]> git.ipfire.org Git - thirdparty/systemd.git/blame - src/core/cgroup.c
cpuset: fix indentation and log about OOM we otherwise ignore
[thirdparty/systemd.git] / src / core / cgroup.c
CommitLineData
53e1b683 1/* SPDX-License-Identifier: LGPL-2.1+ */
8e274523 2
c6c18be3 3#include <fcntl.h>
e41969e3 4#include <fnmatch.h>
8c6db833 5
afcfaa69
LP
6#include "sd-messages.h"
7
b5efdb8a 8#include "alloc-util.h"
18c528e9 9#include "blockdev-util.h"
d8b4d14d 10#include "bpf-devices.h"
906c06f6 11#include "bpf-firewall.h"
45c2e068 12#include "btrfs-util.h"
6592b975 13#include "bus-error.h"
fdb3deca 14#include "cgroup-setup.h"
03a7b521 15#include "cgroup-util.h"
3ffd4af2
LP
16#include "cgroup.h"
17#include "fd-util.h"
0d39fa9c 18#include "fileio.h"
77601719 19#include "fs-util.h"
d8b4d14d 20#include "nulstr-util.h"
6bedfcbb 21#include "parse-util.h"
9eb977db 22#include "path-util.h"
03a7b521 23#include "process-util.h"
c36a69f4 24#include "procfs-util.h"
9444b1f2 25#include "special.h"
74c48bf5 26#include "stat-util.h"
906c06f6 27#include "stdio-util.h"
8b43440b 28#include "string-table.h"
07630cea 29#include "string-util.h"
cc6271f1 30#include "virt.h"
8e274523 31
10f28641 32#define CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC ((usec_t) 100 * USEC_PER_MSEC)
9a054909 33
39b9fefb
LP
34/* Returns the log level to use when cgroup attribute writes fail. When an attribute is missing or we have access
35 * problems we downgrade to LOG_DEBUG. This is supposed to be nice to container managers and kernels which want to mask
36 * out specific attributes from us. */
37#define LOG_LEVEL_CGROUP_WRITE(r) (IN_SET(abs(r), ENOENT, EROFS, EACCES, EPERM) ? LOG_DEBUG : LOG_WARNING)
38
611c4f8a 39bool manager_owns_host_root_cgroup(Manager *m) {
cc6271f1
LP
40 assert(m);
41
42 /* Returns true if we are managing the root cgroup. Note that it isn't sufficient to just check whether the
43 * group root path equals "/" since that will also be the case if CLONE_NEWCGROUP is in the mix. Since there's
44 * appears to be no nice way to detect whether we are in a CLONE_NEWCGROUP namespace we instead just check if
45 * we run in any kind of container virtualization. */
46
28cfdc5a
LP
47 if (MANAGER_IS_USER(m))
48 return false;
49
cc6271f1
LP
50 if (detect_container() > 0)
51 return false;
52
57ea45e1 53 return empty_or_root(m->cgroup_root);
cc6271f1
LP
54}
55
611c4f8a 56bool unit_has_host_root_cgroup(Unit *u) {
f3725e64
LP
57 assert(u);
58
cc6271f1
LP
59 /* Returns whether this unit manages the root cgroup. This will return true if this unit is the root slice and
60 * the manager manages the root cgroup. */
f3725e64 61
611c4f8a 62 if (!manager_owns_host_root_cgroup(u->manager))
f3725e64
LP
63 return false;
64
cc6271f1 65 return unit_has_name(u, SPECIAL_ROOT_SLICE);
f3725e64
LP
66}
67
293d32df
LP
68static int set_attribute_and_warn(Unit *u, const char *controller, const char *attribute, const char *value) {
69 int r;
70
71 r = cg_set_attribute(controller, u->cgroup_path, attribute, value);
72 if (r < 0)
73 log_unit_full(u, LOG_LEVEL_CGROUP_WRITE(r), r, "Failed to set '%s' attribute on '%s' to '%.*s': %m",
74 strna(attribute), isempty(u->cgroup_path) ? "/" : u->cgroup_path, (int) strcspn(value, NEWLINE), value);
75
76 return r;
77}
78
2b40998d 79static void cgroup_compat_warn(void) {
128fadc9
TH
80 static bool cgroup_compat_warned = false;
81
82 if (cgroup_compat_warned)
83 return;
84
cc6271f1
LP
85 log_warning("cgroup compatibility translation between legacy and unified hierarchy settings activated. "
86 "See cgroup-compat debug messages for details.");
87
128fadc9
TH
88 cgroup_compat_warned = true;
89}
90
91#define log_cgroup_compat(unit, fmt, ...) do { \
92 cgroup_compat_warn(); \
93 log_unit_debug(unit, "cgroup-compat: " fmt, ##__VA_ARGS__); \
2b40998d 94 } while (false)
128fadc9 95
4ad49000
LP
96void cgroup_context_init(CGroupContext *c) {
97 assert(c);
98
de8a711a 99 /* Initialize everything to the kernel defaults. */
4ad49000 100
de8a711a
LP
101 *c = (CGroupContext) {
102 .cpu_weight = CGROUP_WEIGHT_INVALID,
103 .startup_cpu_weight = CGROUP_WEIGHT_INVALID,
104 .cpu_quota_per_sec_usec = USEC_INFINITY,
10f28641 105 .cpu_quota_period_usec = USEC_INFINITY,
66ebf6c0 106
de8a711a
LP
107 .cpu_shares = CGROUP_CPU_SHARES_INVALID,
108 .startup_cpu_shares = CGROUP_CPU_SHARES_INVALID,
d53d9474 109
de8a711a
LP
110 .memory_high = CGROUP_LIMIT_MAX,
111 .memory_max = CGROUP_LIMIT_MAX,
112 .memory_swap_max = CGROUP_LIMIT_MAX,
da4d897e 113
de8a711a 114 .memory_limit = CGROUP_LIMIT_MAX,
b2f8b02e 115
de8a711a
LP
116 .io_weight = CGROUP_WEIGHT_INVALID,
117 .startup_io_weight = CGROUP_WEIGHT_INVALID,
13c31542 118
de8a711a
LP
119 .blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
120 .startup_blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
d53d9474 121
de8a711a
LP
122 .tasks_max = CGROUP_LIMIT_MAX,
123 };
4ad49000 124}
8e274523 125
4ad49000
LP
126void cgroup_context_free_device_allow(CGroupContext *c, CGroupDeviceAllow *a) {
127 assert(c);
128 assert(a);
129
71fda00f 130 LIST_REMOVE(device_allow, c->device_allow, a);
4ad49000
LP
131 free(a->path);
132 free(a);
133}
134
13c31542
TH
135void cgroup_context_free_io_device_weight(CGroupContext *c, CGroupIODeviceWeight *w) {
136 assert(c);
137 assert(w);
138
139 LIST_REMOVE(device_weights, c->io_device_weights, w);
140 free(w->path);
141 free(w);
142}
143
6ae4283c
TH
144void cgroup_context_free_io_device_latency(CGroupContext *c, CGroupIODeviceLatency *l) {
145 assert(c);
146 assert(l);
147
148 LIST_REMOVE(device_latencies, c->io_device_latencies, l);
149 free(l->path);
150 free(l);
151}
152
13c31542
TH
153void cgroup_context_free_io_device_limit(CGroupContext *c, CGroupIODeviceLimit *l) {
154 assert(c);
155 assert(l);
156
157 LIST_REMOVE(device_limits, c->io_device_limits, l);
158 free(l->path);
159 free(l);
160}
161
4ad49000
LP
162void cgroup_context_free_blockio_device_weight(CGroupContext *c, CGroupBlockIODeviceWeight *w) {
163 assert(c);
164 assert(w);
165
71fda00f 166 LIST_REMOVE(device_weights, c->blockio_device_weights, w);
4ad49000
LP
167 free(w->path);
168 free(w);
169}
170
171void cgroup_context_free_blockio_device_bandwidth(CGroupContext *c, CGroupBlockIODeviceBandwidth *b) {
172 assert(c);
8e274523 173 assert(b);
8e274523 174
71fda00f 175 LIST_REMOVE(device_bandwidths, c->blockio_device_bandwidths, b);
4ad49000
LP
176 free(b->path);
177 free(b);
178}
179
180void cgroup_context_done(CGroupContext *c) {
181 assert(c);
182
13c31542
TH
183 while (c->io_device_weights)
184 cgroup_context_free_io_device_weight(c, c->io_device_weights);
185
6ae4283c
TH
186 while (c->io_device_latencies)
187 cgroup_context_free_io_device_latency(c, c->io_device_latencies);
188
13c31542
TH
189 while (c->io_device_limits)
190 cgroup_context_free_io_device_limit(c, c->io_device_limits);
191
4ad49000
LP
192 while (c->blockio_device_weights)
193 cgroup_context_free_blockio_device_weight(c, c->blockio_device_weights);
194
195 while (c->blockio_device_bandwidths)
196 cgroup_context_free_blockio_device_bandwidth(c, c->blockio_device_bandwidths);
197
198 while (c->device_allow)
199 cgroup_context_free_device_allow(c, c->device_allow);
6a48d82f
DM
200
201 c->ip_address_allow = ip_address_access_free_all(c->ip_address_allow);
202 c->ip_address_deny = ip_address_access_free_all(c->ip_address_deny);
fab34748
KL
203
204 c->ip_filters_ingress = strv_free(c->ip_filters_ingress);
205 c->ip_filters_egress = strv_free(c->ip_filters_egress);
047f5d63
PH
206
207 cpu_set_reset(&c->cpuset_cpus);
208 cpu_set_reset(&c->cpuset_mems);
4ad49000
LP
209}
210
74b5fb27
CD
211static int unit_get_kernel_memory_limit(Unit *u, const char *file, uint64_t *ret) {
212 _cleanup_free_ char *raw_kval = NULL;
213 uint64_t kval;
214 int r;
215
216 assert(u);
217
218 if (!u->cgroup_realized)
219 return -EOWNERDEAD;
220
221 r = cg_get_attribute("memory", u->cgroup_path, file, &raw_kval);
222 if (r < 0)
223 return r;
224
225 if (streq(raw_kval, "max")) {
226 *ret = CGROUP_LIMIT_MAX;
227 return 0;
228 }
229
230 r = safe_atou64(raw_kval, &kval);
231 if (r < 0)
232 return r;
233
234 *ret = kval;
235
236 return 0;
237}
238
239static int unit_compare_memory_limit(Unit *u, const char *property_name, uint64_t *ret_unit_value, uint64_t *ret_kernel_value) {
240 CGroupContext *c;
241 CGroupMask m;
242 const char *file;
243 uint64_t unit_value;
244 int r;
245
246 /* Compare kernel memcg configuration against our internal systemd state. Unsupported (and will
247 * return -ENODATA) on cgroup v1.
248 *
249 * Returns:
250 *
251 * <0: On error.
252 * 0: If the kernel memory setting doesn't match our configuration.
253 * >0: If the kernel memory setting matches our configuration.
254 *
255 * The following values are only guaranteed to be populated on return >=0:
256 *
257 * - ret_unit_value will contain our internal expected value for the unit, page-aligned.
258 * - ret_kernel_value will contain the actual value presented by the kernel. */
259
260 assert(u);
261
262 r = cg_all_unified();
263 if (r < 0)
264 return log_debug_errno(r, "Failed to determine cgroup hierarchy version: %m");
265
266 /* Unsupported on v1.
