
1434 static inline int startswith(const char *string, const char *pattern)
1435 {
1436 return !strncmp(string, pattern, strlen(pattern));
1437 }
1438
1439 static int process_string_cmd(GDBState *s, void *user_ctx, const char *data,
1440 const GdbCmdParseEntry *cmds, int num_cmds)
1441 {
1442 int i, schema_len, max_num_params = 0;
1443 GdbCmdContext gdb_ctx;
1444
1445 if (!cmds) {
1446 return -1;
1447 }
1448
1449 for (i = 0; i < num_cmds; i++) {
1450 const GdbCmdParseEntry *cmd = &cmds[i];
1451 g_assert(cmd->handler && cmd->cmd);
1452
1453 if ((cmd->cmd_startswith && !startswith(data, cmd->cmd)) ||
1454 (!cmd->cmd_startswith && strcmp(cmd->cmd, data))) {
1455 continue;
1456 }
1457
1458 if (cmd->schema) {
1459 schema_len = strlen(cmd->schema);
1460 if (schema_len % 2) {
1461 return -2;
1462 }
1463
1464 max_num_params = schema_len / 2;
1465 }
1466
1467 gdb_ctx.params =
1468 (GdbCmdVariant *)alloca(sizeof(*gdb_ctx.params) * max_num_params);
1469 memset(gdb_ctx.params, 0, sizeof(*gdb_ctx.params) * max_num_params);
1470
1471 if (cmd_parse_params(&data[strlen(cmd->cmd)], cmd->schema,
1472 gdb_ctx.params, &gdb_ctx.num_params)) {
1473 return -1;
1474 }
1475
1476 gdb_ctx.s = s;
1477 cmd->handler(&gdb_ctx, user_ctx);
1478 return 0;
1479 }
1480
1481 return -1;
1482 }
1483
1484 static void run_cmd_parser(GDBState *s, const char *data,
1485 const GdbCmdParseEntry *cmd)
1486 {
1487 if (!data) {
1488 return;
1489 }
1490
1491 /* In case there was an error during the command parsing we must
1492 * send a NULL packet to indicate the command is not supported */
1493 if (process_string_cmd(s, NULL, data, cmd, 1)) {
1494 put_packet(s, "");
1495 }
1496 }
1497
1498 static void handle_detach(GdbCmdContext *gdb_ctx, void *user_ctx)
1499 {
1500 GDBProcess *process;
1501 GDBState *s = gdb_ctx->s;
1502 uint32_t pid = 1;
1503
1504 if (s->multiprocess) {
1505 if (!gdb_ctx->num_params) {
1506 put_packet(s, "E22");
1507 return;
1508 }
1509
1510 pid = gdb_ctx->params[0].val_ul;
1511 }
1512
1513 process = gdb_get_process(s, pid);
1514 gdb_process_breakpoint_remove_all(s, process);
1515 process->attached = false;
1516
1517 if (pid == gdb_get_cpu_pid(s, s->c_cpu)) {
1518 s->c_cpu = gdb_first_attached_cpu(s);
1519 }
1520
1521 if (pid == gdb_get_cpu_pid(s, s->g_cpu)) {
1522 s->g_cpu = gdb_first_attached_cpu(s);
1523 }
1524
1525 if (!s->c_cpu) {
1526 /* No more process attached */
1527 gdb_syscall_mode = GDB_SYS_DISABLED;
1528 gdb_continue(s);
1529 }
1530 put_packet(s, "OK");
1531 }
1532
1533 static void handle_thread_alive(GdbCmdContext *gdb_ctx, void *user_ctx)
1534 {
1535 CPUState *cpu;
1536
1537 if (!gdb_ctx->num_params) {
1538 put_packet(gdb_ctx->s, "E22");
1539 return;
1540 }
1541
1542 if (gdb_ctx->params[0].thread_id.kind == GDB_READ_THREAD_ERR) {
1543 put_packet(gdb_ctx->s, "E22");
1544 return;
1545 }
1546
1547 cpu = gdb_get_cpu(gdb_ctx->s, gdb_ctx->params[0].thread_id.pid,
1548 gdb_ctx->params[0].thread_id.tid);
1549 if (!cpu) {
1550 put_packet(gdb_ctx->s, "E22");
1551 return;
1552 }
1553
1554 put_packet(gdb_ctx->s, "OK");
1555 }
1556
1557 static void handle_continue(GdbCmdContext *gdb_ctx, void *user_ctx)
1558 {
1559 if (gdb_ctx->num_params) {
1560 gdb_set_cpu_pc(gdb_ctx->s, gdb_ctx->params[0].val_ull);
1561 }
1562
1563 gdb_ctx->s->signal = 0;
1564 gdb_continue(gdb_ctx->s);
1565 }
1566
1567 static void handle_cont_with_sig(GdbCmdContext *gdb_ctx, void *user_ctx)
1568 {
1569 unsigned long signal = 0;
1570
1571 /*
1572 * Note: C sig;[addr] is currently unsupported and we simply
1573 * omit the addr parameter
1574 */
1575 if (gdb_ctx->num_params) {
1576 signal = gdb_ctx->params[0].val_ul;
1577 }
1578
1579 gdb_ctx->s->signal = gdb_signal_to_target(signal);
1580 if (gdb_ctx->s->signal == -1) {
1581 gdb_ctx->s->signal = 0;
1582 }
1583 gdb_continue(gdb_ctx->s);
1584 }
1585
1586 static void handle_set_thread(GdbCmdContext *gdb_ctx, void *user_ctx)
1587 {
1588 CPUState *cpu;
1589
1590 if (gdb_ctx->num_params != 2) {
1591 put_packet(gdb_ctx->s, "E22");
1592 return;
1593 }
1594
1595 if (gdb_ctx->params[1].thread_id.kind == GDB_READ_THREAD_ERR) {
1596 put_packet(gdb_ctx->s, "E22");
1597 return;
1598 }
1599
1600 if (gdb_ctx->params[1].thread_id.kind != GDB_ONE_THREAD) {
1601 put_packet(gdb_ctx->s, "OK");
1602 return;
1603 }
1604
1605 cpu = gdb_get_cpu(gdb_ctx->s, gdb_ctx->params[1].thread_id.pid,
1606 gdb_ctx->params[1].thread_id.tid);
1607 if (!cpu) {
1608 put_packet(gdb_ctx->s, "E22");
1609 return;
1610 }
1611
1612 /*
1613 * Note: This command is deprecated and modern gdb's will be using the
1614 * vCont command instead.
1615 */
1616 switch (gdb_ctx->params[0].opcode) {
1617 case 'c':
1618 gdb_ctx->s->c_cpu = cpu;
1619 put_packet(gdb_ctx->s, "OK");
1620 break;
1621 case 'g':
1622 gdb_ctx->s->g_cpu = cpu;
1623 put_packet(gdb_ctx->s, "OK");
1624 break;
1625 default:
1626 put_packet(gdb_ctx->s, "E22");
1627 break;
1628 }
1629 }
1630
1631 static void handle_insert_bp(GdbCmdContext *gdb_ctx, void *user_ctx)
1632 {
1633 int res;
1634
1635 if (gdb_ctx->num_params != 3) {
1636 put_packet(gdb_ctx->s, "E22");
1637 return;
1638 }
1639
1640 res = gdb_breakpoint_insert(gdb_ctx->params[0].val_ul,
1641 gdb_ctx->params[1].val_ull,
1642 gdb_ctx->params[2].val_ull);
1643 if (res >= 0) {
1644 put_packet(gdb_ctx->s, "OK");
1645 return;
1646 } else if (res == -ENOSYS) {
1647 put_packet(gdb_ctx->s, "");
1648 return;
1649 }
1650
1651 put_packet(gdb_ctx->s, "E22");
1652 }
1653
1654 static void handle_remove_bp(GdbCmdContext *gdb_ctx, void *user_ctx)
1655 {
1656 int res;
1657
1658 if (gdb_ctx->num_params != 3) {
1659 put_packet(gdb_ctx->s, "E22");
1660 return;
1661 }
1662
1663 res = gdb_breakpoint_remove(gdb_ctx->params[0].val_ul,
1664 gdb_ctx->params[1].val_ull,
1665 gdb_ctx->params[2].val_ull);
1666 if (res >= 0) {
1667 put_packet(gdb_ctx->s, "OK");
1668 return;
1669 } else if (res == -ENOSYS) {
1670 put_packet(gdb_ctx->s, "");
1671 return;
1672 }
1673
1674 put_packet(gdb_ctx->s, "E22");
1675 }
1676
1677 /*
1678 * handle_set/get_reg
1679 *
1680 * Older gdb are really dumb, and don't use 'G/g' if 'P/p' is available.
