]> git.ipfire.org Git - thirdparty/qemu.git/blob - tcg/tcg.c
tcg: Implement gvec support for rotate by immediate
[thirdparty/qemu.git] / tcg / tcg.c
1 /*
2 * Tiny Code Generator for QEMU
3 *
4 * Copyright (c) 2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* define it to use liveness analysis (better code) */
26 #define USE_TCG_OPTIMIZATIONS
27
28 #include "qemu/osdep.h"
29
30 /* Define to jump the ELF file used to communicate with GDB. */
31 #undef DEBUG_JIT
32
33 #include "qemu/error-report.h"
34 #include "qemu/cutils.h"
35 #include "qemu/host-utils.h"
36 #include "qemu/qemu-print.h"
37 #include "qemu/timer.h"
38
39 /* Note: the long term plan is to reduce the dependencies on the QEMU
40 CPU definitions. Currently they are used for qemu_ld/st
41 instructions */
42 #define NO_CPU_IO_DEFS
43 #include "cpu.h"
44
45 #include "exec/exec-all.h"
46
47 #if !defined(CONFIG_USER_ONLY)
48 #include "hw/boards.h"
49 #endif
50
51 #include "tcg/tcg-op.h"
52
53 #if UINTPTR_MAX == UINT32_MAX
54 # define ELF_CLASS ELFCLASS32
55 #else
56 # define ELF_CLASS ELFCLASS64
57 #endif
58 #ifdef HOST_WORDS_BIGENDIAN
59 # define ELF_DATA ELFDATA2MSB
60 #else
61 # define ELF_DATA ELFDATA2LSB
62 #endif
63
64 #include "elf.h"
65 #include "exec/log.h"
66 #include "sysemu/sysemu.h"
67
68 /* Forward declarations for functions declared in tcg-target.inc.c and
69 used here. */
70 static void tcg_target_init(TCGContext *s);
71 static const TCGTargetOpDef *tcg_target_op_def(TCGOpcode);
72 static void tcg_target_qemu_prologue(TCGContext *s);
73 static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
74 intptr_t value, intptr_t addend);
75
76 /* The CIE and FDE header definitions will be common to all hosts. */
77 typedef struct {
78 uint32_t len __attribute__((aligned((sizeof(void *)))));
79 uint32_t id;
80 uint8_t version;
81 char augmentation[1];
82 uint8_t code_align;
83 uint8_t data_align;
84 uint8_t return_column;
85 } DebugFrameCIE;
86
87 typedef struct QEMU_PACKED {
88 uint32_t len __attribute__((aligned((sizeof(void *)))));
89 uint32_t cie_offset;
90 uintptr_t func_start;
91 uintptr_t func_len;
92 } DebugFrameFDEHeader;
93
94 typedef struct QEMU_PACKED {
95 DebugFrameCIE cie;
96 DebugFrameFDEHeader fde;
97 } DebugFrameHeader;
98
99 static void tcg_register_jit_int(void *buf, size_t size,
100 const void *debug_frame,
101 size_t debug_frame_size)
102 __attribute__((unused));
103
104 /* Forward declarations for functions declared and used in tcg-target.inc.c. */
105 static const char *target_parse_constraint(TCGArgConstraint *ct,
106 const char *ct_str, TCGType type);
107 static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg1,
108 intptr_t arg2);
109 static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg);
110 static void tcg_out_movi(TCGContext *s, TCGType type,
111 TCGReg ret, tcg_target_long arg);
112 static void tcg_out_op(TCGContext *s, TCGOpcode opc, const TCGArg *args,
113 const int *const_args);
114 #if TCG_TARGET_MAYBE_vec
115 static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
116 TCGReg dst, TCGReg src);
117 static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
118 TCGReg dst, TCGReg base, intptr_t offset);
119 static void tcg_out_dupi_vec(TCGContext *s, TCGType type,
120 TCGReg dst, tcg_target_long arg);
121 static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl,
122 unsigned vece, const TCGArg *args,
123 const int *const_args);
124 #else
125 static inline bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
126 TCGReg dst, TCGReg src)
127 {
128 g_assert_not_reached();
129 }
130 static inline bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
131 TCGReg dst, TCGReg base, intptr_t offset)
132 {
133 g_assert_not_reached();
134 }
135 static inline void tcg_out_dupi_vec(TCGContext *s, TCGType type,
136 TCGReg dst, tcg_target_long arg)
137 {
138 g_assert_not_reached();
139 }
140 static inline void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl,
141 unsigned vece, const TCGArg *args,
142 const int *const_args)
143 {
144 g_assert_not_reached();
145 }
146 #endif
147 static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, TCGReg arg1,
148 intptr_t arg2);
149 static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
150 TCGReg base, intptr_t ofs);
151 static void tcg_out_call(TCGContext *s, tcg_insn_unit *target);
152 static int tcg_target_const_match(tcg_target_long val, TCGType type,
153 const TCGArgConstraint *arg_ct);
154 #ifdef TCG_TARGET_NEED_LDST_LABELS
155 static int tcg_out_ldst_finalize(TCGContext *s);
156 #endif
157
158 #define TCG_HIGHWATER 1024
159
160 static TCGContext **tcg_ctxs;
161 static unsigned int n_tcg_ctxs;
162 TCGv_env cpu_env = 0;
163
164 struct tcg_region_tree {
165 QemuMutex lock;
166 GTree *tree;
167 /* padding to avoid false sharing is computed at run-time */
168 };
169
170 /*
171 * We divide code_gen_buffer into equally-sized "regions" that TCG threads
172 * dynamically allocate from as demand dictates. Given appropriate region
173 * sizing, this minimizes flushes even when some TCG threads generate a lot
174 * more code than others.
175 */
176 struct tcg_region_state {
177 QemuMutex lock;
178
179 /* fields set at init time */
180 void *start;
181 void *start_aligned;
182 void *end;
183 size_t n;
184 size_t size; /* size of one region */
185 size_t stride; /* .size + guard size */
186
187 /* fields protected by the lock */
188 size_t current; /* current region index */
189 size_t agg_size_full; /* aggregate size of full regions */
190 };
191
192 static struct tcg_region_state region;
193 /*
194 * This is an array of struct tcg_region_tree's, with padding.
195 * We use void * to simplify the computation of region_trees[i]; each
196 * struct is found every tree_size bytes.
197 */
198 static void *region_trees;
199 static size_t tree_size;
200 static TCGRegSet tcg_target_available_regs[TCG_TYPE_COUNT];
201 static TCGRegSet tcg_target_call_clobber_regs;
202
203 #if TCG_TARGET_INSN_UNIT_SIZE == 1
204 static __attribute__((unused)) inline void tcg_out8(TCGContext *s, uint8_t v)
205 {
206 *s->code_ptr++ = v;
207 }
208
209 static __attribute__((unused)) inline void tcg_patch8(tcg_insn_unit *p,
210 uint8_t v)
211 {
212 *p = v;
213 }
214 #endif
215
216 #if TCG_TARGET_INSN_UNIT_SIZE <= 2
217 static __attribute__((unused)) inline void tcg_out16(TCGContext *s, uint16_t v)
218 {
219 if (TCG_TARGET_INSN_UNIT_SIZE == 2) {
220 *s->code_ptr++ = v;
221 } else {
222 tcg_insn_unit *p = s->code_ptr;
223 memcpy(p, &v, sizeof(v));
224 s->code_ptr = p + (2 / TCG_TARGET_INSN_UNIT_SIZE);
225 }
226 }
227
228 static __attribute__((unused)) inline void tcg_patch16(tcg_insn_unit *p,
229 uint16_t v)
230 {
231 if (TCG_TARGET_INSN_UNIT_SIZE == 2) {
232 *p = v;
233 } else {
234 memcpy(p, &v, sizeof(v));
235 }
236 }
237 #endif
238
239 #if TCG_TARGET_INSN_UNIT_SIZE <= 4
240 static __attribute__((unused)) inline void tcg_out32(TCGContext *s, uint32_t v)
241 {
242 if (TCG_TARGET_INSN_UNIT_SIZE == 4) {
243 *s->code_ptr++ = v;
244 } else {
245 tcg_insn_unit *p = s->code_ptr;
246 memcpy(p, &v, sizeof(v));
247 s->code_ptr = p + (4 / TCG_TARGET_INSN_UNIT_SIZE);
248 }
249 }
250
251 static __attribute__((unused)) inline void tcg_patch32(tcg_insn_unit *p,
252 uint32_t v)
253 {
254 if (TCG_TARGET_INSN_UNIT_SIZE == 4) {
255 *p = v;
256 } else {
257 memcpy(p, &v, sizeof(v));
258 }
259 }
260 #endif
261
262 #if TCG_TARGET_INSN_UNIT_SIZE <= 8
263 static __attribute__((unused)) inline void tcg_out64(TCGContext *s, uint64_t v)
264 {
265 if (TCG_TARGET_INSN_UNIT_SIZE == 8) {
266 *s->code_ptr++ = v;
267 } else {
268 tcg_insn_unit *p = s->code_ptr;
269 memcpy(p, &v, sizeof(v));
270 s->code_ptr = p + (8 / TCG_TARGET_INSN_UNIT_SIZE);
271 }
272 }
273
274 static __attribute__((unused)) inline void tcg_patch64(tcg_insn_unit *p,
275 uint64_t v)
276 {
277 if (TCG_TARGET_INSN_UNIT_SIZE == 8) {
278 *p = v;
279 } else {
280 memcpy(p, &v, sizeof(v));
281 }
282 }
283 #endif
284
285 /* label relocation processing */
286
287 static void tcg_out_reloc(TCGContext *s, tcg_insn_unit *code_ptr, int type,
288 TCGLabel *l, intptr_t addend)
289 {
290 TCGRelocation *r = tcg_malloc(sizeof(TCGRelocation));
291
292 r->type = type;
293 r->ptr = code_ptr;
294 r->addend = addend;
295 QSIMPLEQ_INSERT_TAIL(&l->relocs, r, next);
296 }
297
298 static void tcg_out_label(TCGContext *s, TCGLabel *l, tcg_insn_unit *ptr)
299 {
300 tcg_debug_assert(!l->has_value);
301 l->has_value = 1;
302 l->u.value_ptr = ptr;
303 }
304
305 TCGLabel *gen_new_label(void)
306 {
307 TCGContext *s = tcg_ctx;
308 TCGLabel *l = tcg_malloc(sizeof(TCGLabel));
309
310 memset(l, 0, sizeof(TCGLabel));
311 l->id = s->nb_labels++;
312 QSIMPLEQ_INIT(&l->relocs);
313
314 QSIMPLEQ_INSERT_TAIL(&s->labels, l, next);
315
316 return l;
317 }
318
319 static bool tcg_resolve_relocs(TCGContext *s)
320 {
321 TCGLabel *l;
322
323 QSIMPLEQ_FOREACH(l, &s->labels, next) {
324 TCGRelocation *r;
325 uintptr_t value = l->u.value;
326
327 QSIMPLEQ_FOREACH(r, &l->relocs, next) {
328 if (!patch_reloc(r->ptr, r->type, value, r->addend)) {
329 return false;
330 }
331 }
332 }
333 return true;
334 }
335
336 static void set_jmp_reset_offset(TCGContext *s, int which)
337 {
338 size_t off = tcg_current_code_size(s);
339 s->tb_jmp_reset_offset[which] = off;
340 /* Make sure that we didn't overflow the stored offset. */
341 assert(s->tb_jmp_reset_offset[which] == off);
342 }
343
344 #include "tcg-target.inc.c"
345
346 /* compare a pointer @ptr and a tb_tc @s */
347 static int ptr_cmp_tb_tc(const void *ptr, const struct tb_tc *s)
348 {
349 if (ptr >= s->ptr + s->size) {
350 return 1;
351 } else if (ptr < s->ptr) {
352 return -1;
353 }
354 return 0;
355 }
356
357 static gint tb_tc_cmp(gconstpointer ap, gconstpointer bp)
358 {
359 const struct tb_tc *a = ap;
360 const struct tb_tc *b = bp;
361
362 /*
363 * When both sizes are set, we know this isn't a lookup.
364 * This is the most likely case: every TB must be inserted; lookups
365 * are a lot less frequent.
366 */
367 if (likely(a->size && b->size)) {
368 if (a->ptr > b->ptr) {
369 return 1;
370 } else if (a->ptr < b->ptr) {
371 return -1;
372 }
373 /* a->ptr == b->ptr should happen only on deletions */
374 g_assert(a->size == b->size);
375 return 0;
376 }
377 /*
378 * All lookups have either .size field set to 0.
379 * From the glib sources we see that @ap is always the lookup key. However
380 * the docs provide no guarantee, so we just mark this case as likely.
381 */
382 if (likely(a->size == 0)) {
383 return ptr_cmp_tb_tc(a->ptr, b);
384 }
385 return ptr_cmp_tb_tc(b->ptr, a);
386 }
387
388 static void tcg_region_trees_init(void)
389 {
390 size_t i;
391
392 tree_size = ROUND_UP(sizeof(struct tcg_region_tree), qemu_dcache_linesize);
393 region_trees = qemu_memalign(qemu_dcache_linesize, region.n * tree_size);
394 for (i = 0; i < region.n; i++) {
395 struct tcg_region_tree *rt = region_trees + i * tree_size;
396
397 qemu_mutex_init(&rt->lock);
398 rt->tree = g_tree_new(tb_tc_cmp);
399 }
400 }
401
402 static struct tcg_region_tree *tc_ptr_to_region_tree(void *p)
403 {
404 size_t region_idx;
405
406 if (p < region.start_aligned) {
407 region_idx = 0;
408 } else {
409 ptrdiff_t offset = p - region.start_aligned;
410
411 if (offset > region.stride * (region.n - 1)) {
412 region_idx = region.n - 1;
413 } else {
414 region_idx = offset / region.stride;
415 }
416 }
417 return region_trees + region_idx * tree_size;
418 }
419
420 void tcg_tb_insert(TranslationBlock *tb)
421 {
422 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr);
423
424 qemu_mutex_lock(&rt->lock);
425 g_tree_insert(rt->tree, &tb->tc, tb);
426 qemu_mutex_unlock(&rt->lock);
427 }
428
429 void tcg_tb_remove(TranslationBlock *tb)
430 {
431 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr);
432
433 qemu_mutex_lock(&rt->lock);
434 g_tree_remove(rt->tree, &tb->tc);
435 qemu_mutex_unlock(&rt->lock);
436 }
437
438 /*
439 * Find the TB 'tb' such that
440 * tb->tc.ptr <= tc_ptr < tb->tc.ptr + tb->tc.size
441 * Return NULL if not found.
442 */
443 TranslationBlock *tcg_tb_lookup(uintptr_t tc_ptr)
444 {
445 struct tcg_region_tree *rt = tc_ptr_to_region_tree((void *)tc_ptr);
446 TranslationBlock *tb;
447 struct tb_tc s = { .ptr = (void *)tc_ptr };
448
449 qemu_mutex_lock(&rt->lock);
450 tb = g_tree_lookup(rt->tree, &s);
451 qemu_mutex_unlock(&rt->lock);
452 return tb;
453 }
454
455 static void tcg_region_tree_lock_all(void)
456 {
457 size_t i;
458
459 for (i = 0; i < region.n; i++) {
460 struct tcg_region_tree *rt = region_trees + i * tree_size;
461
462 qemu_mutex_lock(&rt->lock);
463 }
464 }
465
466 static void tcg_region_tree_unlock_all(void)
467 {
468 size_t i;
469
470 for (i = 0; i < region.n; i++) {
471 struct tcg_region_tree *rt = region_trees + i * tree_size;
472
473 qemu_mutex_unlock(&rt->lock);
474 }
475 }
476
477 void tcg_tb_foreach(GTraverseFunc func, gpointer user_data)
478 {
479 size_t i;
480
481 tcg_region_tree_lock_all();
482 for (i = 0; i < region.n; i++) {
483 struct tcg_region_tree *rt = region_trees + i * tree_size;
484
485 g_tree_foreach(rt->tree, func, user_data);
486 }
487 tcg_region_tree_unlock_all();
488 }
489
490 size_t tcg_nb_tbs(void)
491 {
492 size_t nb_tbs = 0;
493 size_t i;
494
495 tcg_region_tree_lock_all();
496 for (i = 0; i < region.n; i++) {
497 struct tcg_region_tree *rt = region_trees + i * tree_size;
498
499 nb_tbs += g_tree_nnodes(rt->tree);
500 }
501 tcg_region_tree_unlock_all();
502 return nb_tbs;
503 }
504
505 static void tcg_region_tree_reset_all(void)
506 {
507 size_t i;
508
509 tcg_region_tree_lock_all();
510 for (i = 0; i < region.n; i++) {
511 struct tcg_region_tree *rt = region_trees + i * tree_size;
512
513 /* Increment the refcount first so that destroy acts as a reset */
514 g_tree_ref(rt->tree);
515 g_tree_destroy(rt->tree);
516 }
517 tcg_region_tree_unlock_all();
518 }
519
520 static void tcg_region_bounds(size_t curr_region, void **pstart, void **pend)
521 {
522 void *start, *end;
523
524 start = region.start_aligned + curr_region * region.stride;
525 end = start + region.size;
526
527 if (curr_region == 0) {
528 start = region.start;
529 }
530 if (curr_region == region.n - 1) {
531 end = region.end;
532 }
533
534 *pstart = start;
535 *pend = end;
536 }
537
538 static void tcg_region_assign(TCGContext *s, size_t curr_region)
539 {
540 void *start, *end;
541
542 tcg_region_bounds(curr_region, &start, &end);
543
544 s->code_gen_buffer = start;
545 s->code_gen_ptr = start;
546 s->code_gen_buffer_size = end - start;
547 s->code_gen_highwater = end - TCG_HIGHWATER;
548 }
549
550 static bool tcg_region_alloc__locked(TCGContext *s)
551 {
552 if (region.current == region.n) {
553 return true;
554 }
555 tcg_region_assign(s, region.current);
556 region.current++;
557 return false;
558 }
559
560 /*
561 * Request a new region once the one in use has filled up.
562 * Returns true on error.
563 */
564 static bool tcg_region_alloc(TCGContext *s)
565 {
566 bool err;
567 /* read the region size now; alloc__locked will overwrite it on success */
568 size_t size_full = s->code_gen_buffer_size;
569
570 qemu_mutex_lock(&region.lock);
571 err = tcg_region_alloc__locked(s);
572 if (!err) {
573 region.agg_size_full += size_full - TCG_HIGHWATER;
574 }
575 qemu_mutex_unlock(&region.lock);
576 return err;
577 }
578
579 /*
580 * Perform a context's first region allocation.
581 * This function does _not_ increment region.agg_size_full.
582 */
583 static inline bool tcg_region_initial_alloc__locked(TCGContext *s)
584 {
585 return tcg_region_alloc__locked(s);
586 }
587
588 /* Call from a safe-work context */
589 void tcg_region_reset_all(void)
590 {
591 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs);
592 unsigned int i;
593
594 qemu_mutex_lock(&region.lock);
595 region.current = 0;
596 region.agg_size_full = 0;
597
598 for (i = 0; i < n_ctxs; i++) {
599 TCGContext *s = atomic_read(&tcg_ctxs[i]);
600 bool err = tcg_region_initial_alloc__locked(s);
601
602 g_assert(!err);
603 }
604 qemu_mutex_unlock(&region.lock);
605
606 tcg_region_tree_reset_all();
607 }
608
609 #ifdef CONFIG_USER_ONLY
610 static size_t tcg_n_regions(void)
611 {
612 return 1;
613 }
614 #else
615 /*
616 * It is likely that some vCPUs will translate more code than others, so we
617 * first try to set more regions than max_cpus, with those regions being of
618 * reasonable size. If that's not possible we make do by evenly dividing
619 * the code_gen_buffer among the vCPUs.
620 */
621 static size_t tcg_n_regions(void)
622 {
623 size_t i;
624
625 /* Use a single region if all we have is one vCPU thread */
626 #if !defined(CONFIG_USER_ONLY)
627 MachineState *ms = MACHINE(qdev_get_machine());
628 unsigned int max_cpus = ms->smp.max_cpus;
629 #endif
630 if (max_cpus == 1 || !qemu_tcg_mttcg_enabled()) {
631 return 1;
632 }
633
634 /* Try to have more regions than max_cpus, with each region being >= 2 MB */
635 for (i = 8; i > 0; i--) {
636 size_t regions_per_thread = i;
637 size_t region_size;
638
639 region_size = tcg_init_ctx.code_gen_buffer_size;
640 region_size /= max_cpus * regions_per_thread;
641
642 if (region_size >= 2 * 1024u * 1024) {
643 return max_cpus * regions_per_thread;
644 }
645 }
646 /* If we can't, then just allocate one region per vCPU thread */
647 return max_cpus;
648 }
649 #endif
650
651 /*
652 * Initializes region partitioning.
653 *
654 * Called at init time from the parent thread (i.e. the one calling
655 * tcg_context_init), after the target's TCG globals have been set.
656 *
657 * Region partitioning works by splitting code_gen_buffer into separate regions,
658 * and then assigning regions to TCG threads so that the threads can translate
659 * code in parallel without synchronization.
660 *
661 * In softmmu the number of TCG threads is bounded by max_cpus, so we use at
662 * least max_cpus regions in MTTCG. In !MTTCG we use a single region.
663 * Note that the TCG options from the command-line (i.e. -accel accel=tcg,[...])
664 * must have been parsed before calling this function, since it calls
665 * qemu_tcg_mttcg_enabled().
666 *
667 * In user-mode we use a single region. Having multiple regions in user-mode
668 * is not supported, because the number of vCPU threads (recall that each thread
669 * spawned by the guest corresponds to a vCPU thread) is only bounded by the
670 * OS, and usually this number is huge (tens of thousands is not uncommon).
