]> git.ipfire.org Git - thirdparty/systemd.git/blame - src/basic/hashmap.c
Revert "alloc-util: return NULL if 0-sized allocation is requested"
[thirdparty/systemd.git] / src / basic / hashmap.c
CommitLineData
53e1b683 1/* SPDX-License-Identifier: LGPL-2.1+ */
a7334b09 2
60918275 3#include <errno.h>
11c3a366 4#include <stdint.h>
d4510856 5#include <stdlib.h>
11c3a366 6#include <string.h>
60918275 7
b5efdb8a 8#include "alloc-util.h"
556c7bae 9#include "fileio.h"
b4f60743 10#include "hashmap.h"
60918275 11#include "macro.h"
b3dcf58e 12#include "mempool.h"
d4510856 13#include "process-util.h"
3df3e884 14#include "random-util.h"
d4510856
LP
15#include "set.h"
16#include "siphash24.h"
556c7bae 17#include "string-util.h"
d4510856
LP
18#include "strv.h"
19#include "util.h"
60918275 20
349cc4a5 21#if ENABLE_DEBUG_HASHMAP
3d4db144 22#include <pthread.h>
2eec67ac
TA
23#include "list.h"
24#endif
25
89439d4f
MS
26/*
27 * Implementation of hashmaps.
28 * Addressing: open
29 * - uses less RAM compared to closed addressing (chaining), because
30 * our entries are small (especially in Sets, which tend to contain
31 * the majority of entries in systemd).
32 * Collision resolution: Robin Hood
33 * - tends to equalize displacement of entries from their optimal buckets.
34 * Probe sequence: linear
35 * - though theoretically worse than random probing/uniform hashing/double
36 * hashing, it is good for cache locality.
37 *
38 * References:
39 * Celis, P. 1986. Robin Hood Hashing.
40 * Ph.D. Dissertation. University of Waterloo, Waterloo, Ont., Canada, Canada.
41 * https://cs.uwaterloo.ca/research/tr/1986/CS-86-14.pdf
42 * - The results are derived for random probing. Suggests deletion with
43 * tombstones and two mean-centered search methods. None of that works
44 * well for linear probing.
45 *
46 * Janson, S. 2005. Individual displacements for linear probing hashing with different insertion policies.
47 * ACM Trans. Algorithms 1, 2 (October 2005), 177-213.
48 * DOI=10.1145/1103963.1103964 http://doi.acm.org/10.1145/1103963.1103964
49 * http://www.math.uu.se/~svante/papers/sj157.pdf
50 * - Applies to Robin Hood with linear probing. Contains remarks on
51 * the unsuitability of mean-centered search with linear probing.
52 *
53 * Viola, A. 2005. Exact distribution of individual displacements in linear probing hashing.
54 * ACM Trans. Algorithms 1, 2 (October 2005), 214-242.
55 * DOI=10.1145/1103963.1103965 http://doi.acm.org/10.1145/1103963.1103965
56 * - Similar to Janson. Note that Viola writes about C_{m,n} (number of probes
57 * in a successful search), and Janson writes about displacement. C = d + 1.
58 *
59 * Goossaert, E. 2013. Robin Hood hashing: backward shift deletion.
60 * http://codecapsule.com/2013/11/17/robin-hood-hashing-backward-shift-deletion/
61 * - Explanation of backward shift deletion with pictures.
62 *
63 * Khuong, P. 2013. The Other Robin Hood Hashing.
64 * http://www.pvk.ca/Blog/2013/11/26/the-other-robin-hood-hashing/
65 * - Short summary of random vs. linear probing, and tombstones vs. backward shift.
66 */
67
68/*
69 * XXX Ideas for improvement:
70 * For unordered hashmaps, randomize iteration order, similarly to Perl:
71 * http://blog.booking.com/hardening-perls-hash-function.html
72 */
73
74/* INV_KEEP_FREE = 1 / (1 - max_load_factor)
75 * e.g. 1 / (1 - 0.8) = 5 ... keep one fifth of the buckets free. */
76#define INV_KEEP_FREE 5U
77
78/* Fields common to entries of all hashmap/set types */
79struct hashmap_base_entry {
60918275 80 const void *key;
89439d4f
MS
81};
82
83/* Entry types for specific hashmap/set types
84 * hashmap_base_entry must be at the beginning of each entry struct. */
85
86struct plain_hashmap_entry {
87 struct hashmap_base_entry b;
60918275 88 void *value;
60918275
LP
89};
90
89439d4f
MS
91struct ordered_hashmap_entry {
92 struct plain_hashmap_entry p;
93 unsigned iterate_next, iterate_previous;
94};
60918275 95
89439d4f
MS
96struct set_entry {
97 struct hashmap_base_entry b;
98};
45fa9e29 99
89439d4f
MS
100/* In several functions it is advantageous to have the hash table extended
101 * virtually by a couple of additional buckets. We reserve special index values
102 * for these "swap" buckets. */
103#define _IDX_SWAP_BEGIN (UINT_MAX - 3)
104#define IDX_PUT (_IDX_SWAP_BEGIN + 0)
105#define IDX_TMP (_IDX_SWAP_BEGIN + 1)
106#define _IDX_SWAP_END (_IDX_SWAP_BEGIN + 2)
39c2a6f1 107
89439d4f
MS
108#define IDX_FIRST (UINT_MAX - 1) /* special index for freshly initialized iterators */
109#define IDX_NIL UINT_MAX /* special index value meaning "none" or "end" */
110
111assert_cc(IDX_FIRST == _IDX_SWAP_END);
112assert_cc(IDX_FIRST == _IDX_ITERATOR_FIRST);
113
114/* Storage space for the "swap" buckets.
115 * All entry types can fit into a ordered_hashmap_entry. */
116struct swap_entries {
117 struct ordered_hashmap_entry e[_IDX_SWAP_END - _IDX_SWAP_BEGIN];
60918275
LP
118};
119
89439d4f
MS
120/* Distance from Initial Bucket */
121typedef uint8_t dib_raw_t;
3ef11dcf
ZJS
122#define DIB_RAW_OVERFLOW ((dib_raw_t)0xfdU) /* indicates DIB value is greater than representable */
123#define DIB_RAW_REHASH ((dib_raw_t)0xfeU) /* entry yet to be rehashed during in-place resize */
124#define DIB_RAW_FREE ((dib_raw_t)0xffU) /* a free bucket */
125#define DIB_RAW_INIT ((char)DIB_RAW_FREE) /* a byte to memset a DIB store with when initializing */
89439d4f
MS
126
127#define DIB_FREE UINT_MAX
128
349cc4a5 129#if ENABLE_DEBUG_HASHMAP
89439d4f
MS
130struct hashmap_debug_info {
131 LIST_FIELDS(struct hashmap_debug_info, debug_list);
132 unsigned max_entries; /* high watermark of n_entries */
133
134 /* who allocated this hashmap */
135 int line;
136 const char *file;
137 const char *func;
138
139 /* fields to detect modification while iterating */
140 unsigned put_count; /* counts puts into the hashmap */
141 unsigned rem_count; /* counts removals from hashmap */
142 unsigned last_rem_idx; /* remembers last removal index */
39c2a6f1
LP
143};
144
89439d4f
MS
145/* Tracks all existing hashmaps. Get at it from gdb. See sd_dump_hashmaps.py */
146static LIST_HEAD(struct hashmap_debug_info, hashmap_debug_list);
4f1b3061 147static pthread_mutex_t hashmap_debug_list_mutex = PTHREAD_MUTEX_INITIALIZER;
39c2a6f1 148
89439d4f 149#define HASHMAP_DEBUG_FIELDS struct hashmap_debug_info debug;
39c2a6f1 150
fc86aa0e 151#else /* !ENABLE_DEBUG_HASHMAP */
89439d4f 152#define HASHMAP_DEBUG_FIELDS
fc86aa0e 153#endif /* ENABLE_DEBUG_HASHMAP */
39c2a6f1 154
89439d4f
MS
155enum HashmapType {
156 HASHMAP_TYPE_PLAIN,
157 HASHMAP_TYPE_ORDERED,
158 HASHMAP_TYPE_SET,
159 _HASHMAP_TYPE_MAX
160};
39c2a6f1 161
89439d4f 162struct _packed_ indirect_storage {
1a39bc8c 163 void *storage; /* where buckets and DIBs are stored */
89439d4f
MS
164 uint8_t hash_key[HASH_KEY_SIZE]; /* hash key; changes during resize */
165
166 unsigned n_entries; /* number of stored entries */
167 unsigned n_buckets; /* number of buckets */
168
169 unsigned idx_lowest_entry; /* Index below which all buckets are free.
170 Makes "while(hashmap_steal_first())" loops
171 O(n) instead of O(n^2) for unordered hashmaps. */
172 uint8_t _pad[3]; /* padding for the whole HashmapBase */
173 /* The bitfields in HashmapBase complete the alignment of the whole thing. */
174};
175
176struct direct_storage {
177 /* This gives us 39 bytes on 64bit, or 35 bytes on 32bit.
178 * That's room for 4 set_entries + 4 DIB bytes + 3 unused bytes on 64bit,
179 * or 7 set_entries + 7 DIB bytes + 0 unused bytes on 32bit. */
1a39bc8c 180 uint8_t storage[sizeof(struct indirect_storage)];
89439d4f
MS
181};
182
183#define DIRECT_BUCKETS(entry_t) \
184 (sizeof(struct direct_storage) / (sizeof(entry_t) + sizeof(dib_raw_t)))
185
186/* We should be able to store at least one entry directly. */
187assert_cc(DIRECT_BUCKETS(struct ordered_hashmap_entry) >= 1);
188
189/* We have 3 bits for n_direct_entries. */
190assert_cc(DIRECT_BUCKETS(struct set_entry) < (1 << 3));
191
192/* Hashmaps with directly stored entries all use this shared hash key.