267 *
268 * We don't return ENOENT, since that could actually mask a genuine problem where somebody else has
269 * silently masked the controller. */
270 if (r == 0)
271 return -ENODATA;
272
273 /* The root slice doesn't have any controller files, so we can't compare anything. */
274 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
275 return -ENODATA;
276
277 /* It's possible to have MemoryFoo set without systemd wanting to have the memory controller enabled,
278 * for example, in the case of DisableControllers= or cgroup_disable on the kernel command line. To
279 * avoid specious errors in these scenarios, check that we even expect the memory controller to be
280 * enabled at all. */
281 m = unit_get_target_mask(u);
282 if (!FLAGS_SET(m, CGROUP_MASK_MEMORY))
283 return -ENODATA;
284
285 c = unit_get_cgroup_context(u);
286 assert(c);
287
288 if (streq(property_name, "MemoryLow")) {
289 unit_value = unit_get_ancestor_memory_low(u);
290 file = "memory.low";
291 } else if (streq(property_name, "MemoryMin")) {
292 unit_value = unit_get_ancestor_memory_min(u);
293 file = "memory.min";
294 } else if (streq(property_name, "MemoryHigh")) {
295 unit_value = c->memory_high;
296 file = "memory.high";
297 } else if (streq(property_name, "MemoryMax")) {
298 unit_value = c->memory_max;
299 file = "memory.max";
300 } else if (streq(property_name, "MemorySwapMax")) {
301 unit_value = c->memory_swap_max;
302 file = "memory.swap.max";
303 } else
304 return -EINVAL;
305
306 r = unit_get_kernel_memory_limit(u, file, ret_kernel_value);
307 if (r < 0)
308 return log_unit_debug_errno(u, r, "Failed to parse %s: %m", file);
309
310 /* It's intended (soon) in a future kernel to not expose cgroup memory limits rounded to page
311 * boundaries, but instead separate the user-exposed limit, which is whatever userspace told us, from
312 * our internal page-counting. To support those future kernels, just check the value itself first
313 * without any page-alignment. */
314 if (*ret_kernel_value == unit_value) {
315 *ret_unit_value = unit_value;
316 return 1;
317 }
318
319 /* The current kernel behaviour, by comparison, is that even if you write a particular number of
320 * bytes into a cgroup memory file, it always returns that number page-aligned down (since the kernel
321 * internally stores cgroup limits in pages). As such, so long as it aligns properly, everything is
322 * cricket. */
323 if (unit_value != CGROUP_LIMIT_MAX)
324 unit_value = PAGE_ALIGN_DOWN(unit_value);
325
326 *ret_unit_value = unit_value;
327
328 return *ret_kernel_value == *ret_unit_value;
329}
330
bc0623df
CD
331#define FORMAT_CGROUP_DIFF_MAX 128
332
333static char *format_cgroup_memory_limit_comparison(char *buf, size_t l, Unit *u, const char *property_name) {
334 uint64_t kval, sval;
335 int r;
336
337 assert(u);
338 assert(buf);
339 assert(l > 0);
340
341 r = unit_compare_memory_limit(u, property_name, &sval, &kval);
342
343 /* memory.swap.max is special in that it relies on CONFIG_MEMCG_SWAP (and the default swapaccount=1).
344 * In the absence of reliably being able to detect whether memcg swap support is available or not,
345 * only complain if the error is not ENOENT. */
346 if (r > 0 || IN_SET(r, -ENODATA, -EOWNERDEAD) ||
347 (r == -ENOENT && streq(property_name, "MemorySwapMax"))) {
348 buf[0] = 0;
349 return buf;
350 }
351
352 if (r < 0) {
353 snprintf(buf, l, " (error getting kernel value: %s)", strerror_safe(r));
354 return buf;
355 }
356
357 snprintf(buf, l, " (different value in kernel: %" PRIu64 ")", kval);
358
359 return buf;
360}
361
362void cgroup_context_dump(Unit *u, FILE* f, const char *prefix) {
85c3b278 363 _cleanup_free_ char *disable_controllers_str = NULL, *cpuset_cpus = NULL, *cpuset_mems = NULL;
13c31542
TH
364 CGroupIODeviceLimit *il;
365 CGroupIODeviceWeight *iw;
6ae4283c 366 CGroupIODeviceLatency *l;
4ad49000
LP
367 CGroupBlockIODeviceBandwidth *b;
368 CGroupBlockIODeviceWeight *w;
369 CGroupDeviceAllow *a;
bc0623df 370 CGroupContext *c;
c21c9906 371 IPAddressAccessItem *iaai;
fab34748 372 char **path;
bc0623df 373 char q[FORMAT_TIMESPAN_MAX];
10f28641 374 char v[FORMAT_TIMESPAN_MAX];
4ad49000 375
bc0623df
CD
376 char cda[FORMAT_CGROUP_DIFF_MAX];
377 char cdb[FORMAT_CGROUP_DIFF_MAX];
378 char cdc[FORMAT_CGROUP_DIFF_MAX];
379 char cdd[FORMAT_CGROUP_DIFF_MAX];
380 char cde[FORMAT_CGROUP_DIFF_MAX];
381
382 assert(u);
4ad49000
LP
383 assert(f);
384
bc0623df
CD
385 c = unit_get_cgroup_context(u);
386 assert(c);
387
4ad49000
LP
388 prefix = strempty(prefix);
389
25cc30c4
AZ
390 (void) cg_mask_to_string(c->disable_controllers, &disable_controllers_str);
391
047f5d63
PH
392 cpuset_cpus = cpu_set_to_range_string(&c->cpuset_cpus);
393 cpuset_mems = cpu_set_to_range_string(&c->cpuset_mems);
394
4ad49000 395 fprintf(f,
6dfb9282
CD
396 "%sCPUAccounting: %s\n"
397 "%sIOAccounting: %s\n"
398 "%sBlockIOAccounting: %s\n"
399 "%sMemoryAccounting: %s\n"
400 "%sTasksAccounting: %s\n"
401 "%sIPAccounting: %s\n"
402 "%sCPUWeight: %" PRIu64 "\n"
403 "%sStartupCPUWeight: %" PRIu64 "\n"
404 "%sCPUShares: %" PRIu64 "\n"
405 "%sStartupCPUShares: %" PRIu64 "\n"
406 "%sCPUQuotaPerSecSec: %s\n"
407 "%sCPUQuotaPeriodSec: %s\n"
408 "%sAllowedCPUs: %s\n"
409 "%sAllowedMemoryNodes: %s\n"
410 "%sIOWeight: %" PRIu64 "\n"
411 "%sStartupIOWeight: %" PRIu64 "\n"
412 "%sBlockIOWeight: %" PRIu64 "\n"
413 "%sStartupBlockIOWeight: %" PRIu64 "\n"
414 "%sDefaultMemoryMin: %" PRIu64 "\n"
415 "%sDefaultMemoryLow: %" PRIu64 "\n"
bc0623df
CD
416 "%sMemoryMin: %" PRIu64 "%s\n"
417 "%sMemoryLow: %" PRIu64 "%s\n"
418 "%sMemoryHigh: %" PRIu64 "%s\n"
419 "%sMemoryMax: %" PRIu64 "%s\n"
420 "%sMemorySwapMax: %" PRIu64 "%s\n"
6dfb9282
CD
421 "%sMemoryLimit: %" PRIu64 "\n"
422 "%sTasksMax: %" PRIu64 "\n"
423 "%sDevicePolicy: %s\n"
424 "%sDisableControllers: %s\n"
425 "%sDelegate: %s\n",
4ad49000 426 prefix, yes_no(c->cpu_accounting),
13c31542 427 prefix, yes_no(c->io_accounting),
4ad49000
LP
428 prefix, yes_no(c->blockio_accounting),
429 prefix, yes_no(c->memory_accounting),
d53d9474 430 prefix, yes_no(c->tasks_accounting),
c21c9906 431 prefix, yes_no(c->ip_accounting),
66ebf6c0
TH
432 prefix, c->cpu_weight,
433 prefix, c->startup_cpu_weight,
4ad49000 434 prefix, c->cpu_shares,
95ae05c0 435 prefix, c->startup_cpu_shares,
bc0623df 436 prefix, format_timespan(q, sizeof(q), c->cpu_quota_per_sec_usec, 1),
10f28641 437 prefix, format_timespan(v, sizeof(v), c->cpu_quota_period_usec, 1),
85c3b278
LP
438 prefix, strempty(cpuset_cpus),
439 prefix, strempty(cpuset_mems),
13c31542
TH
440 prefix, c->io_weight,
441 prefix, c->startup_io_weight,
4ad49000 442 prefix, c->blockio_weight,
95ae05c0 443 prefix, c->startup_blockio_weight,
7ad5439e 444 prefix, c->default_memory_min,
c52db42b 445 prefix, c->default_memory_low,
bc0623df
CD
446 prefix, c->memory_min, format_cgroup_memory_limit_comparison(cda, sizeof(cda), u, "MemoryMin"),
447 prefix, c->memory_low, format_cgroup_memory_limit_comparison(cdb, sizeof(cdb), u, "MemoryLow"),
448 prefix, c->memory_high, format_cgroup_memory_limit_comparison(cdc, sizeof(cdc), u, "MemoryHigh"),
449 prefix, c->memory_max, format_cgroup_memory_limit_comparison(cdd, sizeof(cdd), u, "MemoryMax"),
450 prefix, c->memory_swap_max, format_cgroup_memory_limit_comparison(cde, sizeof(cde), u, "MemorySwapMax"),
4ad49000 451 prefix, c->memory_limit,
03a7b521 452 prefix, c->tasks_max,
a931ad47 453 prefix, cgroup_device_policy_to_string(c->device_policy),
f4c43a81 454 prefix, strempty(disable_controllers_str),
a931ad47 455 prefix, yes_no(c->delegate));
4ad49000 456
02638280
LP
457 if (c->delegate) {
458 _cleanup_free_ char *t = NULL;
459
460 (void) cg_mask_to_string(c->delegate_controllers, &t);
461
6dfb9282 462 fprintf(f, "%sDelegateControllers: %s\n",
02638280
LP
463 prefix,
464 strempty(t));
465 }
466
4ad49000
LP
467 LIST_FOREACH(device_allow, a, c->device_allow)
468 fprintf(f,
6dfb9282 469 "%sDeviceAllow: %s %s%s%s\n",
4ad49000
LP
470 prefix,
471 a->path,
472 a->r ? "r" : "", a->w ? "w" : "", a->m ? "m" : "");
473
13c31542
TH
474 LIST_FOREACH(device_weights, iw, c->io_device_weights)
475 fprintf(f,
6dfb9282 476 "%sIODeviceWeight: %s %" PRIu64 "\n",
13c31542
TH
477 prefix,
478 iw->path,
479 iw->weight);
480
6ae4283c
TH
481 LIST_FOREACH(device_latencies, l, c->io_device_latencies)
482 fprintf(f,
6dfb9282 483 "%sIODeviceLatencyTargetSec: %s %s\n",
6ae4283c
TH
484 prefix,
485 l->path,
bc0623df 486 format_timespan(q, sizeof(q), l->target_usec, 1));
6ae4283c 487
13c31542
TH
488 LIST_FOREACH(device_limits, il, c->io_device_limits) {
489 char buf[FORMAT_BYTES_MAX];
9be57249
TH
490 CGroupIOLimitType type;
491
492 for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
493 if (il->limits[type] != cgroup_io_limit_defaults[type])
494 fprintf(f,
6dfb9282 495 "%s%s: %s %s\n",
9be57249
TH
496 prefix,
497 cgroup_io_limit_type_to_string(type),
498 il->path,
499 format_bytes(buf, sizeof(buf), il->limits[type]));
13c31542
TH
500 }
501
4ad49000
LP
502 LIST_FOREACH(device_weights, w, c->blockio_device_weights)
503 fprintf(f,
6dfb9282 504 "%sBlockIODeviceWeight: %s %" PRIu64,
4ad49000
LP
505 prefix,
506 w->path,
507 w->weight);
508
509 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
510 char buf[FORMAT_BYTES_MAX];
511
979d0311
TH
512 if (b->rbps != CGROUP_LIMIT_MAX)
513 fprintf(f,
6dfb9282 514 "%sBlockIOReadBandwidth: %s %s\n",
979d0311
TH
515 prefix,
516 b->path,
517 format_bytes(buf, sizeof(buf), b->rbps));
518 if (b->wbps != CGROUP_LIMIT_MAX)
519 fprintf(f,
6dfb9282 520 "%sBlockIOWriteBandwidth: %s %s\n",
979d0311
TH
521 prefix,
522 b->path,
523 format_bytes(buf, sizeof(buf), b->wbps));
4ad49000 524 }
c21c9906
LP
525
526 LIST_FOREACH(items, iaai, c->ip_address_allow) {
527 _cleanup_free_ char *k = NULL;
528
529 (void) in_addr_to_string(iaai->family, &iaai->address, &k);
6dfb9282 530 fprintf(f, "%sIPAddressAllow: %s/%u\n", prefix, strnull(k), iaai->prefixlen);
c21c9906
LP
531 }
532
533 LIST_FOREACH(items, iaai, c->ip_address_deny) {
534 _cleanup_free_ char *k = NULL;
535
536 (void) in_addr_to_string(iaai->family, &iaai->address, &k);
6dfb9282 537 fprintf(f, "%sIPAddressDeny: %s/%u\n", prefix, strnull(k), iaai->prefixlen);
c21c9906 538 }
fab34748
KL
539
540 STRV_FOREACH(path, c->ip_filters_ingress)
6dfb9282 541 fprintf(f, "%sIPIngressFilterPath: %s\n", prefix, *path);
fab34748
KL
542
543 STRV_FOREACH(path, c->ip_filters_egress)
6dfb9282 544 fprintf(f, "%sIPEgressFilterPath: %s\n", prefix, *path);
4ad49000
LP
545}
546
fd870bac
YW
547int cgroup_add_device_allow(CGroupContext *c, const char *dev, const char *mode) {
548 _cleanup_free_ CGroupDeviceAllow *a = NULL;
549 _cleanup_free_ char *d = NULL;
550
551 assert(c);
552 assert(dev);
553 assert(isempty(mode) || in_charset(mode, "rwm"));
554
555 a = new(CGroupDeviceAllow, 1);
556 if (!a)
557 return -ENOMEM;
