]> git.ipfire.org Git - thirdparty/qemu.git/blob - qemu-doc.texi
hw/isa/superio: Fix inconsistent use of Chardev->be
[thirdparty/qemu.git] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @include version.texi
5
6 @documentlanguage en
7 @documentencoding UTF-8
8
9 @settitle QEMU version @value{VERSION} User Documentation
10 @exampleindent 0
11 @paragraphindent 0
12 @c %**end of header
13
14 @ifinfo
15 @direntry
16 * QEMU: (qemu-doc). The QEMU Emulator User Documentation.
17 @end direntry
18 @end ifinfo
19
20 @iftex
21 @titlepage
22 @sp 7
23 @center @titlefont{QEMU version @value{VERSION}}
24 @sp 1
25 @center @titlefont{User Documentation}
26 @sp 3
27 @end titlepage
28 @end iftex
29
30 @ifnottex
31 @node Top
32 @top
33
34 @menu
35 * Introduction::
36 * QEMU PC System emulator::
37 * QEMU System emulator for non PC targets::
38 * QEMU Guest Agent::
39 * QEMU User space emulator::
40 * Implementation notes::
41 * Deprecated features::
42 * License::
43 * Index::
44 @end menu
45 @end ifnottex
46
47 @contents
48
49 @node Introduction
50 @chapter Introduction
51
52 @menu
53 * intro_features:: Features
54 @end menu
55
56 @node intro_features
57 @section Features
58
59 QEMU is a FAST! processor emulator using dynamic translation to
60 achieve good emulation speed.
61
62 @cindex operating modes
63 QEMU has two operating modes:
64
65 @itemize
66 @cindex system emulation
67 @item Full system emulation. In this mode, QEMU emulates a full system (for
68 example a PC), including one or several processors and various
69 peripherals. It can be used to launch different Operating Systems
70 without rebooting the PC or to debug system code.
71
72 @cindex user mode emulation
73 @item User mode emulation. In this mode, QEMU can launch
74 processes compiled for one CPU on another CPU. It can be used to
75 launch the Wine Windows API emulator (@url{https://www.winehq.org}) or
76 to ease cross-compilation and cross-debugging.
77
78 @end itemize
79
80 QEMU has the following features:
81
82 @itemize
83 @item QEMU can run without a host kernel driver and yet gives acceptable
84 performance. It uses dynamic translation to native code for reasonable speed,
85 with support for self-modifying code and precise exceptions.
86
87 @item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
88 Windows) and architectures.
89
90 @item It performs accurate software emulation of the FPU.
91 @end itemize
92
93 QEMU user mode emulation has the following features:
94 @itemize
95 @item Generic Linux system call converter, including most ioctls.
96
97 @item clone() emulation using native CPU clone() to use Linux scheduler for threads.
98
99 @item Accurate signal handling by remapping host signals to target signals.
100 @end itemize
101
102 QEMU full system emulation has the following features:
103 @itemize
104 @item
105 QEMU uses a full software MMU for maximum portability.
106
107 @item
108 QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
109 execute most of the guest code natively, while
110 continuing to emulate the rest of the machine.
111
112 @item
113 Various hardware devices can be emulated and in some cases, host
114 devices (e.g. serial and parallel ports, USB, drives) can be used
115 transparently by the guest Operating System. Host device passthrough
116 can be used for talking to external physical peripherals (e.g. a
117 webcam, modem or tape drive).
118
119 @item
120 Symmetric multiprocessing (SMP) support. Currently, an in-kernel
121 accelerator is required to use more than one host CPU for emulation.
122
123 @end itemize
124
125
126 @node QEMU PC System emulator
127 @chapter QEMU PC System emulator
128 @cindex system emulation (PC)
129
130 @menu
131 * pcsys_introduction:: Introduction
132 * pcsys_quickstart:: Quick Start
133 * sec_invocation:: Invocation
134 * pcsys_keys:: Keys in the graphical frontends
135 * mux_keys:: Keys in the character backend multiplexer
136 * pcsys_monitor:: QEMU Monitor
137 * disk_images:: Disk Images
138 * pcsys_network:: Network emulation
139 * pcsys_other_devs:: Other Devices
140 * direct_linux_boot:: Direct Linux Boot
141 * pcsys_usb:: USB emulation
142 * vnc_security:: VNC security
143 * network_tls:: TLS setup for network services
144 * gdb_usage:: GDB usage
145 * pcsys_os_specific:: Target OS specific information
146 @end menu
147
148 @node pcsys_introduction
149 @section Introduction
150
151 @c man begin DESCRIPTION
152
153 The QEMU PC System emulator simulates the
154 following peripherals:
155
156 @itemize @minus
157 @item
158 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
159 @item
160 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
161 extensions (hardware level, including all non standard modes).
162 @item
163 PS/2 mouse and keyboard
164 @item
165 2 PCI IDE interfaces with hard disk and CD-ROM support
166 @item
167 Floppy disk
168 @item
169 PCI and ISA network adapters
170 @item
171 Serial ports
172 @item
173 IPMI BMC, either and internal or external one
174 @item
175 Creative SoundBlaster 16 sound card
176 @item
177 ENSONIQ AudioPCI ES1370 sound card
178 @item
179 Intel 82801AA AC97 Audio compatible sound card
180 @item
181 Intel HD Audio Controller and HDA codec
182 @item
183 Adlib (OPL2) - Yamaha YM3812 compatible chip
184 @item
185 Gravis Ultrasound GF1 sound card
186 @item
187 CS4231A compatible sound card
188 @item
189 PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
190 @end itemize
191
192 SMP is supported with up to 255 CPUs.
193
194 QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
195 VGA BIOS.
196
197 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
198
199 QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
200 by Tibor "TS" Schütz.
201
202 Note that, by default, GUS shares IRQ(7) with parallel ports and so
203 QEMU must be told to not have parallel ports to have working GUS.
204
205 @example
206 qemu-system-i386 dos.img -soundhw gus -parallel none
207 @end example
208
209 Alternatively:
210 @example
211 qemu-system-i386 dos.img -device gus,irq=5
212 @end example
213
214 Or some other unclaimed IRQ.
215
216 CS4231A is the chip used in Windows Sound System and GUSMAX products
217
218 @c man end
219
220 @node pcsys_quickstart
221 @section Quick Start
222 @cindex quick start
223
224 Download and uncompress the linux image (@file{linux.img}) and type:
225
226 @example
227 qemu-system-i386 linux.img
228 @end example
229
230 Linux should boot and give you a prompt.
231
232 @node sec_invocation
233 @section Invocation
234
235 @example
236 @c man begin SYNOPSIS
237 @command{qemu-system-i386} [@var{options}] [@var{disk_image}]
238 @c man end
239 @end example
240
241 @c man begin OPTIONS
242 @var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
243 targets do not need a disk image.
244
245 @include qemu-options.texi
246
247 @c man end
248
249 @subsection Device URL Syntax
250 @c TODO merge this with section Disk Images
251
252 @c man begin NOTES
253
254 In addition to using normal file images for the emulated storage devices,
255 QEMU can also use networked resources such as iSCSI devices. These are
256 specified using a special URL syntax.
257
258 @table @option
259 @item iSCSI
260 iSCSI support allows QEMU to access iSCSI resources directly and use as
261 images for the guest storage. Both disk and cdrom images are supported.
262
263 Syntax for specifying iSCSI LUNs is
264 ``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
265
266 By default qemu will use the iSCSI initiator-name
267 'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
268 line or a configuration file.
269
270 Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
271 stalled requests and force a reestablishment of the session. The timeout
272 is specified in seconds. The default is 0 which means no timeout. Libiscsi
273 1.15.0 or greater is required for this feature.
274
275 Example (without authentication):
276 @example
277 qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
278 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
279 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
280 @end example
281
282 Example (CHAP username/password via URL):
283 @example
284 qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
285 @end example
286
287 Example (CHAP username/password via environment variables):
288 @example
289 LIBISCSI_CHAP_USERNAME="user" \
290 LIBISCSI_CHAP_PASSWORD="password" \
291 qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
292 @end example
293
294 @item NBD
295 QEMU supports NBD (Network Block Devices) both using TCP protocol as well
296 as Unix Domain Sockets.
297
298 Syntax for specifying a NBD device using TCP
299 ``nbd:<server-ip>:<port>[:exportname=<export>]''
300
301 Syntax for specifying a NBD device using Unix Domain Sockets
302 ``nbd:unix:<domain-socket>[:exportname=<export>]''
303
304 Example for TCP
305 @example
306 qemu-system-i386 --drive file=nbd:192.0.2.1:30000
307 @end example
308
309 Example for Unix Domain Sockets
310 @example
311 qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
312 @end example
313
314 @item SSH
315 QEMU supports SSH (Secure Shell) access to remote disks.
316
317 Examples:
318 @example
319 qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
320 qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
321 @end example
322
323 Currently authentication must be done using ssh-agent. Other
324 authentication methods may be supported in future.
325
326 @item Sheepdog
327 Sheepdog is a distributed storage system for QEMU.
328 QEMU supports using either local sheepdog devices or remote networked
329 devices.
330
331 Syntax for specifying a sheepdog device
332 @example
333 sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
334 @end example
335
336 Example
337 @example
338 qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
339 @end example
340
341 See also @url{https://sheepdog.github.io/sheepdog/}.
342
343 @item GlusterFS
344 GlusterFS is a user space distributed file system.
345 QEMU supports the use of GlusterFS volumes for hosting VM disk images using
346 TCP, Unix Domain Sockets and RDMA transport protocols.
347
348 Syntax for specifying a VM disk image on GlusterFS volume is
349 @example
350
351 URI:
352 gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]
353
354 JSON:
355 'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
356 @ "server":[@{"type":"tcp","host":"...","port":"..."@},
357 @ @{"type":"unix","socket":"..."@}]@}@}'
358 @end example
359
360
361 Example
362 @example
363 URI:
364 qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,
365 @ file.debug=9,file.logfile=/var/log/qemu-gluster.log
366
367 JSON:
368 qemu-system-x86_64 'json:@{"driver":"qcow2",
369 @ "file":@{"driver":"gluster",
370 @ "volume":"testvol","path":"a.img",
371 @ "debug":9,"logfile":"/var/log/qemu-gluster.log",
372 @ "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
373 @ @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
374 qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
375 @ file.debug=9,file.logfile=/var/log/qemu-gluster.log,
376 @ file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
377 @ file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
378 @end example
379
380 See also @url{http://www.gluster.org}.
381
382 @item HTTP/HTTPS/FTP/FTPS
383 QEMU supports read-only access to files accessed over http(s) and ftp(s).
384
385 Syntax using a single filename:
386 @example
387 <protocol>://[<username>[:<password>]@@]<host>/<path>
388 @end example
389
390 where:
391 @table @option
392 @item protocol
393 'http', 'https', 'ftp', or 'ftps'.
394
395 @item username
396 Optional username for authentication to the remote server.
397
398 @item password
399 Optional password for authentication to the remote server.
400
401 @item host
402 Address of the remote server.
403
404 @item path
405 Path on the remote server, including any query string.
406 @end table
407
408 The following options are also supported:
409 @table @option
410 @item url
411 The full URL when passing options to the driver explicitly.
412
413 @item readahead
414 The amount of data to read ahead with each range request to the remote server.
415 This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
416 does not have a suffix, it will be assumed to be in bytes. The value must be a
417 multiple of 512 bytes. It defaults to 256k.
418
419 @item sslverify
420 Whether to verify the remote server's certificate when connecting over SSL. It
421 can have the value 'on' or 'off'. It defaults to 'on'.
422
423 @item cookie
424 Send this cookie (it can also be a list of cookies separated by ';') with
425 each outgoing request. Only supported when using protocols such as HTTP
426 which support cookies, otherwise ignored.
427
428 @item timeout
429 Set the timeout in seconds of the CURL connection. This timeout is the time
430 that CURL waits for a response from the remote server to get the size of the
431 image to be downloaded. If not set, the default timeout of 5 seconds is used.