671 * Thus, given this large bound on the number of vCPU threads and the fact
672 * that code_gen_buffer is allocated at compile-time, we cannot guarantee
673 * that the availability of at least one region per vCPU thread.
674 *
675 * However, this user-mode limitation is unlikely to be a significant problem
676 * in practice. Multi-threaded guests share most if not all of their translated
677 * code, which makes parallel code generation less appealing than in softmmu.
678 */
679 void tcg_region_init(void)
680 {
681 void *buf = tcg_init_ctx.code_gen_buffer;
682 void *aligned;
683 size_t size = tcg_init_ctx.code_gen_buffer_size;
684 size_t page_size = qemu_real_host_page_size;
685 size_t region_size;
686 size_t n_regions;
687 size_t i;
688
689 n_regions = tcg_n_regions();
690
691 /* The first region will be 'aligned - buf' bytes larger than the others */
692 aligned = QEMU_ALIGN_PTR_UP(buf, page_size);
693 g_assert(aligned < tcg_init_ctx.code_gen_buffer + size);
694 /*
695 * Make region_size a multiple of page_size, using aligned as the start.
696 * As a result of this we might end up with a few extra pages at the end of
697 * the buffer; we will assign those to the last region.
698 */
699 region_size = (size - (aligned - buf)) / n_regions;
700 region_size = QEMU_ALIGN_DOWN(region_size, page_size);
701
702 /* A region must have at least 2 pages; one code, one guard */
703 g_assert(region_size >= 2 * page_size);
704
705 /* init the region struct */
706 qemu_mutex_init(&region.lock);
707 region.n = n_regions;
708 region.size = region_size - page_size;
709 region.stride = region_size;
710 region.start = buf;
711 region.start_aligned = aligned;
712 /* page-align the end, since its last page will be a guard page */
713 region.end = QEMU_ALIGN_PTR_DOWN(buf + size, page_size);
714 /* account for that last guard page */
715 region.end -= page_size;
716
717 /* set guard pages */
718 for (i = 0; i < region.n; i++) {
719 void *start, *end;
720 int rc;
721
722 tcg_region_bounds(i, &start, &end);
723 rc = qemu_mprotect_none(end, page_size);
724 g_assert(!rc);
725 }
726
727 tcg_region_trees_init();
728
729 /* In user-mode we support only one ctx, so do the initial allocation now */
730 #ifdef CONFIG_USER_ONLY
731 {
732 bool err = tcg_region_initial_alloc__locked(tcg_ctx);
733
734 g_assert(!err);
735 }
736 #endif
737 }
738
739 static void alloc_tcg_plugin_context(TCGContext *s)
740 {
741 #ifdef CONFIG_PLUGIN
742 s->plugin_tb = g_new0(struct qemu_plugin_tb, 1);
743 s->plugin_tb->insns =
744 g_ptr_array_new_with_free_func(qemu_plugin_insn_cleanup_fn);
745 #endif
746 }
747
748 /*
749 * All TCG threads except the parent (i.e. the one that called tcg_context_init
750 * and registered the target's TCG globals) must register with this function
751 * before initiating translation.
752 *
753 * In user-mode we just point tcg_ctx to tcg_init_ctx. See the documentation
754 * of tcg_region_init() for the reasoning behind this.
755 *
756 * In softmmu each caller registers its context in tcg_ctxs[]. Note that in
757 * softmmu tcg_ctxs[] does not track tcg_ctx_init, since the initial context
758 * is not used anymore for translation once this function is called.
759 *
760 * Not tracking tcg_init_ctx in tcg_ctxs[] in softmmu keeps code that iterates
761 * over the array (e.g. tcg_code_size() the same for both softmmu and user-mode.
762 */
763 #ifdef CONFIG_USER_ONLY
764 void tcg_register_thread(void)
765 {
766 tcg_ctx = &tcg_init_ctx;
767 }
768 #else
769 void tcg_register_thread(void)
770 {
771 MachineState *ms = MACHINE(qdev_get_machine());
772 TCGContext *s = g_malloc(sizeof(*s));
773 unsigned int i, n;
774 bool err;
775
776 *s = tcg_init_ctx;
777
778 /* Relink mem_base. */
779 for (i = 0, n = tcg_init_ctx.nb_globals; i < n; ++i) {
780 if (tcg_init_ctx.temps[i].mem_base) {
781 ptrdiff_t b = tcg_init_ctx.temps[i].mem_base - tcg_init_ctx.temps;
782 tcg_debug_assert(b >= 0 && b < n);
783 s->temps[i].mem_base = &s->temps[b];
784 }
785 }
786
787 /* Claim an entry in tcg_ctxs */
788 n = atomic_fetch_inc(&n_tcg_ctxs);
789 g_assert(n < ms->smp.max_cpus);
790 atomic_set(&tcg_ctxs[n], s);
791
792 if (n > 0) {
793 alloc_tcg_plugin_context(s);
794 }
795
796 tcg_ctx = s;
797 qemu_mutex_lock(&region.lock);
798 err = tcg_region_initial_alloc__locked(tcg_ctx);
799 g_assert(!err);
800 qemu_mutex_unlock(&region.lock);
801 }
802 #endif /* !CONFIG_USER_ONLY */
803
804 /*
805 * Returns the size (in bytes) of all translated code (i.e. from all regions)
806 * currently in the cache.
807 * See also: tcg_code_capacity()
808 * Do not confuse with tcg_current_code_size(); that one applies to a single
809 * TCG context.
810 */
811 size_t tcg_code_size(void)
812 {
813 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs);
814 unsigned int i;
815 size_t total;
816
817 qemu_mutex_lock(&region.lock);
818 total = region.agg_size_full;
819 for (i = 0; i < n_ctxs; i++) {
820 const TCGContext *s = atomic_read(&tcg_ctxs[i]);
821 size_t size;
822
823 size = atomic_read(&s->code_gen_ptr) - s->code_gen_buffer;
824 g_assert(size <= s->code_gen_buffer_size);
825 total += size;
826 }
827 qemu_mutex_unlock(&region.lock);
828 return total;
829 }
830
831 /*
832 * Returns the code capacity (in bytes) of the entire cache, i.e. including all
833 * regions.
834 * See also: tcg_code_size()
835 */
836 size_t tcg_code_capacity(void)
837 {
838 size_t guard_size, capacity;
839
840 /* no need for synchronization; these variables are set at init time */
841 guard_size = region.stride - region.size;
842 capacity = region.end + guard_size - region.start;
843 capacity -= region.n * (guard_size + TCG_HIGHWATER);
844 return capacity;
845 }
846
847 size_t tcg_tb_phys_invalidate_count(void)
848 {
849 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs);
850 unsigned int i;
851 size_t total = 0;
852
853 for (i = 0; i < n_ctxs; i++) {
854 const TCGContext *s = atomic_read(&tcg_ctxs[i]);
855
856 total += atomic_read(&s->tb_phys_invalidate_count);
857 }
858 return total;
859 }
860
861 /* pool based memory allocation */
862 void *tcg_malloc_internal(TCGContext *s, int size)
863 {
864 TCGPool *p;
865 int pool_size;
866
867 if (size > TCG_POOL_CHUNK_SIZE) {
868 /* big malloc: insert a new pool (XXX: could optimize) */
869 p = g_malloc(sizeof(TCGPool) + size);
870 p->size = size;
871 p->next = s->pool_first_large;
872 s->pool_first_large = p;
873 return p->data;
874 } else {
875 p = s->pool_current;
876 if (!p) {
877 p = s->pool_first;
878 if (!p)
879 goto new_pool;
880 } else {
881 if (!p->next) {
882 new_pool:
883 pool_size = TCG_POOL_CHUNK_SIZE;
884 p = g_malloc(sizeof(TCGPool) + pool_size);
885 p->size = pool_size;
886 p->next = NULL;
887 if (s->pool_current)
888 s->pool_current->next = p;
889 else
890 s->pool_first = p;
891 } else {
892 p = p->next;
893 }
894 }
895 }
896 s->pool_current = p;
897 s->pool_cur = p->data + size;
898 s->pool_end = p->data + p->size;
899 return p->data;
900 }
901
902 void tcg_pool_reset(TCGContext *s)
903 {
904 TCGPool *p, *t;
905 for (p = s->pool_first_large; p; p = t) {
906 t = p->next;
907 g_free(p);
908 }
909 s->pool_first_large = NULL;
910 s->pool_cur = s->pool_end = NULL;
911 s->pool_current = NULL;
912 }
913
914 typedef struct TCGHelperInfo {
915 void *func;
916 const char *name;
917 unsigned flags;
918 unsigned sizemask;
919 } TCGHelperInfo;
920
921 #include "exec/helper-proto.h"
922
923 static const TCGHelperInfo all_helpers[] = {
924 #include "exec/helper-tcg.h"
925 };
926 static GHashTable *helper_table;
927
928 static int indirect_reg_alloc_order[ARRAY_SIZE(tcg_target_reg_alloc_order)];
929 static void process_op_defs(TCGContext *s);
930 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type,
931 TCGReg reg, const char *name);
932
933 void tcg_context_init(TCGContext *s)
934 {
935 int op, total_args, n, i;
936 TCGOpDef *def;
937 TCGArgConstraint *args_ct;
938 int *sorted_args;
939 TCGTemp *ts;
940
941 memset(s, 0, sizeof(*s));
942 s->nb_globals = 0;
943
944 /* Count total number of arguments and allocate the corresponding
945 space */
946 total_args = 0;
947 for(op = 0; op < NB_OPS; op++) {
948 def = &tcg_op_defs[op];
949 n = def->nb_iargs + def->nb_oargs;
950 total_args += n;
951 }
952
953 args_ct = g_malloc(sizeof(TCGArgConstraint) * total_args);
954 sorted_args = g_malloc(sizeof(int) * total_args);
955
956 for(op = 0; op < NB_OPS; op++) {
957 def = &tcg_op_defs[op];
958 def->args_ct = args_ct;
959 def->sorted_args = sorted_args;
960 n = def->nb_iargs + def->nb_oargs;
961 sorted_args += n;
962 args_ct += n;
963 }
964
965 /* Register helpers. */
966 /* Use g_direct_hash/equal for direct pointer comparisons on func. */
967 helper_table = g_hash_table_new(NULL, NULL);
968
969 for (i = 0; i < ARRAY_SIZE(all_helpers); ++i) {
970 g_hash_table_insert(helper_table, (gpointer)all_helpers[i].func,
971 (gpointer)&all_helpers[i]);
972 }
973
974 tcg_target_init(s);
975 process_op_defs(s);
976
977 /* Reverse the order of the saved registers, assuming they're all at
978 the start of tcg_target_reg_alloc_order. */
979 for (n = 0; n < ARRAY_SIZE(tcg_target_reg_alloc_order); ++n) {
980 int r = tcg_target_reg_alloc_order[n];
981 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, r)) {
982 break;
983 }
984 }
985 for (i = 0; i < n; ++i) {
986 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[n - 1 - i];
987 }
988 for (; i < ARRAY_SIZE(tcg_target_reg_alloc_order); ++i) {
989 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[i];
990 }
991
992 alloc_tcg_plugin_context(s);
993
994 tcg_ctx = s;
995 /*
996 * In user-mode we simply share the init context among threads, since we
997 * use a single region. See the documentation tcg_region_init() for the
998 * reasoning behind this.
999 * In softmmu we will have at most max_cpus TCG threads.
1000 */
1001 #ifdef CONFIG_USER_ONLY
1002 tcg_ctxs = &tcg_ctx;
1003 n_tcg_ctxs = 1;
1004 #else
1005 MachineState *ms = MACHINE(qdev_get_machine());
1006 unsigned int max_cpus = ms->smp.max_cpus;
1007 tcg_ctxs = g_new(TCGContext *, max_cpus);
1008 #endif
1009
1010 tcg_debug_assert(!tcg_regset_test_reg(s->reserved_regs, TCG_AREG0));
1011 ts = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, TCG_AREG0, "env");
1012 cpu_env = temp_tcgv_ptr(ts);
1013 }
1014
1015 /*
1016 * Allocate TBs right before their corresponding translated code, making
1017 * sure that TBs and code are on different cache lines.
1018 */
1019 TranslationBlock *tcg_tb_alloc(TCGContext *s)
1020 {
1021 uintptr_t align = qemu_icache_linesize;
1022 TranslationBlock *tb;
1023 void *next;
1024
1025 retry:
1026 tb = (void *)ROUND_UP((uintptr_t)s->code_gen_ptr, align);
1027 next = (void *)ROUND_UP((uintptr_t)(tb + 1), align);
1028
1029 if (unlikely(next > s->code_gen_highwater)) {
1030 if (tcg_region_alloc(s)) {
1031 return NULL;
1032 }
1033 goto retry;
1034 }
1035 atomic_set(&s->code_gen_ptr, next);
1036 s->data_gen_ptr = NULL;
1037 return tb;
1038 }
1039
1040 void tcg_prologue_init(TCGContext *s)
1041 {
1042 size_t prologue_size, total_size;
1043 void *buf0, *buf1;
1044
1045 /* Put the prologue at the beginning of code_gen_buffer. */
1046 buf0 = s->code_gen_buffer;
1047 total_size = s->code_gen_buffer_size;
1048 s->code_ptr = buf0;
1049 s->code_buf = buf0;
1050 s->data_gen_ptr = NULL;
1051 s->code_gen_prologue = buf0;
1052
1053 /* Compute a high-water mark, at which we voluntarily flush the buffer
1054 and start over. The size here is arbitrary, significantly larger
1055 than we expect the code generation for any one opcode to require. */
1056 s->code_gen_highwater = s->code_gen_buffer + (total_size - TCG_HIGHWATER);
1057
1058 #ifdef TCG_TARGET_NEED_POOL_LABELS
1059 s->pool_labels = NULL;
1060 #endif
1061
1062 /* Generate the prologue. */
1063 tcg_target_qemu_prologue(s);
1064
1065 #ifdef TCG_TARGET_NEED_POOL_LABELS
1066 /* Allow the prologue to put e.g. guest_base into a pool entry. */
1067 {
1068 int result = tcg_out_pool_finalize(s);
1069 tcg_debug_assert(result == 0);
1070 }
1071 #endif
1072
1073 buf1 = s->code_ptr;
1074 flush_icache_range((uintptr_t)buf0, (uintptr_t)buf1);
1075
1076 /* Deduct the prologue from the buffer. */
1077 prologue_size = tcg_current_code_size(s);
1078 s->code_gen_ptr = buf1;
1079 s->code_gen_buffer = buf1;
1080 s->code_buf = buf1;
1081 total_size -= prologue_size;
1082 s->code_gen_buffer_size = total_size;
1083
1084 tcg_register_jit(s->code_gen_buffer, total_size);
1085
1086 #ifdef DEBUG_DISAS
1087 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
1088 FILE *logfile = qemu_log_lock();
1089 qemu_log("PROLOGUE: [size=%zu]\n", prologue_size);
1090 if (s->data_gen_ptr) {
1091 size_t code_size = s->data_gen_ptr - buf0;
1092 size_t data_size = prologue_size - code_size;
1093 size_t i;
1094
1095 log_disas(buf0, code_size, NULL);
1096
1097 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
1098 if (sizeof(tcg_target_ulong) == 8) {
1099 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n",
1100 (uintptr_t)s->data_gen_ptr + i,
1101 *(uint64_t *)(s->data_gen_ptr + i));
1102 } else {
1103 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n",
1104 (uintptr_t)s->data_gen_ptr + i,
1105 *(uint32_t *)(s->data_gen_ptr + i));
1106 }
1107 }
1108 } else {
1109 log_disas(buf0, prologue_size, NULL);
1110 }
1111 qemu_log("\n");
1112 qemu_log_flush();
1113 qemu_log_unlock(logfile);
1114 }
1115 #endif
1116
1117 /* Assert that goto_ptr is implemented completely. */
1118 if (TCG_TARGET_HAS_goto_ptr) {
1119 tcg_debug_assert(s->code_gen_epilogue != NULL);
1120 }
1121 }
1122
1123 void tcg_func_start(TCGContext *s)
1124 {
1125 tcg_pool_reset(s);
1126 s->nb_temps = s->nb_globals;
1127
1128 /* No temps have been previously allocated for size or locality. */
1129 memset(s->free_temps, 0, sizeof(s->free_temps));
1130
1131 s->nb_ops = 0;
1132 s->nb_labels = 0;
1133 s->current_frame_offset = s->frame_start;
1134
1135 #ifdef CONFIG_DEBUG_TCG
1136 s->goto_tb_issue_mask = 0;
1137 #endif
1138
1139 QTAILQ_INIT(&s->ops);
1140 QTAILQ_INIT(&s->free_ops);
1141 QSIMPLEQ_INIT(&s->labels);
1142 }
1143
1144 static inline TCGTemp *tcg_temp_alloc(TCGContext *s)
1145 {
1146 int n = s->nb_temps++;
1147 tcg_debug_assert(n < TCG_MAX_TEMPS);
1148 return memset(&s->temps[n], 0, sizeof(TCGTemp));
1149 }
1150
1151 static inline TCGTemp *tcg_global_alloc(TCGContext *s)
1152 {
1153 TCGTemp *ts;
1154
1155 tcg_debug_assert(s->nb_globals == s->nb_temps);
1156 s->nb_globals++;
1157 ts = tcg_temp_alloc(s);
1158 ts->temp_global = 1;
1159
1160 return ts;
1161 }
1162
1163 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type,
1164 TCGReg reg, const char *name)
1165 {
1166 TCGTemp *ts;
1167
1168 if (TCG_TARGET_REG_BITS == 32 && type != TCG_TYPE_I32) {
1169 tcg_abort();
1170 }
1171
1172 ts = tcg_global_alloc(s);
1173 ts->base_type = type;
1174 ts->type = type;
1175 ts->fixed_reg = 1;
1176 ts->reg = reg;
1177 ts->name = name;
1178 tcg_regset_set_reg(s->reserved_regs, reg);
1179
1180 return ts;
1181 }
1182
1183 void tcg_set_frame(TCGContext *s, TCGReg reg, intptr_t start, intptr_t size)
1184 {
1185 s->frame_start = start;
1186 s->frame_end = start + size;
1187 s->frame_temp
1188 = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, reg, "_frame");
1189 }
1190
1191 TCGTemp *tcg_global_mem_new_internal(TCGType type, TCGv_ptr base,
1192 intptr_t offset, const char *name)
1193 {
1194 TCGContext *s = tcg_ctx;
1195 TCGTemp *base_ts = tcgv_ptr_temp(base);
1196 TCGTemp *ts = tcg_global_alloc(s);
1197 int indirect_reg = 0, bigendian = 0;
1198 #ifdef HOST_WORDS_BIGENDIAN
1199 bigendian = 1;
1200 #endif
1201
1202 if (!base_ts->fixed_reg) {
1203 /* We do not support double-indirect registers. */
1204 tcg_debug_assert(!base_ts->indirect_reg);
1205 base_ts->indirect_base = 1;
1206 s->nb_indirects += (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64
1207 ? 2 : 1);
1208 indirect_reg = 1;
1209 }
1210
1211 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) {
1212 TCGTemp *ts2 = tcg_global_alloc(s);
1213 char buf[64];
1214
1215 ts->base_type = TCG_TYPE_I64;
1216 ts->type = TCG_TYPE_I32;
1217 ts->indirect_reg = indirect_reg;
1218 ts->mem_allocated = 1;
1219 ts->mem_base = base_ts;
1220 ts->mem_offset = offset + bigendian * 4;
1221 pstrcpy(buf, sizeof(buf), name);
1222 pstrcat(buf, sizeof(buf), "_0");
1223 ts->name = strdup(buf);
1224
1225 tcg_debug_assert(ts2 == ts + 1);
1226 ts2->base_type = TCG_TYPE_I64;
1227 ts2->type = TCG_TYPE_I32;
1228 ts2->indirect_reg = indirect_reg;
1229 ts2->mem_allocated = 1;
1230 ts2->mem_base = base_ts;
1231 ts2->mem_offset = offset + (1 - bigendian) * 4;
1232 pstrcpy(buf, sizeof(buf), name);
1233 pstrcat(buf, sizeof(buf), "_1");
1234 ts2->name = strdup(buf);
1235 } else {
1236 ts->base_type = type;
1237 ts->type = type;
1238 ts->indirect_reg = indirect_reg;
1239 ts->mem_allocated = 1;
1240 ts->mem_base = base_ts;
1241 ts->mem_offset = offset;
1242 ts->name = name;
1243 }
1244 return ts;
1245 }
1246
1247 TCGTemp *tcg_temp_new_internal(TCGType type, bool temp_local)
1248 {
1249 TCGContext *s = tcg_ctx;
1250 TCGTemp *ts;
1251 int idx, k;
1252
1253 k = type + (temp_local ? TCG_TYPE_COUNT : 0);
1254 idx = find_first_bit(s->free_temps[k].l, TCG_MAX_TEMPS);
1255 if (idx < TCG_MAX_TEMPS) {
1256 /* There is already an available temp with the right type. */
1257 clear_bit(idx, s->free_temps[k].l);
1258
1259 ts = &s->temps[idx];
1260 ts->temp_allocated = 1;
1261 tcg_debug_assert(ts->base_type == type);
1262 tcg_debug_assert(ts->temp_local == temp_local);
1263 } else {
1264 ts = tcg_temp_alloc(s);
1265 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) {
1266 TCGTemp *ts2 = tcg_temp_alloc(s);
1267
1268 ts->base_type = type;
1269 ts->type = TCG_TYPE_I32;
1270 ts->temp_allocated = 1;
1271 ts->temp_local = temp_local;
1272
1273 tcg_debug_assert(ts2 == ts + 1);
1274 ts2->base_type = TCG_TYPE_I64;
1275 ts2->type = TCG_TYPE_I32;
1276 ts2->temp_allocated = 1;
1277 ts2->temp_local = temp_local;
1278 } else {
1279 ts->base_type = type;
1280 ts->type = type;
1281 ts->temp_allocated = 1;
1282 ts->temp_local = temp_local;
1283 }
1284 }
1285
1286 #if defined(CONFIG_DEBUG_TCG)
1287 s->temps_in_use++;
1288 #endif
1289 return ts;
1290 }
1291
1292 TCGv_vec tcg_temp_new_vec(TCGType type)
1293 {
1294 TCGTemp *t;
1295
1296 #ifdef CONFIG_DEBUG_TCG
1297 switch (type) {
1298 case TCG_TYPE_V64:
1299 assert(TCG_TARGET_HAS_v64);
1300 break;
1301 case TCG_TYPE_V128:
1302 assert(TCG_TARGET_HAS_v128);
1303 break;
1304 case TCG_TYPE_V256:
1305 assert(TCG_TARGET_HAS_v256);
1306 break;
1307 default:
1308 g_assert_not_reached();
1309 }
1310 #endif
1311
1312 t = tcg_temp_new_internal(type, 0);
1313 return temp_tcgv_vec(t);
1314 }
1315
1316 /* Create a new temp of the same type as an existing temp. */
1317 TCGv_vec tcg_temp_new_vec_matching(TCGv_vec match)
1318 {
1319 TCGTemp *t = tcgv_vec_temp(match);
1320
1321 tcg_debug_assert(t->temp_allocated != 0);
1322
1323 t = tcg_temp_new_internal(t->base_type, 0);
1324 return temp_tcgv_vec(t);
1325 }
1326
1327 void tcg_temp_free_internal(TCGTemp *ts)
1328 {
1329 TCGContext *s = tcg_ctx;
1330 int k, idx;
1331
1332 #if defined(CONFIG_DEBUG_TCG)
1333 s->temps_in_use--;
1334 if (s->temps_in_use < 0) {
1335 fprintf(stderr, "More temporaries freed than allocated!\n");
1336 }
1337 #endif
1338
1339 tcg_debug_assert(ts->temp_global == 0);
1340 tcg_debug_assert(ts->temp_allocated != 0);
1341 ts->temp_allocated = 0;
1342
1343 idx = temp_idx(ts);
1344 k = ts->base_type + (ts->temp_local ? TCG_TYPE_COUNT : 0);
1345 set_bit(idx, s->free_temps[k].l);
1346 }
1347
1348 TCGv_i32 tcg_const_i32(int32_t val)
1349 {
1350 TCGv_i32 t0;
1351 t0 = tcg_temp_new_i32();
1352 tcg_gen_movi_i32(t0, val);
1353 return t0;
1354 }
1355
1356 TCGv_i64 tcg_const_i64(int64_t val)
1357 {
1358 TCGv_i64 t0;
1359 t0 = tcg_temp_new_i64();
1360 tcg_gen_movi_i64(t0, val);
1361 return t0;
1362 }
1363
1364 TCGv_i32 tcg_const_local_i32(int32_t val)
1365 {
1366 TCGv_i32 t0;
1367 t0 = tcg_temp_local_new_i32();
1368 tcg_gen_movi_i32(t0, val);
1369 return t0;
1370 }
1371
1372 TCGv_i64 tcg_const_local_i64(int64_t val)
1373 {
1374 TCGv_i64 t0;
1375 t0 = tcg_temp_local_new_i64();
1376 tcg_gen_movi_i64(t0, val);
1377 return t0;
1378 }
1379
1380 #if defined(CONFIG_DEBUG_TCG)
1381 void tcg_clear_temp_count(void)
1382 {
1383 TCGContext *s = tcg_ctx;
1384 s->temps_in_use = 0;
1385 }
1386
1387 int tcg_check_temp_count(void)
1388 {
1389 TCGContext *s = tcg_ctx;
1390 if (s->temps_in_use) {
1391 /* Clear the count so that we don't give another
1392 * warning immediately next time around.