193 * It's no big deal if the key is guessed, because there can be only
194 * a handful of directly stored entries in a hashmap. When a hashmap
195 * outgrows direct storage, it gets its own key for indirect storage. */
196static uint8_t shared_hash_key[HASH_KEY_SIZE];
197static bool shared_hash_key_initialized;
198
199/* Fields that all hashmap/set types must have */
200struct HashmapBase {
201 const struct hash_ops *hash_ops; /* hash and compare ops to use */
202
203 union _packed_ {
204 struct indirect_storage indirect; /* if has_indirect */
205 struct direct_storage direct; /* if !has_indirect */
206 };
207
208 enum HashmapType type:2; /* HASHMAP_TYPE_* */
209 bool has_indirect:1; /* whether indirect storage is used */
210 unsigned n_direct_entries:3; /* Number of entries in direct storage.
211 * Only valid if !has_indirect. */
212 bool from_pool:1; /* whether was allocated from mempool */
45ea84d8
VC
213 bool dirty:1; /* whether dirtied since last iterated_cache_get() */
214 bool cached:1; /* whether this hashmap is being cached */
89439d4f
MS
215 HASHMAP_DEBUG_FIELDS /* optional hashmap_debug_info */
216};
217
218/* Specific hash types
219 * HashmapBase must be at the beginning of each hashmap struct. */
220
221struct Hashmap {
222 struct HashmapBase b;
223};
224
225struct OrderedHashmap {
226 struct HashmapBase b;
227 unsigned iterate_list_head, iterate_list_tail;
228};
229
230struct Set {
231 struct HashmapBase b;
232};
233
45ea84d8
VC
234typedef struct CacheMem {
235 const void **ptr;
236 size_t n_populated, n_allocated;
237 bool active:1;
238} CacheMem;
239
240struct IteratedCache {
241 HashmapBase *hashmap;
242 CacheMem keys, values;
243};
244
89439d4f
MS
245DEFINE_MEMPOOL(hashmap_pool, Hashmap, 8);
246DEFINE_MEMPOOL(ordered_hashmap_pool, OrderedHashmap, 8);
247/* No need for a separate Set pool */
248assert_cc(sizeof(Hashmap) == sizeof(Set));
249
250struct hashmap_type_info {
251 size_t head_size;
252 size_t entry_size;
253 struct mempool *mempool;
254 unsigned n_direct_buckets;
255};
256
257static const struct hashmap_type_info hashmap_type_info[_HASHMAP_TYPE_MAX] = {
258 [HASHMAP_TYPE_PLAIN] = {
259 .head_size = sizeof(Hashmap),
260 .entry_size = sizeof(struct plain_hashmap_entry),
261 .mempool = &hashmap_pool,
262 .n_direct_buckets = DIRECT_BUCKETS(struct plain_hashmap_entry),
263 },
264 [HASHMAP_TYPE_ORDERED] = {
265 .head_size = sizeof(OrderedHashmap),
266 .entry_size = sizeof(struct ordered_hashmap_entry),
267 .mempool = &ordered_hashmap_pool,
268 .n_direct_buckets = DIRECT_BUCKETS(struct ordered_hashmap_entry),
269 },
270 [HASHMAP_TYPE_SET] = {
271 .head_size = sizeof(Set),
272 .entry_size = sizeof(struct set_entry),
273 .mempool = &hashmap_pool,
274 .n_direct_buckets = DIRECT_BUCKETS(struct set_entry),
275 },
276};
39c2a6f1 277
d18cb393 278#if VALGRIND
556c7bae
ZJS
279__attribute__((destructor)) static void cleanup_pools(void) {
280 _cleanup_free_ char *t = NULL;
281 int r;
282
283 /* Be nice to valgrind */
284
285 /* The pool is only allocated by the main thread, but the memory can
286 * be passed to other threads. Let's clean up if we are the main thread
287 * and no other threads are live. */
288 if (!is_main_thread())
289 return;
290
291 r = get_proc_field("/proc/self/status", "Threads", WHITESPACE, &t);
292 if (r < 0 || !streq(t, "1"))
293 return;
294
295 mempool_drop(&hashmap_pool);
296 mempool_drop(&ordered_hashmap_pool);
297}
298#endif
299
89439d4f
MS
300static unsigned n_buckets(HashmapBase *h) {
301 return h->has_indirect ? h->indirect.n_buckets
302 : hashmap_type_info[h->type].n_direct_buckets;
303}
304
305static unsigned n_entries(HashmapBase *h) {
306 return h->has_indirect ? h->indirect.n_entries
307 : h->n_direct_entries;
308}
309
310static void n_entries_inc(HashmapBase *h) {
311 if (h->has_indirect)
312 h->indirect.n_entries++;
313 else
314 h->n_direct_entries++;
315}
316
317static void n_entries_dec(HashmapBase *h) {
318 if (h->has_indirect)
319 h->indirect.n_entries--;
320 else
321 h->n_direct_entries--;
322}
323
1a39bc8c 324static void *storage_ptr(HashmapBase *h) {
89439d4f
MS
325 return h->has_indirect ? h->indirect.storage
326 : h->direct.storage;
327}
328
329static uint8_t *hash_key(HashmapBase *h) {
330 return h->has_indirect ? h->indirect.hash_key
331 : shared_hash_key;
332}
333
334static unsigned base_bucket_hash(HashmapBase *h, const void *p) {
b826ab58 335 struct siphash state;
0cb3c286 336 uint64_t hash;
b826ab58 337
0cb3c286 338 siphash24_init(&state, hash_key(h));
b826ab58
TG
339
340 h->hash_ops->hash(p, &state);
341
933f9cae 342 hash = siphash24_finalize(&state);
0cb3c286
TG
343
344 return (unsigned) (hash % n_buckets(h));
9bf3b535 345}
89439d4f 346#define bucket_hash(h, p) base_bucket_hash(HASHMAP_BASE(h), p)
9bf3b535 347
84dcca75
VC
348static inline void base_set_dirty(HashmapBase *h) {
349 h->dirty = true;
350}
351#define hashmap_set_dirty(h) base_set_dirty(HASHMAP_BASE(h))
352
9bf3b535
LP
353static void get_hash_key(uint8_t hash_key[HASH_KEY_SIZE], bool reuse_is_ok) {
354 static uint8_t current[HASH_KEY_SIZE];
355 static bool current_initialized = false;
356
357 /* Returns a hash function key to use. In order to keep things
358 * fast we will not generate a new key each time we allocate a
359 * new hash table. Instead, we'll just reuse the most recently
360 * generated one, except if we never generated one or when we
361 * are rehashing an entire hash table because we reached a
362 * fill level */
363
364 if (!current_initialized || !reuse_is_ok) {
365 random_bytes(current, sizeof(current));
366 current_initialized = true;
367 }
368
369 memcpy(hash_key, current, sizeof(current));
a3b6fafe
LP
370}
371
89439d4f
MS
372static struct hashmap_base_entry *bucket_at(HashmapBase *h, unsigned idx) {
373 return (struct hashmap_base_entry*)
1a39bc8c 374 ((uint8_t*) storage_ptr(h) + idx * hashmap_type_info[h->type].entry_size);
89439d4f
MS
375}
376
377static struct plain_hashmap_entry *plain_bucket_at(Hashmap *h, unsigned idx) {
378 return (struct plain_hashmap_entry*) bucket_at(HASHMAP_BASE(h), idx);
379}
380
381static struct ordered_hashmap_entry *ordered_bucket_at(OrderedHashmap *h, unsigned idx) {
382 return (struct ordered_hashmap_entry*) bucket_at(HASHMAP_BASE(h), idx);
383}
39c2a6f1 384
89439d4f
MS
385static struct set_entry *set_bucket_at(Set *h, unsigned idx) {
386 return (struct set_entry*) bucket_at(HASHMAP_BASE(h), idx);
387}
39c2a6f1 388
89439d4f
MS
389static struct ordered_hashmap_entry *bucket_at_swap(struct swap_entries *swap, unsigned idx) {
390 return &swap->e[idx - _IDX_SWAP_BEGIN];
391}
39c2a6f1 392
89439d4f
MS
393/* Returns a pointer to the bucket at index idx.
394 * Understands real indexes and swap indexes, hence "_virtual". */
395static struct hashmap_base_entry *bucket_at_virtual(HashmapBase *h, struct swap_entries *swap,
396 unsigned idx) {
397 if (idx < _IDX_SWAP_BEGIN)
398 return bucket_at(h, idx);
399
400 if (idx < _IDX_SWAP_END)
401 return &bucket_at_swap(swap, idx)->p.b;
402
403 assert_not_reached("Invalid index");
404}
405
406static dib_raw_t *dib_raw_ptr(HashmapBase *h) {
407 return (dib_raw_t*)
1a39bc8c 408 ((uint8_t*) storage_ptr(h) + hashmap_type_info[h->type].entry_size * n_buckets(h));
89439d4f
MS
409}
410
411static unsigned bucket_distance(HashmapBase *h, unsigned idx, unsigned from) {
412 return idx >= from ? idx - from
413 : n_buckets(h) + idx - from;
414}
415
416static unsigned bucket_calculate_dib(HashmapBase *h, unsigned idx, dib_raw_t raw_dib) {
417 unsigned initial_bucket;
418
419 if (raw_dib == DIB_RAW_FREE)
420 return DIB_FREE;
421
422 if (_likely_(raw_dib < DIB_RAW_OVERFLOW))
423 return raw_dib;
424
425 /*
426 * Having an overflow DIB value is very unlikely. The hash function
427 * would have to be bad. For example, in a table of size 2^24 filled
428 * to load factor 0.9 the maximum observed DIB is only about 60.
429 * In theory (assuming I used Maxima correctly), for an infinite size
430 * hash table with load factor 0.8 the probability of a given entry
431 * having DIB > 40 is 1.9e-8.
432 * This returns the correct DIB value by recomputing the hash value in
433 * the unlikely case. XXX Hitting this case could be a hint to rehash.