432 @end table
433
434 Note that when passing options to qemu explicitly, @option{driver} is the value
435 of <protocol>.
436
437 Example: boot from a remote Fedora 20 live ISO image
438 @example
439 qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
440
441 qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
442 @end example
443
444 Example: boot from a remote Fedora 20 cloud image using a local overlay for
445 writes, copy-on-read, and a readahead of 64k
446 @example
447 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
448
449 qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
450 @end example
451
452 Example: boot from an image stored on a VMware vSphere server with a self-signed
453 certificate using a local overlay for writes, a readahead of 64k and a timeout
454 of 10 seconds.
455 @example
456 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
457
458 qemu-system-x86_64 -drive file=/tmp/test.qcow2
459 @end example
460
461 @end table
462
463 @c man end
464
465 @node pcsys_keys
466 @section Keys in the graphical frontends
467
468 @c man begin OPTIONS
469
470 During the graphical emulation, you can use special key combinations to change
471 modes. The default key mappings are shown below, but if you use @code{-alt-grab}
472 then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
473 @code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
474
475 @table @key
476 @item Ctrl-Alt-f
477 @kindex Ctrl-Alt-f
478 Toggle full screen
479
480 @item Ctrl-Alt-+
481 @kindex Ctrl-Alt-+
482 Enlarge the screen
483
484 @item Ctrl-Alt--
485 @kindex Ctrl-Alt--
486 Shrink the screen
487
488 @item Ctrl-Alt-u
489 @kindex Ctrl-Alt-u
490 Restore the screen's un-scaled dimensions
491
492 @item Ctrl-Alt-n
493 @kindex Ctrl-Alt-n
494 Switch to virtual console 'n'. Standard console mappings are:
495 @table @emph
496 @item 1
497 Target system display
498 @item 2
499 Monitor
500 @item 3
501 Serial port
502 @end table
503
504 @item Ctrl-Alt
505 @kindex Ctrl-Alt
506 Toggle mouse and keyboard grab.
507 @end table
508
509 @kindex Ctrl-Up
510 @kindex Ctrl-Down
511 @kindex Ctrl-PageUp
512 @kindex Ctrl-PageDown
513 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
514 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
515
516 @c man end
517
518 @node mux_keys
519 @section Keys in the character backend multiplexer
520
521 @c man begin OPTIONS
522
523 During emulation, if you are using a character backend multiplexer
524 (which is the default if you are using @option{-nographic}) then
525 several commands are available via an escape sequence. These
526 key sequences all start with an escape character, which is @key{Ctrl-a}
527 by default, but can be changed with @option{-echr}. The list below assumes
528 you're using the default.
529
530 @table @key
531 @item Ctrl-a h
532 @kindex Ctrl-a h
533 Print this help
534 @item Ctrl-a x
535 @kindex Ctrl-a x
536 Exit emulator
537 @item Ctrl-a s
538 @kindex Ctrl-a s
539 Save disk data back to file (if -snapshot)
540 @item Ctrl-a t
541 @kindex Ctrl-a t
542 Toggle console timestamps
543 @item Ctrl-a b
544 @kindex Ctrl-a b
545 Send break (magic sysrq in Linux)
546 @item Ctrl-a c
547 @kindex Ctrl-a c
548 Rotate between the frontends connected to the multiplexer (usually
549 this switches between the monitor and the console)
550 @item Ctrl-a Ctrl-a
551 @kindex Ctrl-a Ctrl-a
552 Send the escape character to the frontend
553 @end table
554 @c man end
555
556 @ignore
557
558 @c man begin SEEALSO
559 The HTML documentation of QEMU for more precise information and Linux
560 user mode emulator invocation.
561 @c man end
562
563 @c man begin AUTHOR
564 Fabrice Bellard
565 @c man end
566
567 @end ignore
568
569 @node pcsys_monitor
570 @section QEMU Monitor
571 @cindex QEMU monitor
572
573 The QEMU monitor is used to give complex commands to the QEMU
574 emulator. You can use it to:
575
576 @itemize @minus
577
578 @item
579 Remove or insert removable media images
580 (such as CD-ROM or floppies).
581
582 @item
583 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
584 from a disk file.
585
586 @item Inspect the VM state without an external debugger.
587
588 @end itemize
589
590 @subsection Commands
591
592 The following commands are available:
593
594 @include qemu-monitor.texi
595
596 @include qemu-monitor-info.texi
597
598 @subsection Integer expressions
599
600 The monitor understands integers expressions for every integer
601 argument. You can use register names to get the value of specifics
602 CPU registers by prefixing them with @emph{$}.
603
604 @node disk_images
605 @section Disk Images
606
607 QEMU supports many disk image formats, including growable disk images
608 (their size increase as non empty sectors are written), compressed and
609 encrypted disk images.
610
611 @menu
612 * disk_images_quickstart:: Quick start for disk image creation
613 * disk_images_snapshot_mode:: Snapshot mode
614 * vm_snapshots:: VM snapshots
615 * qemu_img_invocation:: qemu-img Invocation
616 * qemu_nbd_invocation:: qemu-nbd Invocation
617 * disk_images_formats:: Disk image file formats
618 * host_drives:: Using host drives
619 * disk_images_fat_images:: Virtual FAT disk images
620 * disk_images_nbd:: NBD access
621 * disk_images_sheepdog:: Sheepdog disk images
622 * disk_images_iscsi:: iSCSI LUNs
623 * disk_images_gluster:: GlusterFS disk images
624 * disk_images_ssh:: Secure Shell (ssh) disk images
625 * disk_images_nvme:: NVMe userspace driver
626 * disk_image_locking:: Disk image file locking
627 @end menu
628
629 @node disk_images_quickstart
630 @subsection Quick start for disk image creation
631
632 You can create a disk image with the command:
633 @example
634 qemu-img create myimage.img mysize
635 @end example
636 where @var{myimage.img} is the disk image filename and @var{mysize} is its
637 size in kilobytes. You can add an @code{M} suffix to give the size in
638 megabytes and a @code{G} suffix for gigabytes.
639
640 See @ref{qemu_img_invocation} for more information.
641
642 @node disk_images_snapshot_mode
643 @subsection Snapshot mode
644
645 If you use the option @option{-snapshot}, all disk images are
646 considered as read only. When sectors in written, they are written in
647 a temporary file created in @file{/tmp}. You can however force the
648 write back to the raw disk images by using the @code{commit} monitor
649 command (or @key{C-a s} in the serial console).
650
651 @node vm_snapshots
652 @subsection VM snapshots
653
654 VM snapshots are snapshots of the complete virtual machine including
655 CPU state, RAM, device state and the content of all the writable
656 disks. In order to use VM snapshots, you must have at least one non
657 removable and writable block device using the @code{qcow2} disk image
658 format. Normally this device is the first virtual hard drive.
659
660 Use the monitor command @code{savevm} to create a new VM snapshot or
661 replace an existing one. A human readable name can be assigned to each
662 snapshot in addition to its numerical ID.
663
664 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
665 a VM snapshot. @code{info snapshots} lists the available snapshots
666 with their associated information:
667
668 @example
669 (qemu) info snapshots
670 Snapshot devices: hda
671 Snapshot list (from hda):
672 ID TAG VM SIZE DATE VM CLOCK
673 1 start 41M 2006-08-06 12:38:02 00:00:14.954
674 2 40M 2006-08-06 12:43:29 00:00:18.633
675 3 msys 40M 2006-08-06 12:44:04 00:00:23.514
676 @end example
677
678 A VM snapshot is made of a VM state info (its size is shown in
679 @code{info snapshots}) and a snapshot of every writable disk image.
680 The VM state info is stored in the first @code{qcow2} non removable
681 and writable block device. The disk image snapshots are stored in
682 every disk image. The size of a snapshot in a disk image is difficult
683 to evaluate and is not shown by @code{info snapshots} because the
684 associated disk sectors are shared among all the snapshots to save
685 disk space (otherwise each snapshot would need a full copy of all the
686 disk images).
687
688 When using the (unrelated) @code{-snapshot} option
689 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
690 but they are deleted as soon as you exit QEMU.
691
692 VM snapshots currently have the following known limitations:
693 @itemize
694 @item
695 They cannot cope with removable devices if they are removed or
696 inserted after a snapshot is done.
697 @item
698 A few device drivers still have incomplete snapshot support so their
699 state is not saved or restored properly (in particular USB).
700 @end itemize
701
702 @node qemu_img_invocation
703 @subsection @code{qemu-img} Invocation
704
705 @include qemu-img.texi
706
707 @node qemu_nbd_invocation
708 @subsection @code{qemu-nbd} Invocation
709
710 @include qemu-nbd.texi
711
712 @include docs/qemu-block-drivers.texi
713
714 @node pcsys_network
715 @section Network emulation
716
717 QEMU can simulate several network cards (PCI or ISA cards on the PC
718 target) and can connect them to an arbitrary number of Virtual Local
719 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
720 VLAN. VLAN can be connected between separate instances of QEMU to
721 simulate large networks. For simpler usage, a non privileged user mode
722 network stack can replace the TAP device to have a basic network
723 connection.
724
725 @subsection VLANs
726
727 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
728 connection between several network devices. These devices can be for
729 example QEMU virtual Ethernet cards or virtual Host ethernet devices
730 (TAP devices).
731
732 @subsection Using TAP network interfaces
733
734 This is the standard way to connect QEMU to a real network. QEMU adds
735 a virtual network device on your host (called @code{tapN}), and you
736 can then configure it as if it was a real ethernet card.
737
738 @subsubsection Linux host
739
740 As an example, you can download the @file{linux-test-xxx.tar.gz}
741 archive and copy the script @file{qemu-ifup} in @file{/etc} and
742 configure properly @code{sudo} so that the command @code{ifconfig}
743 contained in @file{qemu-ifup} can be executed as root. You must verify
744 that your host kernel supports the TAP network interfaces: the
745 device @file{/dev/net/tun} must be present.
746
747 See @ref{sec_invocation} to have examples of command lines using the
748 TAP network interfaces.
749
750 @subsubsection Windows host
751
752 There is a virtual ethernet driver for Windows 2000/XP systems, called
753 TAP-Win32. But it is not included in standard QEMU for Windows,
754 so you will need to get it separately. It is part of OpenVPN package,
755 so download OpenVPN from : @url{https://openvpn.net/}.
756
757 @subsection Using the user mode network stack
758
759 By using the option @option{-net user} (default configuration if no
760 @option{-net} option is specified), QEMU uses a completely user mode
761 network stack (you don't need root privilege to use the virtual
762 network). The virtual network configuration is the following:
763
764 @example
765
766 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
767 | (10.0.2.2)
768 |
769 ----> DNS server (10.0.2.3)
770 |
771 ----> SMB server (10.0.2.4)
772 @end example
773
774 The QEMU VM behaves as if it was behind a firewall which blocks all
775 incoming connections. You can use a DHCP client to automatically
776 configure the network in the QEMU VM. The DHCP server assign addresses
777 to the hosts starting from 10.0.2.15.
778
779 In order to check that the user mode network is working, you can ping
780 the address 10.0.2.2 and verify that you got an address in the range
781 10.0.2.x from the QEMU virtual DHCP server.
782
783 Note that ICMP traffic in general does not work with user mode networking.
784 @code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
785 however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
786 ping sockets to allow @code{ping} to the Internet. The host admin has to set
787 the ping_group_range in order to grant access to those sockets. To allow ping
788 for GID 100 (usually users group):
789
790 @example
791 echo 100 100 > /proc/sys/net/ipv4/ping_group_range
792 @end example
793
794 When using the built-in TFTP server, the router is also the TFTP
795 server.
796
797 When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
798 connections can be redirected from the host to the guest. It allows for
799 example to redirect X11, telnet or SSH connections.
800
801 @subsection Connecting VLANs between QEMU instances
802
803 Using the @option{-net socket} option, it is possible to make VLANs
804 that span several QEMU instances. See @ref{sec_invocation} to have a
805 basic example.
