]> git.ipfire.org Git - thirdparty/qemu.git/blob - migration-rdma.c
Update version for v2.2.1 release
[thirdparty/qemu.git] / migration-rdma.c
1 /*
2 * RDMA protocol and interfaces
3 *
4 * Copyright IBM, Corp. 2010-2013
5 *
6 * Authors:
7 * Michael R. Hines <mrhines@us.ibm.com>
8 * Jiuxing Liu <jl@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or
11 * later. See the COPYING file in the top-level directory.
12 *
13 */
14 #include "qemu-common.h"
15 #include "migration/migration.h"
16 #include "migration/qemu-file.h"
17 #include "exec/cpu-common.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/sockets.h"
20 #include "qemu/bitmap.h"
21 #include "block/coroutine.h"
22 #include <stdio.h>
23 #include <sys/types.h>
24 #include <sys/socket.h>
25 #include <netdb.h>
26 #include <arpa/inet.h>
27 #include <string.h>
28 #include <rdma/rdma_cma.h>
29
30 //#define DEBUG_RDMA
31 //#define DEBUG_RDMA_VERBOSE
32 //#define DEBUG_RDMA_REALLY_VERBOSE
33
34 #ifdef DEBUG_RDMA
35 #define DPRINTF(fmt, ...) \
36 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define DPRINTF(fmt, ...) \
39 do { } while (0)
40 #endif
41
42 #ifdef DEBUG_RDMA_VERBOSE
43 #define DDPRINTF(fmt, ...) \
44 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
45 #else
46 #define DDPRINTF(fmt, ...) \
47 do { } while (0)
48 #endif
49
50 #ifdef DEBUG_RDMA_REALLY_VERBOSE
51 #define DDDPRINTF(fmt, ...) \
52 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
53 #else
54 #define DDDPRINTF(fmt, ...) \
55 do { } while (0)
56 #endif
57
58 /*
59 * Print and error on both the Monitor and the Log file.
60 */
61 #define ERROR(errp, fmt, ...) \
62 do { \
63 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
64 if (errp && (*(errp) == NULL)) { \
65 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
66 } \
67 } while (0)
68
69 #define RDMA_RESOLVE_TIMEOUT_MS 10000
70
71 /* Do not merge data if larger than this. */
72 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
73 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
74
75 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
76
77 /*
78 * This is only for non-live state being migrated.
79 * Instead of RDMA_WRITE messages, we use RDMA_SEND
80 * messages for that state, which requires a different
81 * delivery design than main memory.
82 */
83 #define RDMA_SEND_INCREMENT 32768
84
85 /*
86 * Maximum size infiniband SEND message
87 */
88 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
89 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
90
91 #define RDMA_CONTROL_VERSION_CURRENT 1
92 /*
93 * Capabilities for negotiation.
94 */
95 #define RDMA_CAPABILITY_PIN_ALL 0x01
96
97 /*
98 * Add the other flags above to this list of known capabilities
99 * as they are introduced.
100 */
101 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
102
103 #define CHECK_ERROR_STATE() \
104 do { \
105 if (rdma->error_state) { \
106 if (!rdma->error_reported) { \
107 fprintf(stderr, "RDMA is in an error state waiting migration" \
108 " to abort!\n"); \
109 rdma->error_reported = 1; \
110 } \
111 return rdma->error_state; \
112 } \
113 } while (0);
114
115 /*
116 * A work request ID is 64-bits and we split up these bits
117 * into 3 parts:
118 *
119 * bits 0-15 : type of control message, 2^16
120 * bits 16-29: ram block index, 2^14
121 * bits 30-63: ram block chunk number, 2^34
122 *
123 * The last two bit ranges are only used for RDMA writes,
124 * in order to track their completion and potentially
125 * also track unregistration status of the message.
126 */
127 #define RDMA_WRID_TYPE_SHIFT 0UL
128 #define RDMA_WRID_BLOCK_SHIFT 16UL
129 #define RDMA_WRID_CHUNK_SHIFT 30UL
130
131 #define RDMA_WRID_TYPE_MASK \
132 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
133
134 #define RDMA_WRID_BLOCK_MASK \
135 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
136
137 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
138
139 /*
140 * RDMA migration protocol:
141 * 1. RDMA Writes (data messages, i.e. RAM)
142 * 2. IB Send/Recv (control channel messages)
143 */
144 enum {
145 RDMA_WRID_NONE = 0,
146 RDMA_WRID_RDMA_WRITE = 1,
147 RDMA_WRID_SEND_CONTROL = 2000,
148 RDMA_WRID_RECV_CONTROL = 4000,
149 };
150
151 const char *wrid_desc[] = {
152 [RDMA_WRID_NONE] = "NONE",
153 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
154 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
155 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
156 };
157
158 /*
159 * Work request IDs for IB SEND messages only (not RDMA writes).
160 * This is used by the migration protocol to transmit
161 * control messages (such as device state and registration commands)
162 *
163 * We could use more WRs, but we have enough for now.
164 */
165 enum {
166 RDMA_WRID_READY = 0,
167 RDMA_WRID_DATA,
168 RDMA_WRID_CONTROL,
169 RDMA_WRID_MAX,
170 };
171
172 /*
173 * SEND/RECV IB Control Messages.
174 */
175 enum {
176 RDMA_CONTROL_NONE = 0,
177 RDMA_CONTROL_ERROR,
178 RDMA_CONTROL_READY, /* ready to receive */
179 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
180 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
181 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
182 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
183 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
184 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
185 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
186 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
187 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
188 };
189
190 const char *control_desc[] = {
191 [RDMA_CONTROL_NONE] = "NONE",
192 [RDMA_CONTROL_ERROR] = "ERROR",
193 [RDMA_CONTROL_READY] = "READY",
194 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
195 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
196 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
197 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
198 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
199 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
200 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
201 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
202 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
203 };
204
205 /*
206 * Memory and MR structures used to represent an IB Send/Recv work request.
207 * This is *not* used for RDMA writes, only IB Send/Recv.
208 */
209 typedef struct {
210 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
211 struct ibv_mr *control_mr; /* registration metadata */
212 size_t control_len; /* length of the message */
213 uint8_t *control_curr; /* start of unconsumed bytes */
214 } RDMAWorkRequestData;
215
216 /*
217 * Negotiate RDMA capabilities during connection-setup time.
218 */
219 typedef struct {
220 uint32_t version;
221 uint32_t flags;
222 } RDMACapabilities;
223
224 static void caps_to_network(RDMACapabilities *cap)
225 {
226 cap->version = htonl(cap->version);
227 cap->flags = htonl(cap->flags);
228 }
229
230 static void network_to_caps(RDMACapabilities *cap)
231 {
232 cap->version = ntohl(cap->version);
233 cap->flags = ntohl(cap->flags);
234 }
235
236 /*
237 * Representation of a RAMBlock from an RDMA perspective.
238 * This is not transmitted, only local.
239 * This and subsequent structures cannot be linked lists
240 * because we're using a single IB message to transmit
241 * the information. It's small anyway, so a list is overkill.
242 */
243 typedef struct RDMALocalBlock {
244 uint8_t *local_host_addr; /* local virtual address */
245 uint64_t remote_host_addr; /* remote virtual address */
246 uint64_t offset;
247 uint64_t length;
248 struct ibv_mr **pmr; /* MRs for chunk-level registration */
249 struct ibv_mr *mr; /* MR for non-chunk-level registration */
250 uint32_t *remote_keys; /* rkeys for chunk-level registration */
251 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
252 int index; /* which block are we */
253 bool is_ram_block;
254 int nb_chunks;
255 unsigned long *transit_bitmap;
256 unsigned long *unregister_bitmap;
257 } RDMALocalBlock;
258
259 /*
260 * Also represents a RAMblock, but only on the dest.
261 * This gets transmitted by the dest during connection-time
262 * to the source VM and then is used to populate the
263 * corresponding RDMALocalBlock with
264 * the information needed to perform the actual RDMA.
265 */
266 typedef struct QEMU_PACKED RDMARemoteBlock {
267 uint64_t remote_host_addr;
268 uint64_t offset;
269 uint64_t length;
270 uint32_t remote_rkey;
271 uint32_t padding;
272 } RDMARemoteBlock;
273
274 static uint64_t htonll(uint64_t v)
275 {
276 union { uint32_t lv[2]; uint64_t llv; } u;
277 u.lv[0] = htonl(v >> 32);
278 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
279 return u.llv;
280 }
281
282 static uint64_t ntohll(uint64_t v) {
283 union { uint32_t lv[2]; uint64_t llv; } u;
284 u.llv = v;
285 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
286 }
287
288 static void remote_block_to_network(RDMARemoteBlock *rb)
289 {
290 rb->remote_host_addr = htonll(rb->remote_host_addr);
291 rb->offset = htonll(rb->offset);
292 rb->length = htonll(rb->length);
293 rb->remote_rkey = htonl(rb->remote_rkey);
294 }
295
296 static void network_to_remote_block(RDMARemoteBlock *rb)
297 {
298 rb->remote_host_addr = ntohll(rb->remote_host_addr);
299 rb->offset = ntohll(rb->offset);
300 rb->length = ntohll(rb->length);
301 rb->remote_rkey = ntohl(rb->remote_rkey);
302 }
303
304 /*
305 * Virtual address of the above structures used for transmitting
306 * the RAMBlock descriptions at connection-time.
307 * This structure is *not* transmitted.
308 */
309 typedef struct RDMALocalBlocks {
310 int nb_blocks;
311 bool init; /* main memory init complete */
312 RDMALocalBlock *block;
313 } RDMALocalBlocks;
314
315 /*
316 * Main data structure for RDMA state.
317 * While there is only one copy of this structure being allocated right now,
318 * this is the place where one would start if you wanted to consider
319 * having more than one RDMA connection open at the same time.
320 */
321 typedef struct RDMAContext {
322 char *host;
323 int port;
324
325 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
326
327 /*
328 * This is used by *_exchange_send() to figure out whether or not
329 * the initial "READY" message has already been received or not.
330 * This is because other functions may potentially poll() and detect
331 * the READY message before send() does, in which case we need to
332 * know if it completed.
333 */
334 int control_ready_expected;
335
336 /* number of outstanding writes */
337 int nb_sent;
338
339 /* store info about current buffer so that we can
340 merge it with future sends */
341 uint64_t current_addr;
342 uint64_t current_length;
343 /* index of ram block the current buffer belongs to */
344 int current_index;
345 /* index of the chunk in the current ram block */
346 int current_chunk;
347
348 bool pin_all;
349
350 /*
351 * infiniband-specific variables for opening the device
352 * and maintaining connection state and so forth.
353 *
354 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
355 * cm_id->verbs, cm_id->channel, and cm_id->qp.
356 */
357 struct rdma_cm_id *cm_id; /* connection manager ID */
358 struct rdma_cm_id *listen_id;
359 bool connected;
360
361 struct ibv_context *verbs;
362 struct rdma_event_channel *channel;
363 struct ibv_qp *qp; /* queue pair */
364 struct ibv_comp_channel *comp_channel; /* completion channel */
365 struct ibv_pd *pd; /* protection domain */
366 struct ibv_cq *cq; /* completion queue */
367
368 /*
369 * If a previous write failed (perhaps because of a failed
370 * memory registration, then do not attempt any future work
371 * and remember the error state.
372 */
373 int error_state;
374 int error_reported;
375
376 /*
377 * Description of ram blocks used throughout the code.
378 */
379 RDMALocalBlocks local_ram_blocks;
380 RDMARemoteBlock *block;
381
382 /*
383 * Migration on *destination* started.
384 * Then use coroutine yield function.
385 * Source runs in a thread, so we don't care.
386 */
387 int migration_started_on_destination;
388
389 int total_registrations;
390 int total_writes;
391
392 int unregister_current, unregister_next;
393 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
394
395 GHashTable *blockmap;
396 } RDMAContext;
397
398 /*
399 * Interface to the rest of the migration call stack.
400 */
401 typedef struct QEMUFileRDMA {
402 RDMAContext *rdma;
403 size_t len;
404 void *file;
405 } QEMUFileRDMA;
406
407 /*
408 * Main structure for IB Send/Recv control messages.
409 * This gets prepended at the beginning of every Send/Recv.
410 */
411 typedef struct QEMU_PACKED {
412 uint32_t len; /* Total length of data portion */
413 uint32_t type; /* which control command to perform */
414 uint32_t repeat; /* number of commands in data portion of same type */
415 uint32_t padding;
416 } RDMAControlHeader;
417
418 static void control_to_network(RDMAControlHeader *control)
419 {
420 control->type = htonl(control->type);
421 control->len = htonl(control->len);
422 control->repeat = htonl(control->repeat);
423 }
424
425 static void network_to_control(RDMAControlHeader *control)
426 {
427 control->type = ntohl(control->type);
428 control->len = ntohl(control->len);
429 control->repeat = ntohl(control->repeat);
430 }
431
432 /*
433 * Register a single Chunk.
434 * Information sent by the source VM to inform the dest
435 * to register an single chunk of memory before we can perform
436 * the actual RDMA operation.