434 */
435 initial_bucket = bucket_hash(h, bucket_at(h, idx)->key);
436 return bucket_distance(h, idx, initial_bucket);
437}
438
439static void bucket_set_dib(HashmapBase *h, unsigned idx, unsigned dib) {
440 dib_raw_ptr(h)[idx] = dib != DIB_FREE ? MIN(dib, DIB_RAW_OVERFLOW) : DIB_RAW_FREE;
441}
442
443static unsigned skip_free_buckets(HashmapBase *h, unsigned idx) {
444 dib_raw_t *dibs;
445
446 dibs = dib_raw_ptr(h);
447
448 for ( ; idx < n_buckets(h); idx++)
449 if (dibs[idx] != DIB_RAW_FREE)
450 return idx;
451
452 return IDX_NIL;
453}
454
455static void bucket_mark_free(HashmapBase *h, unsigned idx) {
eccaf899 456 memzero(bucket_at(h, idx), hashmap_type_info[h->type].entry_size);
89439d4f
MS
457 bucket_set_dib(h, idx, DIB_FREE);
458}
459
460static void bucket_move_entry(HashmapBase *h, struct swap_entries *swap,
461 unsigned from, unsigned to) {
462 struct hashmap_base_entry *e_from, *e_to;
463
464 assert(from != to);
39c2a6f1 465
89439d4f
MS
466 e_from = bucket_at_virtual(h, swap, from);
467 e_to = bucket_at_virtual(h, swap, to);
468
469 memcpy(e_to, e_from, hashmap_type_info[h->type].entry_size);
470
471 if (h->type == HASHMAP_TYPE_ORDERED) {
472 OrderedHashmap *lh = (OrderedHashmap*) h;
473 struct ordered_hashmap_entry *le, *le_to;
474
475 le_to = (struct ordered_hashmap_entry*) e_to;
476
477 if (le_to->iterate_next != IDX_NIL) {
478 le = (struct ordered_hashmap_entry*)
479 bucket_at_virtual(h, swap, le_to->iterate_next);
480 le->iterate_previous = to;
481 }
482
483 if (le_to->iterate_previous != IDX_NIL) {
484 le = (struct ordered_hashmap_entry*)
485 bucket_at_virtual(h, swap, le_to->iterate_previous);
486 le->iterate_next = to;
487 }
488
489 if (lh->iterate_list_head == from)
490 lh->iterate_list_head = to;
491 if (lh->iterate_list_tail == from)
492 lh->iterate_list_tail = to;
39c2a6f1 493 }
89439d4f 494}
60918275 495
89439d4f
MS
496static unsigned next_idx(HashmapBase *h, unsigned idx) {
497 return (idx + 1U) % n_buckets(h);
498}
60918275 499
89439d4f
MS
500static unsigned prev_idx(HashmapBase *h, unsigned idx) {
501 return (n_buckets(h) + idx - 1U) % n_buckets(h);
502}
60918275 503
89439d4f
MS
504static void *entry_value(HashmapBase *h, struct hashmap_base_entry *e) {
505 switch (h->type) {
45fa9e29 506
89439d4f
MS
507 case HASHMAP_TYPE_PLAIN:
508 case HASHMAP_TYPE_ORDERED:
509 return ((struct plain_hashmap_entry*)e)->value;
39c2a6f1 510
89439d4f
MS
511 case HASHMAP_TYPE_SET:
512 return (void*) e->key;
a3b6fafe 513
89439d4f
MS
514 default:
515 assert_not_reached("Unknown hashmap type");
516 }
60918275
LP
517}
518
89439d4f
MS
519static void base_remove_entry(HashmapBase *h, unsigned idx) {
520 unsigned left, right, prev, dib;
521 dib_raw_t raw_dib, *dibs;
45fa9e29 522
89439d4f
MS
523 dibs = dib_raw_ptr(h);
524 assert(dibs[idx] != DIB_RAW_FREE);
034c6ed7 525
349cc4a5 526#if ENABLE_DEBUG_HASHMAP
89439d4f
MS
527 h->debug.rem_count++;
528 h->debug.last_rem_idx = idx;
529#endif
034c6ed7 530
89439d4f
MS
531 left = idx;
532 /* Find the stop bucket ("right"). It is either free or has DIB == 0. */
533 for (right = next_idx(h, left); ; right = next_idx(h, right)) {
534 raw_dib = dibs[right];
4c701096 535 if (IN_SET(raw_dib, 0, DIB_RAW_FREE))
89439d4f
MS
536 break;
537
538 /* The buckets are not supposed to be all occupied and with DIB > 0.
539 * That would mean we could make everyone better off by shifting them
540 * backward. This scenario is impossible. */
541 assert(left != right);
542 }
034c6ed7 543
89439d4f
MS
544 if (h->type == HASHMAP_TYPE_ORDERED) {
545 OrderedHashmap *lh = (OrderedHashmap*) h;
546 struct ordered_hashmap_entry *le = ordered_bucket_at(lh, idx);
547
548 if (le->iterate_next != IDX_NIL)
549 ordered_bucket_at(lh, le->iterate_next)->iterate_previous = le->iterate_previous;
550 else
551 lh->iterate_list_tail = le->iterate_previous;
552
553 if (le->iterate_previous != IDX_NIL)
554 ordered_bucket_at(lh, le->iterate_previous)->iterate_next = le->iterate_next;
555 else
556 lh->iterate_list_head = le->iterate_next;
557 }
558
559 /* Now shift all buckets in the interval (left, right) one step backwards */
560 for (prev = left, left = next_idx(h, left); left != right;
561 prev = left, left = next_idx(h, left)) {
562 dib = bucket_calculate_dib(h, left, dibs[left]);
563 assert(dib != 0);
564 bucket_move_entry(h, NULL, left, prev);
565 bucket_set_dib(h, prev, dib - 1);
566 }
567
568 bucket_mark_free(h, prev);
569 n_entries_dec(h);
84dcca75 570 base_set_dirty(h);
034c6ed7 571}
89439d4f
MS
572#define remove_entry(h, idx) base_remove_entry(HASHMAP_BASE(h), idx)
573
574static unsigned hashmap_iterate_in_insertion_order(OrderedHashmap *h, Iterator *i) {
575 struct ordered_hashmap_entry *e;
576 unsigned idx;
034c6ed7 577
101d8e63 578 assert(h);
89439d4f
MS
579 assert(i);
580
581 if (i->idx == IDX_NIL)
582 goto at_end;
583
584 if (i->idx == IDX_FIRST && h->iterate_list_head == IDX_NIL)
585 goto at_end;
586
587 if (i->idx == IDX_FIRST) {
588 idx = h->iterate_list_head;
589 e = ordered_bucket_at(h, idx);
101d8e63 590 } else {
89439d4f
MS
591 idx = i->idx;
592 e = ordered_bucket_at(h, idx);
593 /*
594 * We allow removing the current entry while iterating, but removal may cause
595 * a backward shift. The next entry may thus move one bucket to the left.
596 * To detect when it happens, we remember the key pointer of the entry we were
597 * going to iterate next. If it does not match, there was a backward shift.
598 */
599 if (e->p.b.key != i->next_key) {
600 idx = prev_idx(HASHMAP_BASE(h), idx);
601 e = ordered_bucket_at(h, idx);
602 }
603 assert(e->p.b.key == i->next_key);
101d8e63 604 }
101d8e63 605
349cc4a5 606#if ENABLE_DEBUG_HASHMAP
89439d4f
MS
607 i->prev_idx = idx;
608#endif
609
610 if (e->iterate_next != IDX_NIL) {
611 struct ordered_hashmap_entry *n;
612 i->idx = e->iterate_next;
613 n = ordered_bucket_at(h, i->idx);
614 i->next_key = n->p.b.key;
615 } else
616 i->idx = IDX_NIL;
617
618 return idx;
619
620at_end:
621 i->idx = IDX_NIL;
622 return IDX_NIL;
101d8e63
LP
623}
624
89439d4f
MS
625static unsigned hashmap_iterate_in_internal_order(HashmapBase *h, Iterator *i) {
626 unsigned idx;
627
60918275 628 assert(h);
89439d4f 629 assert(i);
60918275 630
89439d4f
MS
631 if (i->idx == IDX_NIL)
632 goto at_end;
60918275 633
89439d4f
MS
634 if (i->idx == IDX_FIRST) {
635 /* fast forward to the first occupied bucket */
636 if (h->has_indirect) {
637 i->idx = skip_free_buckets(h, h->indirect.idx_lowest_entry);
638 h->indirect.idx_lowest_entry = i->idx;
639 } else
640 i->idx = skip_free_buckets(h, 0);
641
642 if (i->idx == IDX_NIL)
643 goto at_end;
644 } else {
645 struct hashmap_base_entry *e;
646
647 assert(i->idx > 0);
60918275 648
89439d4f
MS
649 e = bucket_at(h, i->idx);
650 /*
651 * We allow removing the current entry while iterating, but removal may cause
652 * a backward shift. The next entry may thus move one bucket to the left.
653 * To detect when it happens, we remember the key pointer of the entry we were
654 * going to iterate next. If it does not match, there was a backward shift.