1681 * This works, but can be very slow. Anything new enough to understand
1682 * XML also knows how to use this properly. However to use this we
1683 * need to define a local XML file as well as be talking to a
1684 * reasonably modern gdb. Responding with an empty packet will cause
1685 * the remote gdb to fallback to older methods.
1686 */
1687
1688 static void handle_set_reg(GdbCmdContext *gdb_ctx, void *user_ctx)
1689 {
1690 int reg_size;
1691
1692 if (!gdb_has_xml) {
1693 put_packet(gdb_ctx->s, "");
1694 return;
1695 }
1696
1697 if (gdb_ctx->num_params != 2) {
1698 put_packet(gdb_ctx->s, "E22");
1699 return;
1700 }
1701
1702 reg_size = strlen(gdb_ctx->params[1].data) / 2;
1703 hextomem(gdb_ctx->mem_buf, gdb_ctx->params[1].data, reg_size);
1704 gdb_write_register(gdb_ctx->s->g_cpu, gdb_ctx->mem_buf,
1705 gdb_ctx->params[0].val_ull);
1706 put_packet(gdb_ctx->s, "OK");
1707 }
1708
1709 static void handle_get_reg(GdbCmdContext *gdb_ctx, void *user_ctx)
1710 {
1711 int reg_size;
1712
1713 if (!gdb_has_xml) {
1714 put_packet(gdb_ctx->s, "");
1715 return;
1716 }
1717
1718 if (!gdb_ctx->num_params) {
1719 put_packet(gdb_ctx->s, "E14");
1720 return;
1721 }
1722
1723 reg_size = gdb_read_register(gdb_ctx->s->g_cpu, gdb_ctx->mem_buf,
1724 gdb_ctx->params[0].val_ull);
1725 if (!reg_size) {
1726 put_packet(gdb_ctx->s, "E14");
1727 return;
1728 }
1729
1730 memtohex(gdb_ctx->str_buf, gdb_ctx->mem_buf, reg_size);
1731 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1732 }
1733
1734 static void handle_write_mem(GdbCmdContext *gdb_ctx, void *user_ctx)
1735 {
1736 if (gdb_ctx->num_params != 3) {
1737 put_packet(gdb_ctx->s, "E22");
1738 return;
1739 }
1740
1741 /* hextomem() reads 2*len bytes */
1742 if (gdb_ctx->params[1].val_ull > strlen(gdb_ctx->params[2].data) / 2) {
1743 put_packet(gdb_ctx->s, "E22");
1744 return;
1745 }
1746
1747 hextomem(gdb_ctx->mem_buf, gdb_ctx->params[2].data,
1748 gdb_ctx->params[1].val_ull);
1749 if (target_memory_rw_debug(gdb_ctx->s->g_cpu, gdb_ctx->params[0].val_ull,
1750 gdb_ctx->mem_buf,
1751 gdb_ctx->params[1].val_ull, true)) {
1752 put_packet(gdb_ctx->s, "E14");
1753 return;
1754 }
1755
1756 put_packet(gdb_ctx->s, "OK");
1757 }
1758
1759 static void handle_read_mem(GdbCmdContext *gdb_ctx, void *user_ctx)
1760 {
1761 if (gdb_ctx->num_params != 2) {
1762 put_packet(gdb_ctx->s, "E22");
1763 return;
1764 }
1765
1766 /* memtohex() doubles the required space */
1767 if (gdb_ctx->params[1].val_ull > MAX_PACKET_LENGTH / 2) {
1768 put_packet(gdb_ctx->s, "E22");
1769 return;
1770 }
1771
1772 if (target_memory_rw_debug(gdb_ctx->s->g_cpu, gdb_ctx->params[0].val_ull,
1773 gdb_ctx->mem_buf,
1774 gdb_ctx->params[1].val_ull, false)) {
1775 put_packet(gdb_ctx->s, "E14");
1776 return;
1777 }
1778
1779 memtohex(gdb_ctx->str_buf, gdb_ctx->mem_buf, gdb_ctx->params[1].val_ull);
1780 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1781 }
1782
1783 static void handle_write_all_regs(GdbCmdContext *gdb_ctx, void *user_ctx)
1784 {
1785 target_ulong addr, len;
1786 uint8_t *registers;
1787 int reg_size;
1788
1789 if (!gdb_ctx->num_params) {
1790 return;
1791 }
1792
1793 cpu_synchronize_state(gdb_ctx->s->g_cpu);
1794 registers = gdb_ctx->mem_buf;
1795 len = strlen(gdb_ctx->params[0].data) / 2;
1796 hextomem(registers, gdb_ctx->params[0].data, len);
1797 for (addr = 0; addr < gdb_ctx->s->g_cpu->gdb_num_g_regs && len > 0;
1798 addr++) {
1799 reg_size = gdb_write_register(gdb_ctx->s->g_cpu, registers, addr);
1800 len -= reg_size;
1801 registers += reg_size;
1802 }
1803 put_packet(gdb_ctx->s, "OK");
1804 }
1805
1806 static void handle_read_all_regs(GdbCmdContext *gdb_ctx, void *user_ctx)
1807 {
1808 target_ulong addr, len;
1809
1810 cpu_synchronize_state(gdb_ctx->s->g_cpu);
1811 len = 0;
1812 for (addr = 0; addr < gdb_ctx->s->g_cpu->gdb_num_g_regs; addr++) {
1813 len += gdb_read_register(gdb_ctx->s->g_cpu, gdb_ctx->mem_buf + len,
1814 addr);
1815 }
1816
1817 memtohex(gdb_ctx->str_buf, gdb_ctx->mem_buf, len);
1818 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1819 }
1820
1821 static void handle_file_io(GdbCmdContext *gdb_ctx, void *user_ctx)
1822 {
1823 if (gdb_ctx->num_params >= 2 && gdb_ctx->s->current_syscall_cb) {
1824 target_ulong ret, err;
1825
1826 ret = (target_ulong)gdb_ctx->params[0].val_ull;
1827 err = (target_ulong)gdb_ctx->params[1].val_ull;
1828 gdb_ctx->s->current_syscall_cb(gdb_ctx->s->c_cpu, ret, err);
1829 gdb_ctx->s->current_syscall_cb = NULL;
1830 }
1831
1832 if (gdb_ctx->num_params >= 3 && gdb_ctx->params[2].opcode == (uint8_t)'C') {
1833 put_packet(gdb_ctx->s, "T02");
1834 return;
1835 }
1836
1837 gdb_continue(gdb_ctx->s);
1838 }
1839
1840 static void handle_step(GdbCmdContext *gdb_ctx, void *user_ctx)
1841 {
1842 if (gdb_ctx->num_params) {
1843 gdb_set_cpu_pc(gdb_ctx->s, (target_ulong)gdb_ctx->params[0].val_ull);
1844 }
1845
1846 cpu_single_step(gdb_ctx->s->c_cpu, sstep_flags);
1847 gdb_continue(gdb_ctx->s);
1848 }
1849
1850 static void handle_v_cont_query(GdbCmdContext *gdb_ctx, void *user_ctx)
1851 {
1852 put_packet(gdb_ctx->s, "vCont;c;C;s;S");
1853 }
1854
1855 static void handle_v_cont(GdbCmdContext *gdb_ctx, void *user_ctx)
1856 {
1857 int res;
1858
1859 if (!gdb_ctx->num_params) {
1860 return;
1861 }
1862
1863 res = gdb_handle_vcont(gdb_ctx->s, gdb_ctx->params[0].data);
1864 if ((res == -EINVAL) || (res == -ERANGE)) {
1865 put_packet(gdb_ctx->s, "E22");
1866 } else if (res) {
1867 put_packet(gdb_ctx->s, "");
1868 }
1869 }
1870
1871 static void handle_v_attach(GdbCmdContext *gdb_ctx, void *user_ctx)
1872 {
1873 GDBProcess *process;
1874 CPUState *cpu;
1875 char thread_id[16];
1876
1877 pstrcpy(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "E22");
1878 if (!gdb_ctx->num_params) {
1879 goto cleanup;
1880 }
1881
1882 process = gdb_get_process(gdb_ctx->s, gdb_ctx->params[0].val_ul);
1883 if (!process) {
1884 goto cleanup;
1885 }
1886
1887 cpu = get_first_cpu_in_process(gdb_ctx->s, process);
1888 if (!cpu) {
1889 goto cleanup;
1890 }
1891
1892 process->attached = true;
1893 gdb_ctx->s->g_cpu = cpu;
1894 gdb_ctx->s->c_cpu = cpu;
1895
1896 gdb_fmt_thread_id(gdb_ctx->s, cpu, thread_id, sizeof(thread_id));
1897 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "T%02xthread:%s;",
1898 GDB_SIGNAL_TRAP, thread_id);
1899 cleanup:
1900 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1901 }
1902
1903 static void handle_v_kill(GdbCmdContext *gdb_ctx, void *user_ctx)