1393 */
1394 s->temps_in_use = 0;
1395 return 1;
1396 }
1397 return 0;
1398 }
1399 #endif
1400
1401 /* Return true if OP may appear in the opcode stream.
1402 Test the runtime variable that controls each opcode. */
1403 bool tcg_op_supported(TCGOpcode op)
1404 {
1405 const bool have_vec
1406 = TCG_TARGET_HAS_v64 | TCG_TARGET_HAS_v128 | TCG_TARGET_HAS_v256;
1407
1408 switch (op) {
1409 case INDEX_op_discard:
1410 case INDEX_op_set_label:
1411 case INDEX_op_call:
1412 case INDEX_op_br:
1413 case INDEX_op_mb:
1414 case INDEX_op_insn_start:
1415 case INDEX_op_exit_tb:
1416 case INDEX_op_goto_tb:
1417 case INDEX_op_qemu_ld_i32:
1418 case INDEX_op_qemu_st_i32:
1419 case INDEX_op_qemu_ld_i64:
1420 case INDEX_op_qemu_st_i64:
1421 return true;
1422
1423 case INDEX_op_goto_ptr:
1424 return TCG_TARGET_HAS_goto_ptr;
1425
1426 case INDEX_op_mov_i32:
1427 case INDEX_op_movi_i32:
1428 case INDEX_op_setcond_i32:
1429 case INDEX_op_brcond_i32:
1430 case INDEX_op_ld8u_i32:
1431 case INDEX_op_ld8s_i32:
1432 case INDEX_op_ld16u_i32:
1433 case INDEX_op_ld16s_i32:
1434 case INDEX_op_ld_i32:
1435 case INDEX_op_st8_i32:
1436 case INDEX_op_st16_i32:
1437 case INDEX_op_st_i32:
1438 case INDEX_op_add_i32:
1439 case INDEX_op_sub_i32:
1440 case INDEX_op_mul_i32:
1441 case INDEX_op_and_i32:
1442 case INDEX_op_or_i32:
1443 case INDEX_op_xor_i32:
1444 case INDEX_op_shl_i32:
1445 case INDEX_op_shr_i32:
1446 case INDEX_op_sar_i32:
1447 return true;
1448
1449 case INDEX_op_movcond_i32:
1450 return TCG_TARGET_HAS_movcond_i32;
1451 case INDEX_op_div_i32:
1452 case INDEX_op_divu_i32:
1453 return TCG_TARGET_HAS_div_i32;
1454 case INDEX_op_rem_i32:
1455 case INDEX_op_remu_i32:
1456 return TCG_TARGET_HAS_rem_i32;
1457 case INDEX_op_div2_i32:
1458 case INDEX_op_divu2_i32:
1459 return TCG_TARGET_HAS_div2_i32;
1460 case INDEX_op_rotl_i32:
1461 case INDEX_op_rotr_i32:
1462 return TCG_TARGET_HAS_rot_i32;
1463 case INDEX_op_deposit_i32:
1464 return TCG_TARGET_HAS_deposit_i32;
1465 case INDEX_op_extract_i32:
1466 return TCG_TARGET_HAS_extract_i32;
1467 case INDEX_op_sextract_i32:
1468 return TCG_TARGET_HAS_sextract_i32;
1469 case INDEX_op_extract2_i32:
1470 return TCG_TARGET_HAS_extract2_i32;
1471 case INDEX_op_add2_i32:
1472 return TCG_TARGET_HAS_add2_i32;
1473 case INDEX_op_sub2_i32:
1474 return TCG_TARGET_HAS_sub2_i32;
1475 case INDEX_op_mulu2_i32:
1476 return TCG_TARGET_HAS_mulu2_i32;
1477 case INDEX_op_muls2_i32:
1478 return TCG_TARGET_HAS_muls2_i32;
1479 case INDEX_op_muluh_i32:
1480 return TCG_TARGET_HAS_muluh_i32;
1481 case INDEX_op_mulsh_i32:
1482 return TCG_TARGET_HAS_mulsh_i32;
1483 case INDEX_op_ext8s_i32:
1484 return TCG_TARGET_HAS_ext8s_i32;
1485 case INDEX_op_ext16s_i32:
1486 return TCG_TARGET_HAS_ext16s_i32;
1487 case INDEX_op_ext8u_i32:
1488 return TCG_TARGET_HAS_ext8u_i32;
1489 case INDEX_op_ext16u_i32:
1490 return TCG_TARGET_HAS_ext16u_i32;
1491 case INDEX_op_bswap16_i32:
1492 return TCG_TARGET_HAS_bswap16_i32;
1493 case INDEX_op_bswap32_i32:
1494 return TCG_TARGET_HAS_bswap32_i32;
1495 case INDEX_op_not_i32:
1496 return TCG_TARGET_HAS_not_i32;
1497 case INDEX_op_neg_i32:
1498 return TCG_TARGET_HAS_neg_i32;
1499 case INDEX_op_andc_i32:
1500 return TCG_TARGET_HAS_andc_i32;
1501 case INDEX_op_orc_i32:
1502 return TCG_TARGET_HAS_orc_i32;
1503 case INDEX_op_eqv_i32:
1504 return TCG_TARGET_HAS_eqv_i32;
1505 case INDEX_op_nand_i32:
1506 return TCG_TARGET_HAS_nand_i32;
1507 case INDEX_op_nor_i32:
1508 return TCG_TARGET_HAS_nor_i32;
1509 case INDEX_op_clz_i32:
1510 return TCG_TARGET_HAS_clz_i32;
1511 case INDEX_op_ctz_i32:
1512 return TCG_TARGET_HAS_ctz_i32;
1513 case INDEX_op_ctpop_i32:
1514 return TCG_TARGET_HAS_ctpop_i32;
1515
1516 case INDEX_op_brcond2_i32:
1517 case INDEX_op_setcond2_i32:
1518 return TCG_TARGET_REG_BITS == 32;
1519
1520 case INDEX_op_mov_i64:
1521 case INDEX_op_movi_i64:
1522 case INDEX_op_setcond_i64:
1523 case INDEX_op_brcond_i64:
1524 case INDEX_op_ld8u_i64:
1525 case INDEX_op_ld8s_i64:
1526 case INDEX_op_ld16u_i64:
1527 case INDEX_op_ld16s_i64:
1528 case INDEX_op_ld32u_i64:
1529 case INDEX_op_ld32s_i64:
1530 case INDEX_op_ld_i64:
1531 case INDEX_op_st8_i64:
1532 case INDEX_op_st16_i64:
1533 case INDEX_op_st32_i64:
1534 case INDEX_op_st_i64:
1535 case INDEX_op_add_i64:
1536 case INDEX_op_sub_i64:
1537 case INDEX_op_mul_i64:
1538 case INDEX_op_and_i64:
1539 case INDEX_op_or_i64:
1540 case INDEX_op_xor_i64:
1541 case INDEX_op_shl_i64:
1542 case INDEX_op_shr_i64:
1543 case INDEX_op_sar_i64:
1544 case INDEX_op_ext_i32_i64:
1545 case INDEX_op_extu_i32_i64:
1546 return TCG_TARGET_REG_BITS == 64;
1547
1548 case INDEX_op_movcond_i64:
1549 return TCG_TARGET_HAS_movcond_i64;
1550 case INDEX_op_div_i64:
1551 case INDEX_op_divu_i64:
1552 return TCG_TARGET_HAS_div_i64;
1553 case INDEX_op_rem_i64:
1554 case INDEX_op_remu_i64:
1555 return TCG_TARGET_HAS_rem_i64;
1556 case INDEX_op_div2_i64:
1557 case INDEX_op_divu2_i64:
1558 return TCG_TARGET_HAS_div2_i64;
1559 case INDEX_op_rotl_i64:
1560 case INDEX_op_rotr_i64:
1561 return TCG_TARGET_HAS_rot_i64;
1562 case INDEX_op_deposit_i64:
1563 return TCG_TARGET_HAS_deposit_i64;
1564 case INDEX_op_extract_i64:
1565 return TCG_TARGET_HAS_extract_i64;
1566 case INDEX_op_sextract_i64:
1567 return TCG_TARGET_HAS_sextract_i64;
1568 case INDEX_op_extract2_i64:
1569 return TCG_TARGET_HAS_extract2_i64;
1570 case INDEX_op_extrl_i64_i32:
1571 return TCG_TARGET_HAS_extrl_i64_i32;
1572 case INDEX_op_extrh_i64_i32:
1573 return TCG_TARGET_HAS_extrh_i64_i32;
1574 case INDEX_op_ext8s_i64:
1575 return TCG_TARGET_HAS_ext8s_i64;
1576 case INDEX_op_ext16s_i64:
1577 return TCG_TARGET_HAS_ext16s_i64;
1578 case INDEX_op_ext32s_i64:
1579 return TCG_TARGET_HAS_ext32s_i64;
1580 case INDEX_op_ext8u_i64:
1581 return TCG_TARGET_HAS_ext8u_i64;
1582 case INDEX_op_ext16u_i64:
1583 return TCG_TARGET_HAS_ext16u_i64;
1584 case INDEX_op_ext32u_i64:
1585 return TCG_TARGET_HAS_ext32u_i64;
1586 case INDEX_op_bswap16_i64:
1587 return TCG_TARGET_HAS_bswap16_i64;
1588 case INDEX_op_bswap32_i64:
1589 return TCG_TARGET_HAS_bswap32_i64;
1590 case INDEX_op_bswap64_i64:
1591 return TCG_TARGET_HAS_bswap64_i64;
1592 case INDEX_op_not_i64:
1593 return TCG_TARGET_HAS_not_i64;
1594 case INDEX_op_neg_i64:
1595 return TCG_TARGET_HAS_neg_i64;
1596 case INDEX_op_andc_i64:
1597 return TCG_TARGET_HAS_andc_i64;
1598 case INDEX_op_orc_i64:
1599 return TCG_TARGET_HAS_orc_i64;
1600 case INDEX_op_eqv_i64:
1601 return TCG_TARGET_HAS_eqv_i64;
1602 case INDEX_op_nand_i64:
1603 return TCG_TARGET_HAS_nand_i64;
1604 case INDEX_op_nor_i64:
1605 return TCG_TARGET_HAS_nor_i64;
1606 case INDEX_op_clz_i64:
1607 return TCG_TARGET_HAS_clz_i64;
1608 case INDEX_op_ctz_i64:
1609 return TCG_TARGET_HAS_ctz_i64;
1610 case INDEX_op_ctpop_i64:
1611 return TCG_TARGET_HAS_ctpop_i64;
1612 case INDEX_op_add2_i64:
1613 return TCG_TARGET_HAS_add2_i64;
1614 case INDEX_op_sub2_i64:
1615 return TCG_TARGET_HAS_sub2_i64;
1616 case INDEX_op_mulu2_i64:
1617 return TCG_TARGET_HAS_mulu2_i64;
1618 case INDEX_op_muls2_i64:
1619 return TCG_TARGET_HAS_muls2_i64;
1620 case INDEX_op_muluh_i64:
1621 return TCG_TARGET_HAS_muluh_i64;
1622 case INDEX_op_mulsh_i64:
1623 return TCG_TARGET_HAS_mulsh_i64;
1624
1625 case INDEX_op_mov_vec:
1626 case INDEX_op_dup_vec:
1627 case INDEX_op_dupi_vec:
1628 case INDEX_op_dupm_vec:
1629 case INDEX_op_ld_vec:
1630 case INDEX_op_st_vec:
1631 case INDEX_op_add_vec:
1632 case INDEX_op_sub_vec:
1633 case INDEX_op_and_vec:
1634 case INDEX_op_or_vec:
1635 case INDEX_op_xor_vec:
1636 case INDEX_op_cmp_vec:
1637 return have_vec;
1638 case INDEX_op_dup2_vec:
1639 return have_vec && TCG_TARGET_REG_BITS == 32;
1640 case INDEX_op_not_vec:
1641 return have_vec && TCG_TARGET_HAS_not_vec;
1642 case INDEX_op_neg_vec:
1643 return have_vec && TCG_TARGET_HAS_neg_vec;
1644 case INDEX_op_abs_vec:
1645 return have_vec && TCG_TARGET_HAS_abs_vec;
1646 case INDEX_op_andc_vec:
1647 return have_vec && TCG_TARGET_HAS_andc_vec;
1648 case INDEX_op_orc_vec:
1649 return have_vec && TCG_TARGET_HAS_orc_vec;
1650 case INDEX_op_mul_vec:
1651 return have_vec && TCG_TARGET_HAS_mul_vec;
1652 case INDEX_op_shli_vec:
1653 case INDEX_op_shri_vec:
1654 case INDEX_op_sari_vec:
1655 return have_vec && TCG_TARGET_HAS_shi_vec;
1656 case INDEX_op_shls_vec:
1657 case INDEX_op_shrs_vec:
1658 case INDEX_op_sars_vec:
1659 return have_vec && TCG_TARGET_HAS_shs_vec;
1660 case INDEX_op_shlv_vec:
1661 case INDEX_op_shrv_vec:
1662 case INDEX_op_sarv_vec:
1663 return have_vec && TCG_TARGET_HAS_shv_vec;
1664 case INDEX_op_rotli_vec:
1665 return have_vec && TCG_TARGET_HAS_roti_vec;
1666 case INDEX_op_ssadd_vec:
1667 case INDEX_op_usadd_vec:
1668 case INDEX_op_sssub_vec:
1669 case INDEX_op_ussub_vec:
1670 return have_vec && TCG_TARGET_HAS_sat_vec;
1671 case INDEX_op_smin_vec:
1672 case INDEX_op_umin_vec:
1673 case INDEX_op_smax_vec:
1674 case INDEX_op_umax_vec:
1675 return have_vec && TCG_TARGET_HAS_minmax_vec;
1676 case INDEX_op_bitsel_vec:
1677 return have_vec && TCG_TARGET_HAS_bitsel_vec;
1678 case INDEX_op_cmpsel_vec:
1679 return have_vec && TCG_TARGET_HAS_cmpsel_vec;
1680
1681 default:
1682 tcg_debug_assert(op > INDEX_op_last_generic && op < NB_OPS);
1683 return true;
1684 }
1685 }
1686
1687 /* Note: we convert the 64 bit args to 32 bit and do some alignment
1688 and endian swap. Maybe it would be better to do the alignment
1689 and endian swap in tcg_reg_alloc_call(). */
1690 void tcg_gen_callN(void *func, TCGTemp *ret, int nargs, TCGTemp **args)
1691 {
1692 int i, real_args, nb_rets, pi;
1693 unsigned sizemask, flags;
1694 TCGHelperInfo *info;
1695 TCGOp *op;
1696
1697 info = g_hash_table_lookup(helper_table, (gpointer)func);
1698 flags = info->flags;
1699 sizemask = info->sizemask;
1700
1701 #ifdef CONFIG_PLUGIN
1702 /* detect non-plugin helpers */
1703 if (tcg_ctx->plugin_insn && unlikely(strncmp(info->name, "plugin_", 7))) {
1704 tcg_ctx->plugin_insn->calls_helpers = true;
1705 }
1706 #endif
1707
1708 #if defined(__sparc__) && !defined(__arch64__) \
1709 && !defined(CONFIG_TCG_INTERPRETER)
1710 /* We have 64-bit values in one register, but need to pass as two
1711 separate parameters. Split them. */
1712 int orig_sizemask = sizemask;
1713 int orig_nargs = nargs;
1714 TCGv_i64 retl, reth;
1715 TCGTemp *split_args[MAX_OPC_PARAM];
1716
1717 retl = NULL;
1718 reth = NULL;
1719 if (sizemask != 0) {
1720 for (i = real_args = 0; i < nargs; ++i) {
1721 int is_64bit = sizemask & (1 << (i+1)*2);
1722 if (is_64bit) {
1723 TCGv_i64 orig = temp_tcgv_i64(args[i]);
1724 TCGv_i32 h = tcg_temp_new_i32();
1725 TCGv_i32 l = tcg_temp_new_i32();
1726 tcg_gen_extr_i64_i32(l, h, orig);
1727 split_args[real_args++] = tcgv_i32_temp(h);
1728 split_args[real_args++] = tcgv_i32_temp(l);
1729 } else {
1730 split_args[real_args++] = args[i];
1731 }
1732 }
1733 nargs = real_args;
1734 args = split_args;
1735 sizemask = 0;
1736 }
1737 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64
1738 for (i = 0; i < nargs; ++i) {
1739 int is_64bit = sizemask & (1 << (i+1)*2);
1740 int is_signed = sizemask & (2 << (i+1)*2);
1741 if (!is_64bit) {
1742 TCGv_i64 temp = tcg_temp_new_i64();
1743 TCGv_i64 orig = temp_tcgv_i64(args[i]);
1744 if (is_signed) {
1745 tcg_gen_ext32s_i64(temp, orig);
1746 } else {
1747 tcg_gen_ext32u_i64(temp, orig);
1748 }
1749 args[i] = tcgv_i64_temp(temp);
1750 }
1751 }
1752 #endif /* TCG_TARGET_EXTEND_ARGS */
1753
1754 op = tcg_emit_op(INDEX_op_call);
1755
1756 pi = 0;
1757 if (ret != NULL) {
1758 #if defined(__sparc__) && !defined(__arch64__) \
1759 && !defined(CONFIG_TCG_INTERPRETER)
1760 if (orig_sizemask & 1) {
1761 /* The 32-bit ABI is going to return the 64-bit value in
1762 the %o0/%o1 register pair. Prepare for this by using
1763 two return temporaries, and reassemble below. */
1764 retl = tcg_temp_new_i64();
1765 reth = tcg_temp_new_i64();
1766 op->args[pi++] = tcgv_i64_arg(reth);
1767 op->args[pi++] = tcgv_i64_arg(retl);
1768 nb_rets = 2;
1769 } else {
1770 op->args[pi++] = temp_arg(ret);
1771 nb_rets = 1;
1772 }
1773 #else
1774 if (TCG_TARGET_REG_BITS < 64 && (sizemask & 1)) {
1775 #ifdef HOST_WORDS_BIGENDIAN
1776 op->args[pi++] = temp_arg(ret + 1);
1777 op->args[pi++] = temp_arg(ret);
1778 #else
1779 op->args[pi++] = temp_arg(ret);
1780 op->args[pi++] = temp_arg(ret + 1);
1781 #endif
1782 nb_rets = 2;
1783 } else {
1784 op->args[pi++] = temp_arg(ret);
1785 nb_rets = 1;
1786 }
1787 #endif
1788 } else {
1789 nb_rets = 0;
1790 }
1791 TCGOP_CALLO(op) = nb_rets;
1792
1793 real_args = 0;
1794 for (i = 0; i < nargs; i++) {
1795 int is_64bit = sizemask & (1 << (i+1)*2);
1796 if (TCG_TARGET_REG_BITS < 64 && is_64bit) {
1797 #ifdef TCG_TARGET_CALL_ALIGN_ARGS
1798 /* some targets want aligned 64 bit args */
1799 if (real_args & 1) {
1800 op->args[pi++] = TCG_CALL_DUMMY_ARG;
1801 real_args++;
1802 }
1803 #endif
1804 /* If stack grows up, then we will be placing successive
1805 arguments at lower addresses, which means we need to
1806 reverse the order compared to how we would normally
1807 treat either big or little-endian. For those arguments
1808 that will wind up in registers, this still works for
1809 HPPA (the only current STACK_GROWSUP target) since the
1810 argument registers are *also* allocated in decreasing
1811 order. If another such target is added, this logic may
1812 have to get more complicated to differentiate between
1813 stack arguments and register arguments. */
1814 #if defined(HOST_WORDS_BIGENDIAN) != defined(TCG_TARGET_STACK_GROWSUP)
1815 op->args[pi++] = temp_arg(args[i] + 1);
1816 op->args[pi++] = temp_arg(args[i]);
1817 #else
1818 op->args[pi++] = temp_arg(args[i]);
1819 op->args[pi++] = temp_arg(args[i] + 1);
1820 #endif
1821 real_args += 2;
1822 continue;
1823 }
1824
1825 op->args[pi++] = temp_arg(args[i]);
1826 real_args++;
1827 }
1828 op->args[pi++] = (uintptr_t)func;
1829 op->args[pi++] = flags;
1830 TCGOP_CALLI(op) = real_args;
1831
1832 /* Make sure the fields didn't overflow. */
1833 tcg_debug_assert(TCGOP_CALLI(op) == real_args);
1834 tcg_debug_assert(pi <= ARRAY_SIZE(op->args));
1835
1836 #if defined(__sparc__) && !defined(__arch64__) \
1837 && !defined(CONFIG_TCG_INTERPRETER)
1838 /* Free all of the parts we allocated above. */
1839 for (i = real_args = 0; i < orig_nargs; ++i) {
1840 int is_64bit = orig_sizemask & (1 << (i+1)*2);
1841 if (is_64bit) {
1842 tcg_temp_free_internal(args[real_args++]);
1843 tcg_temp_free_internal(args[real_args++]);
1844 } else {
1845 real_args++;
1846 }
1847 }
1848 if (orig_sizemask & 1) {
1849 /* The 32-bit ABI returned two 32-bit pieces. Re-assemble them.