437 */
438 typedef struct QEMU_PACKED {
439 union QEMU_PACKED {
440 uint64_t current_addr; /* offset into the ramblock of the chunk */
441 uint64_t chunk; /* chunk to lookup if unregistering */
442 } key;
443 uint32_t current_index; /* which ramblock the chunk belongs to */
444 uint32_t padding;
445 uint64_t chunks; /* how many sequential chunks to register */
446 } RDMARegister;
447
448 static void register_to_network(RDMARegister *reg)
449 {
450 reg->key.current_addr = htonll(reg->key.current_addr);
451 reg->current_index = htonl(reg->current_index);
452 reg->chunks = htonll(reg->chunks);
453 }
454
455 static void network_to_register(RDMARegister *reg)
456 {
457 reg->key.current_addr = ntohll(reg->key.current_addr);
458 reg->current_index = ntohl(reg->current_index);
459 reg->chunks = ntohll(reg->chunks);
460 }
461
462 typedef struct QEMU_PACKED {
463 uint32_t value; /* if zero, we will madvise() */
464 uint32_t block_idx; /* which ram block index */
465 uint64_t offset; /* where in the remote ramblock this chunk */
466 uint64_t length; /* length of the chunk */
467 } RDMACompress;
468
469 static void compress_to_network(RDMACompress *comp)
470 {
471 comp->value = htonl(comp->value);
472 comp->block_idx = htonl(comp->block_idx);
473 comp->offset = htonll(comp->offset);
474 comp->length = htonll(comp->length);
475 }
476
477 static void network_to_compress(RDMACompress *comp)
478 {
479 comp->value = ntohl(comp->value);
480 comp->block_idx = ntohl(comp->block_idx);
481 comp->offset = ntohll(comp->offset);
482 comp->length = ntohll(comp->length);
483 }
484
485 /*
486 * The result of the dest's memory registration produces an "rkey"
487 * which the source VM must reference in order to perform
488 * the RDMA operation.
489 */
490 typedef struct QEMU_PACKED {
491 uint32_t rkey;
492 uint32_t padding;
493 uint64_t host_addr;
494 } RDMARegisterResult;
495
496 static void result_to_network(RDMARegisterResult *result)
497 {
498 result->rkey = htonl(result->rkey);
499 result->host_addr = htonll(result->host_addr);
500 };
501
502 static void network_to_result(RDMARegisterResult *result)
503 {
504 result->rkey = ntohl(result->rkey);
505 result->host_addr = ntohll(result->host_addr);
506 };
507
508 const char *print_wrid(int wrid);
509 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
510 uint8_t *data, RDMAControlHeader *resp,
511 int *resp_idx,
512 int (*callback)(RDMAContext *rdma));
513
514 static inline uint64_t ram_chunk_index(const uint8_t *start,
515 const uint8_t *host)
516 {
517 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
518 }
519
520 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
521 uint64_t i)
522 {
523 return (uint8_t *) (((uintptr_t) rdma_ram_block->local_host_addr)
524 + (i << RDMA_REG_CHUNK_SHIFT));
525 }
526
527 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
528 uint64_t i)
529 {
530 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
531 (1UL << RDMA_REG_CHUNK_SHIFT);
532
533 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
534 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
535 }
536
537 return result;
538 }
539
540 static int __qemu_rdma_add_block(RDMAContext *rdma, void *host_addr,
541 ram_addr_t block_offset, uint64_t length)
542 {
543 RDMALocalBlocks *local = &rdma->local_ram_blocks;
544 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
545 (void *) block_offset);
546 RDMALocalBlock *old = local->block;
547
548 assert(block == NULL);
549
550 local->block = g_malloc0(sizeof(RDMALocalBlock) * (local->nb_blocks + 1));
551
552 if (local->nb_blocks) {
553 int x;
554
555 for (x = 0; x < local->nb_blocks; x++) {
556 g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
557 g_hash_table_insert(rdma->blockmap, (void *)old[x].offset,
558 &local->block[x]);
559 }
560 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
561 g_free(old);
562 }
563
564 block = &local->block[local->nb_blocks];
565
566 block->local_host_addr = host_addr;
567 block->offset = block_offset;
568 block->length = length;
569 block->index = local->nb_blocks;
570 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
571 block->transit_bitmap = bitmap_new(block->nb_chunks);
572 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
573 block->unregister_bitmap = bitmap_new(block->nb_chunks);
574 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
575 block->remote_keys = g_malloc0(block->nb_chunks * sizeof(uint32_t));
576
577 block->is_ram_block = local->init ? false : true;
578
579 g_hash_table_insert(rdma->blockmap, (void *) block_offset, block);
580
581 DDPRINTF("Added Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
582 " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
583 local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
584 block->length, (uint64_t) (block->local_host_addr + block->length),
585 BITS_TO_LONGS(block->nb_chunks) *
586 sizeof(unsigned long) * 8, block->nb_chunks);
587
588 local->nb_blocks++;
589
590 return 0;
591 }
592
593 /*
594 * Memory regions need to be registered with the device and queue pairs setup
595 * in advanced before the migration starts. This tells us where the RAM blocks
596 * are so that we can register them individually.
597 */
598 static void qemu_rdma_init_one_block(void *host_addr,
599 ram_addr_t block_offset, ram_addr_t length, void *opaque)
600 {
601 __qemu_rdma_add_block(opaque, host_addr, block_offset, length);
602 }
603
604 /*
605 * Identify the RAMBlocks and their quantity. They will be references to
606 * identify chunk boundaries inside each RAMBlock and also be referenced
607 * during dynamic page registration.
608 */
609 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
610 {
611 RDMALocalBlocks *local = &rdma->local_ram_blocks;
612
613 assert(rdma->blockmap == NULL);
614 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
615 memset(local, 0, sizeof *local);
616 qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
617 DPRINTF("Allocated %d local ram block structures\n", local->nb_blocks);
618 rdma->block = (RDMARemoteBlock *) g_malloc0(sizeof(RDMARemoteBlock) *
619 rdma->local_ram_blocks.nb_blocks);
620 local->init = true;
621 return 0;
622 }
623
624 static int __qemu_rdma_delete_block(RDMAContext *rdma, ram_addr_t block_offset)
625 {
626 RDMALocalBlocks *local = &rdma->local_ram_blocks;
627 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
628 (void *) block_offset);
629 RDMALocalBlock *old = local->block;
630 int x;
631
632 assert(block);
633
634 if (block->pmr) {
635 int j;
636
637 for (j = 0; j < block->nb_chunks; j++) {
638 if (!block->pmr[j]) {
639 continue;
640 }
641 ibv_dereg_mr(block->pmr[j]);
642 rdma->total_registrations--;
643 }
644 g_free(block->pmr);
645 block->pmr = NULL;
646 }
647
648 if (block->mr) {
649 ibv_dereg_mr(block->mr);
650 rdma->total_registrations--;
651 block->mr = NULL;
652 }
653
654 g_free(block->transit_bitmap);
655 block->transit_bitmap = NULL;
656
657 g_free(block->unregister_bitmap);
658 block->unregister_bitmap = NULL;
659
660 g_free(block->remote_keys);
661 block->remote_keys = NULL;
662
663 for (x = 0; x < local->nb_blocks; x++) {
664 g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
665 }
666
667 if (local->nb_blocks > 1) {
668
669 local->block = g_malloc0(sizeof(RDMALocalBlock) *
670 (local->nb_blocks - 1));
671
672 if (block->index) {
673 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
674 }
675
676 if (block->index < (local->nb_blocks - 1)) {
677 memcpy(local->block + block->index, old + (block->index + 1),
678 sizeof(RDMALocalBlock) *
679 (local->nb_blocks - (block->index + 1)));
680 }
681 } else {
682 assert(block == local->block);
683 local->block = NULL;
684 }
685
686 DDPRINTF("Deleted Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
687 " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
688 local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
689 block->length, (uint64_t) (block->local_host_addr + block->length),
690 BITS_TO_LONGS(block->nb_chunks) *
691 sizeof(unsigned long) * 8, block->nb_chunks);
692
693 g_free(old);
694
695 local->nb_blocks--;
696
697 if (local->nb_blocks) {
698 for (x = 0; x < local->nb_blocks; x++) {
699 g_hash_table_insert(rdma->blockmap, (void *)local->block[x].offset,
700 &local->block[x]);
701 }
702 }
703
704 return 0;
705 }
706
707 /*
708 * Put in the log file which RDMA device was opened and the details
709 * associated with that device.
710 */
711 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
712 {
713 struct ibv_port_attr port;
714
715 if (ibv_query_port(verbs, 1, &port)) {
716 fprintf(stderr, "FAILED TO QUERY PORT INFORMATION!\n");
717 return;
718 }
719
720 printf("%s RDMA Device opened: kernel name %s "
721 "uverbs device name %s, "
722 "infiniband_verbs class device path %s, "
723 "infiniband class device path %s, "
724 "transport: (%d) %s\n",
725 who,
726 verbs->device->name,
727 verbs->device->dev_name,
728 verbs->device->dev_path,
729 verbs->device->ibdev_path,
730 port.link_layer,
731 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
732 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
733 ? "Ethernet" : "Unknown"));
734 }
735
736 /*
737 * Put in the log file the RDMA gid addressing information,
738 * useful for folks who have trouble understanding the
739 * RDMA device hierarchy in the kernel.
740 */
741 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
742 {
743 char sgid[33];
744 char dgid[33];
745 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
746 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
747 DPRINTF("%s Source GID: %s, Dest GID: %s\n", who, sgid, dgid);
748 }
749
750 /*
751 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
752 * We will try the next addrinfo struct, and fail if there are
753 * no other valid addresses to bind against.
754 *
755 * If user is listening on '[::]', then we will not have a opened a device
756 * yet and have no way of verifying if the device is RoCE or not.
757 *
758 * In this case, the source VM will throw an error for ALL types of
759 * connections (both IPv4 and IPv6) if the destination machine does not have
760 * a regular infiniband network available for use.
761 *
762 * The only way to guarantee that an error is thrown for broken kernels is
763 * for the management software to choose a *specific* interface at bind time
764 * and validate what time of hardware it is.
765 *
766 * Unfortunately, this puts the user in a fix:
767 *
768 * If the source VM connects with an IPv4 address without knowing that the
769 * destination has bound to '[::]' the migration will unconditionally fail
770 * unless the management software is explicitly listening on the the IPv4
771 * address while using a RoCE-based device.
772 *
773 * If the source VM connects with an IPv6 address, then we're OK because we can
774 * throw an error on the source (and similarly on the destination).
775 *
776 * But in mixed environments, this will be broken for a while until it is fixed
777 * inside linux.
778 *
779 * We do provide a *tiny* bit of help in this function: We can list all of the
780 * devices in the system and check to see if all the devices are RoCE or
781 * Infiniband.
782 *
783 * If we detect that we have a *pure* RoCE environment, then we can safely
784 * thrown an error even if the management software has specified '[::]' as the
785 * bind address.
786 *
787 * However, if there is are multiple hetergeneous devices, then we cannot make
788 * this assumption and the user just has to be sure they know what they are
789 * doing.
790 *
791 * Patches are being reviewed on linux-rdma.
792 */
793 static int qemu_rdma_broken_ipv6_kernel(Error **errp, struct ibv_context *verbs)
794 {
795 struct ibv_port_attr port_attr;
796
797 /* This bug only exists in linux, to our knowledge. */
798 #ifdef CONFIG_LINUX
799
800 /*
801 * Verbs are only NULL if management has bound to '[::]'.
802 *
803 * Let's iterate through all the devices and see if there any pure IB
804 * devices (non-ethernet).
805 *
806 * If not, then we can safely proceed with the migration.
807 * Otherwise, there are no guarantees until the bug is fixed in linux.
808 */
809 if (!verbs) {
810 int num_devices, x;
811 struct ibv_device ** dev_list = ibv_get_device_list(&num_devices);
812 bool roce_found = false;
813 bool ib_found = false;
814
815 for (x = 0; x < num_devices; x++) {
816 verbs = ibv_open_device(dev_list[x]);
817
818 if (ibv_query_port(verbs, 1, &port_attr)) {
819 ibv_close_device(verbs);
820 ERROR(errp, "Could not query initial IB port");
821 return -EINVAL;
822 }
823
824 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
825 ib_found = true;
826 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
827 roce_found = true;
828 }
829
830 ibv_close_device(verbs);
831
832 }
833
834 if (roce_found) {
835 if (ib_found) {
836 fprintf(stderr, "WARN: migrations may fail:"
837 " IPv6 over RoCE / iWARP in linux"
838 " is broken. But since you appear to have a"
839 " mixed RoCE / IB environment, be sure to only"
840 " migrate over the IB fabric until the kernel "
841 " fixes the bug.\n");
842 } else {
843 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
844 " and your management software has specified '[::]'"
845 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
846 return -ENONET;
847 }
848 }
849
850 return 0;
851 }
852
853 /*
854 * If we have a verbs context, that means that some other than '[::]' was
855 * used by the management software for binding. In which case we can actually
856 * warn the user about a potential broken kernel;
857 */
858
859 /* IB ports start with 1, not 0 */
860 if (ibv_query_port(verbs, 1, &port_attr)) {
861 ERROR(errp, "Could not query initial IB port");
862 return -EINVAL;
863 }
864
865 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
866 ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
867 "(but patches on linux-rdma in progress)");
868 return -ENONET;
869 }
870
871 #endif
872
873 return 0;
874 }
875
876 /*
877 * Figure out which RDMA device corresponds to the requested IP hostname
878 * Also create the initial connection manager identifiers for opening
879 * the connection.