1904 {
1905 /* Kill the target */
1906 put_packet(gdb_ctx->s, "OK");
1907 error_report("QEMU: Terminated via GDBstub");
1908 exit(0);
1909 }
1910
1911 static GdbCmdParseEntry gdb_v_commands_table[] = {
1912 /* Order is important if has same prefix */
1913 {
1914 .handler = handle_v_cont_query,
1915 .cmd = "Cont?",
1916 .cmd_startswith = 1
1917 },
1918 {
1919 .handler = handle_v_cont,
1920 .cmd = "Cont",
1921 .cmd_startswith = 1,
1922 .schema = "s0"
1923 },
1924 {
1925 .handler = handle_v_attach,
1926 .cmd = "Attach;",
1927 .cmd_startswith = 1,
1928 .schema = "l0"
1929 },
1930 {
1931 .handler = handle_v_kill,
1932 .cmd = "Kill;",
1933 .cmd_startswith = 1
1934 },
1935 };
1936
1937 static void handle_v_commands(GdbCmdContext *gdb_ctx, void *user_ctx)
1938 {
1939 if (!gdb_ctx->num_params) {
1940 return;
1941 }
1942
1943 if (process_string_cmd(gdb_ctx->s, NULL, gdb_ctx->params[0].data,
1944 gdb_v_commands_table,
1945 ARRAY_SIZE(gdb_v_commands_table))) {
1946 put_packet(gdb_ctx->s, "");
1947 }
1948 }
1949
1950 static void handle_query_qemu_sstepbits(GdbCmdContext *gdb_ctx, void *user_ctx)
1951 {
1952 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf),
1953 "ENABLE=%x,NOIRQ=%x,NOTIMER=%x", SSTEP_ENABLE,
1954 SSTEP_NOIRQ, SSTEP_NOTIMER);
1955 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1956 }
1957
1958 static void handle_set_qemu_sstep(GdbCmdContext *gdb_ctx, void *user_ctx)
1959 {
1960 if (!gdb_ctx->num_params) {
1961 return;
1962 }
1963
1964 sstep_flags = gdb_ctx->params[0].val_ul;
1965 put_packet(gdb_ctx->s, "OK");
1966 }
1967
1968 static void handle_query_qemu_sstep(GdbCmdContext *gdb_ctx, void *user_ctx)
1969 {
1970 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "0x%x", sstep_flags);
1971 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1972 }
1973
1974 static void handle_query_curr_tid(GdbCmdContext *gdb_ctx, void *user_ctx)
1975 {
1976 CPUState *cpu;
1977 GDBProcess *process;
1978 char thread_id[16];
1979
1980 /*
1981 * "Current thread" remains vague in the spec, so always return
1982 * the first thread of the current process (gdb returns the
1983 * first thread).
1984 */
1985 process = gdb_get_cpu_process(gdb_ctx->s, gdb_ctx->s->g_cpu);
1986 cpu = get_first_cpu_in_process(gdb_ctx->s, process);
1987 gdb_fmt_thread_id(gdb_ctx->s, cpu, thread_id, sizeof(thread_id));
1988 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "QC%s", thread_id);
1989 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1990 }
1991
1992 static void handle_query_threads(GdbCmdContext *gdb_ctx, void *user_ctx)
1993 {
1994 char thread_id[16];
1995
1996 if (!gdb_ctx->s->query_cpu) {
1997 put_packet(gdb_ctx->s, "l");
1998 return;
1999 }
2000
2001 gdb_fmt_thread_id(gdb_ctx->s, gdb_ctx->s->query_cpu, thread_id,
2002 sizeof(thread_id));
2003 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "m%s", thread_id);
2004 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
2005 gdb_ctx->s->query_cpu =
2006 gdb_next_attached_cpu(gdb_ctx->s, gdb_ctx->s->query_cpu);
2007 }
2008
2009 static void handle_query_first_threads(GdbCmdContext *gdb_ctx, void *user_ctx)
2010 {
2011 gdb_ctx->s->query_cpu = gdb_first_attached_cpu(gdb_ctx->s);
2012 handle_query_threads(gdb_ctx, user_ctx);
2013 }
2014
2015 static void handle_query_thread_extra(GdbCmdContext *gdb_ctx, void *user_ctx)
2016 {
2017 CPUState *cpu;
2018 int len;
2019
2020 if (!gdb_ctx->num_params ||
2021 gdb_ctx->params[0].thread_id.kind == GDB_READ_THREAD_ERR) {
2022 put_packet(gdb_ctx->s, "E22");
2023 return;
2024 }
2025
2026 cpu = gdb_get_cpu(gdb_ctx->s, gdb_ctx->params[0].thread_id.pid,
2027 gdb_ctx->params[0].thread_id.tid);
2028 if (!cpu) {
2029 return;
2030 }
2031
2032 cpu_synchronize_state(cpu);
2033
2034 if (gdb_ctx->s->multiprocess && (gdb_ctx->s->process_num > 1)) {
2035 /* Print the CPU model and name in multiprocess mode */
2036 ObjectClass *oc = object_get_class(OBJECT(cpu));
2037 const char *cpu_model = object_class_get_name(oc);
2038 char *cpu_name = object_get_canonical_path_component(OBJECT(cpu));
2039 len = snprintf((char *)gdb_ctx->mem_buf, sizeof(gdb_ctx->str_buf) / 2,
2040 "%s %s [%s]", cpu_model, cpu_name,
2041 cpu->halted ? "halted " : "running");
2042 g_free(cpu_name);
2043 } else {
2044 /* memtohex() doubles the required space */
2045 len = snprintf((char *)gdb_ctx->mem_buf, sizeof(gdb_ctx->str_buf) / 2,
2046 "CPU#%d [%s]", cpu->cpu_index,
2047 cpu->halted ? "halted " : "running");
2048 }
2049 trace_gdbstub_op_extra_info((char *)gdb_ctx->mem_buf);
2050 memtohex(gdb_ctx->str_buf, gdb_ctx->mem_buf, len);
2051 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
2052 }
2053
2054 #ifdef CONFIG_USER_ONLY
2055 static void handle_query_offsets(GdbCmdContext *gdb_ctx, void *user_ctx)
2056 {
2057 TaskState *ts;
2058
2059 ts = gdb_ctx->s->c_cpu->opaque;
2060 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf),
2061 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
2062 ";Bss=" TARGET_ABI_FMT_lx,
2063 ts->info->code_offset,
2064 ts->info->data_offset,
2065 ts->info->data_offset);
2066 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
2067 }
2068 #else
2069 static void handle_query_rcmd(GdbCmdContext *gdb_ctx, void *user_ctx)
2070 {
2071 int len;
2072
2073 if (!gdb_ctx->num_params) {
2074 put_packet(gdb_ctx->s, "E22");
2075 return;
2076 }
2077
2078 len = strlen(gdb_ctx->params[0].data);
2079 if (len % 2) {
2080 put_packet(gdb_ctx->s, "E01");
2081 return;
2082 }
2083
2084 len = len / 2;
2085 hextomem(gdb_ctx->mem_buf, gdb_ctx->params[0].data, len);
2086 gdb_ctx->mem_buf[len++] = 0;
2087 qemu_chr_be_write(gdb_ctx->s->mon_chr, gdb_ctx->mem_buf, len);
2088 put_packet(gdb_ctx->s, "OK");
2089
2090 }
2091 #endif
2092
2093 static void handle_query_supported(GdbCmdContext *gdb_ctx, void *user_ctx)
2094 {
2095 CPUClass *cc;
2096
2097 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "PacketSize=%x",
2098 MAX_PACKET_LENGTH);
2099 cc = CPU_GET_CLASS(first_cpu);
2100 if (cc->gdb_core_xml_file) {
2101 pstrcat(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf),
2102 ";qXfer:features:read+");
2103 }
2104
2105 if (gdb_ctx->num_params &&
2106 strstr(gdb_ctx->params[0].data, "multiprocess+")) {
2107 gdb_ctx->s->multiprocess = true;
2108 }
2109
2110 pstrcat(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), ";multiprocess+");
2111 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