1850 Note that describing these as TCGv_i64 eliminates an unnecessary
1851 zero-extension that tcg_gen_concat_i32_i64 would create. */
1852 tcg_gen_concat32_i64(temp_tcgv_i64(ret), retl, reth);
1853 tcg_temp_free_i64(retl);
1854 tcg_temp_free_i64(reth);
1855 }
1856 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64
1857 for (i = 0; i < nargs; ++i) {
1858 int is_64bit = sizemask & (1 << (i+1)*2);
1859 if (!is_64bit) {
1860 tcg_temp_free_internal(args[i]);
1861 }
1862 }
1863 #endif /* TCG_TARGET_EXTEND_ARGS */
1864 }
1865
1866 static void tcg_reg_alloc_start(TCGContext *s)
1867 {
1868 int i, n;
1869 TCGTemp *ts;
1870
1871 for (i = 0, n = s->nb_globals; i < n; i++) {
1872 ts = &s->temps[i];
1873 ts->val_type = (ts->fixed_reg ? TEMP_VAL_REG : TEMP_VAL_MEM);
1874 }
1875 for (n = s->nb_temps; i < n; i++) {
1876 ts = &s->temps[i];
1877 ts->val_type = (ts->temp_local ? TEMP_VAL_MEM : TEMP_VAL_DEAD);
1878 ts->mem_allocated = 0;
1879 ts->fixed_reg = 0;
1880 }
1881
1882 memset(s->reg_to_temp, 0, sizeof(s->reg_to_temp));
1883 }
1884
1885 static char *tcg_get_arg_str_ptr(TCGContext *s, char *buf, int buf_size,
1886 TCGTemp *ts)
1887 {
1888 int idx = temp_idx(ts);
1889
1890 if (ts->temp_global) {
1891 pstrcpy(buf, buf_size, ts->name);
1892 } else if (ts->temp_local) {
1893 snprintf(buf, buf_size, "loc%d", idx - s->nb_globals);
1894 } else {
1895 snprintf(buf, buf_size, "tmp%d", idx - s->nb_globals);
1896 }
1897 return buf;
1898 }
1899
1900 static char *tcg_get_arg_str(TCGContext *s, char *buf,
1901 int buf_size, TCGArg arg)
1902 {
1903 return tcg_get_arg_str_ptr(s, buf, buf_size, arg_temp(arg));
1904 }
1905
1906 /* Find helper name. */
1907 static inline const char *tcg_find_helper(TCGContext *s, uintptr_t val)
1908 {
1909 const char *ret = NULL;
1910 if (helper_table) {
1911 TCGHelperInfo *info = g_hash_table_lookup(helper_table, (gpointer)val);
1912 if (info) {
1913 ret = info->name;
1914 }
1915 }
1916 return ret;
1917 }
1918
1919 static const char * const cond_name[] =
1920 {
1921 [TCG_COND_NEVER] = "never",
1922 [TCG_COND_ALWAYS] = "always",
1923 [TCG_COND_EQ] = "eq",
1924 [TCG_COND_NE] = "ne",
1925 [TCG_COND_LT] = "lt",
1926 [TCG_COND_GE] = "ge",
1927 [TCG_COND_LE] = "le",
1928 [TCG_COND_GT] = "gt",
1929 [TCG_COND_LTU] = "ltu",
1930 [TCG_COND_GEU] = "geu",
1931 [TCG_COND_LEU] = "leu",
1932 [TCG_COND_GTU] = "gtu"
1933 };
1934
1935 static const char * const ldst_name[] =
1936 {
1937 [MO_UB] = "ub",
1938 [MO_SB] = "sb",
1939 [MO_LEUW] = "leuw",
1940 [MO_LESW] = "lesw",
1941 [MO_LEUL] = "leul",
1942 [MO_LESL] = "lesl",
1943 [MO_LEQ] = "leq",
1944 [MO_BEUW] = "beuw",
1945 [MO_BESW] = "besw",
1946 [MO_BEUL] = "beul",
1947 [MO_BESL] = "besl",
1948 [MO_BEQ] = "beq",
1949 };
1950
1951 static const char * const alignment_name[(MO_AMASK >> MO_ASHIFT) + 1] = {
1952 #ifdef TARGET_ALIGNED_ONLY
1953 [MO_UNALN >> MO_ASHIFT] = "un+",
1954 [MO_ALIGN >> MO_ASHIFT] = "",
1955 #else
1956 [MO_UNALN >> MO_ASHIFT] = "",
1957 [MO_ALIGN >> MO_ASHIFT] = "al+",
1958 #endif
1959 [MO_ALIGN_2 >> MO_ASHIFT] = "al2+",
1960 [MO_ALIGN_4 >> MO_ASHIFT] = "al4+",
1961 [MO_ALIGN_8 >> MO_ASHIFT] = "al8+",
1962 [MO_ALIGN_16 >> MO_ASHIFT] = "al16+",
1963 [MO_ALIGN_32 >> MO_ASHIFT] = "al32+",
1964 [MO_ALIGN_64 >> MO_ASHIFT] = "al64+",
1965 };
1966
1967 static inline bool tcg_regset_single(TCGRegSet d)
1968 {
1969 return (d & (d - 1)) == 0;
1970 }
1971
1972 static inline TCGReg tcg_regset_first(TCGRegSet d)
1973 {
1974 if (TCG_TARGET_NB_REGS <= 32) {
1975 return ctz32(d);
1976 } else {
1977 return ctz64(d);
1978 }
1979 }
1980
1981 static void tcg_dump_ops(TCGContext *s, bool have_prefs)
1982 {
1983 char buf[128];
1984 TCGOp *op;
1985
1986 QTAILQ_FOREACH(op, &s->ops, link) {
1987 int i, k, nb_oargs, nb_iargs, nb_cargs;
1988 const TCGOpDef *def;
1989 TCGOpcode c;
1990 int col = 0;
1991
1992 c = op->opc;
1993 def = &tcg_op_defs[c];
1994
1995 if (c == INDEX_op_insn_start) {
1996 nb_oargs = 0;
1997 col += qemu_log("\n ----");
1998
1999 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) {
2000 target_ulong a;
2001 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS
2002 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]);
2003 #else
2004 a = op->args[i];
2005 #endif
2006 col += qemu_log(" " TARGET_FMT_lx, a);
2007 }
2008 } else if (c == INDEX_op_call) {
2009 /* variable number of arguments */
2010 nb_oargs = TCGOP_CALLO(op);
2011 nb_iargs = TCGOP_CALLI(op);
2012 nb_cargs = def->nb_cargs;
2013
2014 /* function name, flags, out args */
2015 col += qemu_log(" %s %s,$0x%" TCG_PRIlx ",$%d", def->name,
2016 tcg_find_helper(s, op->args[nb_oargs + nb_iargs]),
2017 op->args[nb_oargs + nb_iargs + 1], nb_oargs);
2018 for (i = 0; i < nb_oargs; i++) {
2019 col += qemu_log(",%s", tcg_get_arg_str(s, buf, sizeof(buf),
2020 op->args[i]));
2021 }
2022 for (i = 0; i < nb_iargs; i++) {
2023 TCGArg arg = op->args[nb_oargs + i];
2024 const char *t = "<dummy>";
2025 if (arg != TCG_CALL_DUMMY_ARG) {
2026 t = tcg_get_arg_str(s, buf, sizeof(buf), arg);
2027 }
2028 col += qemu_log(",%s", t);
2029 }
2030 } else {
2031 col += qemu_log(" %s ", def->name);
2032
2033 nb_oargs = def->nb_oargs;
2034 nb_iargs = def->nb_iargs;
2035 nb_cargs = def->nb_cargs;
2036
2037 if (def->flags & TCG_OPF_VECTOR) {
2038 col += qemu_log("v%d,e%d,", 64 << TCGOP_VECL(op),
2039 8 << TCGOP_VECE(op));
2040 }
2041
2042 k = 0;
2043 for (i = 0; i < nb_oargs; i++) {
2044 if (k != 0) {
2045 col += qemu_log(",");
2046 }
2047 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf),
2048 op->args[k++]));
2049 }
2050 for (i = 0; i < nb_iargs; i++) {
2051 if (k != 0) {
2052 col += qemu_log(",");
2053 }
2054 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf),
2055 op->args[k++]));
2056 }
2057 switch (c) {
2058 case INDEX_op_brcond_i32:
2059 case INDEX_op_setcond_i32:
2060 case INDEX_op_movcond_i32:
2061 case INDEX_op_brcond2_i32:
2062 case INDEX_op_setcond2_i32:
2063 case INDEX_op_brcond_i64:
2064 case INDEX_op_setcond_i64:
2065 case INDEX_op_movcond_i64:
2066 case INDEX_op_cmp_vec:
2067 case INDEX_op_cmpsel_vec:
2068 if (op->args[k] < ARRAY_SIZE(cond_name)
2069 && cond_name[op->args[k]]) {
2070 col += qemu_log(",%s", cond_name[op->args[k++]]);
2071 } else {
2072 col += qemu_log(",$0x%" TCG_PRIlx, op->args[k++]);
2073 }
2074 i = 1;
2075 break;
2076 case INDEX_op_qemu_ld_i32:
2077 case INDEX_op_qemu_st_i32:
2078 case INDEX_op_qemu_ld_i64:
2079 case INDEX_op_qemu_st_i64:
2080 {
2081 TCGMemOpIdx oi = op->args[k++];
2082 MemOp op = get_memop(oi);
2083 unsigned ix = get_mmuidx(oi);
2084
2085 if (op & ~(MO_AMASK | MO_BSWAP | MO_SSIZE)) {
2086 col += qemu_log(",$0x%x,%u", op, ix);
2087 } else {
2088 const char *s_al, *s_op;
2089 s_al = alignment_name[(op & MO_AMASK) >> MO_ASHIFT];
2090 s_op = ldst_name[op & (MO_BSWAP | MO_SSIZE)];
2091 col += qemu_log(",%s%s,%u", s_al, s_op, ix);
2092 }
2093 i = 1;
2094 }
2095 break;
2096 default:
2097 i = 0;
2098 break;
2099 }
2100 switch (c) {
2101 case INDEX_op_set_label:
2102 case INDEX_op_br:
2103 case INDEX_op_brcond_i32:
2104 case INDEX_op_brcond_i64:
2105 case INDEX_op_brcond2_i32:
2106 col += qemu_log("%s$L%d", k ? "," : "",
2107 arg_label(op->args[k])->id);
2108 i++, k++;
2109 break;
2110 default:
2111 break;
2112 }
2113 for (; i < nb_cargs; i++, k++) {
2114 col += qemu_log("%s$0x%" TCG_PRIlx, k ? "," : "", op->args[k]);
2115 }
2116 }
2117
2118 if (have_prefs || op->life) {
2119
2120 QemuLogFile *logfile;
2121
2122 rcu_read_lock();
2123 logfile = atomic_rcu_read(&qemu_logfile);
2124 if (logfile) {
2125 for (; col < 40; ++col) {
2126 putc(' ', logfile->fd);
2127 }
2128 }
2129 rcu_read_unlock();
2130 }
2131
2132 if (op->life) {
2133 unsigned life = op->life;
2134
2135 if (life & (SYNC_ARG * 3)) {
2136 qemu_log(" sync:");
2137 for (i = 0; i < 2; ++i) {
2138 if (life & (SYNC_ARG << i)) {
2139 qemu_log(" %d", i);
2140 }
2141 }
2142 }
2143 life /= DEAD_ARG;
2144 if (life) {
2145 qemu_log(" dead:");
2146 for (i = 0; life; ++i, life >>= 1) {
2147 if (life & 1) {
2148 qemu_log(" %d", i);
2149 }
2150 }
2151 }
2152 }
2153
2154 if (have_prefs) {
2155 for (i = 0; i < nb_oargs; ++i) {
2156 TCGRegSet set = op->output_pref[i];
2157
2158 if (i == 0) {
2159 qemu_log(" pref=");
2160 } else {
2161 qemu_log(",");
2162 }
2163 if (set == 0) {
2164 qemu_log("none");
2165 } else if (set == MAKE_64BIT_MASK(0, TCG_TARGET_NB_REGS)) {
2166 qemu_log("all");
2167 #ifdef CONFIG_DEBUG_TCG
2168 } else if (tcg_regset_single(set)) {
2169 TCGReg reg = tcg_regset_first(set);
2170 qemu_log("%s", tcg_target_reg_names[reg]);
2171 #endif
2172 } else if (TCG_TARGET_NB_REGS <= 32) {
2173 qemu_log("%#x", (uint32_t)set);
2174 } else {
2175 qemu_log("%#" PRIx64, (uint64_t)set);
2176 }
2177 }
2178 }
2179
2180 qemu_log("\n");
2181 }
2182 }
2183
2184 /* we give more priority to constraints with less registers */
2185 static int get_constraint_priority(const TCGOpDef *def, int k)
2186 {
2187 const TCGArgConstraint *arg_ct;
2188
2189 int i, n;
2190 arg_ct = &def->args_ct[k];
2191 if (arg_ct->ct & TCG_CT_ALIAS) {
2192 /* an alias is equivalent to a single register */
2193 n = 1;
2194 } else {
2195 if (!(arg_ct->ct & TCG_CT_REG))
2196 return 0;
2197 n = 0;
2198 for(i = 0; i < TCG_TARGET_NB_REGS; i++) {
2199 if (tcg_regset_test_reg(arg_ct->u.regs, i))
2200 n++;
2201 }
2202 }
2203 return TCG_TARGET_NB_REGS - n + 1;
2204 }
2205
2206 /* sort from highest priority to lowest */
2207 static void sort_constraints(TCGOpDef *def, int start, int n)
2208 {
2209 int i, j, p1, p2, tmp;
2210
2211 for(i = 0; i < n; i++)
2212 def->sorted_args[start + i] = start + i;
2213 if (n <= 1)
2214 return;
2215 for(i = 0; i < n - 1; i++) {
2216 for(j = i + 1; j < n; j++) {
2217 p1 = get_constraint_priority(def, def->sorted_args[start + i]);
2218 p2 = get_constraint_priority(def, def->sorted_args[start + j]);
2219 if (p1 < p2) {
2220 tmp = def->sorted_args[start + i];
2221 def->sorted_args[start + i] = def->sorted_args[start + j];
2222 def->sorted_args[start + j] = tmp;
2223 }
2224 }
2225 }
2226 }
2227
2228 static void process_op_defs(TCGContext *s)
2229 {
2230 TCGOpcode op;
2231
2232 for (op = 0; op < NB_OPS; op++) {
2233 TCGOpDef *def = &tcg_op_defs[op];
2234 const TCGTargetOpDef *tdefs;
2235 TCGType type;
2236 int i, nb_args;
2237
2238 if (def->flags & TCG_OPF_NOT_PRESENT) {
2239 continue;
2240 }
2241
2242 nb_args = def->nb_iargs + def->nb_oargs;
2243 if (nb_args == 0) {
2244 continue;
2245 }
2246
2247 tdefs = tcg_target_op_def(op);
2248 /* Missing TCGTargetOpDef entry. */
2249 tcg_debug_assert(tdefs != NULL);
2250
2251 type = (def->flags & TCG_OPF_64BIT ? TCG_TYPE_I64 : TCG_TYPE_I32);
2252 for (i = 0; i < nb_args; i++) {
2253 const char *ct_str = tdefs->args_ct_str[i];
2254 /* Incomplete TCGTargetOpDef entry. */
2255 tcg_debug_assert(ct_str != NULL);
2256
2257 def->args_ct[i].u.regs = 0;
2258 def->args_ct[i].ct = 0;
2259 while (*ct_str != '\0') {
2260 switch(*ct_str) {
2261 case '0' ... '9':
2262 {
2263 int oarg = *ct_str - '0';
2264 tcg_debug_assert(ct_str == tdefs->args_ct_str[i]);
2265 tcg_debug_assert(oarg < def->nb_oargs);
2266 tcg_debug_assert(def->args_ct[oarg].ct & TCG_CT_REG);
2267 /* TCG_CT_ALIAS is for the output arguments.
2268 The input is tagged with TCG_CT_IALIAS. */
2269 def->args_ct[i] = def->args_ct[oarg];
2270 def->args_ct[oarg].ct |= TCG_CT_ALIAS;
2271 def->args_ct[oarg].alias_index = i;
2272 def->args_ct[i].ct |= TCG_CT_IALIAS;
2273 def->args_ct[i].alias_index = oarg;
2274 }
2275 ct_str++;
2276 break;
2277 case '&':
2278 def->args_ct[i].ct |= TCG_CT_NEWREG;
2279 ct_str++;
2280 break;
2281 case 'i':
2282 def->args_ct[i].ct |= TCG_CT_CONST;
2283 ct_str++;
2284 break;
2285 default:
2286 ct_str = target_parse_constraint(&def->args_ct[i],
2287 ct_str, type);
2288 /* Typo in TCGTargetOpDef constraint. */
2289 tcg_debug_assert(ct_str != NULL);
2290 }
2291 }
2292 }
2293
2294 /* TCGTargetOpDef entry with too much information? */
2295 tcg_debug_assert(i == TCG_MAX_OP_ARGS || tdefs->args_ct_str[i] == NULL);
2296
2297 /* sort the constraints (XXX: this is just an heuristic) */
2298 sort_constraints(def, 0, def->nb_oargs);
2299 sort_constraints(def, def->nb_oargs, def->nb_iargs);
2300 }
2301 }
2302
2303 void tcg_op_remove(TCGContext *s, TCGOp *op)
2304 {
2305 TCGLabel *label;
2306
2307 switch (op->opc) {
2308 case INDEX_op_br:
2309 label = arg_label(op->args[0]);
2310 label->refs--;
2311 break;
2312 case INDEX_op_brcond_i32:
2313 case INDEX_op_brcond_i64:
2314 label = arg_label(op->args[3]);
2315 label->refs--;
2316 break;
2317 case INDEX_op_brcond2_i32:
2318 label = arg_label(op->args[5]);
2319 label->refs--;
2320 break;
2321 default:
2322 break;
2323 }
2324
2325 QTAILQ_REMOVE(&s->ops, op, link);
2326 QTAILQ_INSERT_TAIL(&s->free_ops, op, link);
2327 s->nb_ops--;
2328
2329 #ifdef CONFIG_PROFILER
2330 atomic_set(&s->prof.del_op_count, s->prof.del_op_count + 1);
2331 #endif
2332 }
2333
2334 static TCGOp *tcg_op_alloc(TCGOpcode opc)
2335 {
2336 TCGContext *s = tcg_ctx;
2337 TCGOp *op;
2338
2339 if (likely(QTAILQ_EMPTY(&s->free_ops))) {
2340 op = tcg_malloc(sizeof(TCGOp));
2341 } else {
2342 op = QTAILQ_FIRST(&s->free_ops);
2343 QTAILQ_REMOVE(&s->free_ops, op, link);
2344 }
2345 memset(op, 0, offsetof(TCGOp, link));
2346 op->opc = opc;
2347 s->nb_ops++;
2348
2349 return op;
2350 }
2351
2352 TCGOp *tcg_emit_op(TCGOpcode opc)
2353 {
2354 TCGOp *op = tcg_op_alloc(opc);
2355 QTAILQ_INSERT_TAIL(&tcg_ctx->ops, op, link);
2356 return op;
2357 }
2358
2359 TCGOp *tcg_op_insert_before(TCGContext *s, TCGOp *old_op, TCGOpcode opc)
2360 {
2361 TCGOp *new_op = tcg_op_alloc(opc);
2362 QTAILQ_INSERT_BEFORE(old_op, new_op, link);
2363 return new_op;
2364 }
2365
2366 TCGOp *tcg_op_insert_after(TCGContext *s, TCGOp *old_op, TCGOpcode opc)
2367 {
2368 TCGOp *new_op = tcg_op_alloc(opc);
2369 QTAILQ_INSERT_AFTER(&s->ops, old_op, new_op, link);
2370 return new_op;
2371 }
2372
2373 /* Reachable analysis : remove unreachable code. */
2374 static void reachable_code_pass(TCGContext *s)
2375 {
2376 TCGOp *op, *op_next;
2377 bool dead = false;
2378
2379 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) {
2380 bool remove = dead;
2381 TCGLabel *label;
2382 int call_flags;
2383
2384 switch (op->opc) {
2385 case INDEX_op_set_label:
2386 label = arg_label(op->args[0]);
2387 if (label->refs == 0) {
2388 /*
2389 * While there is an occasional backward branch, virtually
2390 * all branches generated by the translators are forward.