880 */
881 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
882 {
883 int ret;
884 struct rdma_addrinfo *res;
885 char port_str[16];
886 struct rdma_cm_event *cm_event;
887 char ip[40] = "unknown";
888 struct rdma_addrinfo *e;
889
890 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
891 ERROR(errp, "RDMA hostname has not been set");
892 return -EINVAL;
893 }
894
895 /* create CM channel */
896 rdma->channel = rdma_create_event_channel();
897 if (!rdma->channel) {
898 ERROR(errp, "could not create CM channel");
899 return -EINVAL;
900 }
901
902 /* create CM id */
903 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
904 if (ret) {
905 ERROR(errp, "could not create channel id");
906 goto err_resolve_create_id;
907 }
908
909 snprintf(port_str, 16, "%d", rdma->port);
910 port_str[15] = '\0';
911
912 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
913 if (ret < 0) {
914 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
915 goto err_resolve_get_addr;
916 }
917
918 for (e = res; e != NULL; e = e->ai_next) {
919 inet_ntop(e->ai_family,
920 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
921 DPRINTF("Trying %s => %s\n", rdma->host, ip);
922
923 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
924 RDMA_RESOLVE_TIMEOUT_MS);
925 if (!ret) {
926 if (e->ai_family == AF_INET6) {
927 ret = qemu_rdma_broken_ipv6_kernel(errp, rdma->cm_id->verbs);
928 if (ret) {
929 continue;
930 }
931 }
932 goto route;
933 }
934 }
935
936 ERROR(errp, "could not resolve address %s", rdma->host);
937 goto err_resolve_get_addr;
938
939 route:
940 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
941
942 ret = rdma_get_cm_event(rdma->channel, &cm_event);
943 if (ret) {
944 ERROR(errp, "could not perform event_addr_resolved");
945 goto err_resolve_get_addr;
946 }
947
948 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
949 ERROR(errp, "result not equal to event_addr_resolved %s",
950 rdma_event_str(cm_event->event));
951 perror("rdma_resolve_addr");
952 rdma_ack_cm_event(cm_event);
953 ret = -EINVAL;
954 goto err_resolve_get_addr;
955 }
956 rdma_ack_cm_event(cm_event);
957
958 /* resolve route */
959 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
960 if (ret) {
961 ERROR(errp, "could not resolve rdma route");
962 goto err_resolve_get_addr;
963 }
964
965 ret = rdma_get_cm_event(rdma->channel, &cm_event);
966 if (ret) {
967 ERROR(errp, "could not perform event_route_resolved");
968 goto err_resolve_get_addr;
969 }
970 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
971 ERROR(errp, "result not equal to event_route_resolved: %s",
972 rdma_event_str(cm_event->event));
973 rdma_ack_cm_event(cm_event);
974 ret = -EINVAL;
975 goto err_resolve_get_addr;
976 }
977 rdma_ack_cm_event(cm_event);
978 rdma->verbs = rdma->cm_id->verbs;
979 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
980 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
981 return 0;
982
983 err_resolve_get_addr:
984 rdma_destroy_id(rdma->cm_id);
985 rdma->cm_id = NULL;
986 err_resolve_create_id:
987 rdma_destroy_event_channel(rdma->channel);
988 rdma->channel = NULL;
989 return ret;
990 }
991
992 /*
993 * Create protection domain and completion queues
994 */
995 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
996 {
997 /* allocate pd */
998 rdma->pd = ibv_alloc_pd(rdma->verbs);
999 if (!rdma->pd) {
1000 fprintf(stderr, "failed to allocate protection domain\n");
1001 return -1;
1002 }
1003
1004 /* create completion channel */
1005 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1006 if (!rdma->comp_channel) {
1007 fprintf(stderr, "failed to allocate completion channel\n");
1008 goto err_alloc_pd_cq;
1009 }
1010
1011 /*
1012 * Completion queue can be filled by both read and write work requests,
1013 * so must reflect the sum of both possible queue sizes.
1014 */
1015 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1016 NULL, rdma->comp_channel, 0);
1017 if (!rdma->cq) {
1018 fprintf(stderr, "failed to allocate completion queue\n");
1019 goto err_alloc_pd_cq;
1020 }
1021
1022 return 0;
1023
1024 err_alloc_pd_cq:
1025 if (rdma->pd) {
1026 ibv_dealloc_pd(rdma->pd);
1027 }
1028 if (rdma->comp_channel) {
1029 ibv_destroy_comp_channel(rdma->comp_channel);
1030 }
1031 rdma->pd = NULL;
1032 rdma->comp_channel = NULL;
1033 return -1;
1034
1035 }
1036
1037 /*
1038 * Create queue pairs.
1039 */
1040 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1041 {
1042 struct ibv_qp_init_attr attr = { 0 };
1043 int ret;
1044
1045 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1046 attr.cap.max_recv_wr = 3;
1047 attr.cap.max_send_sge = 1;
1048 attr.cap.max_recv_sge = 1;
1049 attr.send_cq = rdma->cq;
1050 attr.recv_cq = rdma->cq;
1051 attr.qp_type = IBV_QPT_RC;
1052
1053 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1054 if (ret) {
1055 return -1;
1056 }
1057
1058 rdma->qp = rdma->cm_id->qp;
1059 return 0;
1060 }
1061
1062 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1063 {
1064 int i;
1065 RDMALocalBlocks *local = &rdma->local_ram_blocks;
1066
1067 for (i = 0; i < local->nb_blocks; i++) {
1068 local->block[i].mr =
1069 ibv_reg_mr(rdma->pd,
1070 local->block[i].local_host_addr,
1071 local->block[i].length,
1072 IBV_ACCESS_LOCAL_WRITE |
1073 IBV_ACCESS_REMOTE_WRITE
1074 );
1075 if (!local->block[i].mr) {
1076 perror("Failed to register local dest ram block!\n");
1077 break;
1078 }
1079 rdma->total_registrations++;
1080 }
1081
1082 if (i >= local->nb_blocks) {
1083 return 0;
1084 }
1085
1086 for (i--; i >= 0; i--) {
1087 ibv_dereg_mr(local->block[i].mr);
1088 rdma->total_registrations--;
1089 }
1090
1091 return -1;
1092
1093 }
1094
1095 /*
1096 * Find the ram block that corresponds to the page requested to be
1097 * transmitted by QEMU.
1098 *
1099 * Once the block is found, also identify which 'chunk' within that
1100 * block that the page belongs to.
1101 *
1102 * This search cannot fail or the migration will fail.
1103 */
1104 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1105 uint64_t block_offset,
1106 uint64_t offset,
1107 uint64_t length,
1108 uint64_t *block_index,
1109 uint64_t *chunk_index)
1110 {
1111 uint64_t current_addr = block_offset + offset;
1112 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1113 (void *) block_offset);
1114 assert(block);
1115 assert(current_addr >= block->offset);
1116 assert((current_addr + length) <= (block->offset + block->length));
1117
1118 *block_index = block->index;
1119 *chunk_index = ram_chunk_index(block->local_host_addr,
1120 block->local_host_addr + (current_addr - block->offset));
1121
1122 return 0;
1123 }
1124
1125 /*
1126 * Register a chunk with IB. If the chunk was already registered
1127 * previously, then skip.
1128 *
1129 * Also return the keys associated with the registration needed
1130 * to perform the actual RDMA operation.
1131 */
1132 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1133 RDMALocalBlock *block, uint8_t *host_addr,
1134 uint32_t *lkey, uint32_t *rkey, int chunk,
1135 uint8_t *chunk_start, uint8_t *chunk_end)
1136 {
1137 if (block->mr) {
1138 if (lkey) {
1139 *lkey = block->mr->lkey;
1140 }
1141 if (rkey) {
1142 *rkey = block->mr->rkey;
1143 }
1144 return 0;
1145 }
1146
1147 /* allocate memory to store chunk MRs */
1148 if (!block->pmr) {
1149 block->pmr = g_malloc0(block->nb_chunks * sizeof(struct ibv_mr *));
1150 if (!block->pmr) {
1151 return -1;
1152 }
1153 }
1154
1155 /*
1156 * If 'rkey', then we're the destination, so grant access to the source.
1157 *
1158 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1159 */
1160 if (!block->pmr[chunk]) {
1161 uint64_t len = chunk_end - chunk_start;
1162
1163 DDPRINTF("Registering %" PRIu64 " bytes @ %p\n",
1164 len, chunk_start);
1165
1166 block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1167 chunk_start, len,
1168 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1169 IBV_ACCESS_REMOTE_WRITE) : 0));
1170
1171 if (!block->pmr[chunk]) {
1172 perror("Failed to register chunk!");
1173 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1174 " start %" PRIu64 " end %" PRIu64 " host %" PRIu64
1175 " local %" PRIu64 " registrations: %d\n",
1176 block->index, chunk, (uint64_t) chunk_start,
1177 (uint64_t) chunk_end, (uint64_t) host_addr,
1178 (uint64_t) block->local_host_addr,
1179 rdma->total_registrations);
1180 return -1;
1181 }
1182 rdma->total_registrations++;
1183 }
1184
1185 if (lkey) {
1186 *lkey = block->pmr[chunk]->lkey;
1187 }
1188 if (rkey) {
1189 *rkey = block->pmr[chunk]->rkey;
1190 }
1191 return 0;
1192 }
1193
1194 /*
1195 * Register (at connection time) the memory used for control
1196 * channel messages.
1197 */
1198 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1199 {
1200 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1201 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1202 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1203 if (rdma->wr_data[idx].control_mr) {
1204 rdma->total_registrations++;
1205 return 0;
1206 }
1207 fprintf(stderr, "qemu_rdma_reg_control failed!\n");
1208 return -1;
1209 }
1210
1211 const char *print_wrid(int wrid)
1212 {
1213 if (wrid >= RDMA_WRID_RECV_CONTROL) {
1214 return wrid_desc[RDMA_WRID_RECV_CONTROL];
1215 }
1216 return wrid_desc[wrid];
1217 }
1218
1219 /*
1220 * RDMA requires memory registration (mlock/pinning), but this is not good for
1221 * overcommitment.
1222 *
1223 * In preparation for the future where LRU information or workload-specific
1224 * writable writable working set memory access behavior is available to QEMU
1225 * it would be nice to have in place the ability to UN-register/UN-pin
1226 * particular memory regions from the RDMA hardware when it is determine that
1227 * those regions of memory will likely not be accessed again in the near future.
1228 *
1229 * While we do not yet have such information right now, the following
1230 * compile-time option allows us to perform a non-optimized version of this
1231 * behavior.
1232 *
1233 * By uncommenting this option, you will cause *all* RDMA transfers to be
1234 * unregistered immediately after the transfer completes on both sides of the
1235 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1236 *
1237 * This will have a terrible impact on migration performance, so until future
1238 * workload information or LRU information is available, do not attempt to use
1239 * this feature except for basic testing.
1240 */
1241 //#define RDMA_UNREGISTRATION_EXAMPLE
1242
1243 /*
1244 * Perform a non-optimized memory unregistration after every transfer
1245 * for demonsration purposes, only if pin-all is not requested.
1246 *
1247 * Potential optimizations:
1248 * 1. Start a new thread to run this function continuously
1249 - for bit clearing
1250 - and for receipt of unregister messages
1251 * 2. Use an LRU.
1252 * 3. Use workload hints.
1253 */
1254 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1255 {
1256 while (rdma->unregistrations[rdma->unregister_current]) {
1257 int ret;
1258 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1259 uint64_t chunk =
1260 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1261 uint64_t index =
1262 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1263 RDMALocalBlock *block =
1264 &(rdma->local_ram_blocks.block[index]);
1265 RDMARegister reg = { .current_index = index };
1266 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1267 };
1268 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1269 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1270 .repeat = 1,
1271 };
1272
1273 DDPRINTF("Processing unregister for chunk: %" PRIu64
1274 " at position %d\n", chunk, rdma->unregister_current);
1275
1276 rdma->unregistrations[rdma->unregister_current] = 0;
1277 rdma->unregister_current++;
1278
1279 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1280 rdma->unregister_current = 0;
1281 }
1282
1283
1284 /*
1285 * Unregistration is speculative (because migration is single-threaded
1286 * and we cannot break the protocol's inifinband message ordering).
1287 * Thus, if the memory is currently being used for transmission,
1288 * then abort the attempt to unregister and try again
1289 * later the next time a completion is received for this memory.