2112 }
2113
2114 static void handle_query_xfer_features(GdbCmdContext *gdb_ctx, void *user_ctx)
2115 {
2116 GDBProcess *process;
2117 CPUClass *cc;
2118 unsigned long len, total_len, addr;
2119 const char *xml;
2120 const char *p;
2121
2122 if (gdb_ctx->num_params < 3) {
2123 put_packet(gdb_ctx->s, "E22");
2124 return;
2125 }
2126
2127 process = gdb_get_cpu_process(gdb_ctx->s, gdb_ctx->s->g_cpu);
2128 cc = CPU_GET_CLASS(gdb_ctx->s->g_cpu);
2129 if (!cc->gdb_core_xml_file) {
2130 put_packet(gdb_ctx->s, "");
2131 return;
2132 }
2133
2134 gdb_has_xml = true;
2135 p = gdb_ctx->params[0].data;
2136 xml = get_feature_xml(gdb_ctx->s, p, &p, process);
2137 if (!xml) {
2138 put_packet(gdb_ctx->s, "E00");
2139 return;
2140 }
2141
2142 addr = gdb_ctx->params[1].val_ul;
2143 len = gdb_ctx->params[2].val_ul;
2144 total_len = strlen(xml);
2145 if (addr > total_len) {
2146 put_packet(gdb_ctx->s, "E00");
2147 return;
2148 }
2149
2150 if (len > (MAX_PACKET_LENGTH - 5) / 2) {
2151 len = (MAX_PACKET_LENGTH - 5) / 2;
2152 }
2153
2154 if (len < total_len - addr) {
2155 gdb_ctx->str_buf[0] = 'm';
2156 len = memtox(gdb_ctx->str_buf + 1, xml + addr, len);
2157 } else {
2158 gdb_ctx->str_buf[0] = 'l';
2159 len = memtox(gdb_ctx->str_buf + 1, xml + addr, total_len - addr);
2160 }
2161
2162 put_packet_binary(gdb_ctx->s, gdb_ctx->str_buf, len + 1, true);
2163 }
2164
2165 static void handle_query_attached(GdbCmdContext *gdb_ctx, void *user_ctx)
2166 {
2167 put_packet(gdb_ctx->s, GDB_ATTACHED);
2168 }
2169
2170 static void handle_query_qemu_supported(GdbCmdContext *gdb_ctx, void *user_ctx)
2171 {
2172 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "sstepbits;sstep");
2173 #ifndef CONFIG_USER_ONLY
2174 pstrcat(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), ";PhyMemMode");
2175 #endif
2176 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
2177 }
2178
2179 #ifndef CONFIG_USER_ONLY
2180 static void handle_query_qemu_phy_mem_mode(GdbCmdContext *gdb_ctx,
2181 void *user_ctx)
2182 {
2183 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "%d", phy_memory_mode);
2184 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
2185 }
2186
2187 static void handle_set_qemu_phy_mem_mode(GdbCmdContext *gdb_ctx, void *user_ctx)
2188 {
2189 if (!gdb_ctx->num_params) {
2190 put_packet(gdb_ctx->s, "E22");
2191 return;
2192 }
2193
2194 if (!gdb_ctx->params[0].val_ul) {
2195 phy_memory_mode = 0;
2196 } else {
2197 phy_memory_mode = 1;
2198 }
2199 put_packet(gdb_ctx->s, "OK");
2200 }
2201 #endif
2202
2203 static GdbCmdParseEntry gdb_gen_query_set_common_table[] = {
2204 /* Order is important if has same prefix */
2205 {
2206 .handler = handle_query_qemu_sstepbits,
2207 .cmd = "qemu.sstepbits",
2208 },
2209 {
2210 .handler = handle_query_qemu_sstep,
2211 .cmd = "qemu.sstep",
2212 },
2213 {
2214 .handler = handle_set_qemu_sstep,
2215 .cmd = "qemu.sstep=",
2216 .cmd_startswith = 1,
2217 .schema = "l0"
2218 },
2219 };
2220
2221 static GdbCmdParseEntry gdb_gen_query_table[] = {
2222 {
2223 .handler = handle_query_curr_tid,
2224 .cmd = "C",
2225 },
2226 {
2227 .handler = handle_query_threads,
2228 .cmd = "sThreadInfo",
2229 },
2230 {
2231 .handler = handle_query_first_threads,
2232 .cmd = "fThreadInfo",
2233 },
2234 {
2235 .handler = handle_query_thread_extra,
2236 .cmd = "ThreadExtraInfo,",
2237 .cmd_startswith = 1,
2238 .schema = "t0"
2239 },
2240 #ifdef CONFIG_USER_ONLY
2241 {
2242 .handler = handle_query_offsets,
2243 .cmd = "Offsets",
2244 },
2245 #else
2246 {
2247 .handler = handle_query_rcmd,
2248 .cmd = "Rcmd,",
2249 .cmd_startswith = 1,
2250 .schema = "s0"
2251 },
2252 #endif
2253 {
2254 .handler = handle_query_supported,
2255 .cmd = "Supported:",
2256 .cmd_startswith = 1,
2257 .schema = "s0"
2258 },
2259 {
2260 .handler = handle_query_supported,
2261 .cmd = "Supported",
2262 .schema = "s0"
2263 },
2264 {
2265 .handler = handle_query_xfer_features,
2266 .cmd = "Xfer:features:read:",
2267 .cmd_startswith = 1,
2268 .schema = "s:l,l0"
2269 },
2270 {
2271 .handler = handle_query_attached,
2272 .cmd = "Attached:",
2273 .cmd_startswith = 1
2274 },
2275 {
2276 .handler = handle_query_attached,
2277 .cmd = "Attached",
2278 },
2279 {
2280 .handler = handle_query_qemu_supported,
2281 .cmd = "qemu.Supported",
2282 },
2283 #ifndef CONFIG_USER_ONLY
2284 {
2285 .handler = handle_query_qemu_phy_mem_mode,
2286 .cmd = "qemu.PhyMemMode",
2287 },
2288 #endif
2289 };
2290
2291 static GdbCmdParseEntry gdb_gen_set_table[] = {
2292 /* Order is important if has same prefix */
2293 {
2294 .handler = handle_set_qemu_sstep,
2295 .cmd = "qemu.sstep:",
2296 .cmd_startswith = 1,
2297 .schema = "l0"
2298 },
2299 #ifndef CONFIG_USER_ONLY
2300 {
2301 .handler = handle_set_qemu_phy_mem_mode,
2302 .cmd = "qemu.PhyMemMode:",
2303 .cmd_startswith = 1,
2304 .schema = "l0"
2305 },
2306 #endif
2307 };
2308
2309 static void handle_gen_query(GdbCmdContext *gdb_ctx, void *user_ctx)
2310 {
2311 if (!gdb_ctx->num_params) {
2312 return;
2313 }
2314
2315 if (!process_string_cmd(gdb_ctx->s, NULL, gdb_ctx->params[0].data,
2316 gdb_gen_query_set_common_table,
2317 ARRAY_SIZE(gdb_gen_query_set_common_table))) {
2318 return;
2319 }
2320
2321 if (process_string_cmd(gdb_ctx->s, NULL, gdb_ctx->params[0].data,
2322 gdb_gen_query_table,
2323 ARRAY_SIZE(gdb_gen_query_table))) {
2324 put_packet(gdb_ctx->s, "");
2325 }
2326 }
2327
2328 static void handle_gen_set(GdbCmdContext *gdb_ctx, void *user_ctx)
2329 {
2330 if (!gdb_ctx->num_params) {
2331 return;
2332 }
2333
2334 if (!process_string_cmd(gdb_ctx->s, NULL, gdb_ctx->params[0].data,
2335 gdb_gen_query_set_common_table,
2336 ARRAY_SIZE(gdb_gen_query_set_common_table))) {
2337 return;
2338 }
2339
2340 if (process_string_cmd(gdb_ctx->s, NULL, gdb_ctx->params[0].data,
2341 gdb_gen_set_table,
2342 ARRAY_SIZE(gdb_gen_set_table))) {
2343 put_packet(gdb_ctx->s, "");
2344 }
2345 }
2346
2347 static void handle_target_halt(GdbCmdContext *gdb_ctx, void *user_ctx)
2348 {
2349 char thread_id[16];
2350
2351 gdb_fmt_thread_id(gdb_ctx->s, gdb_ctx->s->c_cpu, thread_id,
2352 sizeof(thread_id));
2353 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "T%02xthread:%s;",
2354 GDB_SIGNAL_TRAP, thread_id);
2355 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
2356 /*
2357 * Remove all the breakpoints when this query is issued,
2358 * because gdb is doing an initial connect and the state
2359 * should be cleaned up.