806
807 @node pcsys_other_devs
808 @section Other Devices
809
810 @subsection Inter-VM Shared Memory device
811
812 On Linux hosts, a shared memory device is available. The basic syntax
813 is:
814
815 @example
816 qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
817 @end example
818
819 where @var{hostmem} names a host memory backend. For a POSIX shared
820 memory backend, use something like
821
822 @example
823 -object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
824 @end example
825
826 If desired, interrupts can be sent between guest VMs accessing the same shared
827 memory region. Interrupt support requires using a shared memory server and
828 using a chardev socket to connect to it. The code for the shared memory server
829 is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
830 memory server is:
831
832 @example
833 # First start the ivshmem server once and for all
834 ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
835
836 # Then start your qemu instances with matching arguments
837 qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
838 -chardev socket,path=@var{path},id=@var{id}
839 @end example
840
841 When using the server, the guest will be assigned a VM ID (>=0) that allows guests
842 using the same server to communicate via interrupts. Guests can read their
843 VM ID from a device register (see ivshmem-spec.txt).
844
845 @subsubsection Migration with ivshmem
846
847 With device property @option{master=on}, the guest will copy the shared
848 memory on migration to the destination host. With @option{master=off},
849 the guest will not be able to migrate with the device attached. In the
850 latter case, the device should be detached and then reattached after
851 migration using the PCI hotplug support.
852
853 At most one of the devices sharing the same memory can be master. The
854 master must complete migration before you plug back the other devices.
855
856 @subsubsection ivshmem and hugepages
857
858 Instead of specifying the <shm size> using POSIX shm, you may specify
859 a memory backend that has hugepage support:
860
861 @example
862 qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
863 -device ivshmem-plain,memdev=mb1
864 @end example
865
866 ivshmem-server also supports hugepages mount points with the
867 @option{-m} memory path argument.
868
869 @node direct_linux_boot
870 @section Direct Linux Boot
871
872 This section explains how to launch a Linux kernel inside QEMU without
873 having to make a full bootable image. It is very useful for fast Linux
874 kernel testing.
875
876 The syntax is:
877 @example
878 qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
879 @end example
880
881 Use @option{-kernel} to provide the Linux kernel image and
882 @option{-append} to give the kernel command line arguments. The
883 @option{-initrd} option can be used to provide an INITRD image.
884
885 When using the direct Linux boot, a disk image for the first hard disk
886 @file{hda} is required because its boot sector is used to launch the
887 Linux kernel.
888
889 If you do not need graphical output, you can disable it and redirect
890 the virtual serial port and the QEMU monitor to the console with the
891 @option{-nographic} option. The typical command line is:
892 @example
893 qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
894 -append "root=/dev/hda console=ttyS0" -nographic
895 @end example
896
897 Use @key{Ctrl-a c} to switch between the serial console and the
898 monitor (@pxref{pcsys_keys}).
899
900 @node pcsys_usb
901 @section USB emulation
902
903 QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
904 plug virtual USB devices or real host USB devices (only works with certain
905 host operating systems). QEMU will automatically create and connect virtual
906 USB hubs as necessary to connect multiple USB devices.
907
908 @menu
909 * usb_devices::
910 * host_usb_devices::
911 @end menu
912 @node usb_devices
913 @subsection Connecting USB devices
914
915 USB devices can be connected with the @option{-device usb-...} command line
916 option or the @code{device_add} monitor command. Available devices are:
917
918 @table @code
919 @item usb-mouse
920 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
921 @item usb-tablet
922 Pointer device that uses absolute coordinates (like a touchscreen).
923 This means QEMU is able to report the mouse position without having
924 to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
925 @item usb-storage,drive=@var{drive_id}
926 Mass storage device backed by @var{drive_id} (@pxref{disk_images})
927 @item usb-uas
928 USB attached SCSI device, see
929 @url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
930 for details
931 @item usb-bot
932 Bulk-only transport storage device, see
933 @url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
934 for details here, too
935 @item usb-mtp,x-root=@var{dir}
936 Media transfer protocol device, using @var{dir} as root of the file tree
937 that is presented to the guest.
938 @item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
939 Pass through the host device identified by @var{bus} and @var{addr}
940 @item usb-host,vendorid=@var{vendor},productid=@var{product}
941 Pass through the host device identified by @var{vendor} and @var{product} ID
942 @item usb-wacom-tablet
943 Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
944 above but it can be used with the tslib library because in addition to touch
945 coordinates it reports touch pressure.
946 @item usb-kbd
947 Standard USB keyboard. Will override the PS/2 keyboard (if present).
948 @item usb-serial,chardev=@var{id}
949 Serial converter. This emulates an FTDI FT232BM chip connected to host character
950 device @var{id}.
951 @item usb-braille,chardev=@var{id}
952 Braille device. This will use BrlAPI to display the braille output on a real
953 or fake device referenced by @var{id}.
954 @item usb-net[,netdev=@var{id}]
955 Network adapter that supports CDC ethernet and RNDIS protocols. @var{id}
956 specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
957 For instance, user-mode networking can be used with
958 @example
959 qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0
960 @end example
961 @item usb-ccid
962 Smartcard reader device
963 @item usb-audio
964 USB audio device
965 @item usb-bt-dongle
966 Bluetooth dongle for the transport layer of HCI. It is connected to HCI
967 scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
968 Note that the syntax for the @code{-device usb-bt-dongle} option is not as
969 useful yet as it was with the legacy @code{-usbdevice} option. So to
970 configure an USB bluetooth device, you might need to use
971 "@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
972 bluetooth dongle whose type is specified in the same format as with
973 the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
974 no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
975 This USB device implements the USB Transport Layer of HCI. Example
976 usage:
977 @example
978 @command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
979 @end example
980 @end table
981
982 @node host_usb_devices
983 @subsection Using host USB devices on a Linux host
984
985 WARNING: this is an experimental feature. QEMU will slow down when
986 using it. USB devices requiring real time streaming (i.e. USB Video
987 Cameras) are not supported yet.
988
989 @enumerate
990 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
991 is actually using the USB device. A simple way to do that is simply to
992 disable the corresponding kernel module by renaming it from @file{mydriver.o}
993 to @file{mydriver.o.disabled}.
994
995 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
996 @example
997 ls /proc/bus/usb
998 001 devices drivers
999 @end example
1000
1001 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1002 @example
1003 chown -R myuid /proc/bus/usb
1004 @end example
1005
1006 @item Launch QEMU and do in the monitor:
1007 @example
1008 info usbhost
1009 Device 1.2, speed 480 Mb/s
1010 Class 00: USB device 1234:5678, USB DISK
1011 @end example
1012 You should see the list of the devices you can use (Never try to use
1013 hubs, it won't work).
1014
1015 @item Add the device in QEMU by using:
1016 @example
1017 device_add usb-host,vendorid=0x1234,productid=0x5678
1018 @end example
1019
1020 Normally the guest OS should report that a new USB device is plugged.
1021 You can use the option @option{-device usb-host,...} to do the same.
1022
1023 @item Now you can try to use the host USB device in QEMU.
1024
1025 @end enumerate
1026
1027 When relaunching QEMU, you may have to unplug and plug again the USB
1028 device to make it work again (this is a bug).
1029
1030 @node vnc_security
1031 @section VNC security
1032
1033 The VNC server capability provides access to the graphical console
1034 of the guest VM across the network. This has a number of security
1035 considerations depending on the deployment scenarios.
1036
1037 @menu
1038 * vnc_sec_none::
1039 * vnc_sec_password::
1040 * vnc_sec_certificate::
1041 * vnc_sec_certificate_verify::
1042 * vnc_sec_certificate_pw::
1043 * vnc_sec_sasl::
1044 * vnc_sec_certificate_sasl::
1045 * vnc_setup_sasl::
1046 @end menu
1047 @node vnc_sec_none
1048 @subsection Without passwords
1049
1050 The simplest VNC server setup does not include any form of authentication.
1051 For this setup it is recommended to restrict it to listen on a UNIX domain
1052 socket only. For example
1053
1054 @example
1055 qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1056 @end example
1057
1058 This ensures that only users on local box with read/write access to that
1059 path can access the VNC server. To securely access the VNC server from a
1060 remote machine, a combination of netcat+ssh can be used to provide a secure
1061 tunnel.
1062
1063 @node vnc_sec_password
1064 @subsection With passwords
1065
1066 The VNC protocol has limited support for password based authentication. Since
1067 the protocol limits passwords to 8 characters it should not be considered
1068 to provide high security. The password can be fairly easily brute-forced by
1069 a client making repeat connections. For this reason, a VNC server using password
1070 authentication should be restricted to only listen on the loopback interface
1071 or UNIX domain sockets. Password authentication is not supported when operating
1072 in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1073 authentication is requested with the @code{password} option, and then once QEMU
1074 is running the password is set with the monitor. Until the monitor is used to
1075 set the password all clients will be rejected.
1076
1077 @example
1078 qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
1079 (qemu) change vnc password
1080 Password: ********
1081 (qemu)
1082 @end example
1083
1084 @node vnc_sec_certificate
1085 @subsection With x509 certificates
1086
1087 The QEMU VNC server also implements the VeNCrypt extension allowing use of
1088 TLS for encryption of the session, and x509 certificates for authentication.
1089 The use of x509 certificates is strongly recommended, because TLS on its
1090 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1091 support provides a secure session, but no authentication. This allows any
1092 client to connect, and provides an encrypted session.
1093
1094 @example
1095 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1096 @end example
1097
1098 In the above example @code{/etc/pki/qemu} should contain at least three files,
1099 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1100 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1101 NB the @code{server-key.pem} file should be protected with file mode 0600 to
1102 only be readable by the user owning it.
1103
1104 @node vnc_sec_certificate_verify
1105 @subsection With x509 certificates and client verification
1106
1107 Certificates can also provide a means to authenticate the client connecting.
1108 The server will request that the client provide a certificate, which it will
1109 then validate against the CA certificate. This is a good choice if deploying
1110 in an environment with a private internal certificate authority.
1111
1112 @example
1113 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1114 @end example
1115
1116
1117 @node vnc_sec_certificate_pw
1118 @subsection With x509 certificates, client verification and passwords
1119
1120 Finally, the previous method can be combined with VNC password authentication
1121 to provide two layers of authentication for clients.
1122
1123 @example
1124 qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1125 (qemu) change vnc password
1126 Password: ********
1127 (qemu)
1128 @end example
1129
1130
1131 @node vnc_sec_sasl
1132 @subsection With SASL authentication
1133
1134 The SASL authentication method is a VNC extension, that provides an
1135 easily extendable, pluggable authentication method. This allows for
1136 integration with a wide range of authentication mechanisms, such as
1137 PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1138 The strength of the authentication depends on the exact mechanism
1139 configured. If the chosen mechanism also provides a SSF layer, then
1140 it will encrypt the datastream as well.
1141
1142 Refer to the later docs on how to choose the exact SASL mechanism
1143 used for authentication, but assuming use of one supporting SSF,
1144 then QEMU can be launched with:
1145
1146 @example
1147 qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
1148 @end example
1149
1150 @node vnc_sec_certificate_sasl
1151 @subsection With x509 certificates and SASL authentication
1152
1153 If the desired SASL authentication mechanism does not supported
1154 SSF layers, then it is strongly advised to run it in combination
1155 with TLS and x509 certificates. This provides securely encrypted
1156 data stream, avoiding risk of compromising of the security
1157 credentials. This can be enabled, by combining the 'sasl' option
1158 with the aforementioned TLS + x509 options:
1159
1160 @example
1161 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1162 @end example
1163
1164 @node vnc_setup_sasl
1165
1166 @subsection Configuring SASL mechanisms
1167
1168 The following documentation assumes use of the Cyrus SASL implementation on a
1169 Linux host, but the principles should apply to any other SASL implementation
1170 or host. When SASL is enabled, the mechanism configuration will be loaded from
1171 system default SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1172 unprivileged user, an environment variable SASL_CONF_PATH can be used to make
1173 it search alternate locations for the service config file.