1290 */
1291 clear_bit(chunk, block->unregister_bitmap);
1292
1293 if (test_bit(chunk, block->transit_bitmap)) {
1294 DDPRINTF("Cannot unregister inflight chunk: %" PRIu64 "\n", chunk);
1295 continue;
1296 }
1297
1298 DDPRINTF("Sending unregister for chunk: %" PRIu64 "\n", chunk);
1299
1300 ret = ibv_dereg_mr(block->pmr[chunk]);
1301 block->pmr[chunk] = NULL;
1302 block->remote_keys[chunk] = 0;
1303
1304 if (ret != 0) {
1305 perror("unregistration chunk failed");
1306 return -ret;
1307 }
1308 rdma->total_registrations--;
1309
1310 reg.key.chunk = chunk;
1311 register_to_network(&reg);
1312 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1313 &resp, NULL, NULL);
1314 if (ret < 0) {
1315 return ret;
1316 }
1317
1318 DDPRINTF("Unregister for chunk: %" PRIu64 " complete.\n", chunk);
1319 }
1320
1321 return 0;
1322 }
1323
1324 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1325 uint64_t chunk)
1326 {
1327 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1328
1329 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1330 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1331
1332 return result;
1333 }
1334
1335 /*
1336 * Set bit for unregistration in the next iteration.
1337 * We cannot transmit right here, but will unpin later.
1338 */
1339 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1340 uint64_t chunk, uint64_t wr_id)
1341 {
1342 if (rdma->unregistrations[rdma->unregister_next] != 0) {
1343 fprintf(stderr, "rdma migration: queue is full!\n");
1344 } else {
1345 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1346
1347 if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1348 DDPRINTF("Appending unregister chunk %" PRIu64
1349 " at position %d\n", chunk, rdma->unregister_next);
1350
1351 rdma->unregistrations[rdma->unregister_next++] =
1352 qemu_rdma_make_wrid(wr_id, index, chunk);
1353
1354 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1355 rdma->unregister_next = 0;
1356 }
1357 } else {
1358 DDPRINTF("Unregister chunk %" PRIu64 " already in queue.\n",
1359 chunk);
1360 }
1361 }
1362 }
1363
1364 /*
1365 * Consult the connection manager to see a work request
1366 * (of any kind) has completed.
1367 * Return the work request ID that completed.
1368 */
1369 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1370 uint32_t *byte_len)
1371 {
1372 int ret;
1373 struct ibv_wc wc;
1374 uint64_t wr_id;
1375
1376 ret = ibv_poll_cq(rdma->cq, 1, &wc);
1377
1378 if (!ret) {
1379 *wr_id_out = RDMA_WRID_NONE;
1380 return 0;
1381 }
1382
1383 if (ret < 0) {
1384 fprintf(stderr, "ibv_poll_cq return %d!\n", ret);
1385 return ret;
1386 }
1387
1388 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1389
1390 if (wc.status != IBV_WC_SUCCESS) {
1391 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1392 wc.status, ibv_wc_status_str(wc.status));
1393 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1394
1395 return -1;
1396 }
1397
1398 if (rdma->control_ready_expected &&
1399 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1400 DDDPRINTF("completion %s #%" PRId64 " received (%" PRId64 ")"
1401 " left %d\n", wrid_desc[RDMA_WRID_RECV_CONTROL],
1402 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1403 rdma->control_ready_expected = 0;
1404 }
1405
1406 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1407 uint64_t chunk =
1408 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1409 uint64_t index =
1410 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1411 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1412
1413 DDDPRINTF("completions %s (%" PRId64 ") left %d, "
1414 "block %" PRIu64 ", chunk: %" PRIu64 " %p %p\n",
1415 print_wrid(wr_id), wr_id, rdma->nb_sent, index, chunk,
1416 block->local_host_addr, (void *)block->remote_host_addr);
1417
1418 clear_bit(chunk, block->transit_bitmap);
1419
1420 if (rdma->nb_sent > 0) {
1421 rdma->nb_sent--;
1422 }
1423
1424 if (!rdma->pin_all) {
1425 /*
1426 * FYI: If one wanted to signal a specific chunk to be unregistered
1427 * using LRU or workload-specific information, this is the function
1428 * you would call to do so. That chunk would then get asynchronously
1429 * unregistered later.
1430 */
1431 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1432 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1433 #endif
1434 }
1435 } else {
1436 DDDPRINTF("other completion %s (%" PRId64 ") received left %d\n",
1437 print_wrid(wr_id), wr_id, rdma->nb_sent);
1438 }
1439
1440 *wr_id_out = wc.wr_id;
1441 if (byte_len) {
1442 *byte_len = wc.byte_len;
1443 }
1444
1445 return 0;
1446 }
1447
1448 /*
1449 * Block until the next work request has completed.
1450 *
1451 * First poll to see if a work request has already completed,
1452 * otherwise block.
1453 *
1454 * If we encounter completed work requests for IDs other than
1455 * the one we're interested in, then that's generally an error.
1456 *
1457 * The only exception is actual RDMA Write completions. These
1458 * completions only need to be recorded, but do not actually
1459 * need further processing.
1460 */
1461 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1462 uint32_t *byte_len)
1463 {
1464 int num_cq_events = 0, ret = 0;
1465 struct ibv_cq *cq;
1466 void *cq_ctx;
1467 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1468
1469 if (ibv_req_notify_cq(rdma->cq, 0)) {
1470 return -1;
1471 }
1472 /* poll cq first */
1473 while (wr_id != wrid_requested) {
1474 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1475 if (ret < 0) {
1476 return ret;
1477 }
1478
1479 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1480
1481 if (wr_id == RDMA_WRID_NONE) {
1482 break;
1483 }
1484 if (wr_id != wrid_requested) {
1485 DDDPRINTF("A Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1486 print_wrid(wrid_requested),
1487 wrid_requested, print_wrid(wr_id), wr_id);
1488 }
1489 }
1490
1491 if (wr_id == wrid_requested) {
1492 return 0;
1493 }
1494
1495 while (1) {
1496 /*
1497 * Coroutine doesn't start until process_incoming_migration()
1498 * so don't yield unless we know we're running inside of a coroutine.
1499 */
1500 if (rdma->migration_started_on_destination) {
1501 yield_until_fd_readable(rdma->comp_channel->fd);
1502 }
1503
1504 if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) {
1505 perror("ibv_get_cq_event");
1506 goto err_block_for_wrid;
1507 }
1508
1509 num_cq_events++;
1510
1511 if (ibv_req_notify_cq(cq, 0)) {
1512 goto err_block_for_wrid;
1513 }
1514
1515 while (wr_id != wrid_requested) {
1516 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1517 if (ret < 0) {
1518 goto err_block_for_wrid;
1519 }
1520
1521 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1522
1523 if (wr_id == RDMA_WRID_NONE) {
1524 break;
1525 }
1526 if (wr_id != wrid_requested) {
1527 DDDPRINTF("B Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1528 print_wrid(wrid_requested), wrid_requested,
1529 print_wrid(wr_id), wr_id);
1530 }
1531 }
1532
1533 if (wr_id == wrid_requested) {
1534 goto success_block_for_wrid;
1535 }
1536 }
1537
1538 success_block_for_wrid:
1539 if (num_cq_events) {
1540 ibv_ack_cq_events(cq, num_cq_events);
1541 }
1542 return 0;
1543
1544 err_block_for_wrid:
1545 if (num_cq_events) {
1546 ibv_ack_cq_events(cq, num_cq_events);
1547 }
1548 return ret;
1549 }
1550
1551 /*
1552 * Post a SEND message work request for the control channel
1553 * containing some data and block until the post completes.
1554 */
1555 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1556 RDMAControlHeader *head)
1557 {
1558 int ret = 0;
1559 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1560 struct ibv_send_wr *bad_wr;
1561 struct ibv_sge sge = {
1562 .addr = (uint64_t)(wr->control),
1563 .length = head->len + sizeof(RDMAControlHeader),
1564 .lkey = wr->control_mr->lkey,
1565 };
1566 struct ibv_send_wr send_wr = {
1567 .wr_id = RDMA_WRID_SEND_CONTROL,
1568 .opcode = IBV_WR_SEND,
1569 .send_flags = IBV_SEND_SIGNALED,
1570 .sg_list = &sge,
1571 .num_sge = 1,
1572 };
1573
1574 DDDPRINTF("CONTROL: sending %s..\n", control_desc[head->type]);
1575
1576 /*
1577 * We don't actually need to do a memcpy() in here if we used
1578 * the "sge" properly, but since we're only sending control messages
1579 * (not RAM in a performance-critical path), then its OK for now.
1580 *
1581 * The copy makes the RDMAControlHeader simpler to manipulate
1582 * for the time being.
1583 */
1584 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1585 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1586 control_to_network((void *) wr->control);
1587
1588 if (buf) {
1589 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1590 }
1591
1592
1593 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1594
1595 if (ret > 0) {
1596 fprintf(stderr, "Failed to use post IB SEND for control!\n");
1597 return -ret;
1598 }
1599
1600 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1601 if (ret < 0) {
1602 fprintf(stderr, "rdma migration: send polling control error!\n");
1603 }
1604
1605 return ret;
1606 }
1607
1608 /*
1609 * Post a RECV work request in anticipation of some future receipt
1610 * of data on the control channel.
1611 */
1612 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1613 {
1614 struct ibv_recv_wr *bad_wr;
1615 struct ibv_sge sge = {
1616 .addr = (uint64_t)(rdma->wr_data[idx].control),
1617 .length = RDMA_CONTROL_MAX_BUFFER,
1618 .lkey = rdma->wr_data[idx].control_mr->lkey,
1619 };
1620
1621 struct ibv_recv_wr recv_wr = {
1622 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1623 .sg_list = &sge,
1624 .num_sge = 1,
1625 };
1626
1627
1628 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1629 return -1;
1630 }
1631
1632 return 0;
1633 }
1634
1635 /*
1636 * Block and wait for a RECV control channel message to arrive.
1637 */
1638 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1639 RDMAControlHeader *head, int expecting, int idx)
1640 {
1641 uint32_t byte_len;
1642 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1643 &byte_len);
1644
1645 if (ret < 0) {
1646 fprintf(stderr, "rdma migration: recv polling control error!\n");
1647 return ret;
1648 }
1649
1650 network_to_control((void *) rdma->wr_data[idx].control);
1651 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1652
1653 DDDPRINTF("CONTROL: %s receiving...\n", control_desc[expecting]);
1654
1655 if (expecting == RDMA_CONTROL_NONE) {
1656 DDDPRINTF("Surprise: got %s (%d)\n",
1657 control_desc[head->type], head->type);
1658 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1659 fprintf(stderr, "Was expecting a %s (%d) control message"
1660 ", but got: %s (%d), length: %d\n",
1661 control_desc[expecting], expecting,
1662 control_desc[head->type], head->type, head->len);
1663 return -EIO;
1664 }
1665 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1666 fprintf(stderr, "too long length: %d\n", head->len);
1667 return -EINVAL;
1668 }
1669 if (sizeof(*head) + head->len != byte_len) {
1670 fprintf(stderr, "Malformed length: %d byte_len %d\n",
1671 head->len, byte_len);
1672 return -EINVAL;
1673 }
1674
1675 return 0;
1676 }
1677
1678 /*
1679 * When a RECV work request has completed, the work request's
1680 * buffer is pointed at the header.
1681 *
1682 * This will advance the pointer to the data portion
1683 * of the control message of the work request's buffer that
1684 * was populated after the work request finished.
1685 */
1686 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1687 RDMAControlHeader *head)
1688 {
1689 rdma->wr_data[idx].control_len = head->len;
1690 rdma->wr_data[idx].control_curr =
1691 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1692 }
1693
1694 /*
1695 * This is an 'atomic' high-level operation to deliver a single, unified
1696 * control-channel message.
1697 *
1698 * Additionally, if the user is expecting some kind of reply to this message,
1699 * they can request a 'resp' response message be filled in by posting an
1700 * additional work request on behalf of the user and waiting for an additional
1701 * completion.
1702 *
1703 * The extra (optional) response is used during registration to us from having
1704 * to perform an *additional* exchange of message just to provide a response by
1705 * instead piggy-backing on the acknowledgement.
1706 */
1707 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1708 uint8_t *data, RDMAControlHeader *resp,
1709 int *resp_idx,
1710 int (*callback)(RDMAContext *rdma))
1711 {
1712 int ret = 0;
1713
1714 /*
1715 * Wait until the dest is ready before attempting to deliver the message
1716 * by waiting for a READY message.
1717 */
1718 if (rdma->control_ready_expected) {
1719 RDMAControlHeader resp;
1720 ret = qemu_rdma_exchange_get_response(rdma,
1721 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1722 if (ret < 0) {
1723 return ret;
1724 }
1725 }
1726
1727 /*
1728 * If the user is expecting a response, post a WR in anticipation of it.
1729 */
1730 if (resp) {
1731 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1732 if (ret) {
1733 fprintf(stderr, "rdma migration: error posting"
1734 " extra control recv for anticipated result!");
1735 return ret;
1736 }
1737 }
1738
1739 /*
1740 * Post a WR to replace the one we just consumed for the READY message.
1741 */
1742 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1743 if (ret) {
1744 fprintf(stderr, "rdma migration: error posting first control recv!");
1745 return ret;
1746 }
1747
1748 /*
1749 * Deliver the control message that was requested.