655 */
656 if (e->key != i->next_key)
657 e = bucket_at(h, --i->idx);
60918275 658
89439d4f
MS
659 assert(e->key == i->next_key);
660 }
661
662 idx = i->idx;
349cc4a5 663#if ENABLE_DEBUG_HASHMAP
89439d4f
MS
664 i->prev_idx = idx;
665#endif
666
667 i->idx = skip_free_buckets(h, i->idx + 1);
668 if (i->idx != IDX_NIL)
669 i->next_key = bucket_at(h, i->idx)->key;
101d8e63 670 else
89439d4f
MS
671 i->idx = IDX_NIL;
672
673 return idx;
60918275 674
89439d4f
MS
675at_end:
676 i->idx = IDX_NIL;
677 return IDX_NIL;
60918275
LP
678}
679
89439d4f
MS
680static unsigned hashmap_iterate_entry(HashmapBase *h, Iterator *i) {
681 if (!h) {
682 i->idx = IDX_NIL;
683 return IDX_NIL;
684 }
101d8e63 685
349cc4a5 686#if ENABLE_DEBUG_HASHMAP
89439d4f
MS
687 if (i->idx == IDX_FIRST) {
688 i->put_count = h->debug.put_count;
689 i->rem_count = h->debug.rem_count;
690 } else {
691 /* While iterating, must not add any new entries */
692 assert(i->put_count == h->debug.put_count);
693 /* ... or remove entries other than the current one */
694 assert(i->rem_count == h->debug.rem_count ||
695 (i->rem_count == h->debug.rem_count - 1 &&
696 i->prev_idx == h->debug.last_rem_idx));
697 /* Reset our removals counter */
698 i->rem_count = h->debug.rem_count;
699 }
700#endif
101d8e63 701
89439d4f
MS
702 return h->type == HASHMAP_TYPE_ORDERED ? hashmap_iterate_in_insertion_order((OrderedHashmap*) h, i)
703 : hashmap_iterate_in_internal_order(h, i);
704}
39c2a6f1 705
8927b1da 706bool internal_hashmap_iterate(HashmapBase *h, Iterator *i, void **value, const void **key) {
89439d4f
MS
707 struct hashmap_base_entry *e;
708 void *data;
709 unsigned idx;
710
711 idx = hashmap_iterate_entry(h, i);
712 if (idx == IDX_NIL) {
8927b1da
DH
713 if (value)
714 *value = NULL;
89439d4f
MS
715 if (key)
716 *key = NULL;
717
8927b1da 718 return false;
89439d4f
MS
719 }
720
721 e = bucket_at(h, idx);
722 data = entry_value(h, e);
8927b1da
DH
723 if (value)
724 *value = data;
89439d4f
MS
725 if (key)
726 *key = e->key;
727
8927b1da 728 return true;
101d8e63
LP
729}
730
8927b1da
DH
731bool set_iterate(Set *s, Iterator *i, void **value) {
732 return internal_hashmap_iterate(HASHMAP_BASE(s), i, value, NULL);
89439d4f 733}
60918275 734
89439d4f
MS
735#define HASHMAP_FOREACH_IDX(idx, h, i) \
736 for ((i) = ITERATOR_FIRST, (idx) = hashmap_iterate_entry((h), &(i)); \
737 (idx != IDX_NIL); \
738 (idx) = hashmap_iterate_entry((h), &(i)))
739
45ea84d8
VC
740IteratedCache *internal_hashmap_iterated_cache_new(HashmapBase *h) {
741 IteratedCache *cache;
742
743 assert(h);
744 assert(!h->cached);
745
746 if (h->cached)
747 return NULL;
748
749 cache = new0(IteratedCache, 1);
750 if (!cache)
751 return NULL;
752
753 cache->hashmap = h;
754 h->cached = true;
755
756 return cache;
757}
758
89439d4f
MS
759static void reset_direct_storage(HashmapBase *h) {
760 const struct hashmap_type_info *hi = &hashmap_type_info[h->type];
761 void *p;
762
763 assert(!h->has_indirect);
764
765 p = mempset(h->direct.storage, 0, hi->entry_size * hi->n_direct_buckets);
766 memset(p, DIB_RAW_INIT, sizeof(dib_raw_t) * hi->n_direct_buckets);
767}
768
3ef11dcf 769static struct HashmapBase *hashmap_base_new(const struct hash_ops *hash_ops, enum HashmapType type HASHMAP_DEBUG_PARAMS) {
89439d4f
MS
770 HashmapBase *h;
771 const struct hashmap_type_info *hi = &hashmap_type_info[type];
b4f60743 772 bool up;
89439d4f 773
7c48ea02 774 up = mempool_enabled();
67f3c402 775
b4f60743 776 h = up ? mempool_alloc0_tile(hi->mempool) : malloc0(hi->head_size);
60918275 777 if (!h)
89439d4f
MS
778 return NULL;
779
780 h->type = type;
b4f60743 781 h->from_pool = up;
89439d4f
MS
782 h->hash_ops = hash_ops ? hash_ops : &trivial_hash_ops;
783
784 if (type == HASHMAP_TYPE_ORDERED) {
785 OrderedHashmap *lh = (OrderedHashmap*)h;
786 lh->iterate_list_head = lh->iterate_list_tail = IDX_NIL;
787 }
788
789 reset_direct_storage(h);
60918275 790
89439d4f
MS
791 if (!shared_hash_key_initialized) {
792 random_bytes(shared_hash_key, sizeof(shared_hash_key));
793 shared_hash_key_initialized= true;
794 }
795
349cc4a5 796#if ENABLE_DEBUG_HASHMAP
89439d4f
MS
797 h->debug.func = func;
798 h->debug.file = file;
799 h->debug.line = line;
4f1b3061
TG
800 assert_se(pthread_mutex_lock(&hashmap_debug_list_mutex) == 0);
801 LIST_PREPEND(debug_list, hashmap_debug_list, &h->debug);
802 assert_se(pthread_mutex_unlock(&hashmap_debug_list_mutex) == 0);
89439d4f
MS
803#endif
804
805 return h;
806}
60918275 807
89439d4f 808Hashmap *internal_hashmap_new(const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
3ef11dcf 809 return (Hashmap*) hashmap_base_new(hash_ops, HASHMAP_TYPE_PLAIN HASHMAP_DEBUG_PASS_ARGS);
89439d4f
MS
810}
811
812OrderedHashmap *internal_ordered_hashmap_new(const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
3ef11dcf 813 return (OrderedHashmap*) hashmap_base_new(hash_ops, HASHMAP_TYPE_ORDERED HASHMAP_DEBUG_PASS_ARGS);
89439d4f
MS
814}
815
816Set *internal_set_new(const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
3ef11dcf 817 return (Set*) hashmap_base_new(hash_ops, HASHMAP_TYPE_SET HASHMAP_DEBUG_PASS_ARGS);
89439d4f
MS
818}
819
820static int hashmap_base_ensure_allocated(HashmapBase **h, const struct hash_ops *hash_ops,
3ef11dcf 821 enum HashmapType type HASHMAP_DEBUG_PARAMS) {
89439d4f
MS
822 HashmapBase *q;
823
824 assert(h);
825
826 if (*h)
827 return 0;
828
3ef11dcf 829 q = hashmap_base_new(hash_ops, type HASHMAP_DEBUG_PASS_ARGS);
89439d4f
MS
830 if (!q)
831 return -ENOMEM;
832
833 *h = q;
834 return 0;
835}
836
837int internal_hashmap_ensure_allocated(Hashmap **h, const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
3ef11dcf 838 return hashmap_base_ensure_allocated((HashmapBase**)h, hash_ops, HASHMAP_TYPE_PLAIN HASHMAP_DEBUG_PASS_ARGS);
89439d4f
MS
839}
840
841int internal_ordered_hashmap_ensure_allocated(OrderedHashmap **h, const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
3ef11dcf 842 return hashmap_base_ensure_allocated((HashmapBase**)h, hash_ops, HASHMAP_TYPE_ORDERED HASHMAP_DEBUG_PASS_ARGS);
89439d4f
MS
843}
844
845int internal_set_ensure_allocated(Set **s, const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
3ef11dcf 846 return hashmap_base_ensure_allocated((HashmapBase**)s, hash_ops, HASHMAP_TYPE_SET HASHMAP_DEBUG_PASS_ARGS);
89439d4f
MS
847}
848
849static void hashmap_free_no_clear(HashmapBase *h) {
850 assert(!h->has_indirect);
851 assert(!h->n_direct_entries);
852
349cc4a5 853#if ENABLE_DEBUG_HASHMAP
4f1b3061 854 assert_se(pthread_mutex_lock(&hashmap_debug_list_mutex) == 0);
89439d4f 855 LIST_REMOVE(debug_list, hashmap_debug_list, &h->debug);
4f1b3061 856 assert_se(pthread_mutex_unlock(&hashmap_debug_list_mutex) == 0);
89439d4f 857#endif
45fa9e29 858
205c085b
LP
859 if (h->from_pool) {
860 /* Ensure that the object didn't get migrated between threads. */
861 assert_se(is_main_thread());
89439d4f 862 mempool_free_tile(hashmap_type_info[h->type].mempool, h);
205c085b 863 } else
39c2a6f1 864 free(h);
60918275
LP
865}
866
cfe561a4 867HashmapBase *internal_hashmap_free(HashmapBase *h) {
89439d4f
MS
868
869 /* Free the hashmap, but nothing in it */
870
cfe561a4
DH
871 if (h) {
872 internal_hashmap_clear(h);
873 hashmap_free_no_clear(h);
874 }
89439d4f 875
cfe561a4 876 return NULL;
89439d4f
MS
877}
878
cfe561a4 879HashmapBase *internal_hashmap_free_free(HashmapBase *h) {
67f3c402
LP
880
881 /* Free the hashmap and all data objects in it, but not the
882 * keys */
883
cfe561a4
DH
884 if (h) {
885 internal_hashmap_clear_free(h);
886 hashmap_free_no_clear(h);
887 }
61b1477c 888
cfe561a4 889 return NULL;
449ddb2d
LP
890}
891
cfe561a4 892Hashmap *hashmap_free_free_free(Hashmap *h) {
fabe5c0e
LP
893
894 /* Free the hashmap and all data and key objects in it */
895
cfe561a4
DH
896 if (h) {
897 hashmap_clear_free_free(h);
898 hashmap_free_no_clear(HASHMAP_BASE(h));
899 }
fabe5c0e 900
cfe561a4 901 return NULL;
fabe5c0e
LP
902}
903
89439d4f 904void internal_hashmap_clear(HashmapBase *h) {
11dd41ce
LP
905 if (!h)
906 return;
907
89439d4f
MS
908 if (h->has_indirect) {
909 free(h->indirect.storage);
910 h->has_indirect = false;
911 }
912
913 h->n_direct_entries = 0;
914 reset_direct_storage(h);
915
916 if (h->type == HASHMAP_TYPE_ORDERED) {
917 OrderedHashmap *lh = (OrderedHashmap*) h;
918 lh->iterate_list_head = lh->iterate_list_tail = IDX_NIL;
919 }
84dcca75
VC
920
921 base_set_dirty(h);
11dd41ce
LP
922}
923
89439d4f
MS
924void internal_hashmap_clear_free(HashmapBase *h) {
925 unsigned idx;
9946996c 926
61b1477c
LP
927 if (!h)
928 return;
9946996c 929
89439d4f
MS
930 for (idx = skip_free_buckets(h, 0); idx != IDX_NIL;
931 idx = skip_free_buckets(h, idx + 1))
932 free(entry_value(h, bucket_at(h, idx)));
933
934 internal_hashmap_clear(h);
9946996c
LP
935}
936
fabe5c0e 937void hashmap_clear_free_free(Hashmap *h) {
89439d4f
MS
938 unsigned idx;
939
fabe5c0e
LP
940 if (!h)
941 return;
942
89439d4f
MS
943 for (idx = skip_free_buckets(HASHMAP_BASE(h), 0); idx != IDX_NIL;
944 idx = skip_free_buckets(HASHMAP_BASE(h), idx + 1)) {
945 struct plain_hashmap_entry *e = plain_bucket_at(h, idx);
946 free((void*)e->b.key);
947 free(e->value);
fabe5c0e 948 }
89439d4f
MS
949
950 internal_hashmap_clear(HASHMAP_BASE(h));
fabe5c0e
LP
951}
952
89439d4f
MS
953static int resize_buckets(HashmapBase *h, unsigned entries_add);
954
955/*
956 * Finds an empty bucket to put an entry into, starting the scan at 'idx'.