558
559 d = strdup(dev);
560 if (!d)
561 return -ENOMEM;
562
563 *a = (CGroupDeviceAllow) {
564 .path = TAKE_PTR(d),
490c5a37
LP
565 .r = isempty(mode) || strchr(mode, 'r'),
566 .w = isempty(mode) || strchr(mode, 'w'),
567 .m = isempty(mode) || strchr(mode, 'm'),
fd870bac
YW
568 };
569
570 LIST_PREPEND(device_allow, c->device_allow, a);
571 TAKE_PTR(a);
572
573 return 0;
574}
575
6264b85e
CD
576#define UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(entry) \
577 uint64_t unit_get_ancestor_##entry(Unit *u) { \
578 CGroupContext *c; \
579 \
580 /* 1. Is entry set in this unit? If so, use that. \
581 * 2. Is the default for this entry set in any \
582 * ancestor? If so, use that. \
583 * 3. Otherwise, return CGROUP_LIMIT_MIN. */ \
584 \
585 assert(u); \
586 \
587 c = unit_get_cgroup_context(u); \
c5322608 588 if (c && c->entry##_set) \
6264b85e
CD
589 return c->entry; \
590 \
c5322608 591 while ((u = UNIT_DEREF(u->slice))) { \
6264b85e 592 c = unit_get_cgroup_context(u); \
c5322608 593 if (c && c->default_##entry##_set) \
6264b85e
CD
594 return c->default_##entry; \
595 } \
596 \
597 /* We've reached the root, but nobody had default for \
598 * this entry set, so set it to the kernel default. */ \
599 return CGROUP_LIMIT_MIN; \
c52db42b
CD
600}
601
6264b85e 602UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(memory_low);
7ad5439e 603UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(memory_min);
6264b85e 604
0d2d6fbf
CD
605static void cgroup_xattr_apply(Unit *u) {
606 char ids[SD_ID128_STRING_MAX];
607 int r;
608
609 assert(u);
610
611 if (!MANAGER_IS_SYSTEM(u->manager))
612 return;
613
614 if (sd_id128_is_null(u->invocation_id))
615 return;
616
617 r = cg_set_xattr(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path,
618 "trusted.invocation_id",
619 sd_id128_to_string(u->invocation_id, ids), 32,
620 0);
621 if (r < 0)
622 log_unit_debug_errno(u, r, "Failed to set invocation ID on control group %s, ignoring: %m", u->cgroup_path);
623}
624
45c2e068 625static int lookup_block_device(const char *p, dev_t *ret) {
f5855697
YS
626 dev_t rdev, dev = 0;
627 mode_t mode;
45c2e068 628 int r;
4ad49000
LP
629
630 assert(p);
45c2e068 631 assert(ret);
4ad49000 632
f5855697 633 r = device_path_parse_major_minor(p, &mode, &rdev);
d5aecba6 634 if (r == -ENODEV) { /* not a parsable device node, need to go to disk */
f5855697 635 struct stat st;
d5aecba6
LP
636 if (stat(p, &st) < 0)
637 return log_warning_errno(errno, "Couldn't stat device '%s': %m", p);
f5855697
YS
638 rdev = (dev_t)st.st_rdev;
639 dev = (dev_t)st.st_dev;
640 mode = st.st_mode;
d5aecba6
LP
641 } else if (r < 0)
642 return log_warning_errno(r, "Failed to parse major/minor from path '%s': %m", p);
643
f5855697 644 if (S_ISCHR(mode)) {
d5aecba6
LP
645 log_warning("Device node '%s' is a character device, but block device needed.", p);
646 return -ENOTBLK;
f5855697
YS
647 } else if (S_ISBLK(mode))
648 *ret = rdev;
649 else if (major(dev) != 0)
650 *ret = dev; /* If this is not a device node then use the block device this file is stored on */
45c2e068
LP
651 else {
652 /* If this is btrfs, getting the backing block device is a bit harder */
653 r = btrfs_get_block_device(p, ret);
654 if (r < 0 && r != -ENOTTY)
655 return log_warning_errno(r, "Failed to determine block device backing btrfs file system '%s': %m", p);
656 if (r == -ENOTTY) {
657 log_warning("'%s' is not a block device node, and file system block device cannot be determined or is not local.", p);
658 return -ENODEV;
659 }
4ad49000 660 }
8e274523 661
45c2e068
LP
662 /* If this is a LUKS device, try to get the originating block device */
663 (void) block_get_originating(*ret, ret);
664
665 /* If this is a partition, try to get the originating block device */
666 (void) block_get_whole_disk(*ret, ret);
8e274523 667 return 0;
8e274523
LP
668}
669
084c7007 670static int whitelist_device(BPFProgram *prog, const char *path, const char *node, const char *acc) {
f5855697
YS
671 dev_t rdev;
672 mode_t mode;
8c6db833 673 int r;
8e274523 674
4ad49000
LP
675 assert(path);
676 assert(acc);
8e274523 677
74c48bf5
LP
678 /* Some special handling for /dev/block/%u:%u, /dev/char/%u:%u, /run/systemd/inaccessible/chr and
679 * /run/systemd/inaccessible/blk paths. Instead of stat()ing these we parse out the major/minor directly. This
680 * means clients can use these path without the device node actually around */
f5855697 681 r = device_path_parse_major_minor(node, &mode, &rdev);
74c48bf5
LP
682 if (r < 0) {
683 if (r != -ENODEV)
684 return log_warning_errno(r, "Couldn't parse major/minor from device path '%s': %m", node);
b200489b 685
f5855697 686 struct stat st;
74c48bf5
LP
687 if (stat(node, &st) < 0)
688 return log_warning_errno(errno, "Couldn't stat device %s: %m", node);
e7330dfe 689
74c48bf5
LP
690 if (!S_ISCHR(st.st_mode) && !S_ISBLK(st.st_mode)) {
691 log_warning("%s is not a device.", node);
692 return -ENODEV;
693 }
f5855697
YS
694 rdev = (dev_t) st.st_rdev;
695 mode = st.st_mode;
4ad49000
LP
696 }
697
084c7007
RG
698 if (cg_all_unified() > 0) {
699 if (!prog)
700 return 0;
4ad49000 701
f5855697
YS
702 return cgroup_bpf_whitelist_device(prog, S_ISCHR(mode) ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK,
703 major(rdev), minor(rdev), acc);
b9839ac9 704
084c7007
RG
705 } else {
706 char buf[2+DECIMAL_STR_MAX(dev_t)*2+2+4];
707
708 sprintf(buf,
709 "%c %u:%u %s",
f5855697
YS
710 S_ISCHR(mode) ? 'c' : 'b',
711 major(rdev), minor(rdev),
084c7007
RG
712 acc);
713
8c838407
LP
714 /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore EINVAL here. */
715
084c7007
RG
716 r = cg_set_attribute("devices", path, "devices.allow", buf);
717 if (r < 0)
2c74e12b 718 return log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING,
b9839ac9 719 r, "Failed to set devices.allow on %s: %m", path);
4ad49000 720
b9839ac9
LP
721 return 0;
722 }
8e274523
LP
723}
724
084c7007 725static int whitelist_major(BPFProgram *prog, const char *path, const char *name, char type, const char *acc) {
90060676 726 _cleanup_fclose_ FILE *f = NULL;
8e8b5d2e 727 char buf[2+DECIMAL_STR_MAX(unsigned)+3+4];
90060676 728 bool good = false;
8e8b5d2e 729 unsigned maj;
90060676
LP
730 int r;
731
732 assert(path);
733 assert(acc);
4c701096 734 assert(IN_SET(type, 'b', 'c'));
90060676 735
8e8b5d2e
LP
736 if (streq(name, "*")) {
737 /* If the name is a wildcard, then apply this list to all devices of this type */
738
739 if (cg_all_unified() > 0) {
740 if (!prog)
741 return 0;
742
743 (void) cgroup_bpf_whitelist_class(prog, type == 'c' ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK, acc);
744 } else {
745 xsprintf(buf, "%c *:* %s", type, acc);
746
747 r = cg_set_attribute("devices", path, "devices.allow", buf);
748 if (r < 0)
749 log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
750 "Failed to set devices.allow on %s: %m", path);
751 return 0;
752 }
753 }
754
755 if (safe_atou(name, &maj) >= 0 && DEVICE_MAJOR_VALID(maj)) {
756 /* The name is numeric and suitable as major. In that case, let's take is major, and create the entry
757 * directly */
758
759 if (cg_all_unified() > 0) {
760 if (!prog)
761 return 0;
762
763 (void) cgroup_bpf_whitelist_major(prog,
764 type == 'c' ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK,
765 maj, acc);
766 } else {
767 xsprintf(buf, "%c %u:* %s", type, maj, acc);
768
769 r = cg_set_attribute("devices", path, "devices.allow", buf);
770 if (r < 0)
771 log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
772 "Failed to set devices.allow on %s: %m", path);
773 }
774
775 return 0;
776 }
777
90060676 778 f = fopen("/proc/devices", "re");
4a62c710
MS
779 if (!f)
780 return log_warning_errno(errno, "Cannot open /proc/devices to resolve %s (%c): %m", name, type);
90060676 781
c66e60a8
LP
782 for (;;) {
783 _cleanup_free_ char *line = NULL;
8e8b5d2e 784 char *w, *p;
90060676 785
c66e60a8
LP
786 r = read_line(f, LONG_LINE_MAX, &line);
787 if (r < 0)
788 return log_warning_errno(r, "Failed to read /proc/devices: %m");
789 if (r == 0)
790 break;
90060676
LP
791
792 if (type == 'c' && streq(line, "Character devices:")) {
793 good = true;
794 continue;
795 }
796
797 if (type == 'b' && streq(line, "Block devices:")) {
798 good = true;
799 continue;
800 }
801
802 if (isempty(line)) {
803 good = false;
804 continue;
805 }
806
807 if (!good)
808 continue;
809
810 p = strstrip(line);
811
812 w = strpbrk(p, WHITESPACE);
813 if (!w)
814 continue;
815 *w = 0;
816
817 r = safe_atou(p, &maj);
818 if (r < 0)
819 continue;
820 if (maj <= 0)
821 continue;
822
823 w++;
824 w += strspn(w, WHITESPACE);
e41969e3
LP
825
826 if (fnmatch(name, w, 0) != 0)
90060676
LP
827 continue;
828
084c7007
RG
829 if (cg_all_unified() > 0) {
830 if (!prog)
831 continue;
90060676 832
913c898c
LP
833 (void) cgroup_bpf_whitelist_major(prog,
834 type == 'c' ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK,
835 maj, acc);
084c7007 836 } else {
084c7007
RG
837 sprintf(buf,
838 "%c %u:* %s",
839 type,
840 maj,
841 acc);
842
8c838407
LP
843 /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore EINVAL
844 * here. */
845
084c7007
RG
846 r = cg_set_attribute("devices", path, "devices.allow", buf);
847 if (r < 0)
2c74e12b 848 log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING,
084c7007
RG
849 r, "Failed to set devices.allow on %s: %m", path);
850 }
90060676
LP
851 }
852
853 return 0;
90060676
LP
854}
855
66ebf6c0
TH
856static bool cgroup_context_has_cpu_weight(CGroupContext *c) {
857 return c->cpu_weight != CGROUP_WEIGHT_INVALID ||
858 c->startup_cpu_weight != CGROUP_WEIGHT_INVALID;
859}
860
861static bool cgroup_context_has_cpu_shares(CGroupContext *c) {
862 return c->cpu_shares != CGROUP_CPU_SHARES_INVALID ||
863 c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID;
864}
865
866static uint64_t cgroup_context_cpu_weight(CGroupContext *c, ManagerState state) {
867 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
868 c->startup_cpu_weight != CGROUP_WEIGHT_INVALID)
869 return c->startup_cpu_weight;
870 else if (c->cpu_weight != CGROUP_WEIGHT_INVALID)
871 return c->cpu_weight;
872 else
873 return CGROUP_WEIGHT_DEFAULT;
874}
875
876static uint64_t cgroup_context_cpu_shares(CGroupContext *c, ManagerState state) {
877 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
878 c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID)
879 return c->startup_cpu_shares;
880 else if (c->cpu_shares != CGROUP_CPU_SHARES_INVALID)
881 return c->cpu_shares;
882 else
883 return CGROUP_CPU_SHARES_DEFAULT;
884}
885
10f28641
FB
886usec_t cgroup_cpu_adjust_period(usec_t period, usec_t quota, usec_t resolution, usec_t max_period) {
887 /* kernel uses a minimum resolution of 1ms, so both period and (quota * period)
888 * need to be higher than that boundary. quota is specified in USecPerSec.