1750 */
1751 ret = qemu_rdma_post_send_control(rdma, data, head);
1752
1753 if (ret < 0) {
1754 fprintf(stderr, "Failed to send control buffer!\n");
1755 return ret;
1756 }
1757
1758 /*
1759 * If we're expecting a response, block and wait for it.
1760 */
1761 if (resp) {
1762 if (callback) {
1763 DDPRINTF("Issuing callback before receiving response...\n");
1764 ret = callback(rdma);
1765 if (ret < 0) {
1766 return ret;
1767 }
1768 }
1769
1770 DDPRINTF("Waiting for response %s\n", control_desc[resp->type]);
1771 ret = qemu_rdma_exchange_get_response(rdma, resp,
1772 resp->type, RDMA_WRID_DATA);
1773
1774 if (ret < 0) {
1775 return ret;
1776 }
1777
1778 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1779 if (resp_idx) {
1780 *resp_idx = RDMA_WRID_DATA;
1781 }
1782 DDPRINTF("Response %s received.\n", control_desc[resp->type]);
1783 }
1784
1785 rdma->control_ready_expected = 1;
1786
1787 return 0;
1788 }
1789
1790 /*
1791 * This is an 'atomic' high-level operation to receive a single, unified
1792 * control-channel message.
1793 */
1794 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1795 int expecting)
1796 {
1797 RDMAControlHeader ready = {
1798 .len = 0,
1799 .type = RDMA_CONTROL_READY,
1800 .repeat = 1,
1801 };
1802 int ret;
1803
1804 /*
1805 * Inform the source that we're ready to receive a message.
1806 */
1807 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1808
1809 if (ret < 0) {
1810 fprintf(stderr, "Failed to send control buffer!\n");
1811 return ret;
1812 }
1813
1814 /*
1815 * Block and wait for the message.
1816 */
1817 ret = qemu_rdma_exchange_get_response(rdma, head,
1818 expecting, RDMA_WRID_READY);
1819
1820 if (ret < 0) {
1821 return ret;
1822 }
1823
1824 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1825
1826 /*
1827 * Post a new RECV work request to replace the one we just consumed.
1828 */
1829 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1830 if (ret) {
1831 fprintf(stderr, "rdma migration: error posting second control recv!");
1832 return ret;
1833 }
1834
1835 return 0;
1836 }
1837
1838 /*
1839 * Write an actual chunk of memory using RDMA.
1840 *
1841 * If we're using dynamic registration on the dest-side, we have to
1842 * send a registration command first.
1843 */
1844 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1845 int current_index, uint64_t current_addr,
1846 uint64_t length)
1847 {
1848 struct ibv_sge sge;
1849 struct ibv_send_wr send_wr = { 0 };
1850 struct ibv_send_wr *bad_wr;
1851 int reg_result_idx, ret, count = 0;
1852 uint64_t chunk, chunks;
1853 uint8_t *chunk_start, *chunk_end;
1854 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1855 RDMARegister reg;
1856 RDMARegisterResult *reg_result;
1857 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1858 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1859 .type = RDMA_CONTROL_REGISTER_REQUEST,
1860 .repeat = 1,
1861 };
1862
1863 retry:
1864 sge.addr = (uint64_t)(block->local_host_addr +
1865 (current_addr - block->offset));
1866 sge.length = length;
1867
1868 chunk = ram_chunk_index(block->local_host_addr, (uint8_t *) sge.addr);
1869 chunk_start = ram_chunk_start(block, chunk);
1870
1871 if (block->is_ram_block) {
1872 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1873
1874 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1875 chunks--;
1876 }
1877 } else {
1878 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
1879
1880 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1881 chunks--;
1882 }
1883 }
1884
1885 DDPRINTF("Writing %" PRIu64 " chunks, (%" PRIu64 " MB)\n",
1886 chunks + 1, (chunks + 1) * (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
1887
1888 chunk_end = ram_chunk_end(block, chunk + chunks);
1889
1890 if (!rdma->pin_all) {
1891 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1892 qemu_rdma_unregister_waiting(rdma);
1893 #endif
1894 }
1895
1896 while (test_bit(chunk, block->transit_bitmap)) {
1897 (void)count;
1898 DDPRINTF("(%d) Not clobbering: block: %d chunk %" PRIu64
1899 " current %" PRIu64 " len %" PRIu64 " %d %d\n",
1900 count++, current_index, chunk,
1901 sge.addr, length, rdma->nb_sent, block->nb_chunks);
1902
1903 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
1904
1905 if (ret < 0) {
1906 fprintf(stderr, "Failed to Wait for previous write to complete "
1907 "block %d chunk %" PRIu64
1908 " current %" PRIu64 " len %" PRIu64 " %d\n",
1909 current_index, chunk, sge.addr, length, rdma->nb_sent);
1910 return ret;
1911 }
1912 }
1913
1914 if (!rdma->pin_all || !block->is_ram_block) {
1915 if (!block->remote_keys[chunk]) {
1916 /*
1917 * This chunk has not yet been registered, so first check to see
1918 * if the entire chunk is zero. If so, tell the other size to
1919 * memset() + madvise() the entire chunk without RDMA.
1920 */
1921
1922 if (can_use_buffer_find_nonzero_offset((void *)sge.addr, length)
1923 && buffer_find_nonzero_offset((void *)sge.addr,
1924 length) == length) {
1925 RDMACompress comp = {
1926 .offset = current_addr,
1927 .value = 0,
1928 .block_idx = current_index,
1929 .length = length,
1930 };
1931
1932 head.len = sizeof(comp);
1933 head.type = RDMA_CONTROL_COMPRESS;
1934
1935 DDPRINTF("Entire chunk is zero, sending compress: %"
1936 PRIu64 " for %d "
1937 "bytes, index: %d, offset: %" PRId64 "...\n",
1938 chunk, sge.length, current_index, current_addr);
1939
1940 compress_to_network(&comp);
1941 ret = qemu_rdma_exchange_send(rdma, &head,
1942 (uint8_t *) &comp, NULL, NULL, NULL);
1943
1944 if (ret < 0) {
1945 return -EIO;
1946 }
1947
1948 acct_update_position(f, sge.length, true);
1949
1950 return 1;
1951 }
1952
1953 /*
1954 * Otherwise, tell other side to register.
1955 */
1956 reg.current_index = current_index;
1957 if (block->is_ram_block) {
1958 reg.key.current_addr = current_addr;
1959 } else {
1960 reg.key.chunk = chunk;
1961 }
1962 reg.chunks = chunks;
1963
1964 DDPRINTF("Sending registration request chunk %" PRIu64 " for %d "
1965 "bytes, index: %d, offset: %" PRId64 "...\n",
1966 chunk, sge.length, current_index, current_addr);
1967
1968 register_to_network(&reg);
1969 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1970 &resp, &reg_result_idx, NULL);
1971 if (ret < 0) {
1972 return ret;
1973 }
1974
1975 /* try to overlap this single registration with the one we sent. */
1976 if (qemu_rdma_register_and_get_keys(rdma, block,
1977 (uint8_t *) sge.addr,
1978 &sge.lkey, NULL, chunk,
1979 chunk_start, chunk_end)) {
1980 fprintf(stderr, "cannot get lkey!\n");
1981 return -EINVAL;
1982 }
1983
1984 reg_result = (RDMARegisterResult *)
1985 rdma->wr_data[reg_result_idx].control_curr;
1986
1987 network_to_result(reg_result);
1988
1989 DDPRINTF("Received registration result:"
1990 " my key: %x their key %x, chunk %" PRIu64 "\n",
1991 block->remote_keys[chunk], reg_result->rkey, chunk);
1992
1993 block->remote_keys[chunk] = reg_result->rkey;
1994 block->remote_host_addr = reg_result->host_addr;
1995 } else {
1996 /* already registered before */
1997 if (qemu_rdma_register_and_get_keys(rdma, block,
1998 (uint8_t *)sge.addr,
1999 &sge.lkey, NULL, chunk,
2000 chunk_start, chunk_end)) {
2001 fprintf(stderr, "cannot get lkey!\n");
2002 return -EINVAL;
2003 }
2004 }
2005
2006 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2007 } else {
2008 send_wr.wr.rdma.rkey = block->remote_rkey;
2009
2010 if (qemu_rdma_register_and_get_keys(rdma, block, (uint8_t *)sge.addr,
2011 &sge.lkey, NULL, chunk,
2012 chunk_start, chunk_end)) {
2013 fprintf(stderr, "cannot get lkey!\n");
2014 return -EINVAL;
2015 }
2016 }
2017
2018 /*
2019 * Encode the ram block index and chunk within this wrid.
2020 * We will use this information at the time of completion
2021 * to figure out which bitmap to check against and then which
2022 * chunk in the bitmap to look for.
2023 */
2024 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2025 current_index, chunk);
2026
2027 send_wr.opcode = IBV_WR_RDMA_WRITE;
2028 send_wr.send_flags = IBV_SEND_SIGNALED;
2029 send_wr.sg_list = &sge;
2030 send_wr.num_sge = 1;
2031 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2032 (current_addr - block->offset);
2033
2034 DDDPRINTF("Posting chunk: %" PRIu64 ", addr: %lx"
2035 " remote: %lx, bytes %" PRIu32 "\n",
2036 chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2037 sge.length);
2038
2039 /*
2040 * ibv_post_send() does not return negative error numbers,
2041 * per the specification they are positive - no idea why.
2042 */
2043 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2044
2045 if (ret == ENOMEM) {
2046 DDPRINTF("send queue is full. wait a little....\n");
2047 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2048 if (ret < 0) {
2049 fprintf(stderr, "rdma migration: failed to make "
2050 "room in full send queue! %d\n", ret);
2051 return ret;
2052 }
2053
2054 goto retry;
2055
2056 } else if (ret > 0) {
2057 perror("rdma migration: post rdma write failed");
2058 return -ret;
2059 }
2060
2061 set_bit(chunk, block->transit_bitmap);
2062 acct_update_position(f, sge.length, false);
2063 rdma->total_writes++;
2064
2065 return 0;
2066 }
2067
2068 /*
2069 * Push out any unwritten RDMA operations.
2070 *
2071 * We support sending out multiple chunks at the same time.
2072 * Not all of them need to get signaled in the completion queue.
2073 */
2074 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2075 {
2076 int ret;
2077
2078 if (!rdma->current_length) {
2079 return 0;
2080 }
2081
2082 ret = qemu_rdma_write_one(f, rdma,
2083 rdma->current_index, rdma->current_addr, rdma->current_length);
2084
2085 if (ret < 0) {
2086 return ret;
2087 }
2088
2089 if (ret == 0) {
2090 rdma->nb_sent++;
2091 DDDPRINTF("sent total: %d\n", rdma->nb_sent);
2092 }
2093
2094 rdma->current_length = 0;
2095 rdma->current_addr = 0;
2096
2097 return 0;
2098 }
2099
2100 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2101 uint64_t offset, uint64_t len)
2102 {
2103 RDMALocalBlock *block;
2104 uint8_t *host_addr;
2105 uint8_t *chunk_end;
2106
2107 if (rdma->current_index < 0) {
2108 return 0;
2109 }
2110
2111 if (rdma->current_chunk < 0) {
2112 return 0;
2113 }
2114
2115 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2116 host_addr = block->local_host_addr + (offset - block->offset);
2117 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2118
2119 if (rdma->current_length == 0) {
2120 return 0;
2121 }
2122
2123 /*
2124 * Only merge into chunk sequentially.
2125 */
2126 if (offset != (rdma->current_addr + rdma->current_length)) {
2127 return 0;
2128 }
2129
2130 if (offset < block->offset) {
2131 return 0;
2132 }
2133
2134 if ((offset + len) > (block->offset + block->length)) {
2135 return 0;
2136 }
2137
2138 if ((host_addr + len) > chunk_end) {
2139 return 0;
2140 }
2141
2142 return 1;
2143 }
2144
2145 /*
2146 * We're not actually writing here, but doing three things:
2147 *
2148 * 1. Identify the chunk the buffer belongs to.
2149 * 2. If the chunk is full or the buffer doesn't belong to the current
2150 * chunk, then start a new chunk and flush() the old chunk.
2151 * 3. To keep the hardware busy, we also group chunks into batches
2152 * and only require that a batch gets acknowledged in the completion
2153 * qeueue instead of each individual chunk.