2360 */
2361 gdb_breakpoint_remove_all();
2362 }
2363
2364 static int gdb_handle_packet(GDBState *s, const char *line_buf)
2365 {
2366 const GdbCmdParseEntry *cmd_parser = NULL;
2367
2368 trace_gdbstub_io_command(line_buf);
2369
2370 switch (line_buf[0]) {
2371 case '!':
2372 put_packet(s, "OK");
2373 break;
2374 case '?':
2375 {
2376 static const GdbCmdParseEntry target_halted_cmd_desc = {
2377 .handler = handle_target_halt,
2378 .cmd = "?",
2379 .cmd_startswith = 1
2380 };
2381 cmd_parser = &target_halted_cmd_desc;
2382 }
2383 break;
2384 case 'c':
2385 {
2386 static const GdbCmdParseEntry continue_cmd_desc = {
2387 .handler = handle_continue,
2388 .cmd = "c",
2389 .cmd_startswith = 1,
2390 .schema = "L0"
2391 };
2392 cmd_parser = &continue_cmd_desc;
2393 }
2394 break;
2395 case 'C':
2396 {
2397 static const GdbCmdParseEntry cont_with_sig_cmd_desc = {
2398 .handler = handle_cont_with_sig,
2399 .cmd = "C",
2400 .cmd_startswith = 1,
2401 .schema = "l0"
2402 };
2403 cmd_parser = &cont_with_sig_cmd_desc;
2404 }
2405 break;
2406 case 'v':
2407 {
2408 static const GdbCmdParseEntry v_cmd_desc = {
2409 .handler = handle_v_commands,
2410 .cmd = "v",
2411 .cmd_startswith = 1,
2412 .schema = "s0"
2413 };
2414 cmd_parser = &v_cmd_desc;
2415 }
2416 break;
2417 case 'k':
2418 /* Kill the target */
2419 error_report("QEMU: Terminated via GDBstub");
2420 exit(0);
2421 case 'D':
2422 {
2423 static const GdbCmdParseEntry detach_cmd_desc = {
2424 .handler = handle_detach,
2425 .cmd = "D",
2426 .cmd_startswith = 1,
2427 .schema = "?.l0"
2428 };
2429 cmd_parser = &detach_cmd_desc;
2430 }
2431 break;
2432 case 's':
2433 {
2434 static const GdbCmdParseEntry step_cmd_desc = {
2435 .handler = handle_step,
2436 .cmd = "s",
2437 .cmd_startswith = 1,
2438 .schema = "L0"
2439 };
2440 cmd_parser = &step_cmd_desc;
2441 }
2442 break;
2443 case 'F':
2444 {
2445 static const GdbCmdParseEntry file_io_cmd_desc = {
2446 .handler = handle_file_io,
2447 .cmd = "F",
2448 .cmd_startswith = 1,
2449 .schema = "L,L,o0"
2450 };
2451 cmd_parser = &file_io_cmd_desc;
2452 }
2453 break;
2454 case 'g':
2455 {
2456 static const GdbCmdParseEntry read_all_regs_cmd_desc = {
2457 .handler = handle_read_all_regs,
2458 .cmd = "g",
2459 .cmd_startswith = 1
2460 };
2461 cmd_parser = &read_all_regs_cmd_desc;
2462 }
2463 break;
2464 case 'G':
2465 {
2466 static const GdbCmdParseEntry write_all_regs_cmd_desc = {
2467 .handler = handle_write_all_regs,
2468 .cmd = "G",
2469 .cmd_startswith = 1,
2470 .schema = "s0"
2471 };
2472 cmd_parser = &write_all_regs_cmd_desc;
2473 }
2474 break;
2475 case 'm':
2476 {
2477 static const GdbCmdParseEntry read_mem_cmd_desc = {
2478 .handler = handle_read_mem,
2479 .cmd = "m",
2480 .cmd_startswith = 1,
2481 .schema = "L,L0"
2482 };
2483 cmd_parser = &read_mem_cmd_desc;
2484 }
2485 break;
2486 case 'M':
2487 {
2488 static const GdbCmdParseEntry write_mem_cmd_desc = {
2489 .handler = handle_write_mem,
2490 .cmd = "M",
2491 .cmd_startswith = 1,
2492 .schema = "L,L:s0"
2493 };
2494 cmd_parser = &write_mem_cmd_desc;
2495 }
2496 break;
2497 case 'p':
2498 {
2499 static const GdbCmdParseEntry get_reg_cmd_desc = {
2500 .handler = handle_get_reg,
2501 .cmd = "p",
2502 .cmd_startswith = 1,
2503 .schema = "L0"
2504 };
2505 cmd_parser = &get_reg_cmd_desc;
2506 }
2507 break;
2508 case 'P':
2509 {
2510 static const GdbCmdParseEntry set_reg_cmd_desc = {
2511 .handler = handle_set_reg,
2512 .cmd = "P",
2513 .cmd_startswith = 1,
2514 .schema = "L?s0"
2515 };
2516 cmd_parser = &set_reg_cmd_desc;
2517 }
2518 break;
2519 case 'Z':
2520 {
2521 static const GdbCmdParseEntry insert_bp_cmd_desc = {
2522 .handler = handle_insert_bp,
2523 .cmd = "Z",
2524 .cmd_startswith = 1,
2525 .schema = "l?L?L0"
2526 };
2527 cmd_parser = &insert_bp_cmd_desc;
2528 }
2529 break;
2530 case 'z':
2531 {
2532 static const GdbCmdParseEntry remove_bp_cmd_desc = {
2533 .handler = handle_remove_bp,
2534 .cmd = "z",
2535 .cmd_startswith = 1,
2536 .schema = "l?L?L0"
2537 };
2538 cmd_parser = &remove_bp_cmd_desc;
2539 }
2540 break;
2541 case 'H':
2542 {
2543 static const GdbCmdParseEntry set_thread_cmd_desc = {
2544 .handler = handle_set_thread,
2545 .cmd = "H",
2546 .cmd_startswith = 1,
2547 .schema = "o.t0"
2548 };
2549 cmd_parser = &set_thread_cmd_desc;
2550 }
2551 break;
2552 case 'T':
2553 {
2554 static const GdbCmdParseEntry thread_alive_cmd_desc = {
2555 .handler = handle_thread_alive,
2556 .cmd = "T",
2557 .cmd_startswith = 1,
2558 .schema = "t0"
2559 };
2560 cmd_parser = &thread_alive_cmd_desc;
2561 }
2562 break;
2563 case 'q':
2564 {
2565 static const GdbCmdParseEntry gen_query_cmd_desc = {
2566 .handler = handle_gen_query,
2567 .cmd = "q",
2568 .cmd_startswith = 1,
2569 .schema = "s0"
2570 };
2571 cmd_parser = &gen_query_cmd_desc;
2572 }
2573 break;
2574 case 'Q':
2575 {
2576 static const GdbCmdParseEntry gen_set_cmd_desc = {
2577 .handler = handle_gen_set,
2578 .cmd = "Q",
2579 .cmd_startswith = 1,
2580 .schema = "s0"
2581 };
2582 cmd_parser = &gen_set_cmd_desc;
2583 }
2584 break;
2585 default:
2586 /* put empty packet */
2587 put_packet(s, "");
2588 break;
2589 }
2590
2591 run_cmd_parser(s, line_buf, cmd_parser);
2592
2593 return RS_IDLE;
2594 }
2595
2596 void gdb_set_stop_cpu(CPUState *cpu)
2597 {
2598 GDBProcess *p = gdb_get_cpu_process(gdbserver_state, cpu);
2599
2600 if (!p->attached) {
2601 /*
2602 * Having a stop CPU corresponding to a process that is not attached
2603 * confuses GDB. So we ignore the request.