957 * Performs Robin Hood swaps as it goes. The entry to put must be placed
958 * by the caller into swap slot IDX_PUT.
959 * If used for in-place resizing, may leave a displaced entry in swap slot
960 * IDX_PUT. Caller must rehash it next.
961 * Returns: true if it left a displaced entry to rehash next in IDX_PUT,
962 * false otherwise.
963 */
964static bool hashmap_put_robin_hood(HashmapBase *h, unsigned idx,
965 struct swap_entries *swap) {
966 dib_raw_t raw_dib, *dibs;
967 unsigned dib, distance;
968
349cc4a5 969#if ENABLE_DEBUG_HASHMAP
89439d4f
MS
970 h->debug.put_count++;
971#endif
972
973 dibs = dib_raw_ptr(h);
974
975 for (distance = 0; ; distance++) {
976 raw_dib = dibs[idx];
3742095b 977 if (IN_SET(raw_dib, DIB_RAW_FREE, DIB_RAW_REHASH)) {
89439d4f
MS
978 if (raw_dib == DIB_RAW_REHASH)
979 bucket_move_entry(h, swap, idx, IDX_TMP);
980
981 if (h->has_indirect && h->indirect.idx_lowest_entry > idx)
982 h->indirect.idx_lowest_entry = idx;
60918275 983
89439d4f
MS
984 bucket_set_dib(h, idx, distance);
985 bucket_move_entry(h, swap, IDX_PUT, idx);
986 if (raw_dib == DIB_RAW_REHASH) {
987 bucket_move_entry(h, swap, IDX_TMP, IDX_PUT);
988 return true;
989 }
60918275 990
89439d4f
MS
991 return false;
992 }
993
994 dib = bucket_calculate_dib(h, idx, raw_dib);
995
996 if (dib < distance) {
997 /* Found a wealthier entry. Go Robin Hood! */
89439d4f
MS
998 bucket_set_dib(h, idx, distance);
999
1000 /* swap the entries */
1001 bucket_move_entry(h, swap, idx, IDX_TMP);
1002 bucket_move_entry(h, swap, IDX_PUT, idx);
1003 bucket_move_entry(h, swap, IDX_TMP, IDX_PUT);
1004
1005 distance = dib;
1006 }
1007
1008 idx = next_idx(h, idx);
1009 }
60918275
LP
1010}
1011
89439d4f
MS
1012/*
1013 * Puts an entry into a hashmap, boldly - no check whether key already exists.
1014 * The caller must place the entry (only its key and value, not link indexes)
1015 * in swap slot IDX_PUT.
1016 * Caller must ensure: the key does not exist yet in the hashmap.
1017 * that resize is not needed if !may_resize.
1018 * Returns: 1 if entry was put successfully.
1019 * -ENOMEM if may_resize==true and resize failed with -ENOMEM.
1020 * Cannot return -ENOMEM if !may_resize.
1021 */
1022static int hashmap_base_put_boldly(HashmapBase *h, unsigned idx,
1023 struct swap_entries *swap, bool may_resize) {
1024 struct ordered_hashmap_entry *new_entry;
1025 int r;
1026
1027 assert(idx < n_buckets(h));
1028
1029 new_entry = bucket_at_swap(swap, IDX_PUT);
1030
1031 if (may_resize) {
1032 r = resize_buckets(h, 1);
1033 if (r < 0)
1034 return r;
1035 if (r > 0)
1036 idx = bucket_hash(h, new_entry->p.b.key);
1037 }
1038 assert(n_entries(h) < n_buckets(h));
1039
1040 if (h->type == HASHMAP_TYPE_ORDERED) {
1041 OrderedHashmap *lh = (OrderedHashmap*) h;
1042
1043 new_entry->iterate_next = IDX_NIL;
1044 new_entry->iterate_previous = lh->iterate_list_tail;
1045
1046 if (lh->iterate_list_tail != IDX_NIL) {
1047 struct ordered_hashmap_entry *old_tail;
1048
1049 old_tail = ordered_bucket_at(lh, lh->iterate_list_tail);
1050 assert(old_tail->iterate_next == IDX_NIL);
1051 old_tail->iterate_next = IDX_PUT;
1052 }
1053
1054 lh->iterate_list_tail = IDX_PUT;
1055 if (lh->iterate_list_head == IDX_NIL)
1056 lh->iterate_list_head = IDX_PUT;
1057 }
1058
1059 assert_se(hashmap_put_robin_hood(h, idx, swap) == false);
1060
1061 n_entries_inc(h);
349cc4a5 1062#if ENABLE_DEBUG_HASHMAP
89439d4f
MS
1063 h->debug.max_entries = MAX(h->debug.max_entries, n_entries(h));
1064#endif
1065
84dcca75
VC
1066 base_set_dirty(h);
1067
89439d4f
MS
1068 return 1;
1069}
1070#define hashmap_put_boldly(h, idx, swap, may_resize) \
1071 hashmap_base_put_boldly(HASHMAP_BASE(h), idx, swap, may_resize)
1072
1073/*
1074 * Returns 0 if resize is not needed.
f131770b 1075 * 1 if successfully resized.
89439d4f
MS
1076 * -ENOMEM on allocation failure.
1077 */
1078static int resize_buckets(HashmapBase *h, unsigned entries_add) {
1079 struct swap_entries swap;
1a39bc8c 1080 void *new_storage;
89439d4f
MS
1081 dib_raw_t *old_dibs, *new_dibs;
1082 const struct hashmap_type_info *hi;
1083 unsigned idx, optimal_idx;
1084 unsigned old_n_buckets, new_n_buckets, n_rehashed, new_n_entries;
1085 uint8_t new_shift;
1086 bool rehash_next;
45fa9e29
LP
1087
1088 assert(h);
1089
89439d4f
MS
1090 hi = &hashmap_type_info[h->type];
1091 new_n_entries = n_entries(h) + entries_add;
e4c691b5
MS
1092
1093 /* overflow? */
89439d4f 1094 if (_unlikely_(new_n_entries < entries_add))
e4c691b5
MS
1095 return -ENOMEM;
1096
89439d4f
MS
1097 /* For direct storage we allow 100% load, because it's tiny. */
1098 if (!h->has_indirect && new_n_entries <= hi->n_direct_buckets)
9700d698 1099 return 0;
45fa9e29 1100
89439d4f
MS
1101 /*
1102 * Load factor = n/m = 1 - (1/INV_KEEP_FREE).
1103 * From it follows: m = n + n/(INV_KEEP_FREE - 1)
1104 */
1105 new_n_buckets = new_n_entries + new_n_entries / (INV_KEEP_FREE - 1);
1106 /* overflow? */
1107 if (_unlikely_(new_n_buckets < new_n_entries))
9700d698 1108 return -ENOMEM;
45fa9e29 1109
89439d4f
MS
1110 if (_unlikely_(new_n_buckets > UINT_MAX / (hi->entry_size + sizeof(dib_raw_t))))
1111 return -ENOMEM;
a3b6fafe 1112
89439d4f 1113 old_n_buckets = n_buckets(h);
45fa9e29 1114
89439d4f
MS
1115 if (_likely_(new_n_buckets <= old_n_buckets))
1116 return 0;
45fa9e29 1117
89439d4f
MS
1118 new_shift = log2u_round_up(MAX(
1119 new_n_buckets * (hi->entry_size + sizeof(dib_raw_t)),
1120 2 * sizeof(struct direct_storage)));
45fa9e29 1121
89439d4f
MS
1122 /* Realloc storage (buckets and DIB array). */
1123 new_storage = realloc(h->has_indirect ? h->indirect.storage : NULL,
1124 1U << new_shift);
1125 if (!new_storage)
1126 return -ENOMEM;
45fa9e29 1127
89439d4f
MS
1128 /* Must upgrade direct to indirect storage. */
1129 if (!h->has_indirect) {
1130 memcpy(new_storage, h->direct.storage,
1131 old_n_buckets * (hi->entry_size + sizeof(dib_raw_t)));
1132 h->indirect.n_entries = h->n_direct_entries;
1133 h->indirect.idx_lowest_entry = 0;
1134 h->n_direct_entries = 0;
1135 }
45fa9e29 1136
89439d4f
MS
1137 /* Get a new hash key. If we've just upgraded to indirect storage,
1138 * allow reusing a previously generated key. It's still a different key
1139 * from the shared one that we used for direct storage. */
1140 get_hash_key(h->indirect.hash_key, !h->has_indirect);
1141
1142 h->has_indirect = true;
1143 h->indirect.storage = new_storage;
1144 h->indirect.n_buckets = (1U << new_shift) /
1145 (hi->entry_size + sizeof(dib_raw_t));
1146
1a39bc8c 1147 old_dibs = (dib_raw_t*)((uint8_t*) new_storage + hi->entry_size * old_n_buckets);
89439d4f
MS
1148 new_dibs = dib_raw_ptr(h);
1149
1150 /*
1151 * Move the DIB array to the new place, replacing valid DIB values with
1152 * DIB_RAW_REHASH to indicate all of the used buckets need rehashing.
1153 * Note: Overlap is not possible, because we have at least doubled the
1154 * number of buckets and dib_raw_t is smaller than any entry type.