2154 */
2155 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2156 uint64_t block_offset, uint64_t offset,
2157 uint64_t len)
2158 {
2159 uint64_t current_addr = block_offset + offset;
2160 uint64_t index = rdma->current_index;
2161 uint64_t chunk = rdma->current_chunk;
2162 int ret;
2163
2164 /* If we cannot merge it, we flush the current buffer first. */
2165 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2166 ret = qemu_rdma_write_flush(f, rdma);
2167 if (ret) {
2168 return ret;
2169 }
2170 rdma->current_length = 0;
2171 rdma->current_addr = current_addr;
2172
2173 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2174 offset, len, &index, &chunk);
2175 if (ret) {
2176 fprintf(stderr, "ram block search failed\n");
2177 return ret;
2178 }
2179 rdma->current_index = index;
2180 rdma->current_chunk = chunk;
2181 }
2182
2183 /* merge it */
2184 rdma->current_length += len;
2185
2186 /* flush it if buffer is too large */
2187 if (rdma->current_length >= RDMA_MERGE_MAX) {
2188 return qemu_rdma_write_flush(f, rdma);
2189 }
2190
2191 return 0;
2192 }
2193
2194 static void qemu_rdma_cleanup(RDMAContext *rdma)
2195 {
2196 struct rdma_cm_event *cm_event;
2197 int ret, idx;
2198
2199 if (rdma->cm_id && rdma->connected) {
2200 if (rdma->error_state) {
2201 RDMAControlHeader head = { .len = 0,
2202 .type = RDMA_CONTROL_ERROR,
2203 .repeat = 1,
2204 };
2205 fprintf(stderr, "Early error. Sending error.\n");
2206 qemu_rdma_post_send_control(rdma, NULL, &head);
2207 }
2208
2209 ret = rdma_disconnect(rdma->cm_id);
2210 if (!ret) {
2211 DDPRINTF("waiting for disconnect\n");
2212 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2213 if (!ret) {
2214 rdma_ack_cm_event(cm_event);
2215 }
2216 }
2217 DDPRINTF("Disconnected.\n");
2218 rdma->connected = false;
2219 }
2220
2221 g_free(rdma->block);
2222 rdma->block = NULL;
2223
2224 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2225 if (rdma->wr_data[idx].control_mr) {
2226 rdma->total_registrations--;
2227 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2228 }
2229 rdma->wr_data[idx].control_mr = NULL;
2230 }
2231
2232 if (rdma->local_ram_blocks.block) {
2233 while (rdma->local_ram_blocks.nb_blocks) {
2234 __qemu_rdma_delete_block(rdma,
2235 rdma->local_ram_blocks.block->offset);
2236 }
2237 }
2238
2239 if (rdma->cq) {
2240 ibv_destroy_cq(rdma->cq);
2241 rdma->cq = NULL;
2242 }
2243 if (rdma->comp_channel) {
2244 ibv_destroy_comp_channel(rdma->comp_channel);
2245 rdma->comp_channel = NULL;
2246 }
2247 if (rdma->pd) {
2248 ibv_dealloc_pd(rdma->pd);
2249 rdma->pd = NULL;
2250 }
2251 if (rdma->listen_id) {
2252 rdma_destroy_id(rdma->listen_id);
2253 rdma->listen_id = NULL;
2254 }
2255 if (rdma->cm_id) {
2256 if (rdma->qp) {
2257 rdma_destroy_qp(rdma->cm_id);
2258 rdma->qp = NULL;
2259 }
2260 rdma_destroy_id(rdma->cm_id);
2261 rdma->cm_id = NULL;
2262 }
2263 if (rdma->channel) {
2264 rdma_destroy_event_channel(rdma->channel);
2265 rdma->channel = NULL;
2266 }
2267 g_free(rdma->host);
2268 rdma->host = NULL;
2269 }
2270
2271
2272 static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all)
2273 {
2274 int ret, idx;
2275 Error *local_err = NULL, **temp = &local_err;
2276
2277 /*
2278 * Will be validated against destination's actual capabilities
2279 * after the connect() completes.
2280 */
2281 rdma->pin_all = pin_all;
2282
2283 ret = qemu_rdma_resolve_host(rdma, temp);
2284 if (ret) {
2285 goto err_rdma_source_init;
2286 }
2287
2288 ret = qemu_rdma_alloc_pd_cq(rdma);
2289 if (ret) {
2290 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2291 " limits may be too low. Please check $ ulimit -a # and "
2292 "search for 'ulimit -l' in the output");
2293 goto err_rdma_source_init;
2294 }
2295
2296 ret = qemu_rdma_alloc_qp(rdma);
2297 if (ret) {
2298 ERROR(temp, "rdma migration: error allocating qp!");
2299 goto err_rdma_source_init;
2300 }
2301
2302 ret = qemu_rdma_init_ram_blocks(rdma);
2303 if (ret) {
2304 ERROR(temp, "rdma migration: error initializing ram blocks!");
2305 goto err_rdma_source_init;
2306 }
2307
2308 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2309 ret = qemu_rdma_reg_control(rdma, idx);
2310 if (ret) {
2311 ERROR(temp, "rdma migration: error registering %d control!",
2312 idx);
2313 goto err_rdma_source_init;
2314 }
2315 }
2316
2317 return 0;
2318
2319 err_rdma_source_init:
2320 error_propagate(errp, local_err);
2321 qemu_rdma_cleanup(rdma);
2322 return -1;
2323 }
2324
2325 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2326 {
2327 RDMACapabilities cap = {
2328 .version = RDMA_CONTROL_VERSION_CURRENT,
2329 .flags = 0,
2330 };
2331 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2332 .retry_count = 5,
2333 .private_data = &cap,
2334 .private_data_len = sizeof(cap),
2335 };
2336 struct rdma_cm_event *cm_event;
2337 int ret;
2338
2339 /*
2340 * Only negotiate the capability with destination if the user
2341 * on the source first requested the capability.
2342 */
2343 if (rdma->pin_all) {
2344 DPRINTF("Server pin-all memory requested.\n");
2345 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2346 }
2347
2348 caps_to_network(&cap);
2349
2350 ret = rdma_connect(rdma->cm_id, &conn_param);
2351 if (ret) {
2352 perror("rdma_connect");
2353 ERROR(errp, "connecting to destination!");
2354 rdma_destroy_id(rdma->cm_id);
2355 rdma->cm_id = NULL;
2356 goto err_rdma_source_connect;
2357 }
2358
2359 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2360 if (ret) {
2361 perror("rdma_get_cm_event after rdma_connect");
2362 ERROR(errp, "connecting to destination!");
2363 rdma_ack_cm_event(cm_event);
2364 rdma_destroy_id(rdma->cm_id);
2365 rdma->cm_id = NULL;
2366 goto err_rdma_source_connect;
2367 }
2368
2369 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2370 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2371 ERROR(errp, "connecting to destination!");
2372 rdma_ack_cm_event(cm_event);
2373 rdma_destroy_id(rdma->cm_id);
2374 rdma->cm_id = NULL;
2375 goto err_rdma_source_connect;
2376 }
2377 rdma->connected = true;
2378
2379 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2380 network_to_caps(&cap);
2381
2382 /*
2383 * Verify that the *requested* capabilities are supported by the destination
2384 * and disable them otherwise.
2385 */
2386 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2387 ERROR(errp, "Server cannot support pinning all memory. "
2388 "Will register memory dynamically.");
2389 rdma->pin_all = false;
2390 }
2391
2392 DPRINTF("Pin all memory: %s\n", rdma->pin_all ? "enabled" : "disabled");
2393
2394 rdma_ack_cm_event(cm_event);
2395
2396 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2397 if (ret) {
2398 ERROR(errp, "posting second control recv!");
2399 goto err_rdma_source_connect;
2400 }
2401
2402 rdma->control_ready_expected = 1;
2403 rdma->nb_sent = 0;
2404 return 0;
2405
2406 err_rdma_source_connect:
2407 qemu_rdma_cleanup(rdma);
2408 return -1;
2409 }
2410
2411 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2412 {
2413 int ret = -EINVAL, idx;
2414 struct rdma_cm_id *listen_id;
2415 char ip[40] = "unknown";
2416 struct rdma_addrinfo *res;
2417 char port_str[16];
2418
2419 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2420 rdma->wr_data[idx].control_len = 0;
2421 rdma->wr_data[idx].control_curr = NULL;
2422 }
2423
2424 if (rdma->host == NULL) {
2425 ERROR(errp, "RDMA host is not set!");
2426 rdma->error_state = -EINVAL;
2427 return -1;
2428 }
2429 /* create CM channel */
2430 rdma->channel = rdma_create_event_channel();
2431 if (!rdma->channel) {
2432 ERROR(errp, "could not create rdma event channel");
2433 rdma->error_state = -EINVAL;
2434 return -1;
2435 }
2436
2437 /* create CM id */
2438 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2439 if (ret) {
2440 ERROR(errp, "could not create cm_id!");
2441 goto err_dest_init_create_listen_id;
2442 }
2443
2444 snprintf(port_str, 16, "%d", rdma->port);
2445 port_str[15] = '\0';
2446
2447 if (rdma->host && strcmp("", rdma->host)) {
2448 struct rdma_addrinfo *e;
2449
2450 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2451 if (ret < 0) {
2452 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2453 goto err_dest_init_bind_addr;
2454 }
2455
2456 for (e = res; e != NULL; e = e->ai_next) {
2457 inet_ntop(e->ai_family,
2458 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2459 DPRINTF("Trying %s => %s\n", rdma->host, ip);
2460 ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2461 if (!ret) {
2462 if (e->ai_family == AF_INET6) {
2463 ret = qemu_rdma_broken_ipv6_kernel(errp, listen_id->verbs);
2464 if (ret) {
2465 continue;
2466 }
2467 }
2468
2469 goto listen;
2470 }
2471 }
2472
2473 ERROR(errp, "Error: could not rdma_bind_addr!");
2474 goto err_dest_init_bind_addr;
2475 } else {
2476 ERROR(errp, "migration host and port not specified!");
2477 ret = -EINVAL;
2478 goto err_dest_init_bind_addr;
2479 }
2480 listen:
2481
2482 rdma->listen_id = listen_id;
2483 qemu_rdma_dump_gid("dest_init", listen_id);
2484 return 0;
2485
2486 err_dest_init_bind_addr:
2487 rdma_destroy_id(listen_id);
2488 err_dest_init_create_listen_id:
2489 rdma_destroy_event_channel(rdma->channel);
2490 rdma->channel = NULL;
2491 rdma->error_state = ret;
2492 return ret;
2493
2494 }
2495
2496 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2497 {
2498 RDMAContext *rdma = NULL;
2499 InetSocketAddress *addr;
2500
2501 if (host_port) {
2502 rdma = g_malloc0(sizeof(RDMAContext));
2503 memset(rdma, 0, sizeof(RDMAContext));
2504 rdma->current_index = -1;
2505 rdma->current_chunk = -1;
2506
2507 addr = inet_parse(host_port, NULL);
2508 if (addr != NULL) {
2509 rdma->port = atoi(addr->port);
2510 rdma->host = g_strdup(addr->host);
2511 } else {
2512 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2513 g_free(rdma);
2514 rdma = NULL;
2515 }
2516
2517 qapi_free_InetSocketAddress(addr);
2518 }
2519
2520 return rdma;
2521 }
2522
2523 /*
2524 * QEMUFile interface to the control channel.
2525 * SEND messages for control only.
2526 * VM's ram is handled with regular RDMA messages.
2527 */
2528 static int qemu_rdma_put_buffer(void *opaque, const uint8_t *buf,
2529 int64_t pos, int size)
2530 {
2531 QEMUFileRDMA *r = opaque;
2532 QEMUFile *f = r->file;
2533 RDMAContext *rdma = r->rdma;
2534 size_t remaining = size;
2535 uint8_t * data = (void *) buf;
2536 int ret;
2537
2538 CHECK_ERROR_STATE();
2539
2540 /*
2541 * Push out any writes that
2542 * we're queued up for VM's ram.
2543 */
2544 ret = qemu_rdma_write_flush(f, rdma);
2545 if (ret < 0) {
2546 rdma->error_state = ret;
2547 return ret;
2548 }
2549
2550 while (remaining) {
2551 RDMAControlHeader head;
2552
2553 r->len = MIN(remaining, RDMA_SEND_INCREMENT);
2554 remaining -= r->len;
2555
2556 head.len = r->len;
2557 head.type = RDMA_CONTROL_QEMU_FILE;
2558
2559 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2560
2561 if (ret < 0) {
2562 rdma->error_state = ret;
2563 return ret;
2564 }
2565
2566 data += r->len;
2567 }
2568
2569 return size;
2570 }
2571
2572 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2573 int size, int idx)
2574 {
2575 size_t len = 0;
2576
2577 if (rdma->wr_data[idx].control_len) {
2578 DDDPRINTF("RDMA %" PRId64 " of %d bytes already in buffer\n",
2579 rdma->wr_data[idx].control_len, size);
2580
2581 len = MIN(size, rdma->wr_data[idx].control_len);
2582 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2583 rdma->wr_data[idx].control_curr += len;
2584 rdma->wr_data[idx].control_len -= len;
2585 }
2586
2587 return len;
2588 }
2589
2590 /*
2591 * QEMUFile interface to the control channel.
2592 * RDMA links don't use bytestreams, so we have to
2593 * return bytes to QEMUFile opportunistically.
2594 */
2595 static int qemu_rdma_get_buffer(void *opaque, uint8_t *buf,
2596 int64_t pos, int size)
2597 {
2598 QEMUFileRDMA *r = opaque;
2599 RDMAContext *rdma = r->rdma;
2600 RDMAControlHeader head;
2601 int ret = 0;
2602
2603 CHECK_ERROR_STATE();
2604
2605 /*
2606 * First, we hold on to the last SEND message we
2607 * were given and dish out the bytes until we run
2608 * out of bytes.