889 * Additionally, period must be at most max_period. */
890 assert(quota > 0);
891
892 return MIN(MAX3(period, resolution, resolution * USEC_PER_SEC / quota), max_period);
893}
894
895static usec_t cgroup_cpu_adjust_period_and_log(Unit *u, usec_t period, usec_t quota) {
896 usec_t new_period;
897
898 if (quota == USEC_INFINITY)
899 /* Always use default period for infinity quota. */
900 return CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC;
901
902 if (period == USEC_INFINITY)
903 /* Default period was requested. */
904 period = CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC;
905
906 /* Clamp to interval [1ms, 1s] */
907 new_period = cgroup_cpu_adjust_period(period, quota, USEC_PER_MSEC, USEC_PER_SEC);
908
909 if (new_period != period) {
910 char v[FORMAT_TIMESPAN_MAX];
527ede0c 911 log_unit_full(u, u->warned_clamping_cpu_quota_period ? LOG_DEBUG : LOG_WARNING, 0,
10f28641
FB
912 "Clamping CPU interval for cpu.max: period is now %s",
913 format_timespan(v, sizeof(v), new_period, 1));
527ede0c 914 u->warned_clamping_cpu_quota_period = true;
10f28641
FB
915 }
916
917 return new_period;
918}
919
52fecf20
LP
920static void cgroup_apply_unified_cpu_weight(Unit *u, uint64_t weight) {
921 char buf[DECIMAL_STR_MAX(uint64_t) + 2];
66ebf6c0
TH
922
923 xsprintf(buf, "%" PRIu64 "\n", weight);
293d32df 924 (void) set_attribute_and_warn(u, "cpu", "cpu.weight", buf);
52fecf20
LP
925}
926
10f28641 927static void cgroup_apply_unified_cpu_quota(Unit *u, usec_t quota, usec_t period) {
52fecf20 928 char buf[(DECIMAL_STR_MAX(usec_t) + 1) * 2 + 1];
66ebf6c0 929
10f28641 930 period = cgroup_cpu_adjust_period_and_log(u, period, quota);
66ebf6c0
TH
931 if (quota != USEC_INFINITY)
932 xsprintf(buf, USEC_FMT " " USEC_FMT "\n",
10f28641 933 MAX(quota * period / USEC_PER_SEC, USEC_PER_MSEC), period);
66ebf6c0 934 else
10f28641 935 xsprintf(buf, "max " USEC_FMT "\n", period);
293d32df 936 (void) set_attribute_and_warn(u, "cpu", "cpu.max", buf);
66ebf6c0
TH
937}
938
52fecf20
LP
939static void cgroup_apply_legacy_cpu_shares(Unit *u, uint64_t shares) {
940 char buf[DECIMAL_STR_MAX(uint64_t) + 2];
66ebf6c0
TH
941
942 xsprintf(buf, "%" PRIu64 "\n", shares);
293d32df 943 (void) set_attribute_and_warn(u, "cpu", "cpu.shares", buf);
52fecf20
LP
944}
945
10f28641 946static void cgroup_apply_legacy_cpu_quota(Unit *u, usec_t quota, usec_t period) {
52fecf20 947 char buf[DECIMAL_STR_MAX(usec_t) + 2];
66ebf6c0 948
10f28641
FB
949 period = cgroup_cpu_adjust_period_and_log(u, period, quota);
950
951 xsprintf(buf, USEC_FMT "\n", period);
293d32df 952 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_period_us", buf);
66ebf6c0
TH
953
954 if (quota != USEC_INFINITY) {
10f28641 955 xsprintf(buf, USEC_FMT "\n", MAX(quota * period / USEC_PER_SEC, USEC_PER_MSEC));
293d32df 956 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", buf);
66ebf6c0 957 } else
589a5f7a 958 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", "-1\n");
66ebf6c0
TH
959}
960
961static uint64_t cgroup_cpu_shares_to_weight(uint64_t shares) {
962 return CLAMP(shares * CGROUP_WEIGHT_DEFAULT / CGROUP_CPU_SHARES_DEFAULT,
963 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
964}
965
966static uint64_t cgroup_cpu_weight_to_shares(uint64_t weight) {
967 return CLAMP(weight * CGROUP_CPU_SHARES_DEFAULT / CGROUP_WEIGHT_DEFAULT,
968 CGROUP_CPU_SHARES_MIN, CGROUP_CPU_SHARES_MAX);
969}
970
2cea199e 971static void cgroup_apply_unified_cpuset(Unit *u, const CPUSet *cpus, const char *name) {
047f5d63
PH
972 _cleanup_free_ char *buf = NULL;
973
2cea199e 974 buf = cpu_set_to_range_string(cpus);
c259ac9a
LP
975 if (!buf) {
976 log_oom();
977 return;
978 }
047f5d63
PH
979
980 (void) set_attribute_and_warn(u, "cpuset", name, buf);
981}
982
508c45da 983static bool cgroup_context_has_io_config(CGroupContext *c) {
538b4852
TH
984 return c->io_accounting ||
985 c->io_weight != CGROUP_WEIGHT_INVALID ||
986 c->startup_io_weight != CGROUP_WEIGHT_INVALID ||
987 c->io_device_weights ||
6ae4283c 988 c->io_device_latencies ||
538b4852
TH
989 c->io_device_limits;
990}
991
508c45da 992static bool cgroup_context_has_blockio_config(CGroupContext *c) {
538b4852
TH
993 return c->blockio_accounting ||
994 c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
995 c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
996 c->blockio_device_weights ||
997 c->blockio_device_bandwidths;
998}
999
508c45da 1000static uint64_t cgroup_context_io_weight(CGroupContext *c, ManagerState state) {
64faf04c
TH
1001 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
1002 c->startup_io_weight != CGROUP_WEIGHT_INVALID)
1003 return c->startup_io_weight;
1004 else if (c->io_weight != CGROUP_WEIGHT_INVALID)
1005 return c->io_weight;
1006 else
1007 return CGROUP_WEIGHT_DEFAULT;
1008}
1009
508c45da 1010static uint64_t cgroup_context_blkio_weight(CGroupContext *c, ManagerState state) {
64faf04c
TH
1011 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
1012 c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
1013 return c->startup_blockio_weight;
1014 else if (c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
1015 return c->blockio_weight;
1016 else
1017 return CGROUP_BLKIO_WEIGHT_DEFAULT;
1018}
1019
508c45da 1020static uint64_t cgroup_weight_blkio_to_io(uint64_t blkio_weight) {
538b4852
TH
1021 return CLAMP(blkio_weight * CGROUP_WEIGHT_DEFAULT / CGROUP_BLKIO_WEIGHT_DEFAULT,
1022 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
1023}
1024
508c45da 1025static uint64_t cgroup_weight_io_to_blkio(uint64_t io_weight) {
538b4852
TH
1026 return CLAMP(io_weight * CGROUP_BLKIO_WEIGHT_DEFAULT / CGROUP_WEIGHT_DEFAULT,
1027 CGROUP_BLKIO_WEIGHT_MIN, CGROUP_BLKIO_WEIGHT_MAX);
1028}
1029
f29ff115 1030static void cgroup_apply_io_device_weight(Unit *u, const char *dev_path, uint64_t io_weight) {
64faf04c
TH
1031 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
1032 dev_t dev;
1033 int r;
1034
1035 r = lookup_block_device(dev_path, &dev);
1036 if (r < 0)
1037 return;
1038
1039 xsprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), io_weight);
293d32df 1040 (void) set_attribute_and_warn(u, "io", "io.weight", buf);
64faf04c
TH
1041}
1042
f29ff115 1043static void cgroup_apply_blkio_device_weight(Unit *u, const char *dev_path, uint64_t blkio_weight) {
64faf04c
TH
1044 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
1045 dev_t dev;
1046 int r;
1047
1048 r = lookup_block_device(dev_path, &dev);
1049 if (r < 0)
1050 return;
1051
1052 xsprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), blkio_weight);
293d32df 1053 (void) set_attribute_and_warn(u, "blkio", "blkio.weight_device", buf);
64faf04c
TH
1054}
1055
6ae4283c
TH
1056static void cgroup_apply_io_device_latency(Unit *u, const char *dev_path, usec_t target) {
1057 char buf[DECIMAL_STR_MAX(dev_t)*2+2+7+DECIMAL_STR_MAX(uint64_t)+1];
1058 dev_t dev;
1059 int r;
1060
1061 r = lookup_block_device(dev_path, &dev);
1062 if (r < 0)
1063 return;
1064
1065 if (target != USEC_INFINITY)
1066 xsprintf(buf, "%u:%u target=%" PRIu64 "\n", major(dev), minor(dev), target);
1067 else
1068 xsprintf(buf, "%u:%u target=max\n", major(dev), minor(dev));
1069
293d32df 1070 (void) set_attribute_and_warn(u, "io", "io.latency", buf);
6ae4283c
TH
1071}
1072
17ae2780 1073static void cgroup_apply_io_device_limit(Unit *u, const char *dev_path, uint64_t *limits) {
64faf04c
TH
1074 char limit_bufs[_CGROUP_IO_LIMIT_TYPE_MAX][DECIMAL_STR_MAX(uint64_t)];
1075 char buf[DECIMAL_STR_MAX(dev_t)*2+2+(6+DECIMAL_STR_MAX(uint64_t)+1)*4];
1076 CGroupIOLimitType type;
1077 dev_t dev;
64faf04c
TH
1078 int r;
1079
1080 r = lookup_block_device(dev_path, &dev);
1081 if (r < 0)
17ae2780 1082 return;
64faf04c 1083
17ae2780
LP
1084 for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
1085 if (limits[type] != cgroup_io_limit_defaults[type])
64faf04c 1086 xsprintf(limit_bufs[type], "%" PRIu64, limits[type]);
17ae2780 1087 else
64faf04c 1088 xsprintf(limit_bufs[type], "%s", limits[type] == CGROUP_LIMIT_MAX ? "max" : "0");
64faf04c
TH
1089
1090 xsprintf(buf, "%u:%u rbps=%s wbps=%s riops=%s wiops=%s\n", major(dev), minor(dev),
1091 limit_bufs[CGROUP_IO_RBPS_MAX], limit_bufs[CGROUP_IO_WBPS_MAX],
1092 limit_bufs[CGROUP_IO_RIOPS_MAX], limit_bufs[CGROUP_IO_WIOPS_MAX]);
293d32df 1093 (void) set_attribute_and_warn(u, "io", "io.max", buf);
64faf04c
TH
1094}
1095
17ae2780 1096static void cgroup_apply_blkio_device_limit(Unit *u, const char *dev_path, uint64_t rbps, uint64_t wbps) {
64faf04c
TH
1097 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
1098 dev_t dev;
64faf04c
TH
1099 int r;
1100
1101 r = lookup_block_device(dev_path, &dev);
1102 if (r < 0)
17ae2780 1103 return;
64faf04c 1104
64faf04c 1105 sprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), rbps);
293d32df 1106 (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.read_bps_device", buf);
64faf04c 1107
64faf04c 1108 sprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), wbps);
293d32df 1109 (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.write_bps_device", buf);
64faf04c
TH
1110}
1111
c52db42b
CD
1112static bool unit_has_unified_memory_config(Unit *u) {
1113 CGroupContext *c;
1114
1115 assert(u);
1116
1117 c = unit_get_cgroup_context(u);
1118 assert(c);
1119
7c9d2b79 1120 return unit_get_ancestor_memory_min(u) > 0 || unit_get_ancestor_memory_low(u) > 0 ||
c52db42b
CD
1121 c->memory_high != CGROUP_LIMIT_MAX || c->memory_max != CGROUP_LIMIT_MAX ||
1122 c->memory_swap_max != CGROUP_LIMIT_MAX;
da4d897e
TH
1123}
1124
f29ff115 1125static void cgroup_apply_unified_memory_limit(Unit *u, const char *file, uint64_t v) {
589a5f7a 1126 char buf[DECIMAL_STR_MAX(uint64_t) + 1] = "max\n";
da4d897e
TH
1127
1128 if (v != CGROUP_LIMIT_MAX)
1129 xsprintf(buf, "%" PRIu64 "\n", v);
1130
293d32df 1131 (void) set_attribute_and_warn(u, "memory", file, buf);
da4d897e
TH
1132}
1133
0f2d84d2 1134static void cgroup_apply_firewall(Unit *u) {
0f2d84d2
LP
1135 assert(u);
1136
acf7f253 1137 /* Best-effort: let's apply IP firewalling and/or accounting if that's enabled */
906c06f6 1138
acf7f253 1139 if (bpf_firewall_compile(u) < 0)
906c06f6
DM
1140 return;
1141
fab34748 1142 (void) bpf_firewall_load_custom(u);
906c06f6 1143 (void) bpf_firewall_install(u);
906c06f6
DM
1144}
1145
1146static void cgroup_context_apply(
1147 Unit *u,
1148 CGroupMask apply_mask,
906c06f6
DM
1149 ManagerState state) {
1150
f29ff115
TH
1151 const char *path;
1152 CGroupContext *c;
52fecf20 1153 bool is_host_root, is_local_root;
4ad49000
LP
1154 int r;
1155
f29ff115
TH
1156 assert(u);
1157
906c06f6 1158 /* Nothing to do? Exit early! */
17f14955 1159 if (apply_mask == 0)