1155 */
1156 for (idx = 0; idx < old_n_buckets; idx++) {
1157 assert(old_dibs[idx] != DIB_RAW_REHASH);
1158 new_dibs[idx] = old_dibs[idx] == DIB_RAW_FREE ? DIB_RAW_FREE
1159 : DIB_RAW_REHASH;
45fa9e29
LP
1160 }
1161
89439d4f 1162 /* Zero the area of newly added entries (including the old DIB area) */
eccaf899 1163 memzero(bucket_at(h, old_n_buckets),
89439d4f 1164 (n_buckets(h) - old_n_buckets) * hi->entry_size);
45fa9e29 1165
89439d4f
MS
1166 /* The upper half of the new DIB array needs initialization */
1167 memset(&new_dibs[old_n_buckets], DIB_RAW_INIT,
1168 (n_buckets(h) - old_n_buckets) * sizeof(dib_raw_t));
9bf3b535 1169
89439d4f
MS
1170 /* Rehash entries that need it */
1171 n_rehashed = 0;
1172 for (idx = 0; idx < old_n_buckets; idx++) {
1173 if (new_dibs[idx] != DIB_RAW_REHASH)
1174 continue;
45fa9e29 1175
89439d4f 1176 optimal_idx = bucket_hash(h, bucket_at(h, idx)->key);
45fa9e29 1177
89439d4f
MS
1178 /*
1179 * Not much to do if by luck the entry hashes to its current
1180 * location. Just set its DIB.
1181 */
1182 if (optimal_idx == idx) {
1183 new_dibs[idx] = 0;
1184 n_rehashed++;
1185 continue;
1186 }
1187
1188 new_dibs[idx] = DIB_RAW_FREE;
1189 bucket_move_entry(h, &swap, idx, IDX_PUT);
1190 /* bucket_move_entry does not clear the source */
eccaf899 1191 memzero(bucket_at(h, idx), hi->entry_size);
89439d4f
MS
1192
1193 do {
1194 /*
1195 * Find the new bucket for the current entry. This may make
1196 * another entry homeless and load it into IDX_PUT.
1197 */
1198 rehash_next = hashmap_put_robin_hood(h, optimal_idx, &swap);
1199 n_rehashed++;
1200
1201 /* Did the current entry displace another one? */
1202 if (rehash_next)
1203 optimal_idx = bucket_hash(h, bucket_at_swap(&swap, IDX_PUT)->p.b.key);
1204 } while (rehash_next);
1205 }
60918275 1206
89439d4f 1207 assert(n_rehashed == n_entries(h));
60918275 1208
89439d4f
MS
1209 return 1;
1210}
45fa9e29 1211
89439d4f
MS
1212/*
1213 * Finds an entry with a matching key
1214 * Returns: index of the found entry, or IDX_NIL if not found.
1215 */
1216static unsigned base_bucket_scan(HashmapBase *h, unsigned idx, const void *key) {
1217 struct hashmap_base_entry *e;
1218 unsigned dib, distance;
1219 dib_raw_t *dibs = dib_raw_ptr(h);
39c2a6f1 1220
89439d4f 1221 assert(idx < n_buckets(h));
60918275 1222
89439d4f
MS
1223 for (distance = 0; ; distance++) {
1224 if (dibs[idx] == DIB_RAW_FREE)
1225 return IDX_NIL;
60918275 1226
89439d4f 1227 dib = bucket_calculate_dib(h, idx, dibs[idx]);
60918275 1228
89439d4f
MS
1229 if (dib < distance)
1230 return IDX_NIL;
1231 if (dib == distance) {
1232 e = bucket_at(h, idx);
1233 if (h->hash_ops->compare(e->key, key) == 0)
1234 return idx;
1235 }
1236
1237 idx = next_idx(h, idx);
1238 }
60918275 1239}
89439d4f 1240#define bucket_scan(h, idx, key) base_bucket_scan(HASHMAP_BASE(h), idx, key)
60918275 1241
923041cb 1242int hashmap_put(Hashmap *h, const void *key, void *value) {
89439d4f
MS
1243 struct swap_entries swap;
1244 struct plain_hashmap_entry *e;
1245 unsigned hash, idx;
923041cb
MS
1246
1247 assert(h);
1248
1249 hash = bucket_hash(h, key);
89439d4f
MS
1250 idx = bucket_scan(h, hash, key);
1251 if (idx != IDX_NIL) {
1252 e = plain_bucket_at(h, idx);
923041cb
MS
1253 if (e->value == value)
1254 return 0;
1255 return -EEXIST;
1256 }
1257
89439d4f
MS
1258 e = &bucket_at_swap(&swap, IDX_PUT)->p;
1259 e->b.key = key;
1260 e->value = value;
1261 return hashmap_put_boldly(h, hash, &swap, true);
1262}
1263
1264int set_put(Set *s, const void *key) {
1265 struct swap_entries swap;
1266 struct hashmap_base_entry *e;
1267 unsigned hash, idx;
1268
1269 assert(s);
1270
1271 hash = bucket_hash(s, key);
1272 idx = bucket_scan(s, hash, key);
1273 if (idx != IDX_NIL)
1274 return 0;
1275
1276 e = &bucket_at_swap(&swap, IDX_PUT)->p.b;
1277 e->key = key;
1278 return hashmap_put_boldly(s, hash, &swap, true);
923041cb
MS
1279}
1280
3158713e 1281int hashmap_replace(Hashmap *h, const void *key, void *value) {
89439d4f
MS
1282 struct swap_entries swap;
1283 struct plain_hashmap_entry *e;
1284 unsigned hash, idx;
3158713e
LP
1285
1286 assert(h);
1287
a3b6fafe 1288 hash = bucket_hash(h, key);
89439d4f
MS
1289 idx = bucket_scan(h, hash, key);
1290 if (idx != IDX_NIL) {
1291 e = plain_bucket_at(h, idx);
349cc4a5 1292#if ENABLE_DEBUG_HASHMAP
89439d4f
MS
1293 /* Although the key is equal, the key pointer may have changed,
1294 * and this would break our assumption for iterating. So count
1295 * this operation as incompatible with iteration. */
1296 if (e->b.key != key) {
1297 h->b.debug.put_count++;
1298 h->b.debug.rem_count++;
1299 h->b.debug.last_rem_idx = idx;
1300 }
1301#endif
1302 e->b.key = key;
3158713e 1303 e->value = value;
84dcca75
VC
1304 hashmap_set_dirty(h);
1305
3158713e
LP
1306 return 0;
1307 }
1308
89439d4f
MS
1309 e = &bucket_at_swap(&swap, IDX_PUT)->p;
1310 e->b.key = key;
1311 e->value = value;
1312 return hashmap_put_boldly(h, hash, &swap, true);
3158713e
LP
1313}
1314
d99ae53a 1315int hashmap_update(Hashmap *h, const void *key, void *value) {
89439d4f
MS
1316 struct plain_hashmap_entry *e;
1317 unsigned hash, idx;
d99ae53a
LP
1318
1319 assert(h);
1320
a3b6fafe 1321 hash = bucket_hash(h, key);
89439d4f
MS
1322 idx = bucket_scan(h, hash, key);
1323 if (idx == IDX_NIL)
d99ae53a
LP
1324 return -ENOENT;
1325
89439d4f 1326 e = plain_bucket_at(h, idx);
d99ae53a 1327 e->value = value;
84dcca75
VC
1328 hashmap_set_dirty(h);
1329
d99ae53a
LP
1330 return 0;
1331}
1332
89439d4f
MS
1333void *internal_hashmap_get(HashmapBase *h, const void *key) {
1334 struct hashmap_base_entry *e;
1335 unsigned hash, idx;
60918275
LP
1336
1337 if (!h)
1338 return NULL;
1339
a3b6fafe 1340 hash = bucket_hash(h, key);
89439d4f
MS
1341 idx = bucket_scan(h, hash, key);
1342 if (idx == IDX_NIL)
60918275
LP
1343 return NULL;
1344
89439d4f
MS
1345 e = bucket_at(h, idx);
1346 return entry_value(h, e);
60918275
LP
1347}
1348
89439d4f
MS
1349void *hashmap_get2(Hashmap *h, const void *key, void **key2) {
1350 struct plain_hashmap_entry *e;
1351 unsigned hash, idx;
d99ae53a
LP
1352
1353 if (!h)
1354 return NULL;
1355
a3b6fafe 1356 hash = bucket_hash(h, key);
89439d4f
MS
1357 idx = bucket_scan(h, hash, key);
1358 if (idx == IDX_NIL)
d99ae53a
LP
1359 return NULL;
1360
89439d4f 1361 e = plain_bucket_at(h, idx);
d99ae53a 1362 if (key2)
89439d4f 1363 *key2 = (void*) e->b.key;
d99ae53a
LP
1364
1365 return e->value;
1366}
1367
89439d4f 1368bool internal_hashmap_contains(HashmapBase *h, const void *key) {
96342de6 1369 unsigned hash;
96342de6
LN
1370
1371 if (!h)
1372 return false;
1373
a3b6fafe 1374 hash = bucket_hash(h, key);
89439d4f 1375 return bucket_scan(h, hash, key) != IDX_NIL;
96342de6
LN
1376}
1377
89439d4f
MS
1378void *internal_hashmap_remove(HashmapBase *h, const void *key) {
1379 struct hashmap_base_entry *e;
1380 unsigned hash, idx;
60918275
LP
1381 void *data;
1382
1383 if (!h)
1384 return NULL;
1385
a3b6fafe 1386 hash = bucket_hash(h, key);
89439d4f
MS
1387 idx = bucket_scan(h, hash, key);
1388 if (idx == IDX_NIL)
60918275
LP
1389 return NULL;
1390
89439d4f
MS
1391 e = bucket_at(h, idx);
1392 data = entry_value(h, e);
1393 remove_entry(h, idx);
60918275
LP
1394
1395 return data;
1396}
1397
89439d4f
MS
1398void *hashmap_remove2(Hashmap *h, const void *key, void **rkey) {
1399 struct plain_hashmap_entry *e;
1400 unsigned hash, idx;
c582a3b3
LP
1401 void *data;
1402