2391 * Which means that generally we will have already removed
2392 * all references to the label that will be, and there is
2393 * little to be gained by iterating.
2394 */
2395 remove = true;
2396 } else {
2397 /* Once we see a label, insns become live again. */
2398 dead = false;
2399 remove = false;
2400
2401 /*
2402 * Optimization can fold conditional branches to unconditional.
2403 * If we find a label with one reference which is preceded by
2404 * an unconditional branch to it, remove both. This needed to
2405 * wait until the dead code in between them was removed.
2406 */
2407 if (label->refs == 1) {
2408 TCGOp *op_prev = QTAILQ_PREV(op, link);
2409 if (op_prev->opc == INDEX_op_br &&
2410 label == arg_label(op_prev->args[0])) {
2411 tcg_op_remove(s, op_prev);
2412 remove = true;
2413 }
2414 }
2415 }
2416 break;
2417
2418 case INDEX_op_br:
2419 case INDEX_op_exit_tb:
2420 case INDEX_op_goto_ptr:
2421 /* Unconditional branches; everything following is dead. */
2422 dead = true;
2423 break;
2424
2425 case INDEX_op_call:
2426 /* Notice noreturn helper calls, raising exceptions. */
2427 call_flags = op->args[TCGOP_CALLO(op) + TCGOP_CALLI(op) + 1];
2428 if (call_flags & TCG_CALL_NO_RETURN) {
2429 dead = true;
2430 }
2431 break;
2432
2433 case INDEX_op_insn_start:
2434 /* Never remove -- we need to keep these for unwind. */
2435 remove = false;
2436 break;
2437
2438 default:
2439 break;
2440 }
2441
2442 if (remove) {
2443 tcg_op_remove(s, op);
2444 }
2445 }
2446 }
2447
2448 #define TS_DEAD 1
2449 #define TS_MEM 2
2450
2451 #define IS_DEAD_ARG(n) (arg_life & (DEAD_ARG << (n)))
2452 #define NEED_SYNC_ARG(n) (arg_life & (SYNC_ARG << (n)))
2453
2454 /* For liveness_pass_1, the register preferences for a given temp. */
2455 static inline TCGRegSet *la_temp_pref(TCGTemp *ts)
2456 {
2457 return ts->state_ptr;
2458 }
2459
2460 /* For liveness_pass_1, reset the preferences for a given temp to the
2461 * maximal regset for its type.
2462 */
2463 static inline void la_reset_pref(TCGTemp *ts)
2464 {
2465 *la_temp_pref(ts)
2466 = (ts->state == TS_DEAD ? 0 : tcg_target_available_regs[ts->type]);
2467 }
2468
2469 /* liveness analysis: end of function: all temps are dead, and globals
2470 should be in memory. */
2471 static void la_func_end(TCGContext *s, int ng, int nt)
2472 {
2473 int i;
2474
2475 for (i = 0; i < ng; ++i) {
2476 s->temps[i].state = TS_DEAD | TS_MEM;
2477 la_reset_pref(&s->temps[i]);
2478 }
2479 for (i = ng; i < nt; ++i) {
2480 s->temps[i].state = TS_DEAD;
2481 la_reset_pref(&s->temps[i]);
2482 }
2483 }
2484
2485 /* liveness analysis: end of basic block: all temps are dead, globals
2486 and local temps should be in memory. */
2487 static void la_bb_end(TCGContext *s, int ng, int nt)
2488 {
2489 int i;
2490
2491 for (i = 0; i < ng; ++i) {
2492 s->temps[i].state = TS_DEAD | TS_MEM;
2493 la_reset_pref(&s->temps[i]);
2494 }
2495 for (i = ng; i < nt; ++i) {
2496 s->temps[i].state = (s->temps[i].temp_local
2497 ? TS_DEAD | TS_MEM
2498 : TS_DEAD);
2499 la_reset_pref(&s->temps[i]);
2500 }
2501 }
2502
2503 /* liveness analysis: sync globals back to memory. */
2504 static void la_global_sync(TCGContext *s, int ng)
2505 {
2506 int i;
2507
2508 for (i = 0; i < ng; ++i) {
2509 int state = s->temps[i].state;
2510 s->temps[i].state = state | TS_MEM;
2511 if (state == TS_DEAD) {
2512 /* If the global was previously dead, reset prefs. */
2513 la_reset_pref(&s->temps[i]);
2514 }
2515 }
2516 }
2517
2518 /* liveness analysis: sync globals back to memory and kill. */
2519 static void la_global_kill(TCGContext *s, int ng)
2520 {
2521 int i;
2522
2523 for (i = 0; i < ng; i++) {
2524 s->temps[i].state = TS_DEAD | TS_MEM;
2525 la_reset_pref(&s->temps[i]);
2526 }
2527 }
2528
2529 /* liveness analysis: note live globals crossing calls. */
2530 static void la_cross_call(TCGContext *s, int nt)
2531 {
2532 TCGRegSet mask = ~tcg_target_call_clobber_regs;
2533 int i;
2534
2535 for (i = 0; i < nt; i++) {
2536 TCGTemp *ts = &s->temps[i];
2537 if (!(ts->state & TS_DEAD)) {
2538 TCGRegSet *pset = la_temp_pref(ts);
2539 TCGRegSet set = *pset;
2540
2541 set &= mask;
2542 /* If the combination is not possible, restart. */
2543 if (set == 0) {
2544 set = tcg_target_available_regs[ts->type] & mask;
2545 }
2546 *pset = set;
2547 }
2548 }
2549 }
2550
2551 /* Liveness analysis : update the opc_arg_life array to tell if a
2552 given input arguments is dead. Instructions updating dead
2553 temporaries are removed. */
2554 static void liveness_pass_1(TCGContext *s)
2555 {
2556 int nb_globals = s->nb_globals;
2557 int nb_temps = s->nb_temps;
2558 TCGOp *op, *op_prev;
2559 TCGRegSet *prefs;
2560 int i;
2561
2562 prefs = tcg_malloc(sizeof(TCGRegSet) * nb_temps);
2563 for (i = 0; i < nb_temps; ++i) {
2564 s->temps[i].state_ptr = prefs + i;
2565 }
2566
2567 /* ??? Should be redundant with the exit_tb that ends the TB. */
2568 la_func_end(s, nb_globals, nb_temps);
2569
2570 QTAILQ_FOREACH_REVERSE_SAFE(op, &s->ops, link, op_prev) {
2571 int nb_iargs, nb_oargs;
2572 TCGOpcode opc_new, opc_new2;
2573 bool have_opc_new2;
2574 TCGLifeData arg_life = 0;
2575 TCGTemp *ts;
2576 TCGOpcode opc = op->opc;
2577 const TCGOpDef *def = &tcg_op_defs[opc];
2578
2579 switch (opc) {
2580 case INDEX_op_call:
2581 {
2582 int call_flags;
2583 int nb_call_regs;
2584
2585 nb_oargs = TCGOP_CALLO(op);
2586 nb_iargs = TCGOP_CALLI(op);
2587 call_flags = op->args[nb_oargs + nb_iargs + 1];
2588
2589 /* pure functions can be removed if their result is unused */
2590 if (call_flags & TCG_CALL_NO_SIDE_EFFECTS) {
2591 for (i = 0; i < nb_oargs; i++) {
2592 ts = arg_temp(op->args[i]);
2593 if (ts->state != TS_DEAD) {
2594 goto do_not_remove_call;
2595 }
2596 }
2597 goto do_remove;
2598 }
2599 do_not_remove_call:
2600
2601 /* Output args are dead. */
2602 for (i = 0; i < nb_oargs; i++) {
2603 ts = arg_temp(op->args[i]);
2604 if (ts->state & TS_DEAD) {
2605 arg_life |= DEAD_ARG << i;
2606 }
2607 if (ts->state & TS_MEM) {
2608 arg_life |= SYNC_ARG << i;
2609 }
2610 ts->state = TS_DEAD;
2611 la_reset_pref(ts);
2612
2613 /* Not used -- it will be tcg_target_call_oarg_regs[i]. */
2614 op->output_pref[i] = 0;
2615 }
2616
2617 if (!(call_flags & (TCG_CALL_NO_WRITE_GLOBALS |
2618 TCG_CALL_NO_READ_GLOBALS))) {
2619 la_global_kill(s, nb_globals);
2620 } else if (!(call_flags & TCG_CALL_NO_READ_GLOBALS)) {
2621 la_global_sync(s, nb_globals);
2622 }
2623
2624 /* Record arguments that die in this helper. */
2625 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
2626 ts = arg_temp(op->args[i]);
2627 if (ts && ts->state & TS_DEAD) {
2628 arg_life |= DEAD_ARG << i;
2629 }
2630 }
2631
2632 /* For all live registers, remove call-clobbered prefs. */
2633 la_cross_call(s, nb_temps);
2634
2635 nb_call_regs = ARRAY_SIZE(tcg_target_call_iarg_regs);
2636
2637 /* Input arguments are live for preceding opcodes. */
2638 for (i = 0; i < nb_iargs; i++) {
2639 ts = arg_temp(op->args[i + nb_oargs]);
2640 if (ts && ts->state & TS_DEAD) {
2641 /* For those arguments that die, and will be allocated
2642 * in registers, clear the register set for that arg,
2643 * to be filled in below. For args that will be on
2644 * the stack, reset to any available reg.
2645 */
2646 *la_temp_pref(ts)
2647 = (i < nb_call_regs ? 0 :
2648 tcg_target_available_regs[ts->type]);
2649 ts->state &= ~TS_DEAD;
2650 }
2651 }
2652
2653 /* For each input argument, add its input register to prefs.
2654 If a temp is used once, this produces a single set bit. */
2655 for (i = 0; i < MIN(nb_call_regs, nb_iargs); i++) {
2656 ts = arg_temp(op->args[i + nb_oargs]);
2657 if (ts) {
2658 tcg_regset_set_reg(*la_temp_pref(ts),
2659 tcg_target_call_iarg_regs[i]);
2660 }
2661 }
2662 }
2663 break;
2664 case INDEX_op_insn_start:
2665 break;
2666 case INDEX_op_discard:
2667 /* mark the temporary as dead */
2668 ts = arg_temp(op->args[0]);
2669 ts->state = TS_DEAD;
2670 la_reset_pref(ts);
2671 break;
2672
2673 case INDEX_op_add2_i32:
2674 opc_new = INDEX_op_add_i32;
2675 goto do_addsub2;
2676 case INDEX_op_sub2_i32:
2677 opc_new = INDEX_op_sub_i32;
2678 goto do_addsub2;
2679 case INDEX_op_add2_i64:
2680 opc_new = INDEX_op_add_i64;
2681 goto do_addsub2;
2682 case INDEX_op_sub2_i64:
2683 opc_new = INDEX_op_sub_i64;
2684 do_addsub2:
2685 nb_iargs = 4;
2686 nb_oargs = 2;
2687 /* Test if the high part of the operation is dead, but not
2688 the low part. The result can be optimized to a simple
2689 add or sub. This happens often for x86_64 guest when the
2690 cpu mode is set to 32 bit. */
2691 if (arg_temp(op->args[1])->state == TS_DEAD) {
2692 if (arg_temp(op->args[0])->state == TS_DEAD) {
2693 goto do_remove;
2694 }
2695 /* Replace the opcode and adjust the args in place,
2696 leaving 3 unused args at the end. */
2697 op->opc = opc = opc_new;
2698 op->args[1] = op->args[2];
2699 op->args[2] = op->args[4];
2700 /* Fall through and mark the single-word operation live. */
2701 nb_iargs = 2;
2702 nb_oargs = 1;
2703 }
2704 goto do_not_remove;
2705
2706 case INDEX_op_mulu2_i32:
2707 opc_new = INDEX_op_mul_i32;
2708 opc_new2 = INDEX_op_muluh_i32;
2709 have_opc_new2 = TCG_TARGET_HAS_muluh_i32;
2710 goto do_mul2;
2711 case INDEX_op_muls2_i32:
2712 opc_new = INDEX_op_mul_i32;
2713 opc_new2 = INDEX_op_mulsh_i32;
2714 have_opc_new2 = TCG_TARGET_HAS_mulsh_i32;
2715 goto do_mul2;
2716 case INDEX_op_mulu2_i64:
2717 opc_new = INDEX_op_mul_i64;
2718 opc_new2 = INDEX_op_muluh_i64;
2719 have_opc_new2 = TCG_TARGET_HAS_muluh_i64;
2720 goto do_mul2;
2721 case INDEX_op_muls2_i64:
2722 opc_new = INDEX_op_mul_i64;
2723 opc_new2 = INDEX_op_mulsh_i64;
2724 have_opc_new2 = TCG_TARGET_HAS_mulsh_i64;
2725 goto do_mul2;
2726 do_mul2:
2727 nb_iargs = 2;
2728 nb_oargs = 2;
2729 if (arg_temp(op->args[1])->state == TS_DEAD) {
2730 if (arg_temp(op->args[0])->state == TS_DEAD) {
2731 /* Both parts of the operation are dead. */
2732 goto do_remove;
2733 }
2734 /* The high part of the operation is dead; generate the low. */
2735 op->opc = opc = opc_new;
2736 op->args[1] = op->args[2];
2737 op->args[2] = op->args[3];
2738 } else if (arg_temp(op->args[0])->state == TS_DEAD && have_opc_new2) {
2739 /* The low part of the operation is dead; generate the high. */
2740 op->opc = opc = opc_new2;
2741 op->args[0] = op->args[1];
2742 op->args[1] = op->args[2];
2743 op->args[2] = op->args[3];
2744 } else {
2745 goto do_not_remove;
2746 }
2747 /* Mark the single-word operation live. */
2748 nb_oargs = 1;
2749 goto do_not_remove;
2750
2751 default:
2752 /* XXX: optimize by hardcoding common cases (e.g. triadic ops) */
2753 nb_iargs = def->nb_iargs;
2754 nb_oargs = def->nb_oargs;
2755
2756 /* Test if the operation can be removed because all
2757 its outputs are dead. We assume that nb_oargs == 0
2758 implies side effects */
2759 if (!(def->flags & TCG_OPF_SIDE_EFFECTS) && nb_oargs != 0) {
2760 for (i = 0; i < nb_oargs; i++) {
2761 if (arg_temp(op->args[i])->state != TS_DEAD) {
2762 goto do_not_remove;
2763 }
2764 }
2765 goto do_remove;
2766 }
2767 goto do_not_remove;
2768
2769 do_remove:
2770 tcg_op_remove(s, op);
2771 break;
2772
2773 do_not_remove:
2774 for (i = 0; i < nb_oargs; i++) {
2775 ts = arg_temp(op->args[i]);
2776
2777 /* Remember the preference of the uses that followed. */
2778 op->output_pref[i] = *la_temp_pref(ts);
2779
2780 /* Output args are dead. */
2781 if (ts->state & TS_DEAD) {
2782 arg_life |= DEAD_ARG << i;
2783 }
2784 if (ts->state & TS_MEM) {
2785 arg_life |= SYNC_ARG << i;
2786 }
2787 ts->state = TS_DEAD;
2788 la_reset_pref(ts);
2789 }
2790
2791 /* If end of basic block, update. */
2792 if (def->flags & TCG_OPF_BB_EXIT) {
2793 la_func_end(s, nb_globals, nb_temps);
2794 } else if (def->flags & TCG_OPF_BB_END) {
2795 la_bb_end(s, nb_globals, nb_temps);
2796 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) {
2797 la_global_sync(s, nb_globals);
2798 if (def->flags & TCG_OPF_CALL_CLOBBER) {
2799 la_cross_call(s, nb_temps);
2800 }
2801 }
2802
2803 /* Record arguments that die in this opcode. */
2804 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
2805 ts = arg_temp(op->args[i]);
2806 if (ts->state & TS_DEAD) {
2807 arg_life |= DEAD_ARG << i;
2808 }
2809 }
2810
2811 /* Input arguments are live for preceding opcodes. */
2812 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
2813 ts = arg_temp(op->args[i]);
2814 if (ts->state & TS_DEAD) {
2815 /* For operands that were dead, initially allow
2816 all regs for the type. */
2817 *la_temp_pref(ts) = tcg_target_available_regs[ts->type];
2818 ts->state &= ~TS_DEAD;
2819 }
2820 }
2821
2822 /* Incorporate constraints for this operand. */
2823 switch (opc) {
2824 case INDEX_op_mov_i32:
2825 case INDEX_op_mov_i64:
2826 /* Note that these are TCG_OPF_NOT_PRESENT and do not
2827 have proper constraints. That said, special case
2828 moves to propagate preferences backward. */
2829 if (IS_DEAD_ARG(1)) {
2830 *la_temp_pref(arg_temp(op->args[0]))
2831 = *la_temp_pref(arg_temp(op->args[1]));
2832 }
2833 break;
2834
2835 default:
2836 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
2837 const TCGArgConstraint *ct = &def->args_ct[i];
2838 TCGRegSet set, *pset;
2839
2840 ts = arg_temp(op->args[i]);
2841 pset = la_temp_pref(ts);
2842 set = *pset;
2843
2844 set &= ct->u.regs;
2845 if (ct->ct & TCG_CT_IALIAS) {
2846 set &= op->output_pref[ct->alias_index];
2847 }
2848 /* If the combination is not possible, restart. */
2849 if (set == 0) {
2850 set = ct->u.regs;
2851 }
2852 *pset = set;
2853 }
2854 break;
2855 }
2856 break;
2857 }
2858 op->life = arg_life;
2859 }
2860 }
2861
2862 /* Liveness analysis: Convert indirect regs to direct temporaries. */
2863 static bool liveness_pass_2(TCGContext *s)
2864 {
2865 int nb_globals = s->nb_globals;
2866 int nb_temps, i;
2867 bool changes = false;
2868 TCGOp *op, *op_next;
2869
2870 /* Create a temporary for each indirect global. */
2871 for (i = 0; i < nb_globals; ++i) {
2872 TCGTemp *its = &s->temps[i];
2873 if (its->indirect_reg) {
2874 TCGTemp *dts = tcg_temp_alloc(s);
2875 dts->type = its->type;
2876 dts->base_type = its->base_type;
2877 its->state_ptr = dts;
2878 } else {
2879 its->state_ptr = NULL;
2880 }
2881 /* All globals begin dead. */
2882 its->state = TS_DEAD;
2883 }
2884 for (nb_temps = s->nb_temps; i < nb_temps; ++i) {
2885 TCGTemp *its = &s->temps[i];
2886 its->state_ptr = NULL;
2887 its->state = TS_DEAD;
2888 }
2889
2890 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) {
2891 TCGOpcode opc = op->opc;
2892 const TCGOpDef *def = &tcg_op_defs[opc];
2893 TCGLifeData arg_life = op->life;
2894 int nb_iargs, nb_oargs, call_flags;
2895 TCGTemp *arg_ts, *dir_ts;
2896
2897 if (opc == INDEX_op_call) {
2898 nb_oargs = TCGOP_CALLO(op);
2899 nb_iargs = TCGOP_CALLI(op);
2900 call_flags = op->args[nb_oargs + nb_iargs + 1];
2901 } else {
2902 nb_iargs = def->nb_iargs;
2903 nb_oargs = def->nb_oargs;
2904
2905 /* Set flags similar to how calls require. */
2906 if (def->flags & TCG_OPF_BB_END) {
2907 /* Like writing globals: save_globals */
2908 call_flags = 0;
2909 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) {
2910 /* Like reading globals: sync_globals */
2911 call_flags = TCG_CALL_NO_WRITE_GLOBALS;
2912 } else {
2913 /* No effect on globals. */
2914 call_flags = (TCG_CALL_NO_READ_GLOBALS |
2915 TCG_CALL_NO_WRITE_GLOBALS);
2916 }
2917 }
2918
2919 /* Make sure that input arguments are available. */
2920 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
2921 arg_ts = arg_temp(op->args[i]);
2922 if (arg_ts) {
2923 dir_ts = arg_ts->state_ptr;
2924 if (dir_ts && arg_ts->state == TS_DEAD) {
2925 TCGOpcode lopc = (arg_ts->type == TCG_TYPE_I32
2926 ? INDEX_op_ld_i32
2927 : INDEX_op_ld_i64);
2928 TCGOp *lop = tcg_op_insert_before(s, op, lopc);
2929
2930 lop->args[0] = temp_arg(dir_ts);
2931 lop->args[1] = temp_arg(arg_ts->mem_base);
2932 lop->args[2] = arg_ts->mem_offset;
2933
2934 /* Loaded, but synced with memory. */
2935 arg_ts->state = TS_MEM;
2936 }
2937 }
2938 }
2939
2940 /* Perform input replacement, and mark inputs that became dead.