4ad49000 1160 return;
8e274523 1161
52fecf20
LP
1162 /* Some cgroup attributes are not supported on the host root cgroup, hence silently ignore them here. And other
1163 * attributes should only be managed for cgroups further down the tree. */
1164 is_local_root = unit_has_name(u, SPECIAL_ROOT_SLICE);
1165 is_host_root = unit_has_host_root_cgroup(u);
f3725e64
LP
1166
1167 assert_se(c = unit_get_cgroup_context(u));
1168 assert_se(path = u->cgroup_path);
1169
52fecf20 1170 if (is_local_root) /* Make sure we don't try to display messages with an empty path. */
6da13913 1171 path = "/";
01efdf13 1172
be2c0327
LP
1173 /* We generally ignore errors caused by read-only mounted cgroup trees (assuming we are running in a container
1174 * then), and missing cgroups, i.e. EROFS and ENOENT. */
714e2e1d 1175
be2c0327
LP
1176 /* In fully unified mode these attributes don't exist on the host cgroup root. On legacy the weights exist, but
1177 * setting the weight makes very little sense on the host root cgroup, as there are no other cgroups at this
1178 * level. The quota exists there too, but any attempt to write to it is refused with EINVAL. Inside of
4e1dfa45 1179 * containers we want to leave control of these to the container manager (and if cgroup v2 delegation is used
be2c0327
LP
1180 * we couldn't even write to them if we wanted to). */
1181 if ((apply_mask & CGROUP_MASK_CPU) && !is_local_root) {
8e274523 1182
b4cccbc1 1183 if (cg_all_unified() > 0) {
be2c0327 1184 uint64_t weight;
b2f8b02e 1185
be2c0327
LP
1186 if (cgroup_context_has_cpu_weight(c))
1187 weight = cgroup_context_cpu_weight(c, state);
1188 else if (cgroup_context_has_cpu_shares(c)) {
1189 uint64_t shares;
66ebf6c0 1190
be2c0327
LP
1191 shares = cgroup_context_cpu_shares(c, state);
1192 weight = cgroup_cpu_shares_to_weight(shares);
66ebf6c0 1193
be2c0327
LP
1194 log_cgroup_compat(u, "Applying [Startup]CPUShares=%" PRIu64 " as [Startup]CPUWeight=%" PRIu64 " on %s",
1195 shares, weight, path);
1196 } else
1197 weight = CGROUP_WEIGHT_DEFAULT;
66ebf6c0 1198
be2c0327 1199 cgroup_apply_unified_cpu_weight(u, weight);
10f28641 1200 cgroup_apply_unified_cpu_quota(u, c->cpu_quota_per_sec_usec, c->cpu_quota_period_usec);
66ebf6c0 1201
52fecf20 1202 } else {
be2c0327 1203 uint64_t shares;
52fecf20 1204
be2c0327
LP
1205 if (cgroup_context_has_cpu_weight(c)) {
1206 uint64_t weight;
52fecf20 1207
be2c0327
LP
1208 weight = cgroup_context_cpu_weight(c, state);
1209 shares = cgroup_cpu_weight_to_shares(weight);
52fecf20 1210
be2c0327
LP
1211 log_cgroup_compat(u, "Applying [Startup]CPUWeight=%" PRIu64 " as [Startup]CPUShares=%" PRIu64 " on %s",
1212 weight, shares, path);
1213 } else if (cgroup_context_has_cpu_shares(c))
1214 shares = cgroup_context_cpu_shares(c, state);
1215 else
1216 shares = CGROUP_CPU_SHARES_DEFAULT;
66ebf6c0 1217
be2c0327 1218 cgroup_apply_legacy_cpu_shares(u, shares);
10f28641 1219 cgroup_apply_legacy_cpu_quota(u, c->cpu_quota_per_sec_usec, c->cpu_quota_period_usec);
66ebf6c0 1220 }
4ad49000
LP
1221 }
1222
047f5d63 1223 if ((apply_mask & CGROUP_MASK_CPUSET) && !is_local_root) {
2cea199e
ZJS
1224 cgroup_apply_unified_cpuset(u, &c->cpuset_cpus, "cpuset.cpus");
1225 cgroup_apply_unified_cpuset(u, &c->cpuset_mems, "cpuset.mems");
047f5d63
PH
1226 }
1227
4e1dfa45 1228 /* The 'io' controller attributes are not exported on the host's root cgroup (being a pure cgroup v2
52fecf20
LP
1229 * controller), and in case of containers we want to leave control of these attributes to the container manager
1230 * (and we couldn't access that stuff anyway, even if we tried if proper delegation is used). */
1231 if ((apply_mask & CGROUP_MASK_IO) && !is_local_root) {
1232 char buf[8+DECIMAL_STR_MAX(uint64_t)+1];
1233 bool has_io, has_blockio;
1234 uint64_t weight;
13c31542 1235
52fecf20
LP
1236 has_io = cgroup_context_has_io_config(c);
1237 has_blockio = cgroup_context_has_blockio_config(c);
13c31542 1238
52fecf20
LP
1239 if (has_io)
1240 weight = cgroup_context_io_weight(c, state);
1241 else if (has_blockio) {
1242 uint64_t blkio_weight;
128fadc9 1243
52fecf20
LP
1244 blkio_weight = cgroup_context_blkio_weight(c, state);
1245 weight = cgroup_weight_blkio_to_io(blkio_weight);
128fadc9 1246
67e2ea15 1247 log_cgroup_compat(u, "Applying [Startup]BlockIOWeight=%" PRIu64 " as [Startup]IOWeight=%" PRIu64,
52fecf20
LP
1248 blkio_weight, weight);
1249 } else
1250 weight = CGROUP_WEIGHT_DEFAULT;
13c31542 1251
52fecf20
LP
1252 xsprintf(buf, "default %" PRIu64 "\n", weight);
1253 (void) set_attribute_and_warn(u, "io", "io.weight", buf);
538b4852 1254
2dbc45ae
KK
1255 /* FIXME: drop this when distro kernels properly support BFQ through "io.weight"
1256 * See also: https://github.com/systemd/systemd/pull/13335 */
1257 xsprintf(buf, "%" PRIu64 "\n", weight);
1258 (void) set_attribute_and_warn(u, "io", "io.bfq.weight", buf);
1259
52fecf20
LP
1260 if (has_io) {
1261 CGroupIODeviceLatency *latency;
1262 CGroupIODeviceLimit *limit;
1263 CGroupIODeviceWeight *w;
128fadc9 1264
52fecf20
LP
1265 LIST_FOREACH(device_weights, w, c->io_device_weights)
1266 cgroup_apply_io_device_weight(u, w->path, w->weight);
128fadc9 1267
52fecf20
LP
1268 LIST_FOREACH(device_limits, limit, c->io_device_limits)
1269 cgroup_apply_io_device_limit(u, limit->path, limit->limits);
6ae4283c 1270
52fecf20
LP
1271 LIST_FOREACH(device_latencies, latency, c->io_device_latencies)
1272 cgroup_apply_io_device_latency(u, latency->path, latency->target_usec);
6ae4283c 1273
52fecf20
LP
1274 } else if (has_blockio) {
1275 CGroupBlockIODeviceWeight *w;
1276 CGroupBlockIODeviceBandwidth *b;
13c31542 1277
52fecf20
LP
1278 LIST_FOREACH(device_weights, w, c->blockio_device_weights) {
1279 weight = cgroup_weight_blkio_to_io(w->weight);
17ae2780 1280
67e2ea15 1281 log_cgroup_compat(u, "Applying BlockIODeviceWeight=%" PRIu64 " as IODeviceWeight=%" PRIu64 " for %s",
52fecf20 1282 w->weight, weight, w->path);
538b4852 1283
52fecf20
LP
1284 cgroup_apply_io_device_weight(u, w->path, weight);
1285 }
538b4852 1286
17ae2780 1287 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
538b4852
TH
1288 uint64_t limits[_CGROUP_IO_LIMIT_TYPE_MAX];
1289 CGroupIOLimitType type;
1290
1291 for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
1292 limits[type] = cgroup_io_limit_defaults[type];
1293
1294 limits[CGROUP_IO_RBPS_MAX] = b->rbps;
1295 limits[CGROUP_IO_WBPS_MAX] = b->wbps;
1296
67e2ea15 1297 log_cgroup_compat(u, "Applying BlockIO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as IO{Read|Write}BandwidthMax= for %s",
128fadc9
TH
1298 b->rbps, b->wbps, b->path);
1299
17ae2780 1300 cgroup_apply_io_device_limit(u, b->path, limits);
538b4852 1301 }
13c31542
TH
1302 }
1303 }
1304
906c06f6 1305 if (apply_mask & CGROUP_MASK_BLKIO) {
52fecf20 1306 bool has_io, has_blockio;
4ad49000 1307
52fecf20
LP
1308 has_io = cgroup_context_has_io_config(c);
1309 has_blockio = cgroup_context_has_blockio_config(c);
1310
1311 /* Applying a 'weight' never makes sense for the host root cgroup, and for containers this should be
1312 * left to our container manager, too. */
1313 if (!is_local_root) {
64faf04c
TH
1314 char buf[DECIMAL_STR_MAX(uint64_t)+1];
1315 uint64_t weight;
64faf04c 1316
7d862ab8 1317 if (has_io) {
52fecf20 1318 uint64_t io_weight;
128fadc9 1319
52fecf20 1320 io_weight = cgroup_context_io_weight(c, state);
538b4852 1321 weight = cgroup_weight_io_to_blkio(cgroup_context_io_weight(c, state));
128fadc9 1322
67e2ea15 1323 log_cgroup_compat(u, "Applying [Startup]IOWeight=%" PRIu64 " as [Startup]BlockIOWeight=%" PRIu64,
128fadc9 1324 io_weight, weight);
7d862ab8
TH
1325 } else if (has_blockio)
1326 weight = cgroup_context_blkio_weight(c, state);
1327 else
538b4852 1328 weight = CGROUP_BLKIO_WEIGHT_DEFAULT;
64faf04c
TH
1329
1330 xsprintf(buf, "%" PRIu64 "\n", weight);
293d32df 1331 (void) set_attribute_and_warn(u, "blkio", "blkio.weight", buf);
4ad49000 1332
7d862ab8 1333 if (has_io) {
538b4852
TH
1334 CGroupIODeviceWeight *w;
1335
128fadc9
TH
1336 LIST_FOREACH(device_weights, w, c->io_device_weights) {
1337 weight = cgroup_weight_io_to_blkio(w->weight);
1338
67e2ea15 1339 log_cgroup_compat(u, "Applying IODeviceWeight=%" PRIu64 " as BlockIODeviceWeight=%" PRIu64 " for %s",
128fadc9
TH
1340 w->weight, weight, w->path);
1341
1342 cgroup_apply_blkio_device_weight(u, w->path, weight);
1343 }
7d862ab8
TH
1344 } else if (has_blockio) {
1345 CGroupBlockIODeviceWeight *w;
1346
7d862ab8
TH
1347 LIST_FOREACH(device_weights, w, c->blockio_device_weights)
1348 cgroup_apply_blkio_device_weight(u, w->path, w->weight);
538b4852 1349 }
4ad49000
LP
1350 }
1351
5238e957 1352 /* The bandwidth limits are something that make sense to be applied to the host's root but not container
52fecf20
LP
1353 * roots, as there we want the container manager to handle it */
1354 if (is_host_root || !is_local_root) {
1355 if (has_io) {
1356 CGroupIODeviceLimit *l;
538b4852 1357
52fecf20 1358 LIST_FOREACH(device_limits, l, c->io_device_limits) {
67e2ea15 1359 log_cgroup_compat(u, "Applying IO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as BlockIO{Read|Write}BandwidthMax= for %s",
52fecf20 1360 l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX], l->path);
128fadc9 1361
52fecf20
LP
1362 cgroup_apply_blkio_device_limit(u, l->path, l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX]);
1363 }
1364 } else if (has_blockio) {
1365 CGroupBlockIODeviceBandwidth *b;
7d862ab8 1366
52fecf20
LP
1367 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths)
1368 cgroup_apply_blkio_device_limit(u, b->path, b->rbps, b->wbps);
1369 }
d686d8a9 1370 }
8e274523
LP
1371 }
1372
be2c0327
LP
1373 /* In unified mode 'memory' attributes do not exist on the root cgroup. In legacy mode 'memory.limit_in_bytes'
1374 * exists on the root cgroup, but any writes to it are refused with EINVAL. And if we run in a container we
4e1dfa45 1375 * want to leave control to the container manager (and if proper cgroup v2 delegation is used we couldn't even
be2c0327
LP
1376 * write to this if we wanted to.) */
1377 if ((apply_mask & CGROUP_MASK_MEMORY) && !is_local_root) {
efdb0237 1378
52fecf20 1379 if (cg_all_unified() > 0) {
be2c0327
LP
1380 uint64_t max, swap_max = CGROUP_LIMIT_MAX;
1381
c52db42b 1382 if (unit_has_unified_memory_config(u)) {
be2c0327
LP
1383 max = c->memory_max;
1384 swap_max = c->memory_swap_max;
1385 } else {
1386 max = c->memory_limit;
efdb0237 1387
be2c0327
LP
1388 if (max != CGROUP_LIMIT_MAX)
1389 log_cgroup_compat(u, "Applying MemoryLimit=%" PRIu64 " as MemoryMax=", max);
128fadc9 1390 }
da4d897e 1391