2609 */
2610 r->len = qemu_rdma_fill(r->rdma, buf, size, 0);
2611 if (r->len) {
2612 return r->len;
2613 }
2614
2615 /*
2616 * Once we run out, we block and wait for another
2617 * SEND message to arrive.
2618 */
2619 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2620
2621 if (ret < 0) {
2622 rdma->error_state = ret;
2623 return ret;
2624 }
2625
2626 /*
2627 * SEND was received with new bytes, now try again.
2628 */
2629 return qemu_rdma_fill(r->rdma, buf, size, 0);
2630 }
2631
2632 /*
2633 * Block until all the outstanding chunks have been delivered by the hardware.
2634 */
2635 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2636 {
2637 int ret;
2638
2639 if (qemu_rdma_write_flush(f, rdma) < 0) {
2640 return -EIO;
2641 }
2642
2643 while (rdma->nb_sent) {
2644 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2645 if (ret < 0) {
2646 fprintf(stderr, "rdma migration: complete polling error!\n");
2647 return -EIO;
2648 }
2649 }
2650
2651 qemu_rdma_unregister_waiting(rdma);
2652
2653 return 0;
2654 }
2655
2656 static int qemu_rdma_close(void *opaque)
2657 {
2658 DPRINTF("Shutting down connection.\n");
2659 QEMUFileRDMA *r = opaque;
2660 if (r->rdma) {
2661 qemu_rdma_cleanup(r->rdma);
2662 g_free(r->rdma);
2663 }
2664 g_free(r);
2665 return 0;
2666 }
2667
2668 /*
2669 * Parameters:
2670 * @offset == 0 :
2671 * This means that 'block_offset' is a full virtual address that does not
2672 * belong to a RAMBlock of the virtual machine and instead
2673 * represents a private malloc'd memory area that the caller wishes to
2674 * transfer.
2675 *
2676 * @offset != 0 :
2677 * Offset is an offset to be added to block_offset and used
2678 * to also lookup the corresponding RAMBlock.
2679 *
2680 * @size > 0 :
2681 * Initiate an transfer this size.
2682 *
2683 * @size == 0 :
2684 * A 'hint' or 'advice' that means that we wish to speculatively
2685 * and asynchronously unregister this memory. In this case, there is no
2686 * guarantee that the unregister will actually happen, for example,
2687 * if the memory is being actively transmitted. Additionally, the memory
2688 * may be re-registered at any future time if a write within the same
2689 * chunk was requested again, even if you attempted to unregister it
2690 * here.
2691 *
2692 * @size < 0 : TODO, not yet supported
2693 * Unregister the memory NOW. This means that the caller does not
2694 * expect there to be any future RDMA transfers and we just want to clean
2695 * things up. This is used in case the upper layer owns the memory and
2696 * cannot wait for qemu_fclose() to occur.
2697 *
2698 * @bytes_sent : User-specificed pointer to indicate how many bytes were
2699 * sent. Usually, this will not be more than a few bytes of
2700 * the protocol because most transfers are sent asynchronously.
2701 */
2702 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
2703 ram_addr_t block_offset, ram_addr_t offset,
2704 size_t size, int *bytes_sent)
2705 {
2706 QEMUFileRDMA *rfile = opaque;
2707 RDMAContext *rdma = rfile->rdma;
2708 int ret;
2709
2710 CHECK_ERROR_STATE();
2711
2712 qemu_fflush(f);
2713
2714 if (size > 0) {
2715 /*
2716 * Add this page to the current 'chunk'. If the chunk
2717 * is full, or the page doen't belong to the current chunk,
2718 * an actual RDMA write will occur and a new chunk will be formed.
2719 */
2720 ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
2721 if (ret < 0) {
2722 fprintf(stderr, "rdma migration: write error! %d\n", ret);
2723 goto err;
2724 }
2725
2726 /*
2727 * We always return 1 bytes because the RDMA
2728 * protocol is completely asynchronous. We do not yet know
2729 * whether an identified chunk is zero or not because we're
2730 * waiting for other pages to potentially be merged with
2731 * the current chunk. So, we have to call qemu_update_position()
2732 * later on when the actual write occurs.
2733 */
2734 if (bytes_sent) {
2735 *bytes_sent = 1;
2736 }
2737 } else {
2738 uint64_t index, chunk;
2739
2740 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2741 if (size < 0) {
2742 ret = qemu_rdma_drain_cq(f, rdma);
2743 if (ret < 0) {
2744 fprintf(stderr, "rdma: failed to synchronously drain"
2745 " completion queue before unregistration.\n");
2746 goto err;
2747 }
2748 }
2749 */
2750
2751 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2752 offset, size, &index, &chunk);
2753
2754 if (ret) {
2755 fprintf(stderr, "ram block search failed\n");
2756 goto err;
2757 }
2758
2759 qemu_rdma_signal_unregister(rdma, index, chunk, 0);
2760
2761 /*
2762 * TODO: Synchronous, guaranteed unregistration (should not occur during
2763 * fast-path). Otherwise, unregisters will process on the next call to
2764 * qemu_rdma_drain_cq()
2765 if (size < 0) {
2766 qemu_rdma_unregister_waiting(rdma);
2767 }
2768 */
2769 }
2770
2771 /*
2772 * Drain the Completion Queue if possible, but do not block,
2773 * just poll.
2774 *
2775 * If nothing to poll, the end of the iteration will do this
2776 * again to make sure we don't overflow the request queue.
2777 */
2778 while (1) {
2779 uint64_t wr_id, wr_id_in;
2780 int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
2781 if (ret < 0) {
2782 fprintf(stderr, "rdma migration: polling error! %d\n", ret);
2783 goto err;
2784 }
2785
2786 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
2787
2788 if (wr_id == RDMA_WRID_NONE) {
2789 break;
2790 }
2791 }
2792
2793 return RAM_SAVE_CONTROL_DELAYED;
2794 err:
2795 rdma->error_state = ret;
2796 return ret;
2797 }
2798
2799 static int qemu_rdma_accept(RDMAContext *rdma)
2800 {
2801 RDMACapabilities cap;
2802 struct rdma_conn_param conn_param = {
2803 .responder_resources = 2,
2804 .private_data = &cap,
2805 .private_data_len = sizeof(cap),
2806 };
2807 struct rdma_cm_event *cm_event;
2808 struct ibv_context *verbs;
2809 int ret = -EINVAL;
2810 int idx;
2811
2812 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2813 if (ret) {
2814 goto err_rdma_dest_wait;
2815 }
2816
2817 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
2818 rdma_ack_cm_event(cm_event);
2819 goto err_rdma_dest_wait;
2820 }
2821
2822 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2823
2824 network_to_caps(&cap);
2825
2826 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
2827 fprintf(stderr, "Unknown source RDMA version: %d, bailing...\n",
2828 cap.version);
2829 rdma_ack_cm_event(cm_event);
2830 goto err_rdma_dest_wait;
2831 }
2832
2833 /*
2834 * Respond with only the capabilities this version of QEMU knows about.
2835 */
2836 cap.flags &= known_capabilities;
2837
2838 /*
2839 * Enable the ones that we do know about.
2840 * Add other checks here as new ones are introduced.
2841 */
2842 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
2843 rdma->pin_all = true;
2844 }
2845
2846 rdma->cm_id = cm_event->id;
2847 verbs = cm_event->id->verbs;
2848
2849 rdma_ack_cm_event(cm_event);
2850
2851 DPRINTF("Memory pin all: %s\n", rdma->pin_all ? "enabled" : "disabled");
2852
2853 caps_to_network(&cap);
2854
2855 DPRINTF("verbs context after listen: %p\n", verbs);
2856
2857 if (!rdma->verbs) {
2858 rdma->verbs = verbs;
2859 } else if (rdma->verbs != verbs) {
2860 fprintf(stderr, "ibv context not matching %p, %p!\n",
2861 rdma->verbs, verbs);
2862 goto err_rdma_dest_wait;
2863 }
2864
2865 qemu_rdma_dump_id("dest_init", verbs);
2866
2867 ret = qemu_rdma_alloc_pd_cq(rdma);
2868 if (ret) {
2869 fprintf(stderr, "rdma migration: error allocating pd and cq!\n");
2870 goto err_rdma_dest_wait;
2871 }
2872
2873 ret = qemu_rdma_alloc_qp(rdma);
2874 if (ret) {
2875 fprintf(stderr, "rdma migration: error allocating qp!\n");
2876 goto err_rdma_dest_wait;
2877 }
2878
2879 ret = qemu_rdma_init_ram_blocks(rdma);
2880 if (ret) {
2881 fprintf(stderr, "rdma migration: error initializing ram blocks!\n");
2882 goto err_rdma_dest_wait;
2883 }
2884
2885 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2886 ret = qemu_rdma_reg_control(rdma, idx);
2887 if (ret) {
2888 fprintf(stderr, "rdma: error registering %d control!\n", idx);
2889 goto err_rdma_dest_wait;
2890 }
2891 }
2892
2893 qemu_set_fd_handler2(rdma->channel->fd, NULL, NULL, NULL, NULL);
2894
2895 ret = rdma_accept(rdma->cm_id, &conn_param);
2896 if (ret) {
2897 fprintf(stderr, "rdma_accept returns %d!\n", ret);
2898 goto err_rdma_dest_wait;
2899 }
2900
2901 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2902 if (ret) {
2903 fprintf(stderr, "rdma_accept get_cm_event failed %d!\n", ret);
2904 goto err_rdma_dest_wait;
2905 }
2906
2907 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2908 fprintf(stderr, "rdma_accept not event established!\n");
2909 rdma_ack_cm_event(cm_event);
2910 goto err_rdma_dest_wait;
2911 }
2912
2913 rdma_ack_cm_event(cm_event);
2914 rdma->connected = true;
2915
2916 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2917 if (ret) {
2918 fprintf(stderr, "rdma migration: error posting second control recv!\n");
2919 goto err_rdma_dest_wait;
2920 }
2921
2922 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
2923
2924 return 0;
2925
2926 err_rdma_dest_wait:
2927 rdma->error_state = ret;
2928 qemu_rdma_cleanup(rdma);
2929 return ret;
2930 }
2931
2932 /*
2933 * During each iteration of the migration, we listen for instructions
2934 * by the source VM to perform dynamic page registrations before they
2935 * can perform RDMA operations.
2936 *
2937 * We respond with the 'rkey'.
2938 *
2939 * Keep doing this until the source tells us to stop.
2940 */
2941 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque,
2942 uint64_t flags)
2943 {
2944 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
2945 .type = RDMA_CONTROL_REGISTER_RESULT,
2946 .repeat = 0,
2947 };
2948 RDMAControlHeader unreg_resp = { .len = 0,
2949 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
2950 .repeat = 0,
2951 };
2952 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
2953 .repeat = 1 };
2954 QEMUFileRDMA *rfile = opaque;
2955 RDMAContext *rdma = rfile->rdma;
2956 RDMALocalBlocks *local = &rdma->local_ram_blocks;
2957 RDMAControlHeader head;
2958 RDMARegister *reg, *registers;
2959 RDMACompress *comp;
2960 RDMARegisterResult *reg_result;
2961 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
2962 RDMALocalBlock *block;
2963 void *host_addr;
2964 int ret = 0;
2965 int idx = 0;
2966 int count = 0;
2967 int i = 0;
2968
2969 CHECK_ERROR_STATE();
2970
2971 do {
2972 DDDPRINTF("Waiting for next request %" PRIu64 "...\n", flags);
2973
2974 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
2975
2976 if (ret < 0) {
2977 break;
2978 }
2979
2980 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
2981 fprintf(stderr, "rdma: Too many requests in this message (%d)."
2982 "Bailing.\n", head.repeat);
2983 ret = -EIO;
2984 break;
2985 }
2986
2987 switch (head.type) {
2988 case RDMA_CONTROL_COMPRESS:
2989 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
2990 network_to_compress(comp);
2991
2992 DDPRINTF("Zapping zero chunk: %" PRId64
2993 " bytes, index %d, offset %" PRId64 "\n",
2994 comp->length, comp->block_idx, comp->offset);
2995 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
2996
2997 host_addr = block->local_host_addr +
2998 (comp->offset - block->offset);
2999
3000 ram_handle_compressed(host_addr, comp->value, comp->length);
3001 break;
3002
3003 case RDMA_CONTROL_REGISTER_FINISHED:
3004 DDDPRINTF("Current registrations complete.\n");
3005 goto out;
3006
3007 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3008 DPRINTF("Initial setup info requested.\n");
3009
3010 if (rdma->pin_all) {
3011 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3012 if (ret) {
3013 fprintf(stderr, "rdma migration: error dest "
3014 "registering ram blocks!\n");
3015 goto out;
3016 }
3017 }
3018
3019 /*
3020 * Dest uses this to prepare to transmit the RAMBlock descriptions
3021 * to the source VM after connection setup.
3022 * Both sides use the "remote" structure to communicate and update
3023 * their "local" descriptions with what was sent.