2604 */
2605 return;
2606 }
2607
2608 gdbserver_state->c_cpu = cpu;
2609 gdbserver_state->g_cpu = cpu;
2610 }
2611
2612 #ifndef CONFIG_USER_ONLY
2613 static void gdb_vm_state_change(void *opaque, int running, RunState state)
2614 {
2615 GDBState *s = gdbserver_state;
2616 CPUState *cpu = s->c_cpu;
2617 char buf[256];
2618 char thread_id[16];
2619 const char *type;
2620 int ret;
2621
2622 if (running || s->state == RS_INACTIVE) {
2623 return;
2624 }
2625 /* Is there a GDB syscall waiting to be sent? */
2626 if (s->current_syscall_cb) {
2627 put_packet(s, s->syscall_buf);
2628 return;
2629 }
2630
2631 if (cpu == NULL) {
2632 /* No process attached */
2633 return;
2634 }
2635
2636 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id));
2637
2638 switch (state) {
2639 case RUN_STATE_DEBUG:
2640 if (cpu->watchpoint_hit) {
2641 switch (cpu->watchpoint_hit->flags & BP_MEM_ACCESS) {
2642 case BP_MEM_READ:
2643 type = "r";
2644 break;
2645 case BP_MEM_ACCESS:
2646 type = "a";
2647 break;
2648 default:
2649 type = "";
2650 break;
2651 }
2652 trace_gdbstub_hit_watchpoint(type, cpu_gdb_index(cpu),
2653 (target_ulong)cpu->watchpoint_hit->vaddr);
2654 snprintf(buf, sizeof(buf),
2655 "T%02xthread:%s;%swatch:" TARGET_FMT_lx ";",
2656 GDB_SIGNAL_TRAP, thread_id, type,
2657 (target_ulong)cpu->watchpoint_hit->vaddr);
2658 cpu->watchpoint_hit = NULL;
2659 goto send_packet;
2660 } else {
2661 trace_gdbstub_hit_break();
2662 }
2663 tb_flush(cpu);
2664 ret = GDB_SIGNAL_TRAP;
2665 break;
2666 case RUN_STATE_PAUSED:
2667 trace_gdbstub_hit_paused();
2668 ret = GDB_SIGNAL_INT;
2669 break;
2670 case RUN_STATE_SHUTDOWN:
2671 trace_gdbstub_hit_shutdown();
2672 ret = GDB_SIGNAL_QUIT;
2673 break;
2674 case RUN_STATE_IO_ERROR:
2675 trace_gdbstub_hit_io_error();
2676 ret = GDB_SIGNAL_IO;
2677 break;
2678 case RUN_STATE_WATCHDOG:
2679 trace_gdbstub_hit_watchdog();
2680 ret = GDB_SIGNAL_ALRM;
2681 break;
2682 case RUN_STATE_INTERNAL_ERROR:
2683 trace_gdbstub_hit_internal_error();
2684 ret = GDB_SIGNAL_ABRT;
2685 break;
2686 case RUN_STATE_SAVE_VM:
2687 case RUN_STATE_RESTORE_VM:
2688 return;
2689 case RUN_STATE_FINISH_MIGRATE:
2690 ret = GDB_SIGNAL_XCPU;
2691 break;
2692 default:
2693 trace_gdbstub_hit_unknown(state);
2694 ret = GDB_SIGNAL_UNKNOWN;
2695 break;
2696 }
2697 gdb_set_stop_cpu(cpu);
2698 snprintf(buf, sizeof(buf), "T%02xthread:%s;", ret, thread_id);
2699
2700 send_packet:
2701 put_packet(s, buf);
2702
2703 /* disable single step if it was enabled */
2704 cpu_single_step(cpu, 0);
2705 }
2706 #endif
2707
2708 /* Send a gdb syscall request.
2709 This accepts limited printf-style format specifiers, specifically:
2710 %x - target_ulong argument printed in hex.
2711 %lx - 64-bit argument printed in hex.
2712 %s - string pointer (target_ulong) and length (int) pair. */
2713 void gdb_do_syscallv(gdb_syscall_complete_cb cb, const char *fmt, va_list va)
2714 {
2715 char *p;
2716 char *p_end;
2717 target_ulong addr;
2718 uint64_t i64;
2719 GDBState *s;
2720
2721 s = gdbserver_state;
2722 if (!s)
2723 return;
2724 s->current_syscall_cb = cb;
2725 #ifndef CONFIG_USER_ONLY
2726 vm_stop(RUN_STATE_DEBUG);
2727 #endif
2728 p = s->syscall_buf;
2729 p_end = &s->syscall_buf[sizeof(s->syscall_buf)];
2730 *(p++) = 'F';
2731 while (*fmt) {
2732 if (*fmt == '%') {
2733 fmt++;
2734 switch (*fmt++) {
2735 case 'x':
2736 addr = va_arg(va, target_ulong);
2737 p += snprintf(p, p_end - p, TARGET_FMT_lx, addr);
2738 break;
2739 case 'l':
2740 if (*(fmt++) != 'x')
2741 goto bad_format;
2742 i64 = va_arg(va, uint64_t);
2743 p += snprintf(p, p_end - p, "%" PRIx64, i64);
2744 break;
2745 case 's':
2746 addr = va_arg(va, target_ulong);
2747 p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x",
2748 addr, va_arg(va, int));
2749 break;
2750 default:
2751 bad_format:
2752 error_report("gdbstub: Bad syscall format string '%s'",
2753 fmt - 1);
2754 break;
2755 }
2756 } else {
2757 *(p++) = *(fmt++);
2758 }
2759 }
2760 *p = 0;
2761 #ifdef CONFIG_USER_ONLY
2762 put_packet(s, s->syscall_buf);
2763 /* Return control to gdb for it to process the syscall request.
2764 * Since the protocol requires that gdb hands control back to us
2765 * using a "here are the results" F packet, we don't need to check
2766 * gdb_handlesig's return value (which is the signal to deliver if
2767 * execution was resumed via a continue packet).
2768 */
2769 gdb_handlesig(s->c_cpu, 0);
2770 #else
2771 /* In this case wait to send the syscall packet until notification that
2772 the CPU has stopped. This must be done because if the packet is sent
2773 now the reply from the syscall request could be received while the CPU
2774 is still in the running state, which can cause packets to be dropped
2775 and state transition 'T' packets to be sent while the syscall is still
2776 being processed. */
2777 qemu_cpu_kick(s->c_cpu);
2778 #endif
2779 }
2780
2781 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2782 {
2783 va_list va;
2784
2785 va_start(va, fmt);
2786 gdb_do_syscallv(cb, fmt, va);
2787 va_end(va);
2788 }
2789
2790 static void gdb_read_byte(GDBState *s, uint8_t ch)
2791 {
2792 uint8_t reply;
2793
2794 #ifndef CONFIG_USER_ONLY
2795 if (s->last_packet_len) {
2796 /* Waiting for a response to the last packet. If we see the start
2797 of a new command then abandon the previous response. */
2798 if (ch == '-') {
2799 trace_gdbstub_err_got_nack();
2800 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2801 } else if (ch == '+') {
2802 trace_gdbstub_io_got_ack();
2803 } else {
2804 trace_gdbstub_io_got_unexpected(ch);
2805 }
2806
2807 if (ch == '+' || ch == '$')
2808 s->last_packet_len = 0;
2809 if (ch != '$')
2810 return;
2811 }
2812 if (runstate_is_running()) {
2813 /* when the CPU is running, we cannot do anything except stop
2814 it when receiving a char */
2815 vm_stop(RUN_STATE_PAUSED);
2816 } else
2817 #endif
2818 {
2819 switch(s->state) {
2820 case RS_IDLE:
2821 if (ch == '$') {
2822 /* start of command packet */
2823 s->line_buf_index = 0;
2824 s->line_sum = 0;
2825 s->state = RS_GETLINE;
2826 } else {
2827 trace_gdbstub_err_garbage(ch);
2828 }
2829 break;
2830 case RS_GETLINE:
2831 if (ch == '}') {
2832 /* start escape sequence */
2833 s->state = RS_GETLINE_ESC;
2834 s->line_sum += ch;
2835 } else if (ch == '*') {
2836 /* start run length encoding sequence */
2837 s->state = RS_GETLINE_RLE;
2838 s->line_sum += ch;
2839 } else if (ch == '#') {
2840 /* end of command, start of checksum*/
2841 s->state = RS_CHKSUM1;
2842 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2843 trace_gdbstub_err_overrun();
2844 s->state = RS_IDLE;
2845 } else {
2846 /* unescaped command character */
2847 s->line_buf[s->line_buf_index++] = ch;
2848 s->line_sum += ch;
2849 }
2850 break;
2851 case RS_GETLINE_ESC:
2852 if (ch == '#') {
2853 /* unexpected end of command in escape sequence */
2854 s->state = RS_CHKSUM1;
2855 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2856 /* command buffer overrun */
2857 trace_gdbstub_err_overrun();
2858 s->state = RS_IDLE;
2859 } else {
2860 /* parse escaped character and leave escape state */
2861 s->line_buf[s->line_buf_index++] = ch ^ 0x20;
2862 s->line_sum += ch;
2863 s->state = RS_GETLINE;
2864 }
2865 break;
2866 case RS_GETLINE_RLE:
2867 /*
2868 * Run-length encoding is explained in "Debugging with GDB /
2869 * Appendix E GDB Remote Serial Protocol / Overview".