64fe532e 1392 cgroup_apply_unified_memory_limit(u, "memory.min", unit_get_ancestor_memory_min(u));
c52db42b 1393 cgroup_apply_unified_memory_limit(u, "memory.low", unit_get_ancestor_memory_low(u));
be2c0327
LP
1394 cgroup_apply_unified_memory_limit(u, "memory.high", c->memory_high);
1395 cgroup_apply_unified_memory_limit(u, "memory.max", max);
1396 cgroup_apply_unified_memory_limit(u, "memory.swap.max", swap_max);
128fadc9 1397
afcfaa69
LP
1398 (void) set_attribute_and_warn(u, "memory", "memory.oom.group", one_zero(c->memory_oom_group));
1399
be2c0327
LP
1400 } else {
1401 char buf[DECIMAL_STR_MAX(uint64_t) + 1];
1402 uint64_t val;
52fecf20 1403
c52db42b 1404 if (unit_has_unified_memory_config(u)) {
be2c0327
LP
1405 val = c->memory_max;
1406 log_cgroup_compat(u, "Applying MemoryMax=%" PRIi64 " as MemoryLimit=", val);
1407 } else
1408 val = c->memory_limit;
78a4ee59 1409
be2c0327
LP
1410 if (val == CGROUP_LIMIT_MAX)
1411 strncpy(buf, "-1\n", sizeof(buf));
1412 else
1413 xsprintf(buf, "%" PRIu64 "\n", val);
1414
1415 (void) set_attribute_and_warn(u, "memory", "memory.limit_in_bytes", buf);
da4d897e 1416 }
4ad49000 1417 }
8e274523 1418
4e1dfa45 1419 /* On cgroup v2 we can apply BPF everywhere. On cgroup v1 we apply it everywhere except for the root of
52fecf20
LP
1420 * containers, where we leave this to the manager */
1421 if ((apply_mask & (CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES)) &&
1422 (is_host_root || cg_all_unified() > 0 || !is_local_root)) {
084c7007 1423 _cleanup_(bpf_program_unrefp) BPFProgram *prog = NULL;
4ad49000 1424 CGroupDeviceAllow *a;
8e274523 1425
084c7007
RG
1426 if (cg_all_unified() > 0) {
1427 r = cgroup_init_device_bpf(&prog, c->device_policy, c->device_allow);
1428 if (r < 0)
1429 log_unit_warning_errno(u, r, "Failed to initialize device control bpf program: %m");
1430 } else {
8c838407 1431 /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore EINVAL
084c7007 1432 * here. */
714e2e1d 1433
084c7007
RG
1434 if (c->device_allow || c->device_policy != CGROUP_AUTO)
1435 r = cg_set_attribute("devices", path, "devices.deny", "a");
1436 else
1437 r = cg_set_attribute("devices", path, "devices.allow", "a");
1438 if (r < 0)
2c74e12b
LP
1439 log_unit_full(u, IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING, r,
1440 "Failed to reset devices.allow/devices.deny: %m");
084c7007 1441 }
fb385181 1442
4ad49000
LP
1443 if (c->device_policy == CGROUP_CLOSED ||
1444 (c->device_policy == CGROUP_AUTO && c->device_allow)) {
1445 static const char auto_devices[] =
7d711efb
LP
1446 "/dev/null\0" "rwm\0"
1447 "/dev/zero\0" "rwm\0"
1448 "/dev/full\0" "rwm\0"
1449 "/dev/random\0" "rwm\0"
1450 "/dev/urandom\0" "rwm\0"
1451 "/dev/tty\0" "rwm\0"
5a7f87a9 1452 "/dev/ptmx\0" "rwm\0"
0d9e7991 1453 /* Allow /run/systemd/inaccessible/{chr,blk} devices for mapping InaccessiblePaths */
74c48bf5
LP
1454 "/run/systemd/inaccessible/chr\0" "rwm\0"
1455 "/run/systemd/inaccessible/blk\0" "rwm\0";
4ad49000
LP
1456
1457 const char *x, *y;
1458
1459 NULSTR_FOREACH_PAIR(x, y, auto_devices)
913c898c 1460 (void) whitelist_device(prog, path, x, y);
7d711efb 1461
5a7f87a9 1462 /* PTS (/dev/pts) devices may not be duplicated, but accessed */
913c898c 1463 (void) whitelist_major(prog, path, "pts", 'c', "rw");
4ad49000
LP
1464 }
1465
1466 LIST_FOREACH(device_allow, a, c->device_allow) {
fb4650aa 1467 char acc[4], *val;
4ad49000
LP
1468 unsigned k = 0;
1469
1470 if (a->r)
1471 acc[k++] = 'r';
1472 if (a->w)
1473 acc[k++] = 'w';
1474 if (a->m)
1475 acc[k++] = 'm';
fb385181 1476
4ad49000
LP
1477 if (k == 0)
1478 continue;
fb385181 1479
4ad49000 1480 acc[k++] = 0;
90060676 1481
27458ed6 1482 if (path_startswith(a->path, "/dev/"))
913c898c 1483 (void) whitelist_device(prog, path, a->path, acc);
fb4650aa 1484 else if ((val = startswith(a->path, "block-")))
913c898c 1485 (void) whitelist_major(prog, path, val, 'b', acc);
fb4650aa 1486 else if ((val = startswith(a->path, "char-")))
913c898c 1487 (void) whitelist_major(prog, path, val, 'c', acc);
90060676 1488 else
8e8b5d2e 1489 log_unit_debug(u, "Ignoring device '%s' while writing cgroup attribute.", a->path);
4ad49000 1490 }
084c7007
RG
1491
1492 r = cgroup_apply_device_bpf(u, prog, c->device_policy, c->device_allow);
1493 if (r < 0) {
1494 static bool warned = false;
1495
1496 log_full_errno(warned ? LOG_DEBUG : LOG_WARNING, r,
1497 "Unit %s configures device ACL, but the local system doesn't seem to support the BPF-based device controller.\n"
1498 "Proceeding WITHOUT applying ACL (all devices will be accessible)!\n"
1499 "(This warning is only shown for the first loaded unit using device ACL.)", u->id);
1500
1501 warned = true;
1502 }
4ad49000 1503 }
03a7b521 1504
00b5974f
LP
1505 if (apply_mask & CGROUP_MASK_PIDS) {
1506
52fecf20 1507 if (is_host_root) {
00b5974f
LP
1508 /* So, the "pids" controller does not expose anything on the root cgroup, in order not to
1509 * replicate knobs exposed elsewhere needlessly. We abstract this away here however, and when
1510 * the knobs of the root cgroup are modified propagate this to the relevant sysctls. There's a
1511 * non-obvious asymmetry however: unlike the cgroup properties we don't really want to take
1512 * exclusive ownership of the sysctls, but we still want to honour things if the user sets
1513 * limits. Hence we employ sort of a one-way strategy: when the user sets a bounded limit
1514 * through us it counts. When the user afterwards unsets it again (i.e. sets it to unbounded)
1515 * it also counts. But if the user never set a limit through us (i.e. we are the default of
1516 * "unbounded") we leave things unmodified. For this we manage a global boolean that we turn on
1517 * the first time we set a limit. Note that this boolean is flushed out on manager reload,
5238e957 1518 * which is desirable so that there's an official way to release control of the sysctl from
00b5974f
LP
1519 * systemd: set the limit to unbounded and reload. */
1520
1521 if (c->tasks_max != CGROUP_LIMIT_MAX) {
1522 u->manager->sysctl_pid_max_changed = true;
1523 r = procfs_tasks_set_limit(c->tasks_max);
1524 } else if (u->manager->sysctl_pid_max_changed)
1525 r = procfs_tasks_set_limit(TASKS_MAX);
1526 else
1527 r = 0;
00b5974f 1528 if (r < 0)
39b9fefb 1529 log_unit_full(u, LOG_LEVEL_CGROUP_WRITE(r), r,
00b5974f 1530 "Failed to write to tasks limit sysctls: %m");
52fecf20 1531 }
03a7b521 1532
52fecf20
LP
1533 /* The attribute itself is not available on the host root cgroup, and in the container case we want to
1534 * leave it for the container manager. */
1535 if (!is_local_root) {
00b5974f
LP
1536 if (c->tasks_max != CGROUP_LIMIT_MAX) {
1537 char buf[DECIMAL_STR_MAX(uint64_t) + 2];
03a7b521 1538
00b5974f 1539 sprintf(buf, "%" PRIu64 "\n", c->tasks_max);
293d32df 1540 (void) set_attribute_and_warn(u, "pids", "pids.max", buf);
00b5974f 1541 } else
589a5f7a 1542 (void) set_attribute_and_warn(u, "pids", "pids.max", "max\n");
00b5974f 1543 }
03a7b521 1544 }
906c06f6 1545
17f14955 1546 if (apply_mask & CGROUP_MASK_BPF_FIREWALL)
0f2d84d2 1547 cgroup_apply_firewall(u);
fb385181
LP
1548}
1549
16492445
LP
1550static bool unit_get_needs_bpf_firewall(Unit *u) {
1551 CGroupContext *c;
1552 Unit *p;
1553 assert(u);
1554
1555 c = unit_get_cgroup_context(u);
1556 if (!c)
1557 return false;
1558
1559 if (c->ip_accounting ||
1560 c->ip_address_allow ||
fab34748
KL
1561 c->ip_address_deny ||
1562 c->ip_filters_ingress ||
1563 c->ip_filters_egress)
16492445
LP
1564 return true;
1565
1566 /* If any parent slice has an IP access list defined, it applies too */
1567 for (p = UNIT_DEREF(u->slice); p; p = UNIT_DEREF(p->slice)) {
1568 c = unit_get_cgroup_context(p);
1569 if (!c)
1570 return false;
1571
1572 if (c->ip_address_allow ||
1573 c->ip_address_deny)
1574 return true;
1575 }
1576
1577 return false;
1578}
1579
c52db42b 1580static CGroupMask unit_get_cgroup_mask(Unit *u) {
efdb0237 1581 CGroupMask mask = 0;
c52db42b
CD
1582 CGroupContext *c;
1583
1584 assert(u);
1585
1586 c = unit_get_cgroup_context(u);
8e274523 1587
c710d3b4
CD
1588 assert(c);
1589
fae9bc29 1590 /* Figure out which controllers we need, based on the cgroup context object */
8e274523 1591
fae9bc29 1592 if (c->cpu_accounting)
f98c2585 1593 mask |= get_cpu_accounting_mask();
fae9bc29
LP
1594
1595 if (cgroup_context_has_cpu_weight(c) ||
66ebf6c0 1596 cgroup_context_has_cpu_shares(c) ||
3a43da28 1597 c->cpu_quota_per_sec_usec != USEC_INFINITY)
fae9bc29 1598 mask |= CGROUP_MASK_CPU;
ecedd90f 1599
047f5d63
PH
1600 if (c->cpuset_cpus.set || c->cpuset_mems.set)
1601 mask |= CGROUP_MASK_CPUSET;
1602
538b4852
TH
1603 if (cgroup_context_has_io_config(c) || cgroup_context_has_blockio_config(c))
1604 mask |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
ecedd90f 1605
4ad49000 1606 if (c->memory_accounting ||
da4d897e 1607 c->memory_limit != CGROUP_LIMIT_MAX ||
c52db42b 1608 unit_has_unified_memory_config(u))
efdb0237 1609 mask |= CGROUP_MASK_MEMORY;
8e274523 1610
a931ad47
LP
1611 if (c->device_allow ||
1612 c->device_policy != CGROUP_AUTO)
084c7007 1613 mask |= CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES;
4ad49000 1614
03a7b521 1615 if (c->tasks_accounting ||
8793fa25 1616 c->tasks_max != CGROUP_LIMIT_MAX)
03a7b521
LP
1617 mask |= CGROUP_MASK_PIDS;
1618
fae9bc29 1619 return CGROUP_MASK_EXTEND_JOINED(mask);
8e274523
LP
1620}
1621
53aea74a 1622static CGroupMask unit_get_bpf_mask(Unit *u) {
17f14955
RG
1623 CGroupMask mask = 0;
1624
fae9bc29
LP
1625 /* Figure out which controllers we need, based on the cgroup context, possibly taking into account children
1626 * too. */
1627
17f14955
RG
1628 if (unit_get_needs_bpf_firewall(u))
1629 mask |= CGROUP_MASK_BPF_FIREWALL;
1630
1631 return mask;
1632}
1633
efdb0237 1634CGroupMask unit_get_own_mask(Unit *u) {
4ad49000 1635 CGroupContext *c;
8e274523 1636
442ce775
LP
1637 /* Returns the mask of controllers the unit needs for itself. If a unit is not properly loaded, return an empty
1638 * mask, as we shouldn't reflect it in the cgroup hierarchy then. */
1639
1640 if (u->load_state != UNIT_LOADED)
1641 return 0;
efdb0237 1642
4ad49000
LP
1643 c = unit_get_cgroup_context(u);
1644 if (!c)
1645 return 0;
8e274523 1646
c52db42b 1647 return (unit_get_cgroup_mask(u) | unit_get_bpf_mask(u) | unit_get_delegate_mask(u)) & ~unit_get_ancestor_disable_mask(u);
02638280
LP
1648}
1649
1650CGroupMask unit_get_delegate_mask(Unit *u) {
1651 CGroupContext *c;
1652
1653 /* If delegation is turned on, then turn on selected controllers, unless we are on the legacy hierarchy and the
1654 * process we fork into is known to drop privileges, and hence shouldn't get access to the controllers.