1403 if (!h) {
1404 if (rkey)
1405 *rkey = NULL;
1406 return NULL;
1407 }
1408
1409 hash = bucket_hash(h, key);
89439d4f
MS
1410 idx = bucket_scan(h, hash, key);
1411 if (idx == IDX_NIL) {
c582a3b3
LP
1412 if (rkey)
1413 *rkey = NULL;
1414 return NULL;
1415 }
1416
89439d4f 1417 e = plain_bucket_at(h, idx);
c582a3b3
LP
1418 data = e->value;
1419 if (rkey)
89439d4f 1420 *rkey = (void*) e->b.key;
c582a3b3 1421
89439d4f 1422 remove_entry(h, idx);
c582a3b3
LP
1423
1424 return data;
1425}
1426
101d8e63 1427int hashmap_remove_and_put(Hashmap *h, const void *old_key, const void *new_key, void *value) {
89439d4f
MS
1428 struct swap_entries swap;
1429 struct plain_hashmap_entry *e;
1430 unsigned old_hash, new_hash, idx;
101d8e63
LP
1431
1432 if (!h)
1433 return -ENOENT;
1434
a3b6fafe 1435 old_hash = bucket_hash(h, old_key);
89439d4f
MS
1436 idx = bucket_scan(h, old_hash, old_key);
1437 if (idx == IDX_NIL)
101d8e63
LP
1438 return -ENOENT;
1439
a3b6fafe 1440 new_hash = bucket_hash(h, new_key);
89439d4f 1441 if (bucket_scan(h, new_hash, new_key) != IDX_NIL)
101d8e63
LP
1442 return -EEXIST;
1443
89439d4f 1444 remove_entry(h, idx);
101d8e63 1445
89439d4f
MS
1446 e = &bucket_at_swap(&swap, IDX_PUT)->p;
1447 e->b.key = new_key;
101d8e63 1448 e->value = value;
89439d4f
MS
1449 assert_se(hashmap_put_boldly(h, new_hash, &swap, false) == 1);
1450
1451 return 0;
1452}
1453
1454int set_remove_and_put(Set *s, const void *old_key, const void *new_key) {
1455 struct swap_entries swap;
1456 struct hashmap_base_entry *e;
1457 unsigned old_hash, new_hash, idx;
101d8e63 1458
89439d4f
MS
1459 if (!s)
1460 return -ENOENT;
1461
1462 old_hash = bucket_hash(s, old_key);
1463 idx = bucket_scan(s, old_hash, old_key);
1464 if (idx == IDX_NIL)
1465 return -ENOENT;
1466
1467 new_hash = bucket_hash(s, new_key);
1468 if (bucket_scan(s, new_hash, new_key) != IDX_NIL)
1469 return -EEXIST;
1470
1471 remove_entry(s, idx);
1472
1473 e = &bucket_at_swap(&swap, IDX_PUT)->p.b;
1474 e->key = new_key;
1475 assert_se(hashmap_put_boldly(s, new_hash, &swap, false) == 1);
101d8e63
LP
1476
1477 return 0;
1478}
1479
8fe914ec 1480int hashmap_remove_and_replace(Hashmap *h, const void *old_key, const void *new_key, void *value) {
89439d4f
MS
1481 struct swap_entries swap;
1482 struct plain_hashmap_entry *e;
1483 unsigned old_hash, new_hash, idx_old, idx_new;
8fe914ec
LP
1484
1485 if (!h)
1486 return -ENOENT;
1487
a3b6fafe 1488 old_hash = bucket_hash(h, old_key);
89439d4f
MS
1489 idx_old = bucket_scan(h, old_hash, old_key);
1490 if (idx_old == IDX_NIL)
8fe914ec
LP
1491 return -ENOENT;
1492
89439d4f 1493 old_key = bucket_at(HASHMAP_BASE(h), idx_old)->key;
8fe914ec 1494
89439d4f
MS
1495 new_hash = bucket_hash(h, new_key);
1496 idx_new = bucket_scan(h, new_hash, new_key);
1497 if (idx_new != IDX_NIL)
1498 if (idx_old != idx_new) {
1499 remove_entry(h, idx_new);
1500 /* Compensate for a possible backward shift. */
1501 if (old_key != bucket_at(HASHMAP_BASE(h), idx_old)->key)
1502 idx_old = prev_idx(HASHMAP_BASE(h), idx_old);
1503 assert(old_key == bucket_at(HASHMAP_BASE(h), idx_old)->key);
1504 }
1505
1506 remove_entry(h, idx_old);
1507
1508 e = &bucket_at_swap(&swap, IDX_PUT)->p;
1509 e->b.key = new_key;
8fe914ec 1510 e->value = value;
89439d4f 1511 assert_se(hashmap_put_boldly(h, new_hash, &swap, false) == 1);
8fe914ec
LP
1512
1513 return 0;
1514}
1515
89439d4f
MS
1516void *hashmap_remove_value(Hashmap *h, const void *key, void *value) {
1517 struct plain_hashmap_entry *e;
1518 unsigned hash, idx;
3158713e
LP
1519
1520 if (!h)
1521 return NULL;
1522
a3b6fafe 1523 hash = bucket_hash(h, key);
89439d4f
MS
1524 idx = bucket_scan(h, hash, key);
1525 if (idx == IDX_NIL)
3158713e
LP
1526 return NULL;
1527
89439d4f 1528 e = plain_bucket_at(h, idx);
3158713e
LP
1529 if (e->value != value)
1530 return NULL;
1531
89439d4f 1532 remove_entry(h, idx);
3158713e
LP
1533
1534 return value;
1535}
1536
89439d4f
MS
1537static unsigned find_first_entry(HashmapBase *h) {
1538 Iterator i = ITERATOR_FIRST;
60918275 1539
89439d4f
MS
1540 if (!h || !n_entries(h))
1541 return IDX_NIL;
60918275 1542
89439d4f 1543 return hashmap_iterate_entry(h, &i);
60918275
LP
1544}
1545
89439d4f
MS
1546void *internal_hashmap_first(HashmapBase *h) {
1547 unsigned idx;
60918275 1548
89439d4f
MS
1549 idx = find_first_entry(h);
1550 if (idx == IDX_NIL)
60918275
LP
1551 return NULL;
1552
89439d4f 1553 return entry_value(h, bucket_at(h, idx));
60918275
LP
1554}
1555
89439d4f
MS
1556void *internal_hashmap_first_key(HashmapBase *h) {
1557 struct hashmap_base_entry *e;
1558 unsigned idx;
2e4a6ff4 1559
89439d4f
MS
1560 idx = find_first_entry(h);
1561 if (idx == IDX_NIL)
2e4a6ff4
LP
1562 return NULL;
1563
89439d4f
MS
1564 e = bucket_at(h, idx);
1565 return (void*) e->key;
2e4a6ff4
LP
1566}
1567
89439d4f
MS
1568void *internal_hashmap_steal_first(HashmapBase *h) {
1569 struct hashmap_base_entry *e;
60918275 1570 void *data;
89439d4f 1571 unsigned idx;
60918275 1572
89439d4f
MS
1573 idx = find_first_entry(h);
1574 if (idx == IDX_NIL)
60918275
LP
1575 return NULL;
1576
89439d4f
MS
1577 e = bucket_at(h, idx);
1578 data = entry_value(h, e);
1579 remove_entry(h, idx);
60918275
LP
1580
1581 return data;
1582}
1583
89439d4f
MS
1584void *internal_hashmap_steal_first_key(HashmapBase *h) {
1585 struct hashmap_base_entry *e;
22be093f 1586 void *key;
89439d4f 1587 unsigned idx;
22be093f 1588
89439d4f
MS
1589 idx = find_first_entry(h);
1590 if (idx == IDX_NIL)
22be093f
LP
1591 return NULL;
1592
89439d4f
MS
1593 e = bucket_at(h, idx);
1594 key = (void*) e->key;
1595 remove_entry(h, idx);
22be093f
LP
1596
1597 return key;
1598}
1599
89439d4f 1600unsigned internal_hashmap_size(HashmapBase *h) {
60918275
LP
1601
1602 if (!h)
1603 return 0;
1604
89439d4f 1605 return n_entries(h);
60918275
LP
1606}
1607
89439d4f 1608unsigned internal_hashmap_buckets(HashmapBase *h) {
45fa9e29
LP
1609
1610 if (!h)
1611 return 0;
1612
89439d4f 1613 return n_buckets(h);
45fa9e29
LP
1614}
1615
89439d4f
MS
1616int internal_hashmap_merge(Hashmap *h, Hashmap *other) {
1617 Iterator i;
1618 unsigned idx;
60918275 1619
89439d4f 1620 assert(h);
60918275 1621
89439d4f
MS
1622 HASHMAP_FOREACH_IDX(idx, HASHMAP_BASE(other), i) {
1623 struct plain_hashmap_entry *pe = plain_bucket_at(other, idx);
1624 int r;
91cdde8a 1625
89439d4f
MS
1626 r = hashmap_put(h, pe->b.key, pe->value);
1627 if (r < 0 && r != -EEXIST)
1628 return r;
1629 }
91cdde8a 1630
89439d4f
MS
1631 return 0;
1632}
91cdde8a 1633
89439d4f
MS
1634int set_merge(Set *s, Set *other) {
1635 Iterator i;
1636 unsigned idx;
91cdde8a 1637
89439d4f
MS
1638 assert(s);
1639
1640 HASHMAP_FOREACH_IDX(idx, HASHMAP_BASE(other), i) {
1641 struct set_entry *se = set_bucket_at(other, idx);
91cdde8a
LP
1642 int r;
1643
89439d4f
MS
1644 r = set_put(s, se->b.key);
1645 if (r < 0)
a3b6fafe 1646 return r;
91cdde8a
LP
1647 }
1648
1649 return 0;
1650}
1651
89439d4f 1652int internal_hashmap_reserve(HashmapBase *h, unsigned entries_add) {
e4c691b5
MS
1653 int r;
1654
1655 assert(h);
1656
1657 r = resize_buckets(h, entries_add);
1658 if (r < 0)
1659 return r;
1660
1661 return 0;
1662}
1663
89439d4f
MS
1664/*
1665 * The same as hashmap_merge(), but every new item from other is moved to h.
1666 * Keys already in h are skipped and stay in other.
1667 * Returns: 0 on success.
1668 * -ENOMEM on alloc failure, in which case no move has been done.