1174
1175 If the TLS option is enabled for VNC, then it will provide session encryption,
1176 otherwise the SASL mechanism will have to provide encryption. In the latter
1177 case the list of possible plugins that can be used is drastically reduced. In
1178 fact only the GSSAPI SASL mechanism provides an acceptable level of security
1179 by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
1180 mechanism, however, it has multiple serious flaws described in detail in
1181 RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
1182 provides a simple username/password auth facility similar to DIGEST-MD5, but
1183 does not support session encryption, so can only be used in combination with
1184 TLS.
1185
1186 When not using TLS the recommended configuration is
1187
1188 @example
1189 mech_list: gssapi
1190 keytab: /etc/qemu/krb5.tab
1191 @end example
1192
1193 This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
1194 the server principal stored in /etc/qemu/krb5.tab. For this to work the
1195 administrator of your KDC must generate a Kerberos principal for the server,
1196 with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
1197 'somehost.example.com' with the fully qualified host name of the machine
1198 running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1199
1200 When using TLS, if username+password authentication is desired, then a
1201 reasonable configuration is
1202
1203 @example
1204 mech_list: scram-sha-1
1205 sasldb_path: /etc/qemu/passwd.db
1206 @end example
1207
1208 The @code{saslpasswd2} program can be used to populate the @code{passwd.db}
1209 file with accounts.
1210
1211 Other SASL configurations will be left as an exercise for the reader. Note that
1212 all mechanisms, except GSSAPI, should be combined with use of TLS to ensure a
1213 secure data channel.
1214
1215
1216 @node network_tls
1217 @section TLS setup for network services
1218
1219 Almost all network services in QEMU have the ability to use TLS for
1220 session data encryption, along with x509 certificates for simple
1221 client authentication. What follows is a description of how to
1222 generate certificates suitable for usage with QEMU, and applies to
1223 the VNC server, character devices with the TCP backend, NBD server
1224 and client, and migration server and client.
1225
1226 At a high level, QEMU requires certificates and private keys to be
1227 provided in PEM format. Aside from the core fields, the certificates
1228 should include various extension data sets, including v3 basic
1229 constraints data, key purpose, key usage and subject alt name.
1230
1231 The GnuTLS package includes a command called @code{certtool} which can
1232 be used to easily generate certificates and keys in the required format
1233 with expected data present. Alternatively a certificate management
1234 service may be used.
1235
1236 At a minimum it is necessary to setup a certificate authority, and
1237 issue certificates to each server. If using x509 certificates for
1238 authentication, then each client will also need to be issued a
1239 certificate.
1240
1241 Assuming that the QEMU network services will only ever be exposed to
1242 clients on a private intranet, there is no need to use a commercial
1243 certificate authority to create certificates. A self-signed CA is
1244 sufficient, and in fact likely to be more secure since it removes
1245 the ability of malicious 3rd parties to trick the CA into mis-issuing
1246 certs for impersonating your services. The only likely exception
1247 where a commercial CA might be desirable is if enabling the VNC
1248 websockets server and exposing it directly to remote browser clients.
1249 In such a case it might be useful to use a commercial CA to avoid
1250 needing to install custom CA certs in the web browsers.
1251
1252 The recommendation is for the server to keep its certificates in either
1253 @code{/etc/pki/qemu} or for unprivileged users in @code{$HOME/.pki/qemu}.
1254
1255 @menu
1256 * tls_generate_ca::
1257 * tls_generate_server::
1258 * tls_generate_client::
1259 * tls_creds_setup::
1260 @end menu
1261 @node tls_generate_ca
1262 @subsection Setup the Certificate Authority
1263
1264 This step only needs to be performed once per organization / organizational
1265 unit. First the CA needs a private key. This key must be kept VERY secret
1266 and secure. If this key is compromised the entire trust chain of the certificates
1267 issued with it is lost.
1268
1269 @example
1270 # certtool --generate-privkey > ca-key.pem
1271 @end example
1272
1273 To generate a self-signed certificate requires one core piece of information,
1274 the name of the organization. A template file @code{ca.info} should be
1275 populated with the desired data to avoid having to deal with interactive
1276 prompts from certtool:
1277 @example
1278 # cat > ca.info <<EOF
1279 cn = Name of your organization
1280 ca
1281 cert_signing_key
1282 EOF
1283 # certtool --generate-self-signed \
1284 --load-privkey ca-key.pem
1285 --template ca.info \
1286 --outfile ca-cert.pem
1287 @end example
1288
1289 The @code{ca} keyword in the template sets the v3 basic constraints extension
1290 to indicate this certificate is for a CA, while @code{cert_signing_key} sets
1291 the key usage extension to indicate this will be used for signing other keys.
1292 The generated @code{ca-cert.pem} file should be copied to all servers and
1293 clients wishing to utilize TLS support in the VNC server. The @code{ca-key.pem}
1294 must not be disclosed/copied anywhere except the host responsible for issuing
1295 certificates.
1296
1297 @node tls_generate_server
1298 @subsection Issuing server certificates
1299
1300 Each server (or host) needs to be issued with a key and certificate. When connecting
1301 the certificate is sent to the client which validates it against the CA certificate.
1302 The core pieces of information for a server certificate are the hostnames and/or IP
1303 addresses that will be used by clients when connecting. The hostname / IP address
1304 that the client specifies when connecting will be validated against the hostname(s)
1305 and IP address(es) recorded in the server certificate, and if no match is found
1306 the client will close the connection.
1307
1308 Thus it is recommended that the server certificate include both the fully qualified
1309 and unqualified hostnames. If the server will have permanently assigned IP address(es),
1310 and clients are likely to use them when connecting, they may also be included in the
1311 certificate. Both IPv4 and IPv6 addresses are supported. Historically certificates
1312 only included 1 hostname in the @code{CN} field, however, usage of this field for
1313 validation is now deprecated. Instead modern TLS clients will validate against the
1314 Subject Alt Name extension data, which allows for multiple entries. In the future
1315 usage of the @code{CN} field may be discontinued entirely, so providing SAN
1316 extension data is strongly recommended.
1317
1318 On the host holding the CA, create template files containing the information
1319 for each server, and use it to issue server certificates.
1320
1321 @example
1322 # cat > server-hostNNN.info <<EOF
1323 organization = Name of your organization
1324 cn = hostNNN.foo.example.com
1325 dns_name = hostNNN
1326 dns_name = hostNNN.foo.example.com
1327 ip_address = 10.0.1.87
1328 ip_address = 192.8.0.92
1329 ip_address = 2620:0:cafe::87
1330 ip_address = 2001:24::92
1331 tls_www_server
1332 encryption_key
1333 signing_key
1334 EOF
1335 # certtool --generate-privkey > server-hostNNN-key.pem
1336 # certtool --generate-certificate \
1337 --load-ca-certificate ca-cert.pem \
1338 --load-ca-privkey ca-key.pem \
1339 --load-privkey server-hostNNN-key.pem \
1340 --template server-hostNNN.info \
1341 --outfile server-hostNNN-cert.pem
1342 @end example
1343
1344 The @code{dns_name} and @code{ip_address} fields in the template are setting
1345 the subject alt name extension data. The @code{tls_www_server} keyword is the
1346 key purpose extension to indicate this certificate is intended for usage in
1347 a web server. Although QEMU network services are not in fact HTTP servers
1348 (except for VNC websockets), setting this key purpose is still recommended.
1349 The @code{encryption_key} and @code{signing_key} keyword is the key usage
1350 extension to indicate this certificate is intended for usage in the data
1351 session.
1352
1353 The @code{server-hostNNN-key.pem} and @code{server-hostNNN-cert.pem} files
1354 should now be securely copied to the server for which they were generated,
1355 and renamed to @code{server-key.pem} and @code{server-cert.pem} when added
1356 to the @code{/etc/pki/qemu} directory on the target host. The @code{server-key.pem}
1357 file is security sensitive and should be kept protected with file mode 0600
1358 to prevent disclosure.
1359
1360 @node tls_generate_client
1361 @subsection Issuing client certificates
1362
1363 The QEMU x509 TLS credential setup defaults to enabling client verification
1364 using certificates, providing a simple authentication mechanism. If this
1365 default is used, each client also needs to be issued a certificate. The client
1366 certificate contains enough metadata to uniquely identify the client with the
1367 scope of the certificate authority. The client certificate would typically
1368 include fields for organization, state, city, building, etc.
1369
1370 Once again on the host holding the CA, create template files containing the
1371 information for each client, and use it to issue client certificates.
1372
1373
1374 @example
1375 # cat > client-hostNNN.info <<EOF
1376 country = GB
1377 state = London
1378 locality = City Of London
1379 organization = Name of your organization
1380 cn = hostNNN.foo.example.com
1381 tls_www_client
1382 encryption_key
1383 signing_key
1384 EOF
1385 # certtool --generate-privkey > client-hostNNN-key.pem
1386 # certtool --generate-certificate \
1387 --load-ca-certificate ca-cert.pem \
1388 --load-ca-privkey ca-key.pem \
1389 --load-privkey client-hostNNN-key.pem \
1390 --template client-hostNNN.info \
1391 --outfile client-hostNNN-cert.pem
1392 @end example
1393
1394 The subject alt name extension data is not required for clients, so the
1395 the @code{dns_name} and @code{ip_address} fields are not included.
1396 The @code{tls_www_client} keyword is the key purpose extension to indicate
1397 this certificate is intended for usage in a web client. Although QEMU
1398 network clients are not in fact HTTP clients, setting this key purpose is
1399 still recommended. The @code{encryption_key} and @code{signing_key} keyword
1400 is the key usage extension to indicate this certificate is intended for
1401 usage in the data session.
1402
1403 The @code{client-hostNNN-key.pem} and @code{client-hostNNN-cert.pem} files
1404 should now be securely copied to the client for which they were generated,
1405 and renamed to @code{client-key.pem} and @code{client-cert.pem} when added
1406 to the @code{/etc/pki/qemu} directory on the target host. The @code{client-key.pem}
1407 file is security sensitive and should be kept protected with file mode 0600
1408 to prevent disclosure.
1409
1410 If a single host is going to be using TLS in both a client and server
1411 role, it is possible to create a single certificate to cover both roles.
1412 This would be quite common for the migration and NBD services, where a
1413 QEMU process will be started by accepting a TLS protected incoming migration,
1414 and later itself be migrated out to another host. To generate a single
1415 certificate, simply include the template data from both the client and server
1416 instructions in one.
1417
1418 @example
1419 # cat > both-hostNNN.info <<EOF
1420 country = GB
1421 state = London
1422 locality = City Of London
1423 organization = Name of your organization
1424 cn = hostNNN.foo.example.com
1425 dns_name = hostNNN
1426 dns_name = hostNNN.foo.example.com
1427 ip_address = 10.0.1.87
1428 ip_address = 192.8.0.92
1429 ip_address = 2620:0:cafe::87
1430 ip_address = 2001:24::92
1431 tls_www_server
1432 tls_www_client
1433 encryption_key
1434 signing_key
1435 EOF
1436 # certtool --generate-privkey > both-hostNNN-key.pem
1437 # certtool --generate-certificate \
1438 --load-ca-certificate ca-cert.pem \
1439 --load-ca-privkey ca-key.pem \
1440 --load-privkey both-hostNNN-key.pem \
1441 --template both-hostNNN.info \
1442 --outfile both-hostNNN-cert.pem
1443 @end example
1444
1445 When copying the PEM files to the target host, save them twice,
1446 once as @code{server-cert.pem} and @code{server-key.pem}, and
1447 again as @code{client-cert.pem} and @code{client-key.pem}.
1448
1449 @node tls_creds_setup
1450 @subsection TLS x509 credential configuration
1451
1452 QEMU has a standard mechanism for loading x509 credentials that will be
1453 used for network services and clients. It requires specifying the
1454 @code{tls-creds-x509} class name to the @code{--object} command line
1455 argument for the system emulators. Each set of credentials loaded should
1456 be given a unique string identifier via the @code{id} parameter. A single
1457 set of TLS credentials can be used for multiple network backends, so VNC,
1458 migration, NBD, character devices can all share the same credentials. Note,
1459 however, that credentials for use in a client endpoint must be loaded
1460 separately from those used in a server endpoint.