19af675e 1655 *
02638280 1656 * Note that on the unified hierarchy it is safe to delegate controllers to unprivileged services. */
a931ad47 1657
1d9cc876 1658 if (!unit_cgroup_delegate(u))
02638280
LP
1659 return 0;
1660
1661 if (cg_all_unified() <= 0) {
a931ad47
LP
1662 ExecContext *e;
1663
1664 e = unit_get_exec_context(u);
02638280
LP
1665 if (e && !exec_context_maintains_privileges(e))
1666 return 0;
a931ad47
LP
1667 }
1668
1d9cc876 1669 assert_se(c = unit_get_cgroup_context(u));
fae9bc29 1670 return CGROUP_MASK_EXTEND_JOINED(c->delegate_controllers);
8e274523
LP
1671}
1672
efdb0237 1673CGroupMask unit_get_members_mask(Unit *u) {
4ad49000 1674 assert(u);
bc432dc7 1675
02638280 1676 /* Returns the mask of controllers all of the unit's children require, merged */
efdb0237 1677
bc432dc7 1678 if (u->cgroup_members_mask_valid)
26a17ca2 1679 return u->cgroup_members_mask; /* Use cached value if possible */
bc432dc7 1680
64e844e5 1681 u->cgroup_members_mask = 0;
bc432dc7
LP
1682
1683 if (u->type == UNIT_SLICE) {
eef85c4a 1684 void *v;
bc432dc7
LP
1685 Unit *member;
1686 Iterator i;
1687
eef85c4a 1688 HASHMAP_FOREACH_KEY(v, member, u->dependencies[UNIT_BEFORE], i) {
cb5e3bc3
CD
1689 if (UNIT_DEREF(member->slice) == u)
1690 u->cgroup_members_mask |= unit_get_subtree_mask(member); /* note that this calls ourselves again, for the children */
bc432dc7
LP
1691 }
1692 }
1693
1694 u->cgroup_members_mask_valid = true;
6414b7c9 1695 return u->cgroup_members_mask;
246aa6dd
LP
1696}
1697
efdb0237 1698CGroupMask unit_get_siblings_mask(Unit *u) {
4ad49000 1699 assert(u);
246aa6dd 1700
efdb0237
LP
1701 /* Returns the mask of controllers all of the unit's siblings
1702 * require, i.e. the members mask of the unit's parent slice
1703 * if there is one. */
1704
bc432dc7 1705 if (UNIT_ISSET(u->slice))
637f421e 1706 return unit_get_members_mask(UNIT_DEREF(u->slice));
4ad49000 1707
64e844e5 1708 return unit_get_subtree_mask(u); /* we are the top-level slice */
246aa6dd
LP
1709}
1710
4f6f62e4
CD
1711CGroupMask unit_get_disable_mask(Unit *u) {
1712 CGroupContext *c;
1713
1714 c = unit_get_cgroup_context(u);
1715 if (!c)
1716 return 0;
1717
1718 return c->disable_controllers;
1719}
1720
1721CGroupMask unit_get_ancestor_disable_mask(Unit *u) {
1722 CGroupMask mask;
1723
1724 assert(u);
1725 mask = unit_get_disable_mask(u);
1726
1727 /* Returns the mask of controllers which are marked as forcibly
1728 * disabled in any ancestor unit or the unit in question. */
1729
1730 if (UNIT_ISSET(u->slice))
1731 mask |= unit_get_ancestor_disable_mask(UNIT_DEREF(u->slice));
1732
1733 return mask;
1734}
1735
efdb0237
LP
1736CGroupMask unit_get_subtree_mask(Unit *u) {
1737
1738 /* Returns the mask of this subtree, meaning of the group
1739 * itself and its children. */
1740
1741 return unit_get_own_mask(u) | unit_get_members_mask(u);
1742}
1743
1744CGroupMask unit_get_target_mask(Unit *u) {
1745 CGroupMask mask;
1746
1747 /* This returns the cgroup mask of all controllers to enable
1748 * for a specific cgroup, i.e. everything it needs itself,
1749 * plus all that its children need, plus all that its siblings
1750 * need. This is primarily useful on the legacy cgroup
1751 * hierarchy, where we need to duplicate each cgroup in each
1752 * hierarchy that shall be enabled for it. */
6414b7c9 1753
efdb0237 1754 mask = unit_get_own_mask(u) | unit_get_members_mask(u) | unit_get_siblings_mask(u);
84d2744b
ZJS
1755
1756 if (mask & CGROUP_MASK_BPF_FIREWALL & ~u->manager->cgroup_supported)
1757 emit_bpf_firewall_warning(u);
1758
efdb0237 1759 mask &= u->manager->cgroup_supported;
c72703e2 1760 mask &= ~unit_get_ancestor_disable_mask(u);
efdb0237
LP
1761
1762 return mask;
1763}
1764
1765CGroupMask unit_get_enable_mask(Unit *u) {
1766 CGroupMask mask;
1767
1768 /* This returns the cgroup mask of all controllers to enable
1769 * for the children of a specific cgroup. This is primarily
1770 * useful for the unified cgroup hierarchy, where each cgroup
1771 * controls which controllers are enabled for its children. */
1772
1773 mask = unit_get_members_mask(u);
6414b7c9 1774 mask &= u->manager->cgroup_supported;
c72703e2 1775 mask &= ~unit_get_ancestor_disable_mask(u);
6414b7c9
DS
1776
1777 return mask;
1778}
1779
5af88058 1780void unit_invalidate_cgroup_members_masks(Unit *u) {
bc432dc7
LP
1781 assert(u);
1782
5af88058
LP
1783 /* Recurse invalidate the member masks cache all the way up the tree */
1784 u->cgroup_members_mask_valid = false;
bc432dc7 1785
5af88058
LP
1786 if (UNIT_ISSET(u->slice))
1787 unit_invalidate_cgroup_members_masks(UNIT_DEREF(u->slice));
6414b7c9
DS
1788}
1789
6592b975 1790const char *unit_get_realized_cgroup_path(Unit *u, CGroupMask mask) {
03b90d4b 1791
6592b975 1792 /* Returns the realized cgroup path of the specified unit where all specified controllers are available. */
03b90d4b
LP
1793
1794 while (u) {
6592b975 1795
03b90d4b
LP
1796 if (u->cgroup_path &&
1797 u->cgroup_realized &&
d94a24ca 1798 FLAGS_SET(u->cgroup_realized_mask, mask))
03b90d4b
LP
1799 return u->cgroup_path;
1800
1801 u = UNIT_DEREF(u->slice);
1802 }
1803
1804 return NULL;
1805}
1806
6592b975
LP
1807static const char *migrate_callback(CGroupMask mask, void *userdata) {
1808 return unit_get_realized_cgroup_path(userdata, mask);
1809}
1810
303ee601 1811char *unit_default_cgroup_path(const Unit *u) {
efdb0237
LP
1812 _cleanup_free_ char *escaped = NULL, *slice = NULL;
1813 int r;
1814
1815 assert(u);
1816
1817 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
1818 return strdup(u->manager->cgroup_root);
1819
1820 if (UNIT_ISSET(u->slice) && !unit_has_name(UNIT_DEREF(u->slice), SPECIAL_ROOT_SLICE)) {
1821 r = cg_slice_to_path(UNIT_DEREF(u->slice)->id, &slice);
1822 if (r < 0)
1823 return NULL;
1824 }
1825
1826 escaped = cg_escape(u->id);
1827 if (!escaped)
1828 return NULL;
1829
657ee2d8 1830 return path_join(empty_to_root(u->manager->cgroup_root), slice, escaped);
efdb0237
LP
1831}
1832
1833int unit_set_cgroup_path(Unit *u, const char *path) {
1834 _cleanup_free_ char *p = NULL;
1835 int r;
1836
1837 assert(u);
1838
5210387e
LP
1839 if (streq_ptr(u->cgroup_path, path))
1840 return 0;
1841
efdb0237
LP
1842 if (path) {
1843 p = strdup(path);
1844 if (!p)
1845 return -ENOMEM;
5210387e 1846 }
efdb0237
LP
1847
1848 if (p) {
1849 r = hashmap_put(u->manager->cgroup_unit, p, u);
1850 if (r < 0)
1851 return r;
1852 }
1853
1854 unit_release_cgroup(u);
ae2a15bc 1855 u->cgroup_path = TAKE_PTR(p);
efdb0237
LP
1856
1857 return 1;
1858}
1859
1860int unit_watch_cgroup(Unit *u) {
ab2c3861 1861 _cleanup_free_ char *events = NULL;
efdb0237
LP
1862 int r;
1863
1864 assert(u);
1865
0bb814c2
LP
1866 /* Watches the "cgroups.events" attribute of this unit's cgroup for "empty" events, but only if
1867 * cgroupv2 is available. */
1868
efdb0237
LP
1869 if (!u->cgroup_path)
1870 return 0;
1871
0bb814c2 1872 if (u->cgroup_control_inotify_wd >= 0)
efdb0237
LP
1873 return 0;
1874
1875 /* Only applies to the unified hierarchy */
c22800e4 1876 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
b4cccbc1
LP
1877 if (r < 0)
1878 return log_error_errno(r, "Failed to determine whether the name=systemd hierarchy is unified: %m");
1879 if (r == 0)
efdb0237
LP
1880 return 0;
1881
0bb814c2 1882 /* No point in watch the top-level slice, it's never going to run empty. */
efdb0237
LP
1883 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
1884 return 0;
1885
0bb814c2 1886 r = hashmap_ensure_allocated(&u->manager->cgroup_control_inotify_wd_unit, &trivial_hash_ops);
efdb0237
LP
1887 if (r < 0)
1888 return log_oom();
1889
ab2c3861 1890 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.events", &events);
efdb0237
LP
1891 if (r < 0)
1892 return log_oom();
1893
0bb814c2
LP
1894 u->cgroup_control_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
1895 if (u->cgroup_control_inotify_wd < 0) {
efdb0237 1896
0bb814c2
LP
1897 if (errno == ENOENT) /* If the directory is already gone we don't need to track it, so this
1898 * is not an error */
efdb0237
LP
1899 return 0;
1900
0bb814c2 1901 return log_unit_error_errno(u, errno, "Failed to add control inotify watch descriptor for control group %s: %m", u->cgroup_path);
efdb0237
LP
1902 }
1903
0bb814c2 1904 r = hashmap_put(u->manager->cgroup_control_inotify_wd_unit, INT_TO_PTR(u->cgroup_control_inotify_wd), u);
efdb0237 1905 if (r < 0)
0bb814c2 1906 return log_unit_error_errno(u, r, "Failed to add control inotify watch descriptor to hash map: %m");
efdb0237
LP
1907
1908 return 0;
1909}
1910
afcfaa69
LP
1911int unit_watch_cgroup_memory(Unit *u) {
1912 _cleanup_free_ char *events = NULL;
1913 CGroupContext *c;
1914 int r;
1915
1916 assert(u);
1917
1918 /* Watches the "memory.events" attribute of this unit's cgroup for "oom_kill" events, but only if
1919 * cgroupv2 is available. */
1920
1921 if (!u->cgroup_path)
1922 return 0;
1923
1924 c = unit_get_cgroup_context(u);
1925 if (!c)
1926 return 0;
1927
1928 /* The "memory.events" attribute is only available if the memory controller is on. Let's hence tie
1929 * this to memory accounting, in a way watching for OOM kills is a form of memory accounting after
1930 * all. */
1931 if (!c->memory_accounting)
1932 return 0;
1933
1934 /* Don't watch inner nodes, as the kernel doesn't report oom_kill events recursively currently, and
1935 * we also don't want to generate a log message for each parent cgroup of a process. */
1936 if (u->type == UNIT_SLICE)
1937 return 0;
1938
1939 if (u->cgroup_memory_inotify_wd >= 0)
1940 return 0;
1941
1942 /* Only applies to the unified hierarchy */
1943 r = cg_all_unified();
1944 if (r < 0)
1945 return log_error_errno(r, "Failed to determine whether the memory controller is unified: %m");
1946 if (r == 0)
1947 return 0;
1948