1669 */
1670int internal_hashmap_move(HashmapBase *h, HashmapBase *other) {
1671 struct swap_entries swap;
1672 struct hashmap_base_entry *e, *n;
1673 Iterator i;
1674 unsigned idx;
1675 int r;
101d8e63
LP
1676
1677 assert(h);
1678
101d8e63 1679 if (!other)
7ad63f57 1680 return 0;
101d8e63 1681
89439d4f
MS
1682 assert(other->type == h->type);
1683
1684 /*
1685 * This reserves buckets for the worst case, where none of other's
1686 * entries are yet present in h. This is preferable to risking
1687 * an allocation failure in the middle of the moving and having to
1688 * rollback or return a partial result.
1689 */
1690 r = resize_buckets(h, n_entries(other));
1691 if (r < 0)
1692 return r;
101d8e63 1693
89439d4f
MS
1694 HASHMAP_FOREACH_IDX(idx, other, i) {
1695 unsigned h_hash;
101d8e63 1696
89439d4f 1697 e = bucket_at(other, idx);
a3b6fafe 1698 h_hash = bucket_hash(h, e->key);
89439d4f 1699 if (bucket_scan(h, h_hash, e->key) != IDX_NIL)
101d8e63
LP
1700 continue;
1701
89439d4f
MS
1702 n = &bucket_at_swap(&swap, IDX_PUT)->p.b;
1703 n->key = e->key;
1704 if (h->type != HASHMAP_TYPE_SET)
1705 ((struct plain_hashmap_entry*) n)->value =
1706 ((struct plain_hashmap_entry*) e)->value;
1707 assert_se(hashmap_put_boldly(h, h_hash, &swap, false) == 1);
1708
1709 remove_entry(other, idx);
101d8e63 1710 }
7ad63f57
MS
1711
1712 return 0;
101d8e63
LP
1713}
1714
89439d4f
MS
1715int internal_hashmap_move_one(HashmapBase *h, HashmapBase *other, const void *key) {
1716 struct swap_entries swap;
1717 unsigned h_hash, other_hash, idx;
1718 struct hashmap_base_entry *e, *n;
1719 int r;
101d8e63 1720
101d8e63
LP
1721 assert(h);
1722
a3b6fafe 1723 h_hash = bucket_hash(h, key);
89439d4f 1724 if (bucket_scan(h, h_hash, key) != IDX_NIL)
101d8e63
LP
1725 return -EEXIST;
1726
bf3d3e2b
MS
1727 if (!other)
1728 return -ENOENT;
1729
89439d4f
MS
1730 assert(other->type == h->type);
1731
a3b6fafe 1732 other_hash = bucket_hash(other, key);
89439d4f
MS
1733 idx = bucket_scan(other, other_hash, key);
1734 if (idx == IDX_NIL)
101d8e63
LP
1735 return -ENOENT;
1736
89439d4f
MS
1737 e = bucket_at(other, idx);
1738
1739 n = &bucket_at_swap(&swap, IDX_PUT)->p.b;
1740 n->key = e->key;
1741 if (h->type != HASHMAP_TYPE_SET)
1742 ((struct plain_hashmap_entry*) n)->value =
1743 ((struct plain_hashmap_entry*) e)->value;
1744 r = hashmap_put_boldly(h, h_hash, &swap, true);
1745 if (r < 0)
1746 return r;
101d8e63 1747
89439d4f 1748 remove_entry(other, idx);
101d8e63
LP
1749 return 0;
1750}
1751
89439d4f
MS
1752HashmapBase *internal_hashmap_copy(HashmapBase *h) {
1753 HashmapBase *copy;
1754 int r;
91cdde8a
LP
1755
1756 assert(h);
1757
89439d4f 1758 copy = hashmap_base_new(h->hash_ops, h->type HASHMAP_DEBUG_SRC_ARGS);
45fa9e29 1759 if (!copy)
91cdde8a
LP
1760 return NULL;
1761
89439d4f
MS
1762 switch (h->type) {
1763 case HASHMAP_TYPE_PLAIN:
1764 case HASHMAP_TYPE_ORDERED:
1765 r = hashmap_merge((Hashmap*)copy, (Hashmap*)h);
1766 break;
1767 case HASHMAP_TYPE_SET:
1768 r = set_merge((Set*)copy, (Set*)h);
1769 break;
1770 default:
1771 assert_not_reached("Unknown hashmap type");
1772 }
1773
1774 if (r < 0) {
1775 internal_hashmap_free(copy);
91cdde8a
LP
1776 return NULL;
1777 }
1778
1779 return copy;
1780}
db1413d7 1781
89439d4f 1782char **internal_hashmap_get_strv(HashmapBase *h) {
db1413d7 1783 char **sv;
89439d4f
MS
1784 Iterator i;
1785 unsigned idx, n;
db1413d7 1786
89439d4f 1787 sv = new(char*, n_entries(h)+1);
729e3769 1788 if (!sv)
db1413d7
KS
1789 return NULL;
1790
1791 n = 0;
89439d4f
MS
1792 HASHMAP_FOREACH_IDX(idx, h, i)
1793 sv[n++] = entry_value(h, bucket_at(h, idx));
db1413d7
KS
1794 sv[n] = NULL;
1795
1796 return sv;
1797}
3c1668da 1798
89439d4f
MS
1799void *ordered_hashmap_next(OrderedHashmap *h, const void *key) {
1800 struct ordered_hashmap_entry *e;
1801 unsigned hash, idx;
3c1668da 1802
3c1668da
LP
1803 if (!h)
1804 return NULL;
1805
a3b6fafe 1806 hash = bucket_hash(h, key);
89439d4f
MS
1807 idx = bucket_scan(h, hash, key);
1808 if (idx == IDX_NIL)
3c1668da
LP
1809 return NULL;
1810
89439d4f
MS
1811 e = ordered_bucket_at(h, idx);
1812 if (e->iterate_next == IDX_NIL)
3c1668da 1813 return NULL;
89439d4f
MS
1814 return ordered_bucket_at(h, e->iterate_next)->p.value;
1815}
3c1668da 1816
89439d4f
MS
1817int set_consume(Set *s, void *value) {
1818 int r;
1819
d97c5aea
LP
1820 assert(s);
1821 assert(value);
1822
89439d4f 1823 r = set_put(s, value);
575ccc1b 1824 if (r <= 0)
89439d4f
MS
1825 free(value);
1826
1827 return r;
1828}
1829
1830int set_put_strdup(Set *s, const char *p) {
1831 char *c;
89439d4f
MS
1832
1833 assert(s);
1834 assert(p);
1835
454f0f86
LP
1836 if (set_contains(s, (char*) p))
1837 return 0;
1838
89439d4f
MS
1839 c = strdup(p);
1840 if (!c)
1841 return -ENOMEM;
1842
454f0f86 1843 return set_consume(s, c);
89439d4f
MS
1844}
1845
1846int set_put_strdupv(Set *s, char **l) {
1847 int n = 0, r;
1848 char **i;
1849
d97c5aea
LP
1850 assert(s);
1851
89439d4f
MS
1852 STRV_FOREACH(i, l) {
1853 r = set_put_strdup(s, *i);
1854 if (r < 0)
1855 return r;
1856
1857 n += r;
1858 }
1859
1860 return n;
3c1668da 1861}
d97c5aea
LP
1862
1863int set_put_strsplit(Set *s, const char *v, const char *separators, ExtractFlags flags) {
1864 const char *p = v;
1865 int r;
1866
1867 assert(s);
1868 assert(v);
1869
1870 for (;;) {
1871 char *word;
1872
1873 r = extract_first_word(&p, &word, separators, flags);
1874 if (r <= 0)
1875 return r;
1876
1877 r = set_consume(s, word);
1878 if (r < 0)
1879 return r;
1880 }
1881}
45ea84d8
VC
1882
1883/* expand the cachemem if needed, return true if newly (re)activated. */
1884static int cachemem_maintain(CacheMem *mem, unsigned size) {
45ea84d8
VC
1885 assert(mem);
1886
1887 if (!GREEDY_REALLOC(mem->ptr, mem->n_allocated, size)) {
1888 if (size > 0)
1889 return -ENOMEM;
1890 }
1891
afbbc068
ZJS
1892 if (!mem->active) {
1893 mem->active = true;
1894 return true;
1895 }
45ea84d8 1896
afbbc068 1897 return false;
45ea84d8
VC
1898}
1899
1900int iterated_cache_get(IteratedCache *cache, const void ***res_keys, const void ***res_values, unsigned *res_n_entries) {
1901 bool sync_keys = false, sync_values = false;
1902 unsigned size;
1903 int r;
1904
1905 assert(cache);
1906 assert(cache->hashmap);
1907
1908 size = n_entries(cache->hashmap);
1909
1910 if (res_keys) {
1911 r = cachemem_maintain(&cache->keys, size);
1912 if (r < 0)
1913 return r;
1914
1915 sync_keys = r;
1916 } else
1917 cache->keys.active = false;
1918
1919 if (res_values) {
1920 r = cachemem_maintain(&cache->values, size);
1921 if (r < 0)
1922 return r;
1923
1924 sync_values = r;
1925 } else
1926 cache->values.active = false;
1927
1928 if (cache->hashmap->dirty) {
1929 if (cache->keys.active)
1930 sync_keys = true;
1931 if (cache->values.active)
1932 sync_values = true;
1933
1934 cache->hashmap->dirty = false;
1935 }
1936
1937 if (sync_keys || sync_values) {
1938 unsigned i, idx;
1939 Iterator iter;
1940
1941 i = 0;
1942 HASHMAP_FOREACH_IDX(idx, cache->hashmap, iter) {
1943 struct hashmap_base_entry *e;
1944
1945 e = bucket_at(cache->hashmap, idx);
1946
1947 if (sync_keys)
1948 cache->keys.ptr[i] = e->key;
1949 if (sync_values)
1950 cache->values.ptr[i] = entry_value(cache->hashmap, e);
1951 i++;
1952 }
1953 }
1954
1955 if (res_keys)
1956 *res_keys = cache->keys.ptr;
1957 if (res_values)
1958 *res_values = cache->values.ptr;
1959 if (res_n_entries)
1960 *res_n_entries = size;
1961
1962 return 0;
1963}
1964
1965IteratedCache *iterated_cache_free(IteratedCache *cache) {
1966 if (cache) {
1967 free(cache->keys.ptr);
1968 free(cache->values.ptr);
1969 free(cache);
1970 }
1971
1972 return NULL;
1973}