2941 No action is required except keeping temp_state up to date
2942 so that we reload when needed. */
2943 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
2944 arg_ts = arg_temp(op->args[i]);
2945 if (arg_ts) {
2946 dir_ts = arg_ts->state_ptr;
2947 if (dir_ts) {
2948 op->args[i] = temp_arg(dir_ts);
2949 changes = true;
2950 if (IS_DEAD_ARG(i)) {
2951 arg_ts->state = TS_DEAD;
2952 }
2953 }
2954 }
2955 }
2956
2957 /* Liveness analysis should ensure that the following are
2958 all correct, for call sites and basic block end points. */
2959 if (call_flags & TCG_CALL_NO_READ_GLOBALS) {
2960 /* Nothing to do */
2961 } else if (call_flags & TCG_CALL_NO_WRITE_GLOBALS) {
2962 for (i = 0; i < nb_globals; ++i) {
2963 /* Liveness should see that globals are synced back,
2964 that is, either TS_DEAD or TS_MEM. */
2965 arg_ts = &s->temps[i];
2966 tcg_debug_assert(arg_ts->state_ptr == 0
2967 || arg_ts->state != 0);
2968 }
2969 } else {
2970 for (i = 0; i < nb_globals; ++i) {
2971 /* Liveness should see that globals are saved back,
2972 that is, TS_DEAD, waiting to be reloaded. */
2973 arg_ts = &s->temps[i];
2974 tcg_debug_assert(arg_ts->state_ptr == 0
2975 || arg_ts->state == TS_DEAD);
2976 }
2977 }
2978
2979 /* Outputs become available. */
2980 for (i = 0; i < nb_oargs; i++) {
2981 arg_ts = arg_temp(op->args[i]);
2982 dir_ts = arg_ts->state_ptr;
2983 if (!dir_ts) {
2984 continue;
2985 }
2986 op->args[i] = temp_arg(dir_ts);
2987 changes = true;
2988
2989 /* The output is now live and modified. */
2990 arg_ts->state = 0;
2991
2992 /* Sync outputs upon their last write. */
2993 if (NEED_SYNC_ARG(i)) {
2994 TCGOpcode sopc = (arg_ts->type == TCG_TYPE_I32
2995 ? INDEX_op_st_i32
2996 : INDEX_op_st_i64);
2997 TCGOp *sop = tcg_op_insert_after(s, op, sopc);
2998
2999 sop->args[0] = temp_arg(dir_ts);
3000 sop->args[1] = temp_arg(arg_ts->mem_base);
3001 sop->args[2] = arg_ts->mem_offset;
3002
3003 arg_ts->state = TS_MEM;
3004 }
3005 /* Drop outputs that are dead. */
3006 if (IS_DEAD_ARG(i)) {
3007 arg_ts->state = TS_DEAD;
3008 }
3009 }
3010 }
3011
3012 return changes;
3013 }
3014
3015 #ifdef CONFIG_DEBUG_TCG
3016 static void dump_regs(TCGContext *s)
3017 {
3018 TCGTemp *ts;
3019 int i;
3020 char buf[64];
3021
3022 for(i = 0; i < s->nb_temps; i++) {
3023 ts = &s->temps[i];
3024 printf(" %10s: ", tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts));
3025 switch(ts->val_type) {
3026 case TEMP_VAL_REG:
3027 printf("%s", tcg_target_reg_names[ts->reg]);
3028 break;
3029 case TEMP_VAL_MEM:
3030 printf("%d(%s)", (int)ts->mem_offset,
3031 tcg_target_reg_names[ts->mem_base->reg]);
3032 break;
3033 case TEMP_VAL_CONST:
3034 printf("$0x%" TCG_PRIlx, ts->val);
3035 break;
3036 case TEMP_VAL_DEAD:
3037 printf("D");
3038 break;
3039 default:
3040 printf("???");
3041 break;
3042 }
3043 printf("\n");
3044 }
3045
3046 for(i = 0; i < TCG_TARGET_NB_REGS; i++) {
3047 if (s->reg_to_temp[i] != NULL) {
3048 printf("%s: %s\n",
3049 tcg_target_reg_names[i],
3050 tcg_get_arg_str_ptr(s, buf, sizeof(buf), s->reg_to_temp[i]));
3051 }
3052 }
3053 }
3054
3055 static void check_regs(TCGContext *s)
3056 {
3057 int reg;
3058 int k;
3059 TCGTemp *ts;
3060 char buf[64];
3061
3062 for (reg = 0; reg < TCG_TARGET_NB_REGS; reg++) {
3063 ts = s->reg_to_temp[reg];
3064 if (ts != NULL) {
3065 if (ts->val_type != TEMP_VAL_REG || ts->reg != reg) {
3066 printf("Inconsistency for register %s:\n",
3067 tcg_target_reg_names[reg]);
3068 goto fail;
3069 }
3070 }
3071 }
3072 for (k = 0; k < s->nb_temps; k++) {
3073 ts = &s->temps[k];
3074 if (ts->val_type == TEMP_VAL_REG && !ts->fixed_reg
3075 && s->reg_to_temp[ts->reg] != ts) {
3076 printf("Inconsistency for temp %s:\n",
3077 tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts));
3078 fail:
3079 printf("reg state:\n");
3080 dump_regs(s);
3081 tcg_abort();
3082 }
3083 }
3084 }
3085 #endif
3086
3087 static void temp_allocate_frame(TCGContext *s, TCGTemp *ts)
3088 {
3089 #if !(defined(__sparc__) && TCG_TARGET_REG_BITS == 64)
3090 /* Sparc64 stack is accessed with offset of 2047 */
3091 s->current_frame_offset = (s->current_frame_offset +
3092 (tcg_target_long)sizeof(tcg_target_long) - 1) &
3093 ~(sizeof(tcg_target_long) - 1);
3094 #endif
3095 if (s->current_frame_offset + (tcg_target_long)sizeof(tcg_target_long) >
3096 s->frame_end) {
3097 tcg_abort();
3098 }
3099 ts->mem_offset = s->current_frame_offset;
3100 ts->mem_base = s->frame_temp;
3101 ts->mem_allocated = 1;
3102 s->current_frame_offset += sizeof(tcg_target_long);
3103 }
3104
3105 static void temp_load(TCGContext *, TCGTemp *, TCGRegSet, TCGRegSet, TCGRegSet);
3106
3107 /* Mark a temporary as free or dead. If 'free_or_dead' is negative,
3108 mark it free; otherwise mark it dead. */
3109 static void temp_free_or_dead(TCGContext *s, TCGTemp *ts, int free_or_dead)
3110 {
3111 if (ts->fixed_reg) {
3112 return;
3113 }
3114 if (ts->val_type == TEMP_VAL_REG) {
3115 s->reg_to_temp[ts->reg] = NULL;
3116 }
3117 ts->val_type = (free_or_dead < 0
3118 || ts->temp_local
3119 || ts->temp_global
3120 ? TEMP_VAL_MEM : TEMP_VAL_DEAD);
3121 }
3122
3123 /* Mark a temporary as dead. */
3124 static inline void temp_dead(TCGContext *s, TCGTemp *ts)
3125 {
3126 temp_free_or_dead(s, ts, 1);
3127 }
3128
3129 /* Sync a temporary to memory. 'allocated_regs' is used in case a temporary
3130 registers needs to be allocated to store a constant. If 'free_or_dead'
3131 is non-zero, subsequently release the temporary; if it is positive, the
3132 temp is dead; if it is negative, the temp is free. */
3133 static void temp_sync(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs,
3134 TCGRegSet preferred_regs, int free_or_dead)
3135 {
3136 if (ts->fixed_reg) {
3137 return;
3138 }
3139 if (!ts->mem_coherent) {
3140 if (!ts->mem_allocated) {
3141 temp_allocate_frame(s, ts);
3142 }
3143 switch (ts->val_type) {
3144 case TEMP_VAL_CONST:
3145 /* If we're going to free the temp immediately, then we won't
3146 require it later in a register, so attempt to store the
3147 constant to memory directly. */
3148 if (free_or_dead
3149 && tcg_out_sti(s, ts->type, ts->val,
3150 ts->mem_base->reg, ts->mem_offset)) {
3151 break;
3152 }
3153 temp_load(s, ts, tcg_target_available_regs[ts->type],
3154 allocated_regs, preferred_regs);
3155 /* fallthrough */
3156
3157 case TEMP_VAL_REG:
3158 tcg_out_st(s, ts->type, ts->reg,
3159 ts->mem_base->reg, ts->mem_offset);
3160 break;
3161
3162 case TEMP_VAL_MEM:
3163 break;
3164
3165 case TEMP_VAL_DEAD:
3166 default:
3167 tcg_abort();
3168 }
3169 ts->mem_coherent = 1;
3170 }
3171 if (free_or_dead) {
3172 temp_free_or_dead(s, ts, free_or_dead);
3173 }
3174 }
3175
3176 /* free register 'reg' by spilling the corresponding temporary if necessary */
3177 static void tcg_reg_free(TCGContext *s, TCGReg reg, TCGRegSet allocated_regs)
3178 {
3179 TCGTemp *ts = s->reg_to_temp[reg];
3180 if (ts != NULL) {
3181 temp_sync(s, ts, allocated_regs, 0, -1);
3182 }
3183 }
3184
3185 /**
3186 * tcg_reg_alloc:
3187 * @required_regs: Set of registers in which we must allocate.
3188 * @allocated_regs: Set of registers which must be avoided.
3189 * @preferred_regs: Set of registers we should prefer.
3190 * @rev: True if we search the registers in "indirect" order.
3191 *
3192 * The allocated register must be in @required_regs & ~@allocated_regs,
3193 * but if we can put it in @preferred_regs we may save a move later.
3194 */
3195 static TCGReg tcg_reg_alloc(TCGContext *s, TCGRegSet required_regs,
3196 TCGRegSet allocated_regs,
3197 TCGRegSet preferred_regs, bool rev)
3198 {
3199 int i, j, f, n = ARRAY_SIZE(tcg_target_reg_alloc_order);
3200 TCGRegSet reg_ct[2];
3201 const int *order;
3202
3203 reg_ct[1] = required_regs & ~allocated_regs;
3204 tcg_debug_assert(reg_ct[1] != 0);
3205 reg_ct[0] = reg_ct[1] & preferred_regs;
3206
3207 /* Skip the preferred_regs option if it cannot be satisfied,
3208 or if the preference made no difference. */
3209 f = reg_ct[0] == 0 || reg_ct[0] == reg_ct[1];
3210
3211 order = rev ? indirect_reg_alloc_order : tcg_target_reg_alloc_order;
3212
3213 /* Try free registers, preferences first. */
3214 for (j = f; j < 2; j++) {
3215 TCGRegSet set = reg_ct[j];
3216
3217 if (tcg_regset_single(set)) {
3218 /* One register in the set. */
3219 TCGReg reg = tcg_regset_first(set);
3220 if (s->reg_to_temp[reg] == NULL) {
3221 return reg;
3222 }
3223 } else {
3224 for (i = 0; i < n; i++) {
3225 TCGReg reg = order[i];
3226 if (s->reg_to_temp[reg] == NULL &&
3227 tcg_regset_test_reg(set, reg)) {
3228 return reg;
3229 }
3230 }
3231 }
3232 }
3233
3234 /* We must spill something. */
3235 for (j = f; j < 2; j++) {
3236 TCGRegSet set = reg_ct[j];
3237
3238 if (tcg_regset_single(set)) {
3239 /* One register in the set. */
3240 TCGReg reg = tcg_regset_first(set);
3241 tcg_reg_free(s, reg, allocated_regs);
3242 return reg;
3243 } else {
3244 for (i = 0; i < n; i++) {
3245 TCGReg reg = order[i];
3246 if (tcg_regset_test_reg(set, reg)) {
3247 tcg_reg_free(s, reg, allocated_regs);
3248 return reg;
3249 }
3250 }
3251 }
3252 }
3253
3254 tcg_abort();
3255 }
3256
3257 /* Make sure the temporary is in a register. If needed, allocate the register
3258 from DESIRED while avoiding ALLOCATED. */
3259 static void temp_load(TCGContext *s, TCGTemp *ts, TCGRegSet desired_regs,
3260 TCGRegSet allocated_regs, TCGRegSet preferred_regs)
3261 {
3262 TCGReg reg;
3263
3264 switch (ts->val_type) {
3265 case TEMP_VAL_REG:
3266 return;
3267 case TEMP_VAL_CONST:
3268 reg = tcg_reg_alloc(s, desired_regs, allocated_regs,
3269 preferred_regs, ts->indirect_base);
3270 tcg_out_movi(s, ts->type, reg, ts->val);
3271 ts->mem_coherent = 0;
3272 break;
3273 case TEMP_VAL_MEM:
3274 reg = tcg_reg_alloc(s, desired_regs, allocated_regs,
3275 preferred_regs, ts->indirect_base);
3276 tcg_out_ld(s, ts->type, reg, ts->mem_base->reg, ts->mem_offset);
3277 ts->mem_coherent = 1;
3278 break;
3279 case TEMP_VAL_DEAD:
3280 default:
3281 tcg_abort();
3282 }
3283 ts->reg = reg;
3284 ts->val_type = TEMP_VAL_REG;
3285 s->reg_to_temp[reg] = ts;
3286 }
3287
3288 /* Save a temporary to memory. 'allocated_regs' is used in case a
3289 temporary registers needs to be allocated to store a constant. */
3290 static void temp_save(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs)
3291 {
3292 /* The liveness analysis already ensures that globals are back
3293 in memory. Keep an tcg_debug_assert for safety. */
3294 tcg_debug_assert(ts->val_type == TEMP_VAL_MEM || ts->fixed_reg);
3295 }
3296
3297 /* save globals to their canonical location and assume they can be
3298 modified be the following code. 'allocated_regs' is used in case a
3299 temporary registers needs to be allocated to store a constant. */
3300 static void save_globals(TCGContext *s, TCGRegSet allocated_regs)
3301 {
3302 int i, n;
3303
3304 for (i = 0, n = s->nb_globals; i < n; i++) {
3305 temp_save(s, &s->temps[i], allocated_regs);
3306 }
3307 }
3308
3309 /* sync globals to their canonical location and assume they can be
3310 read by the following code. 'allocated_regs' is used in case a
3311 temporary registers needs to be allocated to store a constant. */
3312 static void sync_globals(TCGContext *s, TCGRegSet allocated_regs)
3313 {
3314 int i, n;
3315
3316 for (i = 0, n = s->nb_globals; i < n; i++) {
3317 TCGTemp *ts = &s->temps[i];
3318 tcg_debug_assert(ts->val_type != TEMP_VAL_REG
3319 || ts->fixed_reg
3320 || ts->mem_coherent);
3321 }
3322 }
3323
3324 /* at the end of a basic block, we assume all temporaries are dead and
3325 all globals are stored at their canonical location. */
3326 static void tcg_reg_alloc_bb_end(TCGContext *s, TCGRegSet allocated_regs)
3327 {
3328 int i;
3329
3330 for (i = s->nb_globals; i < s->nb_temps; i++) {
3331 TCGTemp *ts = &s->temps[i];
3332 if (ts->temp_local) {
3333 temp_save(s, ts, allocated_regs);
3334 } else {
3335 /* The liveness analysis already ensures that temps are dead.
3336 Keep an tcg_debug_assert for safety. */
3337 tcg_debug_assert(ts->val_type == TEMP_VAL_DEAD);
3338 }
3339 }
3340
3341 save_globals(s, allocated_regs);
3342 }
3343
3344 /*
3345 * Specialized code generation for INDEX_op_movi_*.
3346 */
3347 static void tcg_reg_alloc_do_movi(TCGContext *s, TCGTemp *ots,
3348 tcg_target_ulong val, TCGLifeData arg_life,
3349 TCGRegSet preferred_regs)
3350 {
3351 /* ENV should not be modified. */
3352 tcg_debug_assert(!ots->fixed_reg);
3353
3354 /* The movi is not explicitly generated here. */
3355 if (ots->val_type == TEMP_VAL_REG) {
3356 s->reg_to_temp[ots->reg] = NULL;
3357 }
3358 ots->val_type = TEMP_VAL_CONST;
3359 ots->val = val;
3360 ots->mem_coherent = 0;
3361 if (NEED_SYNC_ARG(0)) {
3362 temp_sync(s, ots, s->reserved_regs, preferred_regs, IS_DEAD_ARG(0));
3363 } else if (IS_DEAD_ARG(0)) {
3364 temp_dead(s, ots);
3365 }
3366 }
3367
3368 static void tcg_reg_alloc_movi(TCGContext *s, const TCGOp *op)
3369 {
3370 TCGTemp *ots = arg_temp(op->args[0]);
3371 tcg_target_ulong val = op->args[1];
3372
3373 tcg_reg_alloc_do_movi(s, ots, val, op->life, op->output_pref[0]);
3374 }
3375
3376 /*
3377 * Specialized code generation for INDEX_op_mov_*.
3378 */
3379 static void tcg_reg_alloc_mov(TCGContext *s, const TCGOp *op)
3380 {
3381 const TCGLifeData arg_life = op->life;
3382 TCGRegSet allocated_regs, preferred_regs;
3383 TCGTemp *ts, *ots;
3384 TCGType otype, itype;
3385
3386 allocated_regs = s->reserved_regs;
3387 preferred_regs = op->output_pref[0];
3388 ots = arg_temp(op->args[0]);
3389 ts = arg_temp(op->args[1]);
3390
3391 /* ENV should not be modified. */
3392 tcg_debug_assert(!ots->fixed_reg);
3393
3394 /* Note that otype != itype for no-op truncation. */
3395 otype = ots->type;
3396 itype = ts->type;
3397
3398 if (ts->val_type == TEMP_VAL_CONST) {
3399 /* propagate constant or generate sti */
3400 tcg_target_ulong val = ts->val;
3401 if (IS_DEAD_ARG(1)) {
3402 temp_dead(s, ts);
3403 }
3404 tcg_reg_alloc_do_movi(s, ots, val, arg_life, preferred_regs);
3405 return;
3406 }
3407
3408 /* If the source value is in memory we're going to be forced
3409 to have it in a register in order to perform the copy. Copy
3410 the SOURCE value into its own register first, that way we
3411 don't have to reload SOURCE the next time it is used. */
3412 if (ts->val_type == TEMP_VAL_MEM) {
3413 temp_load(s, ts, tcg_target_available_regs[itype],
3414 allocated_regs, preferred_regs);
3415 }
3416
3417 tcg_debug_assert(ts->val_type == TEMP_VAL_REG);
3418 if (IS_DEAD_ARG(0)) {
3419 /* mov to a non-saved dead register makes no sense (even with
3420 liveness analysis disabled). */
3421 tcg_debug_assert(NEED_SYNC_ARG(0));
3422 if (!ots->mem_allocated) {
3423 temp_allocate_frame(s, ots);
3424 }
3425 tcg_out_st(s, otype, ts->reg, ots->mem_base->reg, ots->mem_offset);
3426 if (IS_DEAD_ARG(1)) {
3427 temp_dead(s, ts);
3428 }
3429 temp_dead(s, ots);
3430 } else {
3431 if (IS_DEAD_ARG(1) && !ts->fixed_reg) {
3432 /* the mov can be suppressed */
3433 if (ots->val_type == TEMP_VAL_REG) {
3434 s->reg_to_temp[ots->reg] = NULL;
3435 }
3436 ots->reg = ts->reg;
3437 temp_dead(s, ts);
3438 } else {
3439 if (ots->val_type != TEMP_VAL_REG) {
3440 /* When allocating a new register, make sure to not spill the
3441 input one. */
3442 tcg_regset_set_reg(allocated_regs, ts->reg);
3443 ots->reg = tcg_reg_alloc(s, tcg_target_available_regs[otype],
3444 allocated_regs, preferred_regs,
3445 ots->indirect_base);
3446 }
3447 if (!tcg_out_mov(s, otype, ots->reg, ts->reg)) {
3448 /*
3449 * Cross register class move not supported.
3450 * Store the source register into the destination slot
3451 * and leave the destination temp as TEMP_VAL_MEM.
3452 */
3453 assert(!ots->fixed_reg);
3454 if (!ts->mem_allocated) {
3455 temp_allocate_frame(s, ots);
3456 }
3457 tcg_out_st(s, ts->type, ts->reg,
3458 ots->mem_base->reg, ots->mem_offset);
3459 ots->mem_coherent = 1;
3460 temp_free_or_dead(s, ots, -1);
3461 return;
3462 }
3463 }
3464 ots->val_type = TEMP_VAL_REG;
3465 ots->mem_coherent = 0;
3466 s->reg_to_temp[ots->reg] = ots;
3467 if (NEED_SYNC_ARG(0)) {
3468 temp_sync(s, ots, allocated_regs, 0, 0);
3469 }
3470 }
3471 }
3472
3473 /*
3474 * Specialized code generation for INDEX_op_dup_vec.