1461
1462 When specifying the object, the @code{dir} parameters specifies which
1463 directory contains the credential files. This directory is expected to
1464 contain files with the names mentioned previously, @code{ca-cert.pem},
1465 @code{server-key.pem}, @code{server-cert.pem}, @code{client-key.pem}
1466 and @code{client-cert.pem} as appropriate. It is also possible to
1467 include a set of pre-generated Diffie-Hellman (DH) parameters in a file
1468 @code{dh-params.pem}, which can be created using the
1469 @code{certtool --generate-dh-params} command. If omitted, QEMU will
1470 dynamically generate DH parameters when loading the credentials.
1471
1472 The @code{endpoint} parameter indicates whether the credentials will
1473 be used for a network client or server, and determines which PEM
1474 files are loaded.
1475
1476 The @code{verify} parameter determines whether x509 certificate
1477 validation should be performed. This defaults to enabled, meaning
1478 clients will always validate the server hostname against the
1479 certificate subject alt name fields and/or CN field. It also
1480 means that servers will request that clients provide a certificate
1481 and validate them. Verification should never be turned off for
1482 client endpoints, however, it may be turned off for server endpoints
1483 if an alternative mechanism is used to authenticate clients. For
1484 example, the VNC server can use SASL to authenticate clients
1485 instead.
1486
1487 To load server credentials with client certificate validation
1488 enabled
1489
1490 @example
1491 $QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server
1492 @end example
1493
1494 while to load client credentials use
1495
1496 @example
1497 $QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=client
1498 @end example
1499
1500 Network services which support TLS will all have a @code{tls-creds}
1501 parameter which expects the ID of the TLS credentials object. For
1502 example with VNC:
1503
1504 @example
1505 $QEMU -vnc 0.0.0.0:0,tls-creds=tls0
1506 @end example
1507
1508 @node gdb_usage
1509 @section GDB usage
1510
1511 QEMU has a primitive support to work with gdb, so that you can do
1512 'Ctrl-C' while the virtual machine is running and inspect its state.
1513
1514 In order to use gdb, launch QEMU with the '-s' option. It will wait for a
1515 gdb connection:
1516 @example
1517 qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1518 -append "root=/dev/hda"
1519 Connected to host network interface: tun0
1520 Waiting gdb connection on port 1234
1521 @end example
1522
1523 Then launch gdb on the 'vmlinux' executable:
1524 @example
1525 > gdb vmlinux
1526 @end example
1527
1528 In gdb, connect to QEMU:
1529 @example
1530 (gdb) target remote localhost:1234
1531 @end example
1532
1533 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1534 @example
1535 (gdb) c
1536 @end example
1537
1538 Here are some useful tips in order to use gdb on system code:
1539
1540 @enumerate
1541 @item
1542 Use @code{info reg} to display all the CPU registers.
1543 @item
1544 Use @code{x/10i $eip} to display the code at the PC position.
1545 @item
1546 Use @code{set architecture i8086} to dump 16 bit code. Then use
1547 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1548 @end enumerate
1549
1550 Advanced debugging options:
1551
1552 The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
1553 @table @code
1554 @item maintenance packet qqemu.sstepbits
1555
1556 This will display the MASK bits used to control the single stepping IE:
1557 @example
1558 (gdb) maintenance packet qqemu.sstepbits
1559 sending: "qqemu.sstepbits"
1560 received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1561 @end example
1562 @item maintenance packet qqemu.sstep
1563
1564 This will display the current value of the mask used when single stepping IE:
1565 @example
1566 (gdb) maintenance packet qqemu.sstep
1567 sending: "qqemu.sstep"
1568 received: "0x7"
1569 @end example
1570 @item maintenance packet Qqemu.sstep=HEX_VALUE
1571
1572 This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1573 @example
1574 (gdb) maintenance packet Qqemu.sstep=0x5
1575 sending: "qemu.sstep=0x5"
1576 received: "OK"
1577 @end example
1578 @end table
1579
1580 @node pcsys_os_specific
1581 @section Target OS specific information
1582
1583 @subsection Linux
1584
1585 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1586 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1587 color depth in the guest and the host OS.
1588
1589 When using a 2.6 guest Linux kernel, you should add the option
1590 @code{clock=pit} on the kernel command line because the 2.6 Linux
1591 kernels make very strict real time clock checks by default that QEMU
1592 cannot simulate exactly.
1593
1594 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1595 not activated because QEMU is slower with this patch. The QEMU
1596 Accelerator Module is also much slower in this case. Earlier Fedora
1597 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1598 patch by default. Newer kernels don't have it.
1599
1600 @subsection Windows
1601
1602 If you have a slow host, using Windows 95 is better as it gives the
1603 best speed. Windows 2000 is also a good choice.
1604
1605 @subsubsection SVGA graphic modes support
1606
1607 QEMU emulates a Cirrus Logic GD5446 Video
1608 card. All Windows versions starting from Windows 95 should recognize
1609 and use this graphic card. For optimal performances, use 16 bit color
1610 depth in the guest and the host OS.
1611
1612 If you are using Windows XP as guest OS and if you want to use high
1613 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1614 1280x1024x16), then you should use the VESA VBE virtual graphic card
1615 (option @option{-std-vga}).
1616
1617 @subsubsection CPU usage reduction
1618
1619 Windows 9x does not correctly use the CPU HLT
1620 instruction. The result is that it takes host CPU cycles even when
1621 idle. You can install the utility from
1622 @url{https://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
1623 to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
1624
1625 @subsubsection Windows 2000 disk full problem
1626
1627 Windows 2000 has a bug which gives a disk full problem during its
1628 installation. When installing it, use the @option{-win2k-hack} QEMU
1629 option to enable a specific workaround. After Windows 2000 is
1630 installed, you no longer need this option (this option slows down the
1631 IDE transfers).
1632
1633 @subsubsection Windows 2000 shutdown
1634
1635 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1636 can. It comes from the fact that Windows 2000 does not automatically
1637 use the APM driver provided by the BIOS.
1638
1639 In order to correct that, do the following (thanks to Struan
1640 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1641 Add/Troubleshoot a device => Add a new device & Next => No, select the
1642 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1643 (again) a few times. Now the driver is installed and Windows 2000 now
1644 correctly instructs QEMU to shutdown at the appropriate moment.
1645
1646 @subsubsection Share a directory between Unix and Windows
1647
1648 See @ref{sec_invocation} about the help of the option
1649 @option{'-netdev user,smb=...'}.
1650
1651 @subsubsection Windows XP security problem
1652
1653 Some releases of Windows XP install correctly but give a security
1654 error when booting:
1655 @example
1656 A problem is preventing Windows from accurately checking the
1657 license for this computer. Error code: 0x800703e6.
1658 @end example
1659
1660 The workaround is to install a service pack for XP after a boot in safe
1661 mode. Then reboot, and the problem should go away. Since there is no
1662 network while in safe mode, its recommended to download the full
1663 installation of SP1 or SP2 and transfer that via an ISO or using the
1664 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1665
1666 @subsection MS-DOS and FreeDOS
1667
1668 @subsubsection CPU usage reduction
1669
1670 DOS does not correctly use the CPU HLT instruction. The result is that
1671 it takes host CPU cycles even when idle. You can install the utility from
1672 @url{https://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
1673 to solve this problem.
1674
1675 @node QEMU System emulator for non PC targets
1676 @chapter QEMU System emulator for non PC targets
1677
1678 QEMU is a generic emulator and it emulates many non PC
1679 machines. Most of the options are similar to the PC emulator. The
1680 differences are mentioned in the following sections.
1681
1682 @menu
1683 * PowerPC System emulator::
1684 * Sparc32 System emulator::
1685 * Sparc64 System emulator::
1686 * MIPS System emulator::
1687 * ARM System emulator::
1688 * ColdFire System emulator::
1689 * Cris System emulator::
1690 * Microblaze System emulator::
1691 * SH4 System emulator::
1692 * Xtensa System emulator::
1693 @end menu
1694
1695 @node PowerPC System emulator
1696 @section PowerPC System emulator
1697 @cindex system emulation (PowerPC)
1698
1699 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1700 or PowerMac PowerPC system.
1701
1702 QEMU emulates the following PowerMac peripherals:
1703
1704 @itemize @minus
1705 @item
1706 UniNorth or Grackle PCI Bridge
1707 @item
1708 PCI VGA compatible card with VESA Bochs Extensions
1709 @item
1710 2 PMAC IDE interfaces with hard disk and CD-ROM support
1711 @item
1712 NE2000 PCI adapters
1713 @item
1714 Non Volatile RAM
1715 @item
1716 VIA-CUDA with ADB keyboard and mouse.
1717 @end itemize
1718
1719 QEMU emulates the following PREP peripherals:
1720
1721 @itemize @minus
1722 @item
1723 PCI Bridge
1724 @item
1725 PCI VGA compatible card with VESA Bochs Extensions
1726 @item
1727 2 IDE interfaces with hard disk and CD-ROM support
1728 @item
1729 Floppy disk
1730 @item
1731 NE2000 network adapters
1732 @item
1733 Serial port
1734 @item
1735 PREP Non Volatile RAM
1736 @item
1737 PC compatible keyboard and mouse.
1738 @end itemize
1739
1740 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1741 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1742
1743 Since version 0.9.1, QEMU uses OpenBIOS @url{https://www.openbios.org/}
1744 for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1745 v2) portable firmware implementation. The goal is to implement a 100%
1746 IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1747
1748 @c man begin OPTIONS
1749
1750 The following options are specific to the PowerPC emulation:
1751
1752 @table @option
1753
1754 @item -g @var{W}x@var{H}[x@var{DEPTH}]
1755
1756 Set the initial VGA graphic mode. The default is 800x600x32.
1757
1758 @item -prom-env @var{string}
1759
1760 Set OpenBIOS variables in NVRAM, for example:
1761
1762 @example
1763 qemu-system-ppc -prom-env 'auto-boot?=false' \
1764 -prom-env 'boot-device=hd:2,\yaboot' \
1765 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1766 @end example
1767
1768 These variables are not used by Open Hack'Ware.
1769
1770 @end table
1771
1772 @c man end
1773
1774
1775 More information is available at
1776 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1777
1778 @node Sparc32 System emulator
1779 @section Sparc32 System emulator
1780 @cindex system emulation (Sparc32)
1781
1782 Use the executable @file{qemu-system-sparc} to simulate the following
1783 Sun4m architecture machines:
1784 @itemize @minus
1785 @item
1786 SPARCstation 4
1787 @item
1788 SPARCstation 5
1789 @item
1790 SPARCstation 10
1791 @item
1792 SPARCstation 20
1793 @item
1794 SPARCserver 600MP
1795 @item
1796 SPARCstation LX
1797 @item
1798 SPARCstation Voyager
1799 @item
1800 SPARCclassic
1801 @item
1802 SPARCbook
1803 @end itemize
1804
1805 The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1806 but Linux limits the number of usable CPUs to 4.
1807
1808 QEMU emulates the following sun4m peripherals:
1809
1810 @itemize @minus
1811 @item
1812 IOMMU
1813 @item
1814 TCX or cgthree Frame buffer
1815 @item
1816 Lance (Am7990) Ethernet
1817 @item
1818 Non Volatile RAM M48T02/M48T08
1819 @item
1820 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1821 and power/reset logic
1822 @item
1823 ESP SCSI controller with hard disk and CD-ROM support
1824 @item
1825 Floppy drive (not on SS-600MP)
1826 @item
1827 CS4231 sound device (only on SS-5, not working yet)
1828 @end itemize
1829
1830 The number of peripherals is fixed in the architecture. Maximum
1831 memory size depends on the machine type, for SS-5 it is 256MB and for
1832 others 2047MB.
1833
1834 Since version 0.8.2, QEMU uses OpenBIOS
1835 @url{https://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1836 firmware implementation. The goal is to implement a 100% IEEE
1837 1275-1994 (referred to as Open Firmware) compliant firmware.