3024 */
3025 for (i = 0; i < local->nb_blocks; i++) {
3026 rdma->block[i].remote_host_addr =
3027 (uint64_t)(local->block[i].local_host_addr);
3028
3029 if (rdma->pin_all) {
3030 rdma->block[i].remote_rkey = local->block[i].mr->rkey;
3031 }
3032
3033 rdma->block[i].offset = local->block[i].offset;
3034 rdma->block[i].length = local->block[i].length;
3035
3036 remote_block_to_network(&rdma->block[i]);
3037 }
3038
3039 blocks.len = rdma->local_ram_blocks.nb_blocks
3040 * sizeof(RDMARemoteBlock);
3041
3042
3043 ret = qemu_rdma_post_send_control(rdma,
3044 (uint8_t *) rdma->block, &blocks);
3045
3046 if (ret < 0) {
3047 fprintf(stderr, "rdma migration: error sending remote info!\n");
3048 goto out;
3049 }
3050
3051 break;
3052 case RDMA_CONTROL_REGISTER_REQUEST:
3053 DDPRINTF("There are %d registration requests\n", head.repeat);
3054
3055 reg_resp.repeat = head.repeat;
3056 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3057
3058 for (count = 0; count < head.repeat; count++) {
3059 uint64_t chunk;
3060 uint8_t *chunk_start, *chunk_end;
3061
3062 reg = &registers[count];
3063 network_to_register(reg);
3064
3065 reg_result = &results[count];
3066
3067 DDPRINTF("Registration request (%d): index %d, current_addr %"
3068 PRIu64 " chunks: %" PRIu64 "\n", count,
3069 reg->current_index, reg->key.current_addr, reg->chunks);
3070
3071 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3072 if (block->is_ram_block) {
3073 host_addr = (block->local_host_addr +
3074 (reg->key.current_addr - block->offset));
3075 chunk = ram_chunk_index(block->local_host_addr,
3076 (uint8_t *) host_addr);
3077 } else {
3078 chunk = reg->key.chunk;
3079 host_addr = block->local_host_addr +
3080 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3081 }
3082 chunk_start = ram_chunk_start(block, chunk);
3083 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3084 if (qemu_rdma_register_and_get_keys(rdma, block,
3085 (uint8_t *)host_addr, NULL, &reg_result->rkey,
3086 chunk, chunk_start, chunk_end)) {
3087 fprintf(stderr, "cannot get rkey!\n");
3088 ret = -EINVAL;
3089 goto out;
3090 }
3091
3092 reg_result->host_addr = (uint64_t) block->local_host_addr;
3093
3094 DDPRINTF("Registered rkey for this request: %x\n",
3095 reg_result->rkey);
3096
3097 result_to_network(reg_result);
3098 }
3099
3100 ret = qemu_rdma_post_send_control(rdma,
3101 (uint8_t *) results, &reg_resp);
3102
3103 if (ret < 0) {
3104 fprintf(stderr, "Failed to send control buffer!\n");
3105 goto out;
3106 }
3107 break;
3108 case RDMA_CONTROL_UNREGISTER_REQUEST:
3109 DDPRINTF("There are %d unregistration requests\n", head.repeat);
3110 unreg_resp.repeat = head.repeat;
3111 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3112
3113 for (count = 0; count < head.repeat; count++) {
3114 reg = &registers[count];
3115 network_to_register(reg);
3116
3117 DDPRINTF("Unregistration request (%d): "
3118 " index %d, chunk %" PRIu64 "\n",
3119 count, reg->current_index, reg->key.chunk);
3120
3121 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3122
3123 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3124 block->pmr[reg->key.chunk] = NULL;
3125
3126 if (ret != 0) {
3127 perror("rdma unregistration chunk failed");
3128 ret = -ret;
3129 goto out;
3130 }
3131
3132 rdma->total_registrations--;
3133
3134 DDPRINTF("Unregistered chunk %" PRIu64 " successfully.\n",
3135 reg->key.chunk);
3136 }
3137
3138 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3139
3140 if (ret < 0) {
3141 fprintf(stderr, "Failed to send control buffer!\n");
3142 goto out;
3143 }
3144 break;
3145 case RDMA_CONTROL_REGISTER_RESULT:
3146 fprintf(stderr, "Invalid RESULT message at dest.\n");
3147 ret = -EIO;
3148 goto out;
3149 default:
3150 fprintf(stderr, "Unknown control message %s\n",
3151 control_desc[head.type]);
3152 ret = -EIO;
3153 goto out;
3154 }
3155 } while (1);
3156 out:
3157 if (ret < 0) {
3158 rdma->error_state = ret;
3159 }
3160 return ret;
3161 }
3162
3163 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3164 uint64_t flags)
3165 {
3166 QEMUFileRDMA *rfile = opaque;
3167 RDMAContext *rdma = rfile->rdma;
3168
3169 CHECK_ERROR_STATE();
3170
3171 DDDPRINTF("start section: %" PRIu64 "\n", flags);
3172 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3173 qemu_fflush(f);
3174
3175 return 0;
3176 }
3177
3178 /*
3179 * Inform dest that dynamic registrations are done for now.
3180 * First, flush writes, if any.
3181 */
3182 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3183 uint64_t flags)
3184 {
3185 Error *local_err = NULL, **errp = &local_err;
3186 QEMUFileRDMA *rfile = opaque;
3187 RDMAContext *rdma = rfile->rdma;
3188 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3189 int ret = 0;
3190
3191 CHECK_ERROR_STATE();
3192
3193 qemu_fflush(f);
3194 ret = qemu_rdma_drain_cq(f, rdma);
3195
3196 if (ret < 0) {
3197 goto err;
3198 }
3199
3200 if (flags == RAM_CONTROL_SETUP) {
3201 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3202 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3203 int reg_result_idx, i, j, nb_remote_blocks;
3204
3205 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3206 DPRINTF("Sending registration setup for ram blocks...\n");
3207
3208 /*
3209 * Make sure that we parallelize the pinning on both sides.
3210 * For very large guests, doing this serially takes a really
3211 * long time, so we have to 'interleave' the pinning locally
3212 * with the control messages by performing the pinning on this
3213 * side before we receive the control response from the other
3214 * side that the pinning has completed.
3215 */
3216 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3217 &reg_result_idx, rdma->pin_all ?
3218 qemu_rdma_reg_whole_ram_blocks : NULL);
3219 if (ret < 0) {
3220 ERROR(errp, "receiving remote info!");
3221 return ret;
3222 }
3223
3224 nb_remote_blocks = resp.len / sizeof(RDMARemoteBlock);
3225
3226 /*
3227 * The protocol uses two different sets of rkeys (mutually exclusive):
3228 * 1. One key to represent the virtual address of the entire ram block.
3229 * (dynamic chunk registration disabled - pin everything with one rkey.)
3230 * 2. One to represent individual chunks within a ram block.
3231 * (dynamic chunk registration enabled - pin individual chunks.)
3232 *
3233 * Once the capability is successfully negotiated, the destination transmits
3234 * the keys to use (or sends them later) including the virtual addresses
3235 * and then propagates the remote ram block descriptions to his local copy.
3236 */
3237
3238 if (local->nb_blocks != nb_remote_blocks) {
3239 ERROR(errp, "ram blocks mismatch #1! "
3240 "Your QEMU command line parameters are probably "
3241 "not identical on both the source and destination.");
3242 return -EINVAL;
3243 }
3244
3245 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3246 memcpy(rdma->block,
3247 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3248 for (i = 0; i < nb_remote_blocks; i++) {
3249 network_to_remote_block(&rdma->block[i]);
3250
3251 /* search local ram blocks */
3252 for (j = 0; j < local->nb_blocks; j++) {
3253 if (rdma->block[i].offset != local->block[j].offset) {
3254 continue;
3255 }
3256
3257 if (rdma->block[i].length != local->block[j].length) {
3258 ERROR(errp, "ram blocks mismatch #2! "
3259 "Your QEMU command line parameters are probably "
3260 "not identical on both the source and destination.");
3261 return -EINVAL;
3262 }
3263 local->block[j].remote_host_addr =
3264 rdma->block[i].remote_host_addr;
3265 local->block[j].remote_rkey = rdma->block[i].remote_rkey;
3266 break;
3267 }
3268
3269 if (j >= local->nb_blocks) {
3270 ERROR(errp, "ram blocks mismatch #3! "
3271 "Your QEMU command line parameters are probably "
3272 "not identical on both the source and destination.");
3273 return -EINVAL;
3274 }
3275 }
3276 }
3277
3278 DDDPRINTF("Sending registration finish %" PRIu64 "...\n", flags);
3279
3280 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3281 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3282
3283 if (ret < 0) {
3284 goto err;
3285 }
3286
3287 return 0;
3288 err:
3289 rdma->error_state = ret;
3290 return ret;
3291 }
3292
3293 static int qemu_rdma_get_fd(void *opaque)
3294 {
3295 QEMUFileRDMA *rfile = opaque;
3296 RDMAContext *rdma = rfile->rdma;
3297
3298 return rdma->comp_channel->fd;
3299 }
3300
3301 const QEMUFileOps rdma_read_ops = {
3302 .get_buffer = qemu_rdma_get_buffer,
3303 .get_fd = qemu_rdma_get_fd,
3304 .close = qemu_rdma_close,
3305 .hook_ram_load = qemu_rdma_registration_handle,
3306 };
3307
3308 const QEMUFileOps rdma_write_ops = {
3309 .put_buffer = qemu_rdma_put_buffer,
3310 .close = qemu_rdma_close,
3311 .before_ram_iterate = qemu_rdma_registration_start,
3312 .after_ram_iterate = qemu_rdma_registration_stop,
3313 .save_page = qemu_rdma_save_page,
3314 };
3315
3316 static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3317 {
3318 QEMUFileRDMA *r = g_malloc0(sizeof(QEMUFileRDMA));
3319
3320 if (qemu_file_mode_is_not_valid(mode)) {
3321 return NULL;
3322 }
3323
3324 r->rdma = rdma;
3325
3326 if (mode[0] == 'w') {
3327 r->file = qemu_fopen_ops(r, &rdma_write_ops);
3328 } else {
3329 r->file = qemu_fopen_ops(r, &rdma_read_ops);
3330 }
3331
3332 return r->file;
3333 }
3334
3335 static void rdma_accept_incoming_migration(void *opaque)
3336 {
3337 RDMAContext *rdma = opaque;
3338 int ret;
3339 QEMUFile *f;
3340 Error *local_err = NULL, **errp = &local_err;
3341
3342 DPRINTF("Accepting rdma connection...\n");
3343 ret = qemu_rdma_accept(rdma);
3344
3345 if (ret) {
3346 ERROR(errp, "RDMA Migration initialization failed!");
3347 return;
3348 }
3349
3350 DPRINTF("Accepted migration\n");
3351
3352 f = qemu_fopen_rdma(rdma, "rb");
3353 if (f == NULL) {
3354 ERROR(errp, "could not qemu_fopen_rdma!");
3355 qemu_rdma_cleanup(rdma);
3356 return;
3357 }
3358
3359 rdma->migration_started_on_destination = 1;
3360 process_incoming_migration(f);
3361 }
3362
3363 void rdma_start_incoming_migration(const char *host_port, Error **errp)
3364 {
3365 int ret;
3366 RDMAContext *rdma;
3367 Error *local_err = NULL;
3368
3369 DPRINTF("Starting RDMA-based incoming migration\n");
3370 rdma = qemu_rdma_data_init(host_port, &local_err);
3371
3372 if (rdma == NULL) {
3373 goto err;
3374 }
3375
3376 ret = qemu_rdma_dest_init(rdma, &local_err);
3377
3378 if (ret) {
3379 goto err;
3380 }
3381
3382 DPRINTF("qemu_rdma_dest_init success\n");
3383
3384 ret = rdma_listen(rdma->listen_id, 5);
3385
3386 if (ret) {
3387 ERROR(errp, "listening on socket!");
3388 goto err;
3389 }
3390
3391 DPRINTF("rdma_listen success\n");
3392
3393 qemu_set_fd_handler2(rdma->channel->fd, NULL,
3394 rdma_accept_incoming_migration, NULL,
3395 (void *)(intptr_t) rdma);
3396 return;
3397 err:
3398 error_propagate(errp, local_err);
3399 g_free(rdma);
3400 }
3401
3402 void rdma_start_outgoing_migration(void *opaque,
3403 const char *host_port, Error **errp)
3404 {
3405 MigrationState *s = opaque;
3406 Error *local_err = NULL, **temp = &local_err;
3407 RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err);
3408 int ret = 0;
3409
3410 if (rdma == NULL) {
3411 ERROR(temp, "Failed to initialize RDMA data structures! %d", ret);
3412 goto err;
3413 }
3414
3415 ret = qemu_rdma_source_init(rdma, &local_err,
3416 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL]);
3417
3418 if (ret) {
3419 goto err;
3420 }
3421
3422 DPRINTF("qemu_rdma_source_init success\n");
3423 ret = qemu_rdma_connect(rdma, &local_err);
3424
3425 if (ret) {
3426 goto err;
3427 }
3428
3429 DPRINTF("qemu_rdma_source_connect success\n");
3430
3431 s->file = qemu_fopen_rdma(rdma, "wb");
3432 migrate_fd_connect(s);
3433 return;
3434 err:
3435 error_propagate(errp, local_err);
3436 g_free(rdma);
3437 migrate_fd_error(s);
3438 }