3475 */
3476 static void tcg_reg_alloc_dup(TCGContext *s, const TCGOp *op)
3477 {
3478 const TCGLifeData arg_life = op->life;
3479 TCGRegSet dup_out_regs, dup_in_regs;
3480 TCGTemp *its, *ots;
3481 TCGType itype, vtype;
3482 intptr_t endian_fixup;
3483 unsigned vece;
3484 bool ok;
3485
3486 ots = arg_temp(op->args[0]);
3487 its = arg_temp(op->args[1]);
3488
3489 /* ENV should not be modified. */
3490 tcg_debug_assert(!ots->fixed_reg);
3491
3492 itype = its->type;
3493 vece = TCGOP_VECE(op);
3494 vtype = TCGOP_VECL(op) + TCG_TYPE_V64;
3495
3496 if (its->val_type == TEMP_VAL_CONST) {
3497 /* Propagate constant via movi -> dupi. */
3498 tcg_target_ulong val = its->val;
3499 if (IS_DEAD_ARG(1)) {
3500 temp_dead(s, its);
3501 }
3502 tcg_reg_alloc_do_movi(s, ots, val, arg_life, op->output_pref[0]);
3503 return;
3504 }
3505
3506 dup_out_regs = tcg_op_defs[INDEX_op_dup_vec].args_ct[0].u.regs;
3507 dup_in_regs = tcg_op_defs[INDEX_op_dup_vec].args_ct[1].u.regs;
3508
3509 /* Allocate the output register now. */
3510 if (ots->val_type != TEMP_VAL_REG) {
3511 TCGRegSet allocated_regs = s->reserved_regs;
3512
3513 if (!IS_DEAD_ARG(1) && its->val_type == TEMP_VAL_REG) {
3514 /* Make sure to not spill the input register. */
3515 tcg_regset_set_reg(allocated_regs, its->reg);
3516 }
3517 ots->reg = tcg_reg_alloc(s, dup_out_regs, allocated_regs,
3518 op->output_pref[0], ots->indirect_base);
3519 ots->val_type = TEMP_VAL_REG;
3520 ots->mem_coherent = 0;
3521 s->reg_to_temp[ots->reg] = ots;
3522 }
3523
3524 switch (its->val_type) {
3525 case TEMP_VAL_REG:
3526 /*
3527 * The dup constriaints must be broad, covering all possible VECE.
3528 * However, tcg_op_dup_vec() gets to see the VECE and we allow it
3529 * to fail, indicating that extra moves are required for that case.
3530 */
3531 if (tcg_regset_test_reg(dup_in_regs, its->reg)) {
3532 if (tcg_out_dup_vec(s, vtype, vece, ots->reg, its->reg)) {
3533 goto done;
3534 }
3535 /* Try again from memory or a vector input register. */
3536 }
3537 if (!its->mem_coherent) {
3538 /*
3539 * The input register is not synced, and so an extra store
3540 * would be required to use memory. Attempt an integer-vector
3541 * register move first. We do not have a TCGRegSet for this.
3542 */
3543 if (tcg_out_mov(s, itype, ots->reg, its->reg)) {
3544 break;
3545 }
3546 /* Sync the temp back to its slot and load from there. */
3547 temp_sync(s, its, s->reserved_regs, 0, 0);
3548 }
3549 /* fall through */
3550
3551 case TEMP_VAL_MEM:
3552 #ifdef HOST_WORDS_BIGENDIAN
3553 endian_fixup = itype == TCG_TYPE_I32 ? 4 : 8;
3554 endian_fixup -= 1 << vece;
3555 #else
3556 endian_fixup = 0;
3557 #endif
3558 if (tcg_out_dupm_vec(s, vtype, vece, ots->reg, its->mem_base->reg,
3559 its->mem_offset + endian_fixup)) {
3560 goto done;
3561 }
3562 tcg_out_ld(s, itype, ots->reg, its->mem_base->reg, its->mem_offset);
3563 break;
3564
3565 default:
3566 g_assert_not_reached();
3567 }
3568
3569 /* We now have a vector input register, so dup must succeed. */
3570 ok = tcg_out_dup_vec(s, vtype, vece, ots->reg, ots->reg);
3571 tcg_debug_assert(ok);
3572
3573 done:
3574 if (IS_DEAD_ARG(1)) {
3575 temp_dead(s, its);
3576 }
3577 if (NEED_SYNC_ARG(0)) {
3578 temp_sync(s, ots, s->reserved_regs, 0, 0);
3579 }
3580 if (IS_DEAD_ARG(0)) {
3581 temp_dead(s, ots);
3582 }
3583 }
3584
3585 static void tcg_reg_alloc_op(TCGContext *s, const TCGOp *op)
3586 {
3587 const TCGLifeData arg_life = op->life;
3588 const TCGOpDef * const def = &tcg_op_defs[op->opc];
3589 TCGRegSet i_allocated_regs;
3590 TCGRegSet o_allocated_regs;
3591 int i, k, nb_iargs, nb_oargs;
3592 TCGReg reg;
3593 TCGArg arg;
3594 const TCGArgConstraint *arg_ct;
3595 TCGTemp *ts;
3596 TCGArg new_args[TCG_MAX_OP_ARGS];
3597 int const_args[TCG_MAX_OP_ARGS];
3598
3599 nb_oargs = def->nb_oargs;
3600 nb_iargs = def->nb_iargs;
3601
3602 /* copy constants */
3603 memcpy(new_args + nb_oargs + nb_iargs,
3604 op->args + nb_oargs + nb_iargs,
3605 sizeof(TCGArg) * def->nb_cargs);
3606
3607 i_allocated_regs = s->reserved_regs;
3608 o_allocated_regs = s->reserved_regs;
3609
3610 /* satisfy input constraints */
3611 for (k = 0; k < nb_iargs; k++) {
3612 TCGRegSet i_preferred_regs, o_preferred_regs;
3613
3614 i = def->sorted_args[nb_oargs + k];
3615 arg = op->args[i];
3616 arg_ct = &def->args_ct[i];
3617 ts = arg_temp(arg);
3618
3619 if (ts->val_type == TEMP_VAL_CONST
3620 && tcg_target_const_match(ts->val, ts->type, arg_ct)) {
3621 /* constant is OK for instruction */
3622 const_args[i] = 1;
3623 new_args[i] = ts->val;
3624 continue;
3625 }
3626
3627 i_preferred_regs = o_preferred_regs = 0;
3628 if (arg_ct->ct & TCG_CT_IALIAS) {
3629 o_preferred_regs = op->output_pref[arg_ct->alias_index];
3630 if (ts->fixed_reg) {
3631 /* if fixed register, we must allocate a new register
3632 if the alias is not the same register */
3633 if (arg != op->args[arg_ct->alias_index]) {
3634 goto allocate_in_reg;
3635 }
3636 } else {
3637 /* if the input is aliased to an output and if it is
3638 not dead after the instruction, we must allocate
3639 a new register and move it */
3640 if (!IS_DEAD_ARG(i)) {
3641 goto allocate_in_reg;
3642 }
3643
3644 /* check if the current register has already been allocated
3645 for another input aliased to an output */
3646 if (ts->val_type == TEMP_VAL_REG) {
3647 int k2, i2;
3648 reg = ts->reg;
3649 for (k2 = 0 ; k2 < k ; k2++) {
3650 i2 = def->sorted_args[nb_oargs + k2];
3651 if ((def->args_ct[i2].ct & TCG_CT_IALIAS) &&
3652 reg == new_args[i2]) {
3653 goto allocate_in_reg;
3654 }
3655 }
3656 }
3657 i_preferred_regs = o_preferred_regs;
3658 }
3659 }
3660
3661 temp_load(s, ts, arg_ct->u.regs, i_allocated_regs, i_preferred_regs);
3662 reg = ts->reg;
3663
3664 if (tcg_regset_test_reg(arg_ct->u.regs, reg)) {
3665 /* nothing to do : the constraint is satisfied */
3666 } else {
3667 allocate_in_reg:
3668 /* allocate a new register matching the constraint
3669 and move the temporary register into it */
3670 temp_load(s, ts, tcg_target_available_regs[ts->type],
3671 i_allocated_regs, 0);
3672 reg = tcg_reg_alloc(s, arg_ct->u.regs, i_allocated_regs,
3673 o_preferred_regs, ts->indirect_base);
3674 if (!tcg_out_mov(s, ts->type, reg, ts->reg)) {
3675 /*
3676 * Cross register class move not supported. Sync the
3677 * temp back to its slot and load from there.
3678 */
3679 temp_sync(s, ts, i_allocated_regs, 0, 0);
3680 tcg_out_ld(s, ts->type, reg,
3681 ts->mem_base->reg, ts->mem_offset);
3682 }
3683 }
3684 new_args[i] = reg;
3685 const_args[i] = 0;
3686 tcg_regset_set_reg(i_allocated_regs, reg);
3687 }
3688
3689 /* mark dead temporaries and free the associated registers */
3690 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
3691 if (IS_DEAD_ARG(i)) {
3692 temp_dead(s, arg_temp(op->args[i]));
3693 }
3694 }
3695
3696 if (def->flags & TCG_OPF_BB_END) {
3697 tcg_reg_alloc_bb_end(s, i_allocated_regs);
3698 } else {
3699 if (def->flags & TCG_OPF_CALL_CLOBBER) {
3700 /* XXX: permit generic clobber register list ? */
3701 for (i = 0; i < TCG_TARGET_NB_REGS; i++) {
3702 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) {
3703 tcg_reg_free(s, i, i_allocated_regs);
3704 }
3705 }
3706 }
3707 if (def->flags & TCG_OPF_SIDE_EFFECTS) {
3708 /* sync globals if the op has side effects and might trigger
3709 an exception. */
3710 sync_globals(s, i_allocated_regs);
3711 }
3712
3713 /* satisfy the output constraints */
3714 for(k = 0; k < nb_oargs; k++) {
3715 i = def->sorted_args[k];
3716 arg = op->args[i];
3717 arg_ct = &def->args_ct[i];
3718 ts = arg_temp(arg);
3719
3720 /* ENV should not be modified. */
3721 tcg_debug_assert(!ts->fixed_reg);
3722
3723 if ((arg_ct->ct & TCG_CT_ALIAS)
3724 && !const_args[arg_ct->alias_index]) {
3725 reg = new_args[arg_ct->alias_index];
3726 } else if (arg_ct->ct & TCG_CT_NEWREG) {
3727 reg = tcg_reg_alloc(s, arg_ct->u.regs,
3728 i_allocated_regs | o_allocated_regs,
3729 op->output_pref[k], ts->indirect_base);
3730 } else {
3731 reg = tcg_reg_alloc(s, arg_ct->u.regs, o_allocated_regs,
3732 op->output_pref[k], ts->indirect_base);
3733 }
3734 tcg_regset_set_reg(o_allocated_regs, reg);
3735 if (ts->val_type == TEMP_VAL_REG) {
3736 s->reg_to_temp[ts->reg] = NULL;
3737 }
3738 ts->val_type = TEMP_VAL_REG;
3739 ts->reg = reg;
3740 /*
3741 * Temp value is modified, so the value kept in memory is
3742 * potentially not the same.
3743 */
3744 ts->mem_coherent = 0;
3745 s->reg_to_temp[reg] = ts;
3746 new_args[i] = reg;
3747 }
3748 }
3749
3750 /* emit instruction */
3751 if (def->flags & TCG_OPF_VECTOR) {
3752 tcg_out_vec_op(s, op->opc, TCGOP_VECL(op), TCGOP_VECE(op),
3753 new_args, const_args);
3754 } else {
3755 tcg_out_op(s, op->opc, new_args, const_args);
3756 }
3757
3758 /* move the outputs in the correct register if needed */
3759 for(i = 0; i < nb_oargs; i++) {
3760 ts = arg_temp(op->args[i]);
3761
3762 /* ENV should not be modified. */
3763 tcg_debug_assert(!ts->fixed_reg);
3764
3765 if (NEED_SYNC_ARG(i)) {
3766 temp_sync(s, ts, o_allocated_regs, 0, IS_DEAD_ARG(i));
3767 } else if (IS_DEAD_ARG(i)) {
3768 temp_dead(s, ts);
3769 }
3770 }
3771 }
3772
3773 #ifdef TCG_TARGET_STACK_GROWSUP
3774 #define STACK_DIR(x) (-(x))
3775 #else
3776 #define STACK_DIR(x) (x)
3777 #endif
3778
3779 static void tcg_reg_alloc_call(TCGContext *s, TCGOp *op)
3780 {
3781 const int nb_oargs = TCGOP_CALLO(op);
3782 const int nb_iargs = TCGOP_CALLI(op);
3783 const TCGLifeData arg_life = op->life;
3784 int flags, nb_regs, i;
3785 TCGReg reg;
3786 TCGArg arg;
3787 TCGTemp *ts;
3788 intptr_t stack_offset;
3789 size_t call_stack_size;
3790 tcg_insn_unit *func_addr;
3791 int allocate_args;
3792 TCGRegSet allocated_regs;
3793
3794 func_addr = (tcg_insn_unit *)(intptr_t)op->args[nb_oargs + nb_iargs];
3795 flags = op->args[nb_oargs + nb_iargs + 1];
3796
3797 nb_regs = ARRAY_SIZE(tcg_target_call_iarg_regs);
3798 if (nb_regs > nb_iargs) {
3799 nb_regs = nb_iargs;
3800 }
3801
3802 /* assign stack slots first */
3803 call_stack_size = (nb_iargs - nb_regs) * sizeof(tcg_target_long);
3804 call_stack_size = (call_stack_size + TCG_TARGET_STACK_ALIGN - 1) &
3805 ~(TCG_TARGET_STACK_ALIGN - 1);
3806 allocate_args = (call_stack_size > TCG_STATIC_CALL_ARGS_SIZE);
3807 if (allocate_args) {
3808 /* XXX: if more than TCG_STATIC_CALL_ARGS_SIZE is needed,
3809 preallocate call stack */
3810 tcg_abort();
3811 }
3812
3813 stack_offset = TCG_TARGET_CALL_STACK_OFFSET;
3814 for (i = nb_regs; i < nb_iargs; i++) {
3815 arg = op->args[nb_oargs + i];
3816 #ifdef TCG_TARGET_STACK_GROWSUP
3817 stack_offset -= sizeof(tcg_target_long);
3818 #endif
3819 if (arg != TCG_CALL_DUMMY_ARG) {
3820 ts = arg_temp(arg);
3821 temp_load(s, ts, tcg_target_available_regs[ts->type],
3822 s->reserved_regs, 0);
3823 tcg_out_st(s, ts->type, ts->reg, TCG_REG_CALL_STACK, stack_offset);
3824 }
3825 #ifndef TCG_TARGET_STACK_GROWSUP
3826 stack_offset += sizeof(tcg_target_long);
3827 #endif
3828 }
3829
3830 /* assign input registers */
3831 allocated_regs = s->reserved_regs;
3832 for (i = 0; i < nb_regs; i++) {
3833 arg = op->args[nb_oargs + i];
3834 if (arg != TCG_CALL_DUMMY_ARG) {
3835 ts = arg_temp(arg);
3836 reg = tcg_target_call_iarg_regs[i];
3837
3838 if (ts->val_type == TEMP_VAL_REG) {
3839 if (ts->reg != reg) {
3840 tcg_reg_free(s, reg, allocated_regs);
3841 if (!tcg_out_mov(s, ts->type, reg, ts->reg)) {
3842 /*
3843 * Cross register class move not supported. Sync the
3844 * temp back to its slot and load from there.
3845 */
3846 temp_sync(s, ts, allocated_regs, 0, 0);
3847 tcg_out_ld(s, ts->type, reg,
3848 ts->mem_base->reg, ts->mem_offset);
3849 }
3850 }
3851 } else {
3852 TCGRegSet arg_set = 0;
3853
3854 tcg_reg_free(s, reg, allocated_regs);
3855 tcg_regset_set_reg(arg_set, reg);
3856 temp_load(s, ts, arg_set, allocated_regs, 0);
3857 }
3858
3859 tcg_regset_set_reg(allocated_regs, reg);
3860 }
3861 }
3862
3863 /* mark dead temporaries and free the associated registers */
3864 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
3865 if (IS_DEAD_ARG(i)) {
3866 temp_dead(s, arg_temp(op->args[i]));
3867 }
3868 }
3869
3870 /* clobber call registers */
3871 for (i = 0; i < TCG_TARGET_NB_REGS; i++) {
3872 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) {
3873 tcg_reg_free(s, i, allocated_regs);
3874 }
3875 }
3876
3877 /* Save globals if they might be written by the helper, sync them if
3878 they might be read. */
3879 if (flags & TCG_CALL_NO_READ_GLOBALS) {
3880 /* Nothing to do */
3881 } else if (flags & TCG_CALL_NO_WRITE_GLOBALS) {
3882 sync_globals(s, allocated_regs);
3883 } else {
3884 save_globals(s, allocated_regs);
3885 }
3886
3887 tcg_out_call(s, func_addr);
3888
3889 /* assign output registers and emit moves if needed */
3890 for(i = 0; i < nb_oargs; i++) {
3891 arg = op->args[i];
3892 ts = arg_temp(arg);
3893
3894 /* ENV should not be modified. */
3895 tcg_debug_assert(!ts->fixed_reg);
3896
3897 reg = tcg_target_call_oarg_regs[i];
3898 tcg_debug_assert(s->reg_to_temp[reg] == NULL);
3899 if (ts->val_type == TEMP_VAL_REG) {
3900 s->reg_to_temp[ts->reg] = NULL;
3901 }
3902 ts->val_type = TEMP_VAL_REG;
3903 ts->reg = reg;
3904 ts->mem_coherent = 0;
3905 s->reg_to_temp[reg] = ts;
3906 if (NEED_SYNC_ARG(i)) {
3907 temp_sync(s, ts, allocated_regs, 0, IS_DEAD_ARG(i));
3908 } else if (IS_DEAD_ARG(i)) {
3909 temp_dead(s, ts);
3910 }
3911 }
3912 }
3913
3914 #ifdef CONFIG_PROFILER
3915
3916 /* avoid copy/paste errors */
3917 #define PROF_ADD(to, from, field) \
3918 do { \
3919 (to)->field += atomic_read(&((from)->field)); \
3920 } while (0)
3921
3922 #define PROF_MAX(to, from, field) \
3923 do { \
3924 typeof((from)->field) val__ = atomic_read(&((from)->field)); \
3925 if (val__ > (to)->field) { \
3926 (to)->field = val__; \
3927 } \
3928 } while (0)
3929
3930 /* Pass in a zero'ed @prof */
3931 static inline
3932 void tcg_profile_snapshot(TCGProfile *prof, bool counters, bool table)
3933 {
3934 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs);
3935 unsigned int i;
3936
3937 for (i = 0; i < n_ctxs; i++) {
3938 TCGContext *s = atomic_read(&tcg_ctxs[i]);
3939 const TCGProfile *orig = &s->prof;
3940
3941 if (counters) {
3942 PROF_ADD(prof, orig, cpu_exec_time);
3943 PROF_ADD(prof, orig, tb_count1);
3944 PROF_ADD(prof, orig, tb_count);
3945 PROF_ADD(prof, orig, op_count);
3946 PROF_MAX(prof, orig, op_count_max);
3947 PROF_ADD(prof, orig, temp_count);
3948 PROF_MAX(prof, orig, temp_count_max);
3949 PROF_ADD(prof, orig, del_op_count);
3950 PROF_ADD(prof, orig, code_in_len);
3951 PROF_ADD(prof, orig, code_out_len);
3952 PROF_ADD(prof, orig, search_out_len);
3953 PROF_ADD(prof, orig, interm_time);
3954 PROF_ADD(prof, orig, code_time);
3955 PROF_ADD(prof, orig, la_time);
3956 PROF_ADD(prof, orig, opt_time);
3957 PROF_ADD(prof, orig, restore_count);
3958 PROF_ADD(prof, orig, restore_time);
3959 }
3960 if (table) {
3961 int i;
3962
3963 for (i = 0; i < NB_OPS; i++) {
3964 PROF_ADD(prof, orig, table_op_count[i]);
3965 }
3966 }
3967 }
3968 }
3969
3970 #undef PROF_ADD
3971 #undef PROF_MAX
3972
3973 static void tcg_profile_snapshot_counters(TCGProfile *prof)
3974 {
3975 tcg_profile_snapshot(prof, true, false);
3976 }
3977
3978 static void tcg_profile_snapshot_table(TCGProfile *prof)
3979 {
3980 tcg_profile_snapshot(prof, false, true);
3981 }
3982
3983 void tcg_dump_op_count(void)
3984 {
3985 TCGProfile prof = {};
3986 int i;
3987
3988 tcg_profile_snapshot_table(&prof);
3989 for (i = 0; i < NB_OPS; i++) {
3990 qemu_printf("%s %" PRId64 "\n", tcg_op_defs[i].name,
3991 prof.table_op_count[i]);
3992 }
3993 }
3994
3995 int64_t tcg_cpu_exec_time(void)
3996 {
3997 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs);
3998 unsigned int i;
3999 int64_t ret = 0;
4000
4001 for (i = 0; i < n_ctxs; i++) {
4002 const TCGContext *s = atomic_read(&tcg_ctxs[i]);
4003 const TCGProfile *prof = &s->prof;
4004
4005 ret += atomic_read(&prof->cpu_exec_time);
4006 }
4007 return ret;
4008 }
4009 #else
4010 void tcg_dump_op_count(void)
4011 {
4012 qemu_printf("[TCG profiler not compiled]\n");
4013 }
4014
4015 int64_t tcg_cpu_exec_time(void)
4016 {
4017 error_report("%s: TCG profiler not compiled", __func__);
4018 exit(EXIT_FAILURE);
4019 }
4020 #endif
4021
4022
4023 int tcg_gen_code(TCGContext *s, TranslationBlock *tb)
4024 {
4025 #ifdef CONFIG_PROFILER
4026 TCGProfile *prof = &s->prof;
4027 #endif
4028 int i, num_insns;
4029 TCGOp *op;
4030
4031 #ifdef CONFIG_PROFILER
4032 {
4033 int n = 0;
4034
4035 QTAILQ_FOREACH(op, &s->ops, link) {
4036 n++;
4037 }
4038 atomic_set(&prof->op_count, prof->op_count + n);