1838
1839 A sample Linux 2.6 series kernel and ram disk image are available on
1840 the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1841 most kernel versions work. Please note that currently older Solaris kernels
1842 don't work probably due to interface issues between OpenBIOS and
1843 Solaris.
1844
1845 @c man begin OPTIONS
1846
1847 The following options are specific to the Sparc32 emulation:
1848
1849 @table @option
1850
1851 @item -g @var{W}x@var{H}x[x@var{DEPTH}]
1852
1853 Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
1854 option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
1855 of 1152x900x8 for people who wish to use OBP.
1856
1857 @item -prom-env @var{string}
1858
1859 Set OpenBIOS variables in NVRAM, for example:
1860
1861 @example
1862 qemu-system-sparc -prom-env 'auto-boot?=false' \
1863 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1864 @end example
1865
1866 @item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
1867
1868 Set the emulated machine type. Default is SS-5.
1869
1870 @end table
1871
1872 @c man end
1873
1874 @node Sparc64 System emulator
1875 @section Sparc64 System emulator
1876 @cindex system emulation (Sparc64)
1877
1878 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1879 (UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1880 Niagara (T1) machine. The Sun4u emulator is mostly complete, being
1881 able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
1882 Sun4v emulator is still a work in progress.
1883
1884 The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
1885 of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
1886 and is able to boot the disk.s10hw2 Solaris image.
1887 @example
1888 qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
1889 -nographic -m 256 \
1890 -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
1891 @end example
1892
1893
1894 QEMU emulates the following peripherals:
1895
1896 @itemize @minus
1897 @item
1898 UltraSparc IIi APB PCI Bridge
1899 @item
1900 PCI VGA compatible card with VESA Bochs Extensions
1901 @item
1902 PS/2 mouse and keyboard
1903 @item
1904 Non Volatile RAM M48T59
1905 @item
1906 PC-compatible serial ports
1907 @item
1908 2 PCI IDE interfaces with hard disk and CD-ROM support
1909 @item
1910 Floppy disk
1911 @end itemize
1912
1913 @c man begin OPTIONS
1914
1915 The following options are specific to the Sparc64 emulation:
1916
1917 @table @option
1918
1919 @item -prom-env @var{string}
1920
1921 Set OpenBIOS variables in NVRAM, for example:
1922
1923 @example
1924 qemu-system-sparc64 -prom-env 'auto-boot?=false'
1925 @end example
1926
1927 @item -M [sun4u|sun4v|niagara]
1928
1929 Set the emulated machine type. The default is sun4u.
1930
1931 @end table
1932
1933 @c man end
1934
1935 @node MIPS System emulator
1936 @section MIPS System emulator
1937 @cindex system emulation (MIPS)
1938
1939 Four executables cover simulation of 32 and 64-bit MIPS systems in
1940 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1941 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1942 Five different machine types are emulated:
1943
1944 @itemize @minus
1945 @item
1946 A generic ISA PC-like machine "mips"
1947 @item
1948 The MIPS Malta prototype board "malta"
1949 @item
1950 An ACER Pica "pica61". This machine needs the 64-bit emulator.
1951 @item
1952 MIPS emulator pseudo board "mipssim"
1953 @item
1954 A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1955 @end itemize
1956
1957 The generic emulation is supported by Debian 'Etch' and is able to
1958 install Debian into a virtual disk image. The following devices are
1959 emulated:
1960
1961 @itemize @minus
1962 @item
1963 A range of MIPS CPUs, default is the 24Kf
1964 @item
1965 PC style serial port
1966 @item
1967 PC style IDE disk
1968 @item
1969 NE2000 network card
1970 @end itemize
1971
1972 The Malta emulation supports the following devices:
1973
1974 @itemize @minus
1975 @item
1976 Core board with MIPS 24Kf CPU and Galileo system controller
1977 @item
1978 PIIX4 PCI/USB/SMbus controller
1979 @item
1980 The Multi-I/O chip's serial device
1981 @item
1982 PCI network cards (PCnet32 and others)
1983 @item
1984 Malta FPGA serial device
1985 @item
1986 Cirrus (default) or any other PCI VGA graphics card
1987 @end itemize
1988
1989 The ACER Pica emulation supports:
1990
1991 @itemize @minus
1992 @item
1993 MIPS R4000 CPU
1994 @item
1995 PC-style IRQ and DMA controllers
1996 @item
1997 PC Keyboard
1998 @item
1999 IDE controller
2000 @end itemize
2001
2002 The mipssim pseudo board emulation provides an environment similar
2003 to what the proprietary MIPS emulator uses for running Linux.
2004 It supports:
2005
2006 @itemize @minus
2007 @item
2008 A range of MIPS CPUs, default is the 24Kf
2009 @item
2010 PC style serial port
2011 @item
2012 MIPSnet network emulation
2013 @end itemize
2014
2015 The MIPS Magnum R4000 emulation supports:
2016
2017 @itemize @minus
2018 @item
2019 MIPS R4000 CPU
2020 @item
2021 PC-style IRQ controller
2022 @item
2023 PC Keyboard
2024 @item
2025 SCSI controller
2026 @item
2027 G364 framebuffer
2028 @end itemize
2029
2030
2031 @node ARM System emulator
2032 @section ARM System emulator
2033 @cindex system emulation (ARM)
2034
2035 Use the executable @file{qemu-system-arm} to simulate a ARM
2036 machine. The ARM Integrator/CP board is emulated with the following
2037 devices:
2038
2039 @itemize @minus
2040 @item
2041 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2042 @item
2043 Two PL011 UARTs
2044 @item
2045 SMC 91c111 Ethernet adapter
2046 @item
2047 PL110 LCD controller
2048 @item
2049 PL050 KMI with PS/2 keyboard and mouse.
2050 @item
2051 PL181 MultiMedia Card Interface with SD card.
2052 @end itemize
2053
2054 The ARM Versatile baseboard is emulated with the following devices:
2055
2056 @itemize @minus
2057 @item
2058 ARM926E, ARM1136 or Cortex-A8 CPU
2059 @item
2060 PL190 Vectored Interrupt Controller
2061 @item
2062 Four PL011 UARTs
2063 @item
2064 SMC 91c111 Ethernet adapter
2065 @item
2066 PL110 LCD controller
2067 @item
2068 PL050 KMI with PS/2 keyboard and mouse.
2069 @item
2070 PCI host bridge. Note the emulated PCI bridge only provides access to
2071 PCI memory space. It does not provide access to PCI IO space.
2072 This means some devices (eg. ne2k_pci NIC) are not usable, and others
2073 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2074 mapped control registers.
2075 @item
2076 PCI OHCI USB controller.
2077 @item
2078 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2079 @item
2080 PL181 MultiMedia Card Interface with SD card.
2081 @end itemize
2082
2083 Several variants of the ARM RealView baseboard are emulated,
2084 including the EB, PB-A8 and PBX-A9. Due to interactions with the
2085 bootloader, only certain Linux kernel configurations work out
2086 of the box on these boards.
2087
2088 Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2089 enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2090 should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2091 disabled and expect 1024M RAM.
2092
2093 The following devices are emulated:
2094
2095 @itemize @minus
2096 @item
2097 ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
2098 @item
2099 ARM AMBA Generic/Distributed Interrupt Controller
2100 @item
2101 Four PL011 UARTs
2102 @item
2103 SMC 91c111 or SMSC LAN9118 Ethernet adapter
2104 @item
2105 PL110 LCD controller
2106 @item
2107 PL050 KMI with PS/2 keyboard and mouse
2108 @item
2109 PCI host bridge
2110 @item
2111 PCI OHCI USB controller
2112 @item
2113 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2114 @item
2115 PL181 MultiMedia Card Interface with SD card.
2116 @end itemize
2117
2118 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2119 and "Terrier") emulation includes the following peripherals:
2120
2121 @itemize @minus
2122 @item
2123 Intel PXA270 System-on-chip (ARM V5TE core)
2124 @item
2125 NAND Flash memory
2126 @item
2127 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2128 @item
2129 On-chip OHCI USB controller
2130 @item
2131 On-chip LCD controller
2132 @item
2133 On-chip Real Time Clock
2134 @item
2135 TI ADS7846 touchscreen controller on SSP bus
2136 @item
2137 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2138 @item
2139 GPIO-connected keyboard controller and LEDs
2140 @item
2141 Secure Digital card connected to PXA MMC/SD host
2142 @item
2143 Three on-chip UARTs
2144 @item
2145 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2146 @end itemize
2147
2148 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2149 following elements:
2150
2151 @itemize @minus
2152 @item
2153 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2154 @item
2155 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2156 @item
2157 On-chip LCD controller
2158 @item
2159 On-chip Real Time Clock
2160 @item
2161 TI TSC2102i touchscreen controller / analog-digital converter / Audio
2162 CODEC, connected through MicroWire and I@math{^2}S busses
2163 @item
2164 GPIO-connected matrix keypad
2165 @item
2166 Secure Digital card connected to OMAP MMC/SD host
2167 @item
2168 Three on-chip UARTs
2169 @end itemize
2170
2171 Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2172 emulation supports the following elements:
2173
2174 @itemize @minus
2175 @item
2176 Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2177 @item
2178 RAM and non-volatile OneNAND Flash memories
2179 @item
2180 Display connected to EPSON remote framebuffer chip and OMAP on-chip
2181 display controller and a LS041y3 MIPI DBI-C controller
2182 @item
2183 TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2184 driven through SPI bus
2185 @item
2186 National Semiconductor LM8323-controlled qwerty keyboard driven
2187 through I@math{^2}C bus
2188 @item
2189 Secure Digital card connected to OMAP MMC/SD host
2190 @item
2191 Three OMAP on-chip UARTs and on-chip STI debugging console
2192 @item
2193 A Bluetooth(R) transceiver and HCI connected to an UART
2194 @item
2195 Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2196 TUSB6010 chip - only USB host mode is supported
2197 @item
2198 TI TMP105 temperature sensor driven through I@math{^2}C bus
2199 @item
2200 TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2201 @item
2202 Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2203 through CBUS
2204 @end itemize
2205
2206 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2207 devices:
2208
2209 @itemize @minus
2210 @item
2211 Cortex-M3 CPU core.
2212 @item
2213 64k Flash and 8k SRAM.
2214 @item
2215 Timers, UARTs, ADC and I@math{^2}C interface.
2216 @item
2217 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2218 @end itemize
2219
2220 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2221 devices:
2222
2223 @itemize @minus
2224 @item
2225 Cortex-M3 CPU core.
2226 @item
2227 256k Flash and 64k SRAM.
2228 @item
2229 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2230 @item
2231 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2232 @end itemize
2233
2234 The Freecom MusicPal internet radio emulation includes the following
2235 elements:
2236
2237 @itemize @minus
2238 @item
2239 Marvell MV88W8618 ARM core.
2240 @item
2241 32 MB RAM, 256 KB SRAM, 8 MB flash.
2242 @item
2243 Up to 2 16550 UARTs
2244 @item
2245 MV88W8xx8 Ethernet controller
2246 @item
2247 MV88W8618 audio controller, WM8750 CODEC and mixer
2248 @item
2249 128×64 display with brightness control
2250 @item
2251 2 buttons, 2 navigation wheels with button function
2252 @end itemize
2253
2254 The Siemens SX1 models v1 and v2 (default) basic emulation.
2255 The emulation includes the following elements:
2256
2257 @itemize @minus
2258 @item
2259 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2260 @item
2261 ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2262 V1
2263 1 Flash of 16MB and 1 Flash of 8MB
2264 V2
2265 1 Flash of 32MB
2266 @item
2267 On-chip LCD controller
2268 @item
2269 On-chip Real Time Clock
2270 @item
2271 Secure Digital card connected to OMAP MMC/SD host
2272 @item
2273 Three on-chip UARTs
2274 @end itemize
2275
2276 A Linux 2.6 test image is available on the QEMU web site. More
2277 information is available in the QEMU mailing-list archive.
2278
2279 @c man begin OPTIONS
2280
2281 The following options are specific to the ARM emulation:
2282
2283 @table @option
2284
2285 @item -semihosting
2286 Enable semihosting syscall emulation.
2287
2288 On ARM this implements the "Angel" interface.
2289
2290 Note that this allows guest direct access to the host filesystem,
2291 so should only be used with trusted guest OS.