2870 */
2871 if (ch < ' ' || ch == '#' || ch == '$' || ch > 126) {
2872 /* invalid RLE count encoding */
2873 trace_gdbstub_err_invalid_repeat(ch);
2874 s->state = RS_GETLINE;
2875 } else {
2876 /* decode repeat length */
2877 int repeat = ch - ' ' + 3;
2878 if (s->line_buf_index + repeat >= sizeof(s->line_buf) - 1) {
2879 /* that many repeats would overrun the command buffer */
2880 trace_gdbstub_err_overrun();
2881 s->state = RS_IDLE;
2882 } else if (s->line_buf_index < 1) {
2883 /* got a repeat but we have nothing to repeat */
2884 trace_gdbstub_err_invalid_rle();
2885 s->state = RS_GETLINE;
2886 } else {
2887 /* repeat the last character */
2888 memset(s->line_buf + s->line_buf_index,
2889 s->line_buf[s->line_buf_index - 1], repeat);
2890 s->line_buf_index += repeat;
2891 s->line_sum += ch;
2892 s->state = RS_GETLINE;
2893 }
2894 }
2895 break;
2896 case RS_CHKSUM1:
2897 /* get high hex digit of checksum */
2898 if (!isxdigit(ch)) {
2899 trace_gdbstub_err_checksum_invalid(ch);
2900 s->state = RS_GETLINE;
2901 break;
2902 }
2903 s->line_buf[s->line_buf_index] = '\0';
2904 s->line_csum = fromhex(ch) << 4;
2905 s->state = RS_CHKSUM2;
2906 break;
2907 case RS_CHKSUM2:
2908 /* get low hex digit of checksum */
2909 if (!isxdigit(ch)) {
2910 trace_gdbstub_err_checksum_invalid(ch);
2911 s->state = RS_GETLINE;
2912 break;
2913 }
2914 s->line_csum |= fromhex(ch);
2915
2916 if (s->line_csum != (s->line_sum & 0xff)) {
2917 trace_gdbstub_err_checksum_incorrect(s->line_sum, s->line_csum);
2918 /* send NAK reply */
2919 reply = '-';
2920 put_buffer(s, &reply, 1);
2921 s->state = RS_IDLE;
2922 } else {
2923 /* send ACK reply */
2924 reply = '+';
2925 put_buffer(s, &reply, 1);
2926 s->state = gdb_handle_packet(s, s->line_buf);
2927 }
2928 break;
2929 default:
2930 abort();
2931 }
2932 }
2933 }
2934
2935 /* Tell the remote gdb that the process has exited. */
2936 void gdb_exit(CPUArchState *env, int code)
2937 {
2938 GDBState *s;
2939 char buf[4];
2940
2941 s = gdbserver_state;
2942 if (!s) {
2943 return;
2944 }
2945 #ifdef CONFIG_USER_ONLY
2946 if (gdbserver_fd < 0 || s->fd < 0) {
2947 return;
2948 }
2949 #endif
2950
2951 trace_gdbstub_op_exiting((uint8_t)code);
2952
2953 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2954 put_packet(s, buf);
2955
2956 #ifndef CONFIG_USER_ONLY
2957 qemu_chr_fe_deinit(&s->chr, true);
2958 #endif
2959 }
2960
2961 /*
2962 * Create the process that will contain all the "orphan" CPUs (that are not
2963 * part of a CPU cluster). Note that if this process contains no CPUs, it won't
2964 * be attachable and thus will be invisible to the user.
2965 */
2966 static void create_default_process(GDBState *s)
2967 {
2968 GDBProcess *process;
2969 int max_pid = 0;
2970
2971 if (s->process_num) {
2972 max_pid = s->processes[s->process_num - 1].pid;
2973 }
2974
2975 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
2976 process = &s->processes[s->process_num - 1];
2977
2978 /* We need an available PID slot for this process */
2979 assert(max_pid < UINT32_MAX);
2980
2981 process->pid = max_pid + 1;
2982 process->attached = false;
2983 process->target_xml[0] = '\0';
2984 }
2985
2986 #ifdef CONFIG_USER_ONLY
2987 int
2988 gdb_handlesig(CPUState *cpu, int sig)
2989 {
2990 GDBState *s;
2991 char buf[256];
2992 int n;
2993
2994 s = gdbserver_state;
2995 if (gdbserver_fd < 0 || s->fd < 0) {
2996 return sig;
2997 }
2998
2999 /* disable single step if it was enabled */
3000 cpu_single_step(cpu, 0);
3001 tb_flush(cpu);
3002
3003 if (sig != 0) {
3004 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb(sig));
3005 put_packet(s, buf);
3006 }
3007 /* put_packet() might have detected that the peer terminated the
3008 connection. */
3009 if (s->fd < 0) {
3010 return sig;
3011 }
3012
3013 sig = 0;
3014 s->state = RS_IDLE;
3015 s->running_state = 0;
3016 while (s->running_state == 0) {
3017 n = read(s->fd, buf, 256);
3018 if (n > 0) {
3019 int i;
3020
3021 for (i = 0; i < n; i++) {
3022 gdb_read_byte(s, buf[i]);
3023 }
3024 } else {
3025 /* XXX: Connection closed. Should probably wait for another
3026 connection before continuing. */
3027 if (n == 0) {
3028 close(s->fd);
3029 }
3030 s->fd = -1;
3031 return sig;
3032 }
3033 }
3034 sig = s->signal;
3035 s->signal = 0;
3036 return sig;
3037 }
3038
3039 /* Tell the remote gdb that the process has exited due to SIG. */
3040 void gdb_signalled(CPUArchState *env, int sig)
3041 {
3042 GDBState *s;
3043 char buf[4];
3044
3045 s = gdbserver_state;
3046 if (gdbserver_fd < 0 || s->fd < 0) {
3047 return;
3048 }
3049
3050 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb(sig));
3051 put_packet(s, buf);
3052 }
3053
3054 static bool gdb_accept(void)
3055 {
3056 GDBState *s;
3057 struct sockaddr_in sockaddr;
3058 socklen_t len;
3059 int fd;
3060
3061 for(;;) {
3062 len = sizeof(sockaddr);
3063 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
3064 if (fd < 0 && errno != EINTR) {
3065 perror("accept");
3066 return false;
3067 } else if (fd >= 0) {
3068 qemu_set_cloexec(fd);
3069 break;
3070 }
3071 }
3072
3073 /* set short latency */
3074 if (socket_set_nodelay(fd)) {
3075 perror("setsockopt");
3076 close(fd);
3077 return false;
3078 }
3079
3080 s = g_malloc0(sizeof(GDBState));
3081 create_default_process(s);
3082 s->processes[0].attached = true;
3083 s->c_cpu = gdb_first_attached_cpu(s);
3084 s->g_cpu = s->c_cpu;
3085 s->fd = fd;
3086 gdb_has_xml = false;
3087
3088 gdbserver_state = s;
3089 return true;
3090 }
3091
3092 static int gdbserver_open(int port)
3093 {
3094 struct sockaddr_in sockaddr;
3095 int fd, ret;
3096
3097 fd = socket(PF_INET, SOCK_STREAM, 0);
3098 if (fd < 0) {
3099 perror("socket");
3100 return -1;
3101 }
3102 qemu_set_cloexec(fd);
3103
3104 socket_set_fast_reuse(fd);
3105
3106 sockaddr.sin_family = AF_INET;
3107 sockaddr.sin_port = htons(port);
3108 sockaddr.sin_addr.s_addr = 0;
3109 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
3110 if (ret < 0) {
3111 perror("bind");
3112 close(fd);
3113 return -1;
3114 }
3115 ret = listen(fd, 1);
3116 if (ret < 0) {
3117 perror("listen");
3118 close(fd);
3119 return -1;
3120 }
3121 return fd;
3122 }
3123
3124 int gdbserver_start(int port)
3125 {
3126 gdbserver_fd = gdbserver_open(port);
3127 if (gdbserver_fd < 0)
3128 return -1;
3129 /* accept connections */
3130 if (!gdb_accept()) {
3131 close(gdbserver_fd);
3132 gdbserver_fd = -1;
3133 return -1;
3134 }
3135 return 0;
3136 }
3137
3138 /* Disable gdb stub for child processes. */
3139 void gdbserver_fork(CPUState *cpu)
3140 {
3141 GDBState *s = gdbserver_state;
3142
3143 if (gdbserver_fd < 0 || s->fd < 0) {
3144 return;
3145 }
3146 close(s->fd);
3147 s->fd = -1;
3148 cpu_breakpoint_remove_all(cpu, BP_GDB);
3149 cpu_watchpoint_remove_all(cpu, BP_GDB);
3150 }
3151 #else
3152 static int gdb_chr_can_receive(void *opaque)
3153 {
3154 /* We can handle an arbitrarily large amount of data.