4039 if (n > prof->op_count_max) {
4040 atomic_set(&prof->op_count_max, n);
4041 }
4042
4043 n = s->nb_temps;
4044 atomic_set(&prof->temp_count, prof->temp_count + n);
4045 if (n > prof->temp_count_max) {
4046 atomic_set(&prof->temp_count_max, n);
4047 }
4048 }
4049 #endif
4050
4051 #ifdef DEBUG_DISAS
4052 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP)
4053 && qemu_log_in_addr_range(tb->pc))) {
4054 FILE *logfile = qemu_log_lock();
4055 qemu_log("OP:\n");
4056 tcg_dump_ops(s, false);
4057 qemu_log("\n");
4058 qemu_log_unlock(logfile);
4059 }
4060 #endif
4061
4062 #ifdef CONFIG_DEBUG_TCG
4063 /* Ensure all labels referenced have been emitted. */
4064 {
4065 TCGLabel *l;
4066 bool error = false;
4067
4068 QSIMPLEQ_FOREACH(l, &s->labels, next) {
4069 if (unlikely(!l->present) && l->refs) {
4070 qemu_log_mask(CPU_LOG_TB_OP,
4071 "$L%d referenced but not present.\n", l->id);
4072 error = true;
4073 }
4074 }
4075 assert(!error);
4076 }
4077 #endif
4078
4079 #ifdef CONFIG_PROFILER
4080 atomic_set(&prof->opt_time, prof->opt_time - profile_getclock());
4081 #endif
4082
4083 #ifdef USE_TCG_OPTIMIZATIONS
4084 tcg_optimize(s);
4085 #endif
4086
4087 #ifdef CONFIG_PROFILER
4088 atomic_set(&prof->opt_time, prof->opt_time + profile_getclock());
4089 atomic_set(&prof->la_time, prof->la_time - profile_getclock());
4090 #endif
4091
4092 reachable_code_pass(s);
4093 liveness_pass_1(s);
4094
4095 if (s->nb_indirects > 0) {
4096 #ifdef DEBUG_DISAS
4097 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_IND)
4098 && qemu_log_in_addr_range(tb->pc))) {
4099 FILE *logfile = qemu_log_lock();
4100 qemu_log("OP before indirect lowering:\n");
4101 tcg_dump_ops(s, false);
4102 qemu_log("\n");
4103 qemu_log_unlock(logfile);
4104 }
4105 #endif
4106 /* Replace indirect temps with direct temps. */
4107 if (liveness_pass_2(s)) {
4108 /* If changes were made, re-run liveness. */
4109 liveness_pass_1(s);
4110 }
4111 }
4112
4113 #ifdef CONFIG_PROFILER
4114 atomic_set(&prof->la_time, prof->la_time + profile_getclock());
4115 #endif
4116
4117 #ifdef DEBUG_DISAS
4118 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_OPT)
4119 && qemu_log_in_addr_range(tb->pc))) {
4120 FILE *logfile = qemu_log_lock();
4121 qemu_log("OP after optimization and liveness analysis:\n");
4122 tcg_dump_ops(s, true);
4123 qemu_log("\n");
4124 qemu_log_unlock(logfile);
4125 }
4126 #endif
4127
4128 tcg_reg_alloc_start(s);
4129
4130 s->code_buf = tb->tc.ptr;
4131 s->code_ptr = tb->tc.ptr;
4132
4133 #ifdef TCG_TARGET_NEED_LDST_LABELS
4134 QSIMPLEQ_INIT(&s->ldst_labels);
4135 #endif
4136 #ifdef TCG_TARGET_NEED_POOL_LABELS
4137 s->pool_labels = NULL;
4138 #endif
4139
4140 num_insns = -1;
4141 QTAILQ_FOREACH(op, &s->ops, link) {
4142 TCGOpcode opc = op->opc;
4143
4144 #ifdef CONFIG_PROFILER
4145 atomic_set(&prof->table_op_count[opc], prof->table_op_count[opc] + 1);
4146 #endif
4147
4148 switch (opc) {
4149 case INDEX_op_mov_i32:
4150 case INDEX_op_mov_i64:
4151 case INDEX_op_mov_vec:
4152 tcg_reg_alloc_mov(s, op);
4153 break;
4154 case INDEX_op_movi_i32:
4155 case INDEX_op_movi_i64:
4156 case INDEX_op_dupi_vec:
4157 tcg_reg_alloc_movi(s, op);
4158 break;
4159 case INDEX_op_dup_vec:
4160 tcg_reg_alloc_dup(s, op);
4161 break;
4162 case INDEX_op_insn_start:
4163 if (num_insns >= 0) {
4164 size_t off = tcg_current_code_size(s);
4165 s->gen_insn_end_off[num_insns] = off;
4166 /* Assert that we do not overflow our stored offset. */
4167 assert(s->gen_insn_end_off[num_insns] == off);
4168 }
4169 num_insns++;
4170 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) {
4171 target_ulong a;
4172 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS
4173 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]);
4174 #else
4175 a = op->args[i];
4176 #endif
4177 s->gen_insn_data[num_insns][i] = a;
4178 }
4179 break;
4180 case INDEX_op_discard:
4181 temp_dead(s, arg_temp(op->args[0]));
4182 break;
4183 case INDEX_op_set_label:
4184 tcg_reg_alloc_bb_end(s, s->reserved_regs);
4185 tcg_out_label(s, arg_label(op->args[0]), s->code_ptr);
4186 break;
4187 case INDEX_op_call:
4188 tcg_reg_alloc_call(s, op);
4189 break;
4190 default:
4191 /* Sanity check that we've not introduced any unhandled opcodes. */
4192 tcg_debug_assert(tcg_op_supported(opc));
4193 /* Note: in order to speed up the code, it would be much
4194 faster to have specialized register allocator functions for
4195 some common argument patterns */
4196 tcg_reg_alloc_op(s, op);
4197 break;
4198 }
4199 #ifdef CONFIG_DEBUG_TCG
4200 check_regs(s);
4201 #endif
4202 /* Test for (pending) buffer overflow. The assumption is that any
4203 one operation beginning below the high water mark cannot overrun
4204 the buffer completely. Thus we can test for overflow after
4205 generating code without having to check during generation. */
4206 if (unlikely((void *)s->code_ptr > s->code_gen_highwater)) {
4207 return -1;
4208 }
4209 /* Test for TB overflow, as seen by gen_insn_end_off. */
4210 if (unlikely(tcg_current_code_size(s) > UINT16_MAX)) {
4211 return -2;
4212 }
4213 }
4214 tcg_debug_assert(num_insns >= 0);
4215 s->gen_insn_end_off[num_insns] = tcg_current_code_size(s);
4216
4217 /* Generate TB finalization at the end of block */
4218 #ifdef TCG_TARGET_NEED_LDST_LABELS
4219 i = tcg_out_ldst_finalize(s);
4220 if (i < 0) {
4221 return i;
4222 }
4223 #endif
4224 #ifdef TCG_TARGET_NEED_POOL_LABELS
4225 i = tcg_out_pool_finalize(s);
4226 if (i < 0) {
4227 return i;
4228 }
4229 #endif
4230 if (!tcg_resolve_relocs(s)) {
4231 return -2;
4232 }
4233
4234 /* flush instruction cache */
4235 flush_icache_range((uintptr_t)s->code_buf, (uintptr_t)s->code_ptr);
4236
4237 return tcg_current_code_size(s);
4238 }
4239
4240 #ifdef CONFIG_PROFILER
4241 void tcg_dump_info(void)
4242 {
4243 TCGProfile prof = {};
4244 const TCGProfile *s;
4245 int64_t tb_count;
4246 int64_t tb_div_count;
4247 int64_t tot;
4248
4249 tcg_profile_snapshot_counters(&prof);
4250 s = &prof;
4251 tb_count = s->tb_count;
4252 tb_div_count = tb_count ? tb_count : 1;
4253 tot = s->interm_time + s->code_time;
4254
4255 qemu_printf("JIT cycles %" PRId64 " (%0.3f s at 2.4 GHz)\n",
4256 tot, tot / 2.4e9);
4257 qemu_printf("translated TBs %" PRId64 " (aborted=%" PRId64
4258 " %0.1f%%)\n",
4259 tb_count, s->tb_count1 - tb_count,
4260 (double)(s->tb_count1 - s->tb_count)
4261 / (s->tb_count1 ? s->tb_count1 : 1) * 100.0);
4262 qemu_printf("avg ops/TB %0.1f max=%d\n",
4263 (double)s->op_count / tb_div_count, s->op_count_max);
4264 qemu_printf("deleted ops/TB %0.2f\n",
4265 (double)s->del_op_count / tb_div_count);
4266 qemu_printf("avg temps/TB %0.2f max=%d\n",
4267 (double)s->temp_count / tb_div_count, s->temp_count_max);
4268 qemu_printf("avg host code/TB %0.1f\n",
4269 (double)s->code_out_len / tb_div_count);
4270 qemu_printf("avg search data/TB %0.1f\n",
4271 (double)s->search_out_len / tb_div_count);
4272
4273 qemu_printf("cycles/op %0.1f\n",
4274 s->op_count ? (double)tot / s->op_count : 0);
4275 qemu_printf("cycles/in byte %0.1f\n",
4276 s->code_in_len ? (double)tot / s->code_in_len : 0);
4277 qemu_printf("cycles/out byte %0.1f\n",
4278 s->code_out_len ? (double)tot / s->code_out_len : 0);
4279 qemu_printf("cycles/search byte %0.1f\n",
4280 s->search_out_len ? (double)tot / s->search_out_len : 0);
4281 if (tot == 0) {
4282 tot = 1;
4283 }
4284 qemu_printf(" gen_interm time %0.1f%%\n",
4285 (double)s->interm_time / tot * 100.0);
4286 qemu_printf(" gen_code time %0.1f%%\n",
4287 (double)s->code_time / tot * 100.0);
4288 qemu_printf("optim./code time %0.1f%%\n",
4289 (double)s->opt_time / (s->code_time ? s->code_time : 1)
4290 * 100.0);
4291 qemu_printf("liveness/code time %0.1f%%\n",
4292 (double)s->la_time / (s->code_time ? s->code_time : 1) * 100.0);
4293 qemu_printf("cpu_restore count %" PRId64 "\n",
4294 s->restore_count);
4295 qemu_printf(" avg cycles %0.1f\n",
4296 s->restore_count ? (double)s->restore_time / s->restore_count : 0);
4297 }
4298 #else
4299 void tcg_dump_info(void)
4300 {
4301 qemu_printf("[TCG profiler not compiled]\n");
4302 }
4303 #endif
4304
4305 #ifdef ELF_HOST_MACHINE
4306 /* In order to use this feature, the backend needs to do three things:
4307
4308 (1) Define ELF_HOST_MACHINE to indicate both what value to
4309 put into the ELF image and to indicate support for the feature.
4310
4311 (2) Define tcg_register_jit. This should create a buffer containing
4312 the contents of a .debug_frame section that describes the post-
4313 prologue unwind info for the tcg machine.
4314
4315 (3) Call tcg_register_jit_int, with the constructed .debug_frame.
4316 */
4317
4318 /* Begin GDB interface. THE FOLLOWING MUST MATCH GDB DOCS. */
4319 typedef enum {
4320 JIT_NOACTION = 0,
4321 JIT_REGISTER_FN,
4322 JIT_UNREGISTER_FN
4323 } jit_actions_t;
4324
4325 struct jit_code_entry {
4326 struct jit_code_entry *next_entry;
4327 struct jit_code_entry *prev_entry;
4328 const void *symfile_addr;
4329 uint64_t symfile_size;
4330 };
4331
4332 struct jit_descriptor {
4333 uint32_t version;
4334 uint32_t action_flag;
4335 struct jit_code_entry *relevant_entry;
4336 struct jit_code_entry *first_entry;
4337 };
4338
4339 void __jit_debug_register_code(void) __attribute__((noinline));
4340 void __jit_debug_register_code(void)
4341 {
4342 asm("");
4343 }
4344
4345 /* Must statically initialize the version, because GDB may check
4346 the version before we can set it. */
4347 struct jit_descriptor __jit_debug_descriptor = { 1, 0, 0, 0 };
4348
4349 /* End GDB interface. */
4350
4351 static int find_string(const char *strtab, const char *str)
4352 {
4353 const char *p = strtab + 1;
4354
4355 while (1) {
4356 if (strcmp(p, str) == 0) {
4357 return p - strtab;
4358 }
4359 p += strlen(p) + 1;
4360 }
4361 }
4362
4363 static void tcg_register_jit_int(void *buf_ptr, size_t buf_size,
4364 const void *debug_frame,
4365 size_t debug_frame_size)
4366 {
4367 struct __attribute__((packed)) DebugInfo {
4368 uint32_t len;
4369 uint16_t version;
4370 uint32_t abbrev;
4371 uint8_t ptr_size;
4372 uint8_t cu_die;
4373 uint16_t cu_lang;
4374 uintptr_t cu_low_pc;
4375 uintptr_t cu_high_pc;
4376 uint8_t fn_die;
4377 char fn_name[16];
4378 uintptr_t fn_low_pc;
4379 uintptr_t fn_high_pc;
4380 uint8_t cu_eoc;
4381 };
4382
4383 struct ElfImage {
4384 ElfW(Ehdr) ehdr;
4385 ElfW(Phdr) phdr;
4386 ElfW(Shdr) shdr[7];
4387 ElfW(Sym) sym[2];
4388 struct DebugInfo di;
4389 uint8_t da[24];
4390 char str[80];
4391 };
4392
4393 struct ElfImage *img;
4394
4395 static const struct ElfImage img_template = {
4396 .ehdr = {
4397 .e_ident[EI_MAG0] = ELFMAG0,
4398 .e_ident[EI_MAG1] = ELFMAG1,
4399 .e_ident[EI_MAG2] = ELFMAG2,
4400 .e_ident[EI_MAG3] = ELFMAG3,
4401 .e_ident[EI_CLASS] = ELF_CLASS,
4402 .e_ident[EI_DATA] = ELF_DATA,
4403 .e_ident[EI_VERSION] = EV_CURRENT,
4404 .e_type = ET_EXEC,
4405 .e_machine = ELF_HOST_MACHINE,
4406 .e_version = EV_CURRENT,
4407 .e_phoff = offsetof(struct ElfImage, phdr),
4408 .e_shoff = offsetof(struct ElfImage, shdr),
4409 .e_ehsize = sizeof(ElfW(Shdr)),
4410 .e_phentsize = sizeof(ElfW(Phdr)),
4411 .e_phnum = 1,
4412 .e_shentsize = sizeof(ElfW(Shdr)),
4413 .e_shnum = ARRAY_SIZE(img->shdr),
4414 .e_shstrndx = ARRAY_SIZE(img->shdr) - 1,
4415 #ifdef ELF_HOST_FLAGS
4416 .e_flags = ELF_HOST_FLAGS,
4417 #endif
4418 #ifdef ELF_OSABI
4419 .e_ident[EI_OSABI] = ELF_OSABI,
4420 #endif
4421 },
4422 .phdr = {
4423 .p_type = PT_LOAD,
4424 .p_flags = PF_X,
4425 },
4426 .shdr = {
4427 [0] = { .sh_type = SHT_NULL },
4428 /* Trick: The contents of code_gen_buffer are not present in
4429 this fake ELF file; that got allocated elsewhere. Therefore
4430 we mark .text as SHT_NOBITS (similar to .bss) so that readers
4431 will not look for contents. We can record any address. */
4432 [1] = { /* .text */
4433 .sh_type = SHT_NOBITS,
4434 .sh_flags = SHF_EXECINSTR | SHF_ALLOC,
4435 },
4436 [2] = { /* .debug_info */
4437 .sh_type = SHT_PROGBITS,
4438 .sh_offset = offsetof(struct ElfImage, di),
4439 .sh_size = sizeof(struct DebugInfo),
4440 },
4441 [3] = { /* .debug_abbrev */
4442 .sh_type = SHT_PROGBITS,
4443 .sh_offset = offsetof(struct ElfImage, da),
4444 .sh_size = sizeof(img->da),
4445 },
4446 [4] = { /* .debug_frame */
4447 .sh_type = SHT_PROGBITS,
4448 .sh_offset = sizeof(struct ElfImage),
4449 },
4450 [5] = { /* .symtab */
4451 .sh_type = SHT_SYMTAB,
4452 .sh_offset = offsetof(struct ElfImage, sym),
4453 .sh_size = sizeof(img->sym),
4454 .sh_info = 1,
4455 .sh_link = ARRAY_SIZE(img->shdr) - 1,
4456 .sh_entsize = sizeof(ElfW(Sym)),
4457 },
4458 [6] = { /* .strtab */
4459 .sh_type = SHT_STRTAB,
4460 .sh_offset = offsetof(struct ElfImage, str),
4461 .sh_size = sizeof(img->str),
4462 }
4463 },
4464 .sym = {
4465 [1] = { /* code_gen_buffer */
4466 .st_info = ELF_ST_INFO(STB_GLOBAL, STT_FUNC),
4467 .st_shndx = 1,
4468 }
4469 },
4470 .di = {
4471 .len = sizeof(struct DebugInfo) - 4,
4472 .version = 2,
4473 .ptr_size = sizeof(void *),
4474 .cu_die = 1,
4475 .cu_lang = 0x8001, /* DW_LANG_Mips_Assembler */
4476 .fn_die = 2,
4477 .fn_name = "code_gen_buffer"
4478 },
4479 .da = {
4480 1, /* abbrev number (the cu) */
4481 0x11, 1, /* DW_TAG_compile_unit, has children */
4482 0x13, 0x5, /* DW_AT_language, DW_FORM_data2 */
4483 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */
4484 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */
4485 0, 0, /* end of abbrev */
4486 2, /* abbrev number (the fn) */
4487 0x2e, 0, /* DW_TAG_subprogram, no children */
4488 0x3, 0x8, /* DW_AT_name, DW_FORM_string */
4489 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */
4490 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */
4491 0, 0, /* end of abbrev */
4492 0 /* no more abbrev */
4493 },
4494 .str = "\0" ".text\0" ".debug_info\0" ".debug_abbrev\0"
4495 ".debug_frame\0" ".symtab\0" ".strtab\0" "code_gen_buffer",
4496 };
4497
4498 /* We only need a single jit entry; statically allocate it. */
4499 static struct jit_code_entry one_entry;
4500
4501 uintptr_t buf = (uintptr_t)buf_ptr;
4502 size_t img_size = sizeof(struct ElfImage) + debug_frame_size;
4503 DebugFrameHeader *dfh;
4504
4505 img = g_malloc(img_size);
4506 *img = img_template;
4507
4508 img->phdr.p_vaddr = buf;
4509 img->phdr.p_paddr = buf;
4510 img->phdr.p_memsz = buf_size;
4511
4512 img->shdr[1].sh_name = find_string(img->str, ".text");
4513 img->shdr[1].sh_addr = buf;
4514 img->shdr[1].sh_size = buf_size;
4515
4516 img->shdr[2].sh_name = find_string(img->str, ".debug_info");
4517 img->shdr[3].sh_name = find_string(img->str, ".debug_abbrev");
4518
4519 img->shdr[4].sh_name = find_string(img->str, ".debug_frame");
4520 img->shdr[4].sh_size = debug_frame_size;
4521
4522 img->shdr[5].sh_name = find_string(img->str, ".symtab");
4523 img->shdr[6].sh_name = find_string(img->str, ".strtab");
4524
4525 img->sym[1].st_name = find_string(img->str, "code_gen_buffer");
4526 img->sym[1].st_value = buf;
4527 img->sym[1].st_size = buf_size;
4528
4529 img->di.cu_low_pc = buf;
4530 img->di.cu_high_pc = buf + buf_size;
4531 img->di.fn_low_pc = buf;
4532 img->di.fn_high_pc = buf + buf_size;
4533
4534 dfh = (DebugFrameHeader *)(img + 1);
4535 memcpy(dfh, debug_frame, debug_frame_size);
4536 dfh->fde.func_start = buf;
4537 dfh->fde.func_len = buf_size;
4538
4539 #ifdef DEBUG_JIT
4540 /* Enable this block to be able to debug the ELF image file creation.
4541 One can use readelf, objdump, or other inspection utilities. */
4542 {
4543 FILE *f = fopen("/tmp/qemu.jit", "w+b");
4544 if (f) {
4545 if (fwrite(img, img_size, 1, f) != img_size) {
4546 /* Avoid stupid unused return value warning for fwrite. */
4547 }
4548 fclose(f);
4549 }
4550 }
4551 #endif
4552
4553 one_entry.symfile_addr = img;
4554 one_entry.symfile_size = img_size;
4555
4556 __jit_debug_descriptor.action_flag = JIT_REGISTER_FN;
4557 __jit_debug_descriptor.relevant_entry = &one_entry;
4558 __jit_debug_descriptor.first_entry = &one_entry;
4559 __jit_debug_register_code();
4560 }
4561 #else
4562 /* No support for the feature. Provide the entry point expected by exec.c,
4563 and implement the internal function we declared earlier. */
4564
4565 static void tcg_register_jit_int(void *buf, size_t size,
4566 const void *debug_frame,
4567 size_t debug_frame_size)
4568 {
4569 }
4570
4571 void tcg_register_jit(void *buf, size_t buf_size)
4572 {
4573 }
4574 #endif /* ELF_HOST_MACHINE */
4575
4576 #if !TCG_TARGET_MAYBE_vec
4577 void tcg_expand_vec_op(TCGOpcode o, TCGType t, unsigned e, TCGArg a0, ...)
4578 {
4579 g_assert_not_reached();
4580 }
4581 #endif