2292
2293 @end table
2294
2295 @c man end
2296
2297 @node ColdFire System emulator
2298 @section ColdFire System emulator
2299 @cindex system emulation (ColdFire)
2300 @cindex system emulation (M68K)
2301
2302 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2303 The emulator is able to boot a uClinux kernel.
2304
2305 The M5208EVB emulation includes the following devices:
2306
2307 @itemize @minus
2308 @item
2309 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2310 @item
2311 Three Two on-chip UARTs.
2312 @item
2313 Fast Ethernet Controller (FEC)
2314 @end itemize
2315
2316 The AN5206 emulation includes the following devices:
2317
2318 @itemize @minus
2319 @item
2320 MCF5206 ColdFire V2 Microprocessor.
2321 @item
2322 Two on-chip UARTs.
2323 @end itemize
2324
2325 @c man begin OPTIONS
2326
2327 The following options are specific to the ColdFire emulation:
2328
2329 @table @option
2330
2331 @item -semihosting
2332 Enable semihosting syscall emulation.
2333
2334 On M68K this implements the "ColdFire GDB" interface used by libgloss.
2335
2336 Note that this allows guest direct access to the host filesystem,
2337 so should only be used with trusted guest OS.
2338
2339 @end table
2340
2341 @c man end
2342
2343 @node Cris System emulator
2344 @section Cris System emulator
2345 @cindex system emulation (Cris)
2346
2347 TODO
2348
2349 @node Microblaze System emulator
2350 @section Microblaze System emulator
2351 @cindex system emulation (Microblaze)
2352
2353 TODO
2354
2355 @node SH4 System emulator
2356 @section SH4 System emulator
2357 @cindex system emulation (SH4)
2358
2359 TODO
2360
2361 @node Xtensa System emulator
2362 @section Xtensa System emulator
2363 @cindex system emulation (Xtensa)
2364
2365 Two executables cover simulation of both Xtensa endian options,
2366 @file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2367 Two different machine types are emulated:
2368
2369 @itemize @minus
2370 @item
2371 Xtensa emulator pseudo board "sim"
2372 @item
2373 Avnet LX60/LX110/LX200 board
2374 @end itemize
2375
2376 The sim pseudo board emulation provides an environment similar
2377 to one provided by the proprietary Tensilica ISS.
2378 It supports:
2379
2380 @itemize @minus
2381 @item
2382 A range of Xtensa CPUs, default is the DC232B
2383 @item
2384 Console and filesystem access via semihosting calls
2385 @end itemize
2386
2387 The Avnet LX60/LX110/LX200 emulation supports:
2388
2389 @itemize @minus
2390 @item
2391 A range of Xtensa CPUs, default is the DC232B
2392 @item
2393 16550 UART
2394 @item
2395 OpenCores 10/100 Mbps Ethernet MAC
2396 @end itemize
2397
2398 @c man begin OPTIONS
2399
2400 The following options are specific to the Xtensa emulation:
2401
2402 @table @option
2403
2404 @item -semihosting
2405 Enable semihosting syscall emulation.
2406
2407 Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2408 Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2409
2410 Note that this allows guest direct access to the host filesystem,
2411 so should only be used with trusted guest OS.
2412
2413 @end table
2414
2415 @c man end
2416
2417 @node QEMU Guest Agent
2418 @chapter QEMU Guest Agent invocation
2419
2420 @include qemu-ga.texi
2421
2422 @node QEMU User space emulator
2423 @chapter QEMU User space emulator
2424
2425 @menu
2426 * Supported Operating Systems ::
2427 * Features::
2428 * Linux User space emulator::
2429 * BSD User space emulator ::
2430 @end menu
2431
2432 @node Supported Operating Systems
2433 @section Supported Operating Systems
2434
2435 The following OS are supported in user space emulation:
2436
2437 @itemize @minus
2438 @item
2439 Linux (referred as qemu-linux-user)
2440 @item
2441 BSD (referred as qemu-bsd-user)
2442 @end itemize
2443
2444 @node Features
2445 @section Features
2446
2447 QEMU user space emulation has the following notable features:
2448
2449 @table @strong
2450 @item System call translation:
2451 QEMU includes a generic system call translator. This means that
2452 the parameters of the system calls can be converted to fix
2453 endianness and 32/64-bit mismatches between hosts and targets.
2454 IOCTLs can be converted too.
2455
2456 @item POSIX signal handling:
2457 QEMU can redirect to the running program all signals coming from
2458 the host (such as @code{SIGALRM}), as well as synthesize signals from
2459 virtual CPU exceptions (for example @code{SIGFPE} when the program
2460 executes a division by zero).
2461
2462 QEMU relies on the host kernel to emulate most signal system
2463 calls, for example to emulate the signal mask. On Linux, QEMU
2464 supports both normal and real-time signals.
2465
2466 @item Threading:
2467 On Linux, QEMU can emulate the @code{clone} syscall and create a real
2468 host thread (with a separate virtual CPU) for each emulated thread.
2469 Note that not all targets currently emulate atomic operations correctly.
2470 x86 and ARM use a global lock in order to preserve their semantics.
2471 @end table
2472
2473 QEMU was conceived so that ultimately it can emulate itself. Although
2474 it is not very useful, it is an important test to show the power of the
2475 emulator.
2476
2477 @node Linux User space emulator
2478 @section Linux User space emulator
2479
2480 @menu
2481 * Quick Start::
2482 * Wine launch::
2483 * Command line options::
2484 * Other binaries::
2485 @end menu
2486
2487 @node Quick Start
2488 @subsection Quick Start
2489
2490 In order to launch a Linux process, QEMU needs the process executable
2491 itself and all the target (x86) dynamic libraries used by it.
2492
2493 @itemize
2494
2495 @item On x86, you can just try to launch any process by using the native
2496 libraries:
2497
2498 @example
2499 qemu-i386 -L / /bin/ls
2500 @end example
2501
2502 @code{-L /} tells that the x86 dynamic linker must be searched with a
2503 @file{/} prefix.
2504
2505 @item Since QEMU is also a linux process, you can launch QEMU with
2506 QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
2507
2508 @example
2509 qemu-i386 -L / qemu-i386 -L / /bin/ls
2510 @end example
2511
2512 @item On non x86 CPUs, you need first to download at least an x86 glibc
2513 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2514 @code{LD_LIBRARY_PATH} is not set:
2515
2516 @example
2517 unset LD_LIBRARY_PATH
2518 @end example
2519
2520 Then you can launch the precompiled @file{ls} x86 executable:
2521
2522 @example
2523 qemu-i386 tests/i386/ls
2524 @end example
2525 You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2526 QEMU is automatically launched by the Linux kernel when you try to
2527 launch x86 executables. It requires the @code{binfmt_misc} module in the
2528 Linux kernel.
2529
2530 @item The x86 version of QEMU is also included. You can try weird things such as:
2531 @example
2532 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2533 /usr/local/qemu-i386/bin/ls-i386
2534 @end example
2535
2536 @end itemize
2537
2538 @node Wine launch
2539 @subsection Wine launch
2540
2541 @itemize
2542
2543 @item Ensure that you have a working QEMU with the x86 glibc
2544 distribution (see previous section). In order to verify it, you must be
2545 able to do:
2546
2547 @example
2548 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2549 @end example
2550
2551 @item Download the binary x86 Wine install
2552 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2553
2554 @item Configure Wine on your account. Look at the provided script
2555 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2556 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2557
2558 @item Then you can try the example @file{putty.exe}:
2559
2560 @example
2561 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2562 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2563 @end example
2564
2565 @end itemize
2566
2567 @node Command line options
2568 @subsection Command line options
2569
2570 @example
2571 @command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
2572 @end example
2573
2574 @table @option
2575 @item -h
2576 Print the help
2577 @item -L path
2578 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2579 @item -s size
2580 Set the x86 stack size in bytes (default=524288)
2581 @item -cpu model
2582 Select CPU model (-cpu help for list and additional feature selection)
2583 @item -E @var{var}=@var{value}
2584 Set environment @var{var} to @var{value}.
2585 @item -U @var{var}
2586 Remove @var{var} from the environment.
2587 @item -B offset
2588 Offset guest address by the specified number of bytes. This is useful when
2589 the address region required by guest applications is reserved on the host.
2590 This option is currently only supported on some hosts.
2591 @item -R size
2592 Pre-allocate a guest virtual address space of the given size (in bytes).
2593 "G", "M", and "k" suffixes may be used when specifying the size.
2594 @end table
2595
2596 Debug options:
2597
2598 @table @option
2599 @item -d item1,...
2600 Activate logging of the specified items (use '-d help' for a list of log items)
2601 @item -p pagesize
2602 Act as if the host page size was 'pagesize' bytes
2603 @item -g port
2604 Wait gdb connection to port
2605 @item -singlestep
2606 Run the emulation in single step mode.
2607 @end table
2608
2609 Environment variables:
2610
2611 @table @env
2612 @item QEMU_STRACE
2613 Print system calls and arguments similar to the 'strace' program
2614 (NOTE: the actual 'strace' program will not work because the user
2615 space emulator hasn't implemented ptrace). At the moment this is
2616 incomplete. All system calls that don't have a specific argument
2617 format are printed with information for six arguments. Many
2618 flag-style arguments don't have decoders and will show up as numbers.
2619 @end table
2620
2621 @node Other binaries
2622 @subsection Other binaries
2623
2624 @cindex user mode (Alpha)
2625 @command{qemu-alpha} TODO.
2626
2627 @cindex user mode (ARM)
2628 @command{qemu-armeb} TODO.
2629
2630 @cindex user mode (ARM)
2631 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2632 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2633 configurations), and arm-uclinux bFLT format binaries.
2634
2635 @cindex user mode (ColdFire)
2636 @cindex user mode (M68K)
2637 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
2638 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2639 coldfire uClinux bFLT format binaries.
2640
2641 The binary format is detected automatically.
2642
2643 @cindex user mode (Cris)
2644 @command{qemu-cris} TODO.
2645
2646 @cindex user mode (i386)
2647 @command{qemu-i386} TODO.
2648 @command{qemu-x86_64} TODO.
2649
2650 @cindex user mode (Microblaze)
2651 @command{qemu-microblaze} TODO.
2652
2653 @cindex user mode (MIPS)
2654 @command{qemu-mips} TODO.
2655 @command{qemu-mipsel} TODO.
2656
2657 @cindex user mode (NiosII)
2658 @command{qemu-nios2} TODO.
2659
2660 @cindex user mode (PowerPC)
2661 @command{qemu-ppc64abi32} TODO.
2662 @command{qemu-ppc64} TODO.
2663 @command{qemu-ppc} TODO.
2664
2665 @cindex user mode (SH4)
2666 @command{qemu-sh4eb} TODO.
2667 @command{qemu-sh4} TODO.
2668
2669 @cindex user mode (SPARC)
2670 @command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2671
2672 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2673 (Sparc64 CPU, 32 bit ABI).
2674
2675 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2676 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2677
2678 @node BSD User space emulator
2679 @section BSD User space emulator
2680
2681 @menu
2682 * BSD Status::
2683 * BSD Quick Start::
2684 * BSD Command line options::
2685 @end menu
2686
2687 @node BSD Status
2688 @subsection BSD Status
2689
2690 @itemize @minus
2691 @item
2692 target Sparc64 on Sparc64: Some trivial programs work.
2693 @end itemize
2694
2695 @node BSD Quick Start
2696 @subsection Quick Start
2697
2698 In order to launch a BSD process, QEMU needs the process executable
2699 itself and all the target dynamic libraries used by it.
2700
2701 @itemize
2702
2703 @item On Sparc64, you can just try to launch any process by using the native
2704 libraries:
2705
2706 @example
2707 qemu-sparc64 /bin/ls
2708 @end example
2709
2710 @end itemize
2711
2712 @node BSD Command line options
2713 @subsection Command line options
2714
2715 @example
2716 @command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
2717 @end example
2718
2719 @table @option
2720 @item -h
2721 Print the help
2722 @item -L path
2723 Set the library root path (default=/)
2724 @item -s size
2725 Set the stack size in bytes (default=524288)
2726 @item -ignore-environment
2727 Start with an empty environment. Without this option,
2728 the initial environment is a copy of the caller's environment.