3155 Pick the maximum packet size, which is as good as anything. */
3156 return MAX_PACKET_LENGTH;
3157 }
3158
3159 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
3160 {
3161 int i;
3162
3163 for (i = 0; i < size; i++) {
3164 gdb_read_byte(gdbserver_state, buf[i]);
3165 }
3166 }
3167
3168 static void gdb_chr_event(void *opaque, int event)
3169 {
3170 int i;
3171 GDBState *s = (GDBState *) opaque;
3172
3173 switch (event) {
3174 case CHR_EVENT_OPENED:
3175 /* Start with first process attached, others detached */
3176 for (i = 0; i < s->process_num; i++) {
3177 s->processes[i].attached = !i;
3178 }
3179
3180 s->c_cpu = gdb_first_attached_cpu(s);
3181 s->g_cpu = s->c_cpu;
3182
3183 vm_stop(RUN_STATE_PAUSED);
3184 gdb_has_xml = false;
3185 break;
3186 default:
3187 break;
3188 }
3189 }
3190
3191 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
3192 {
3193 char buf[MAX_PACKET_LENGTH];
3194
3195 buf[0] = 'O';
3196 if (len > (MAX_PACKET_LENGTH/2) - 1)
3197 len = (MAX_PACKET_LENGTH/2) - 1;
3198 memtohex(buf + 1, (uint8_t *)msg, len);
3199 put_packet(s, buf);
3200 }
3201
3202 static int gdb_monitor_write(Chardev *chr, const uint8_t *buf, int len)
3203 {
3204 const char *p = (const char *)buf;
3205 int max_sz;
3206
3207 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
3208 for (;;) {
3209 if (len <= max_sz) {
3210 gdb_monitor_output(gdbserver_state, p, len);
3211 break;
3212 }
3213 gdb_monitor_output(gdbserver_state, p, max_sz);
3214 p += max_sz;
3215 len -= max_sz;
3216 }
3217 return len;
3218 }
3219
3220 #ifndef _WIN32
3221 static void gdb_sigterm_handler(int signal)
3222 {
3223 if (runstate_is_running()) {
3224 vm_stop(RUN_STATE_PAUSED);
3225 }
3226 }
3227 #endif
3228
3229 static void gdb_monitor_open(Chardev *chr, ChardevBackend *backend,
3230 bool *be_opened, Error **errp)
3231 {
3232 *be_opened = false;
3233 }
3234
3235 static void char_gdb_class_init(ObjectClass *oc, void *data)
3236 {
3237 ChardevClass *cc = CHARDEV_CLASS(oc);
3238
3239 cc->internal = true;
3240 cc->open = gdb_monitor_open;
3241 cc->chr_write = gdb_monitor_write;
3242 }
3243
3244 #define TYPE_CHARDEV_GDB "chardev-gdb"
3245
3246 static const TypeInfo char_gdb_type_info = {
3247 .name = TYPE_CHARDEV_GDB,
3248 .parent = TYPE_CHARDEV,
3249 .class_init = char_gdb_class_init,
3250 };
3251
3252 static int find_cpu_clusters(Object *child, void *opaque)
3253 {
3254 if (object_dynamic_cast(child, TYPE_CPU_CLUSTER)) {
3255 GDBState *s = (GDBState *) opaque;
3256 CPUClusterState *cluster = CPU_CLUSTER(child);
3257 GDBProcess *process;
3258
3259 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
3260
3261 process = &s->processes[s->process_num - 1];
3262
3263 /*
3264 * GDB process IDs -1 and 0 are reserved. To avoid subtle errors at
3265 * runtime, we enforce here that the machine does not use a cluster ID
3266 * that would lead to PID 0.
3267 */
3268 assert(cluster->cluster_id != UINT32_MAX);
3269 process->pid = cluster->cluster_id + 1;
3270 process->attached = false;
3271 process->target_xml[0] = '\0';
3272
3273 return 0;
3274 }
3275
3276 return object_child_foreach(child, find_cpu_clusters, opaque);
3277 }
3278
3279 static int pid_order(const void *a, const void *b)
3280 {
3281 GDBProcess *pa = (GDBProcess *) a;
3282 GDBProcess *pb = (GDBProcess *) b;
3283
3284 if (pa->pid < pb->pid) {
3285 return -1;
3286 } else if (pa->pid > pb->pid) {
3287 return 1;
3288 } else {
3289 return 0;
3290 }
3291 }
3292
3293 static void create_processes(GDBState *s)
3294 {
3295 object_child_foreach(object_get_root(), find_cpu_clusters, s);
3296
3297 if (s->processes) {
3298 /* Sort by PID */
3299 qsort(s->processes, s->process_num, sizeof(s->processes[0]), pid_order);
3300 }
3301
3302 create_default_process(s);
3303 }
3304
3305 static void cleanup_processes(GDBState *s)
3306 {
3307 g_free(s->processes);
3308 s->process_num = 0;
3309 s->processes = NULL;
3310 }
3311
3312 int gdbserver_start(const char *device)
3313 {
3314 trace_gdbstub_op_start(device);
3315
3316 GDBState *s;
3317 char gdbstub_device_name[128];
3318 Chardev *chr = NULL;
3319 Chardev *mon_chr;
3320
3321 if (!first_cpu) {
3322 error_report("gdbstub: meaningless to attach gdb to a "
3323 "machine without any CPU.");
3324 return -1;
3325 }
3326
3327 if (!device)
3328 return -1;
3329 if (strcmp(device, "none") != 0) {
3330 if (strstart(device, "tcp:", NULL)) {
3331 /* enforce required TCP attributes */
3332 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
3333 "%s,nowait,nodelay,server", device);
3334 device = gdbstub_device_name;
3335 }
3336 #ifndef _WIN32
3337 else if (strcmp(device, "stdio") == 0) {
3338 struct sigaction act;
3339
3340 memset(&act, 0, sizeof(act));
3341 act.sa_handler = gdb_sigterm_handler;
3342 sigaction(SIGINT, &act, NULL);
3343 }
3344 #endif
3345 /*
3346 * FIXME: it's a bit weird to allow using a mux chardev here
3347 * and implicitly setup a monitor. We may want to break this.
3348 */
3349 chr = qemu_chr_new_noreplay("gdb", device, true, NULL);
3350 if (!chr)
3351 return -1;
3352 }
3353
3354 s = gdbserver_state;
3355 if (!s) {
3356 s = g_malloc0(sizeof(GDBState));
3357 gdbserver_state = s;
3358
3359 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
3360
3361 /* Initialize a monitor terminal for gdb */
3362 mon_chr = qemu_chardev_new(NULL, TYPE_CHARDEV_GDB,
3363 NULL, NULL, &error_abort);
3364 monitor_init_hmp(mon_chr, false);
3365 } else {
3366 qemu_chr_fe_deinit(&s->chr, true);
3367 mon_chr = s->mon_chr;
3368 cleanup_processes(s);
3369 memset(s, 0, sizeof(GDBState));
3370 s->mon_chr = mon_chr;
3371 }
3372
3373 create_processes(s);
3374
3375 if (chr) {
3376 qemu_chr_fe_init(&s->chr, chr, &error_abort);
3377 qemu_chr_fe_set_handlers(&s->chr, gdb_chr_can_receive, gdb_chr_receive,
3378 gdb_chr_event, NULL, s, NULL, true);
3379 }
3380 s->state = chr ? RS_IDLE : RS_INACTIVE;
3381 s->mon_chr = mon_chr;
3382 s->current_syscall_cb = NULL;
3383
3384 return 0;
3385 }
3386
3387 void gdbserver_cleanup(void)
3388 {
3389 if (gdbserver_state) {
3390 put_packet(gdbserver_state, "W00");
3391 }
3392 }
3393
3394 static void register_types(void)
3395 {
3396 type_register_static(&char_gdb_type_info);
3397 }
3398
3399 type_init(register_types);
3400 #endif