2729 @item -E @var{var}=@var{value}
2730 Set environment @var{var} to @var{value}.
2731 @item -U @var{var}
2732 Remove @var{var} from the environment.
2733 @item -bsd type
2734 Set the type of the emulated BSD Operating system. Valid values are
2735 FreeBSD, NetBSD and OpenBSD (default).
2736 @end table
2737
2738 Debug options:
2739
2740 @table @option
2741 @item -d item1,...
2742 Activate logging of the specified items (use '-d help' for a list of log items)
2743 @item -p pagesize
2744 Act as if the host page size was 'pagesize' bytes
2745 @item -singlestep
2746 Run the emulation in single step mode.
2747 @end table
2748
2749
2750 @include qemu-tech.texi
2751
2752 @node Deprecated features
2753 @appendix Deprecated features
2754
2755 In general features are intended to be supported indefinitely once
2756 introduced into QEMU. In the event that a feature needs to be removed,
2757 it will be listed in this appendix. The feature will remain functional
2758 for 2 releases prior to actual removal. Deprecated features may also
2759 generate warnings on the console when QEMU starts up, or if activated
2760 via a monitor command, however, this is not a mandatory requirement.
2761
2762 Prior to the 2.10.0 release there was no official policy on how
2763 long features would be deprecated prior to their removal, nor
2764 any documented list of which features were deprecated. Thus
2765 any features deprecated prior to 2.10.0 will be treated as if
2766 they were first deprecated in the 2.10.0 release.
2767
2768 What follows is a list of all features currently marked as
2769 deprecated.
2770
2771 @section Build options
2772
2773 @subsection GTK 2.x
2774
2775 Previously QEMU has supported building against both GTK 2.x
2776 and 3.x series APIs. Support for the GTK 2.x builds will be
2777 discontinued, so maintainers should switch to using GTK 3.x,
2778 which is the default.
2779
2780 @subsection SDL 1.2
2781
2782 Previously QEMU has supported building against both SDL 1.2
2783 and 2.0 series APIs. Support for the SDL 1.2 builds will be
2784 discontinued, so maintainers should switch to using SDL 2.0,
2785 which is the default.
2786
2787 @section System emulator command line arguments
2788
2789 @subsection -no-kvm-pit-reinjection (since 1.3.0)
2790
2791 The ``-no-kvm-pit-reinjection'' argument is now a
2792 synonym for setting ``-global kvm-pit.lost_tick_policy=discard''.
2793
2794 @subsection -no-kvm-irqchip (since 1.3.0)
2795
2796 The ``-no-kvm-irqchip'' argument is now a synonym for
2797 setting ``-machine kernel_irqchip=off''.
2798
2799 @subsection -no-kvm (since 1.3.0)
2800
2801 The ``-no-kvm'' argument is now a synonym for setting
2802 ``-machine accel=tcg''.
2803
2804 @subsection -vnc tls (since 2.5.0)
2805
2806 The ``-vnc tls'' argument is now a synonym for setting
2807 ``-object tls-creds-anon,id=tls0'' combined with
2808 ``-vnc tls-creds=tls0'
2809
2810 @subsection -vnc x509 (since 2.5.0)
2811
2812 The ``-vnc x509=/path/to/certs'' argument is now a
2813 synonym for setting
2814 ``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=no''
2815 combined with ``-vnc tls-creds=tls0'
2816
2817 @subsection -vnc x509verify (since 2.5.0)
2818
2819 The ``-vnc x509verify=/path/to/certs'' argument is now a
2820 synonym for setting
2821 ``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=yes''
2822 combined with ``-vnc tls-creds=tls0'
2823
2824 @subsection -tftp (since 2.6.0)
2825
2826 The ``-tftp /some/dir'' argument is replaced by either
2827 ``-netdev user,id=x,tftp=/some/dir '' (for pluggable NICs, accompanied
2828 with ``-device ...,netdev=x''), or ``-nic user,tftp=/some/dir''
2829 (for embedded NICs). The new syntax allows different settings to be
2830 provided per NIC.
2831
2832 @subsection -bootp (since 2.6.0)
2833
2834 The ``-bootp /some/file'' argument is replaced by either
2835 ``-netdev user,id=x,bootp=/some/file '' (for pluggable NICs, accompanied
2836 with ``-device ...,netdev=x''), or ``-nic user,bootp=/some/file''
2837 (for embedded NICs). The new syntax allows different settings to be
2838 provided per NIC.
2839
2840 @subsection -redir (since 2.6.0)
2841
2842 The ``-redir [tcp|udp]:hostport:[guestaddr]:guestport'' argument is
2843 replaced by either
2844 ``-netdev user,id=x,hostfwd=[tcp|udp]:[hostaddr]:hostport-[guestaddr]:guestport''
2845 (for pluggable NICs, accompanied with ``-device ...,netdev=x'') or
2846 ``-nic user,hostfwd=[tcp|udp]:[hostaddr]:hostport-[guestaddr]:guestport''
2847 (for embedded NICs). The new syntax allows different settings to be
2848 provided per NIC.
2849
2850 @subsection -smb (since 2.6.0)
2851
2852 The ``-smb /some/dir'' argument is replaced by either
2853 ``-netdev user,id=x,smb=/some/dir '' (for pluggable NICs, accompanied
2854 with ``-device ...,netdev=x''), or ``-nic user,smb=/some/dir''
2855 (for embedded NICs). The new syntax allows different settings to be
2856 provided per NIC.
2857
2858 @subsection -net vlan (since 2.9.0)
2859
2860 The ``-net vlan=NN'' argument was mostly used to attach separate
2861 network backends to different virtual NICs. This is the default
2862 behavior for ``-netdev'' and ``-nic''. You can connect multiple
2863 ``-netdev'' and ``-nic'' devices to the same network using the
2864 "hubport" network backend, created with ``-netdev hubport,hubid=NN,...''
2865 and ``-nic hubport,hubid=NN''.
2866
2867 @subsection -drive cyls=...,heads=...,secs=...,trans=... (since 2.10.0)
2868
2869 The drive geometry arguments are replaced by the the geometry arguments
2870 that can be specified with the ``-device'' parameter.
2871
2872 @subsection -drive serial=... (since 2.10.0)
2873
2874 The drive serial argument is replaced by the the serial argument
2875 that can be specified with the ``-device'' parameter.
2876
2877 @subsection -drive addr=... (since 2.10.0)
2878
2879 The drive addr argument is replaced by the the addr argument
2880 that can be specified with the ``-device'' parameter.
2881
2882 @subsection -usbdevice (since 2.10.0)
2883
2884 The ``-usbdevice DEV'' argument is now a synonym for setting
2885 the ``-device usb-DEV'' argument instead. The deprecated syntax
2886 would automatically enable USB support on the machine type.
2887 If using the new syntax, USB support must be explicitly
2888 enabled via the ``-machine usb=on'' argument.
2889
2890 @subsection -nodefconfig (since 2.11.0)
2891
2892 The ``-nodefconfig`` argument is a synonym for ``-no-user-config``.
2893
2894 @subsection -balloon (since 2.12.0)
2895
2896 The @option{--balloon virtio} argument has been superseded by
2897 @option{--device virtio-balloon}.
2898
2899 @subsection -machine s390-squash-mcss=on|off (since 2.12.0)
2900
2901 The ``s390-squash-mcss=on`` property has been obsoleted by allowing the
2902 cssid to be chosen freely. Instead of squashing subchannels into the
2903 default channel subsystem image for guests that do not support multiple
2904 channel subsystems, all devices can be put into the default channel
2905 subsystem image.
2906
2907 @subsection -fsdev handle (since 2.12.0)
2908
2909 The ``handle'' fsdev backend does not support symlinks and causes the 9p
2910 filesystem in the guest to fail a fair amount of tests from the PJD POSIX
2911 filesystem test suite. Also it requires the CAP_DAC_READ_SEARCH capability,
2912 which is not the recommended way to run QEMU. This backend should not be
2913 used and it will be removed with no replacement.
2914
2915 @subsection -no-frame (since 2.12.0)
2916
2917 The @code{--no-frame} argument works with SDL 1.2 only. The other user
2918 interfaces never implemented this in the first place. So this will be
2919 removed together with SDL 1.2 support.
2920
2921 @subsection -rtc-td-hack (since 2.12.0)
2922
2923 The @code{-rtc-td-hack} option has been replaced by
2924 @code{-rtc driftfix=slew}.
2925
2926 @subsection -localtime (since 2.12.0)
2927
2928 The @code{-localtime} option has been replaced by @code{-rtc base=localtime}.
2929
2930 @subsection -startdate (since 2.12.0)
2931
2932 The @code{-startdate} option has been replaced by @code{-rtc base=@var{date}}.
2933
2934 @section qemu-img command line arguments
2935
2936 @subsection convert -s (since 2.0.0)
2937
2938 The ``convert -s snapshot_id_or_name'' argument is obsoleted
2939 by the ``convert -l snapshot_param'' argument instead.
2940
2941 @section QEMU Machine Protocol (QMP) commands
2942
2943 @subsection block-dirty-bitmap-add "autoload" parameter (since 2.12.0)
2944
2945 "autoload" parameter is now ignored. All bitmaps are automatically loaded
2946 from qcow2 images.
2947
2948 @subsection query-cpus (since 2.12.0)
2949
2950 The ``query-cpus'' command is replaced by the ``query-cpus-fast'' command.
2951
2952 @section System emulator devices
2953
2954 @subsection ivshmem (since 2.6.0)
2955
2956 The ``ivshmem'' device type is replaced by either the ``ivshmem-plain''
2957 or ``ivshmem-doorbell`` device types.
2958
2959 @subsection Page size support < 4k for embedded PowerPC CPUs (since 2.12.0)
2960
2961 qemu-system-ppcemb will be removed. qemu-system-ppc (or qemu-system-ppc64)
2962 should be used instead. That means that embedded 4xx PowerPC CPUs will not
2963 support page sizes < 4096 any longer.
2964
2965 @section System emulator machines
2966
2967 @subsection Xilinx EP108 (since 2.11.0)
2968
2969 The ``xlnx-ep108'' machine has been replaced by the ``xlnx-zcu102'' machine.
2970 The ``xlnx-zcu102'' machine has the same features and capabilites in QEMU.
2971
2972 @section Block device options
2973
2974 @subsection "backing": "" (since 2.12.0)
2975
2976 In order to prevent QEMU from automatically opening an image's backing
2977 chain, use ``"backing": null'' instead.
2978
2979 @node License
2980 @appendix License
2981
2982 QEMU is a trademark of Fabrice Bellard.
2983
2984 QEMU is released under the
2985 @url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License},
2986 version 2. Parts of QEMU have specific licenses, see file
2987 @url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}.
2988
2989 @node Index
2990 @appendix Index
2991 @menu
2992 * Concept Index::
2993 * Function Index::
2994 * Keystroke Index::
2995 * Program Index::
2996 * Data Type Index::
2997 * Variable Index::
2998 @end menu
2999
3000 @node Concept Index
3001 @section Concept Index
3002 This is the main index. Should we combine all keywords in one index? TODO
3003 @printindex cp
3004
3005 @node Function Index
3006 @section Function Index
3007 This index could be used for command line options and monitor functions.
3008 @printindex fn
3009
3010 @node Keystroke Index
3011 @section Keystroke Index
3012
3013 This is a list of all keystrokes which have a special function
3014 in system emulation.
3015
3016 @printindex ky
3017
3018 @node Program Index
3019 @section Program Index
3020 @printindex pg
3021
3022 @node Data Type Index
3023 @section Data Type Index
3024
3025 This index could be used for qdev device names and options.
3026
3027 @printindex tp
3028
3029 @node Variable Index
3030 @section Variable Index
3031 @printindex vr
3032
3033 @bye