1949 r = hashmap_ensure_allocated(&u->manager->cgroup_memory_inotify_wd_unit, &trivial_hash_ops);
1950 if (r < 0)
1951 return log_oom();
1952
1953 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "memory.events", &events);
1954 if (r < 0)
1955 return log_oom();
1956
1957 u->cgroup_memory_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
1958 if (u->cgroup_memory_inotify_wd < 0) {
1959
1960 if (errno == ENOENT) /* If the directory is already gone we don't need to track it, so this
1961 * is not an error */
1962 return 0;
1963
1964 return log_unit_error_errno(u, errno, "Failed to add memory inotify watch descriptor for control group %s: %m", u->cgroup_path);
1965 }
1966
1967 r = hashmap_put(u->manager->cgroup_memory_inotify_wd_unit, INT_TO_PTR(u->cgroup_memory_inotify_wd), u);
1968 if (r < 0)
1969 return log_unit_error_errno(u, r, "Failed to add memory inotify watch descriptor to hash map: %m");
1970
1971 return 0;
1972}
1973
a4634b21
LP
1974int unit_pick_cgroup_path(Unit *u) {
1975 _cleanup_free_ char *path = NULL;
1976 int r;
1977
1978 assert(u);
1979
1980 if (u->cgroup_path)
1981 return 0;
1982
1983 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1984 return -EINVAL;
1985
1986 path = unit_default_cgroup_path(u);
1987 if (!path)
1988 return log_oom();
1989
1990 r = unit_set_cgroup_path(u, path);
1991 if (r == -EEXIST)
1992 return log_unit_error_errno(u, r, "Control group %s exists already.", path);
1993 if (r < 0)
1994 return log_unit_error_errno(u, r, "Failed to set unit's control group path to %s: %m", path);
1995
1996 return 0;
1997}
1998
efdb0237
LP
1999static int unit_create_cgroup(
2000 Unit *u,
2001 CGroupMask target_mask,
0d2d6fbf
CD
2002 CGroupMask enable_mask,
2003 ManagerState state) {
efdb0237 2004
65be7e06 2005 bool created;
27adcc97 2006 int r;
64747e2d 2007
4ad49000 2008 assert(u);
64747e2d 2009
27c4ed79 2010 if (!UNIT_HAS_CGROUP_CONTEXT(u))
0cd385d3
LP
2011 return 0;
2012
a4634b21
LP
2013 /* Figure out our cgroup path */
2014 r = unit_pick_cgroup_path(u);
2015 if (r < 0)
2016 return r;
b58b8e11 2017
03b90d4b 2018 /* First, create our own group */
efdb0237 2019 r = cg_create_everywhere(u->manager->cgroup_supported, target_mask, u->cgroup_path);
23bbb0de 2020 if (r < 0)
efdb0237 2021 return log_unit_error_errno(u, r, "Failed to create cgroup %s: %m", u->cgroup_path);
490c5a37 2022 created = r;
efdb0237
LP
2023
2024 /* Start watching it */
2025 (void) unit_watch_cgroup(u);
afcfaa69 2026 (void) unit_watch_cgroup_memory(u);
efdb0237 2027
65be7e06 2028 /* Preserve enabled controllers in delegated units, adjust others. */
1fd3a10c 2029 if (created || !u->cgroup_realized || !unit_cgroup_delegate(u)) {
27adcc97 2030 CGroupMask result_mask = 0;
65be7e06
ZJS
2031
2032 /* Enable all controllers we need */
27adcc97 2033 r = cg_enable_everywhere(u->manager->cgroup_supported, enable_mask, u->cgroup_path, &result_mask);
65be7e06 2034 if (r < 0)
27adcc97
LP
2035 log_unit_warning_errno(u, r, "Failed to enable/disable controllers on cgroup %s, ignoring: %m", u->cgroup_path);
2036
2037 /* If we just turned off a controller, this might release the controller for our parent too, let's
2038 * enqueue the parent for re-realization in that case again. */
2039 if (UNIT_ISSET(u->slice)) {
2040 CGroupMask turned_off;
2041
2042 turned_off = (u->cgroup_realized ? u->cgroup_enabled_mask & ~result_mask : 0);
2043 if (turned_off != 0) {
2044 Unit *parent;
2045
2046 /* Force the parent to propagate the enable mask to the kernel again, by invalidating
2047 * the controller we just turned off. */
2048
2049 for (parent = UNIT_DEREF(u->slice); parent; parent = UNIT_DEREF(parent->slice))
2050 unit_invalidate_cgroup(parent, turned_off);
2051 }
2052 }
2053
2054 /* Remember what's actually enabled now */
2055 u->cgroup_enabled_mask = result_mask;
65be7e06 2056 }
03b90d4b
LP
2057
2058 /* Keep track that this is now realized */
4ad49000 2059 u->cgroup_realized = true;
efdb0237 2060 u->cgroup_realized_mask = target_mask;
4ad49000 2061
1d9cc876 2062 if (u->type != UNIT_SLICE && !unit_cgroup_delegate(u)) {
0cd385d3
LP
2063
2064 /* Then, possibly move things over, but not if
2065 * subgroups may contain processes, which is the case
2066 * for slice and delegation units. */
2067 r = cg_migrate_everywhere(u->manager->cgroup_supported, u->cgroup_path, u->cgroup_path, migrate_callback, u);
2068 if (r < 0)
efdb0237 2069 log_unit_warning_errno(u, r, "Failed to migrate cgroup from to %s, ignoring: %m", u->cgroup_path);
0cd385d3 2070 }
03b90d4b 2071
0d2d6fbf
CD
2072 /* Set attributes */
2073 cgroup_context_apply(u, target_mask, state);
2074 cgroup_xattr_apply(u);
2075
64747e2d
LP
2076 return 0;
2077}
2078
6592b975
LP
2079static int unit_attach_pid_to_cgroup_via_bus(Unit *u, pid_t pid, const char *suffix_path) {
2080 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
2081 char *pp;
7b3fd631 2082 int r;
6592b975 2083
7b3fd631
LP
2084 assert(u);
2085
6592b975
LP
2086 if (MANAGER_IS_SYSTEM(u->manager))
2087 return -EINVAL;
2088
2089 if (!u->manager->system_bus)
2090 return -EIO;
2091
2092 if (!u->cgroup_path)
2093 return -EINVAL;
2094
2095 /* Determine this unit's cgroup path relative to our cgroup root */
2096 pp = path_startswith(u->cgroup_path, u->manager->cgroup_root);
2097 if (!pp)
2098 return -EINVAL;
2099
2100 pp = strjoina("/", pp, suffix_path);
858d36c1 2101 path_simplify(pp, false);
6592b975
LP
2102
2103 r = sd_bus_call_method(u->manager->system_bus,
2104 "org.freedesktop.systemd1",
2105 "/org/freedesktop/systemd1",
2106 "org.freedesktop.systemd1.Manager",
2107 "AttachProcessesToUnit",
2108 &error, NULL,
2109 "ssau",
2110 NULL /* empty unit name means client's unit, i.e. us */, pp, 1, (uint32_t) pid);
7b3fd631 2111 if (r < 0)
6592b975
LP
2112 return log_unit_debug_errno(u, r, "Failed to attach unit process " PID_FMT " via the bus: %s", pid, bus_error_message(&error, r));
2113
2114 return 0;
2115}
2116
2117int unit_attach_pids_to_cgroup(Unit *u, Set *pids, const char *suffix_path) {
2118 CGroupMask delegated_mask;
2119 const char *p;
2120 Iterator i;
2121 void *pidp;
2122 int r, q;
2123
2124 assert(u);
2125
2126 if (!UNIT_HAS_CGROUP_CONTEXT(u))
2127 return -EINVAL;
2128
2129 if (set_isempty(pids))
2130 return 0;
7b3fd631 2131
fab34748
KL
2132 /* Load any custom firewall BPF programs here once to test if they are existing and actually loadable.
2133 * Fail here early since later errors in the call chain unit_realize_cgroup to cgroup_context_apply are ignored. */
2134 r = bpf_firewall_load_custom(u);
2135 if (r < 0)
2136 return r;
2137
6592b975 2138 r = unit_realize_cgroup(u);
7b3fd631
LP
2139 if (r < 0)
2140 return r;
2141
6592b975
LP
2142 if (isempty(suffix_path))
2143 p = u->cgroup_path;
2144 else
270384b2 2145 p = prefix_roota(u->cgroup_path, suffix_path);
6592b975
LP
2146
2147 delegated_mask = unit_get_delegate_mask(u);
2148
2149 r = 0;
2150 SET_FOREACH(pidp, pids, i) {
2151 pid_t pid = PTR_TO_PID(pidp);
2152 CGroupController c;
2153
2154 /* First, attach the PID to the main cgroup hierarchy */
2155 q = cg_attach(SYSTEMD_CGROUP_CONTROLLER, p, pid);
2156 if (q < 0) {
2157 log_unit_debug_errno(u, q, "Couldn't move process " PID_FMT " to requested cgroup '%s': %m", pid, p);
2158
2159 if (MANAGER_IS_USER(u->manager) && IN_SET(q, -EPERM, -EACCES)) {
2160 int z;
2161
2162 /* If we are in a user instance, and we can't move the process ourselves due to
2163 * permission problems, let's ask the system instance about it instead. Since it's more
2164 * privileged it might be able to move the process across the leaves of a subtree who's
2165 * top node is not owned by us. */
2166
2167 z = unit_attach_pid_to_cgroup_via_bus(u, pid, suffix_path);
2168 if (z < 0)
2169 log_unit_debug_errno(u, z, "Couldn't move process " PID_FMT " to requested cgroup '%s' via the system bus either: %m", pid, p);
2170 else
2171 continue; /* When the bus thing worked via the bus we are fully done for this PID. */
2172 }
2173
2174 if (r >= 0)
2175 r = q; /* Remember first error */
2176
2177 continue;
2178 }
2179
2180 q = cg_all_unified();
2181 if (q < 0)
2182 return q;
2183 if (q > 0)
2184 continue;
2185
2186 /* In the legacy hierarchy, attach the process to the request cgroup if possible, and if not to the
2187 * innermost realized one */
2188
2189 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
2190 CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c);
2191 const char *realized;
2192
2193 if (!(u->manager->cgroup_supported & bit))
2194 continue;
2195
2196 /* If this controller is delegated and realized, honour the caller's request for the cgroup suffix. */
2197 if (delegated_mask & u->cgroup_realized_mask & bit) {
2198 q = cg_attach(cgroup_controller_to_string(c), p, pid);
2199 if (q >= 0)
2200 continue; /* Success! */
2201
2202 log_unit_debug_errno(u, q, "Failed to attach PID " PID_FMT " to requested cgroup %s in controller %s, falling back to unit's cgroup: %m",
2203 pid, p, cgroup_controller_to_string(c));
2204 }
2205
2206 /* So this controller is either not delegate or realized, or something else weird happened. In
2207 * that case let's attach the PID at least to the closest cgroup up the tree that is
2208 * realized. */
2209 realized = unit_get_realized_cgroup_path(u, bit);
2210 if (!realized)
2211 continue; /* Not even realized in the root slice? Then let's not bother */
2212
2213 q = cg_attach(cgroup_controller_to_string(c), realized, pid);
2214 if (q < 0)
2215 log_unit_debug_errno(u, q, "Failed to attach PID " PID_FMT " to realized cgroup %s in controller %s, ignoring: %m",
2216 pid, realized, cgroup_controller_to_string(c));
2217 }
2218 }
2219
2220 return r;
7b3fd631
LP
2221}
2222
906c06f6
DM
2223static bool unit_has_mask_realized(
2224 Unit *u,
2225 CGroupMask target_mask,
17f14955 2226 CGroupMask enable_mask) {
906c06f6 2227
bc432dc7
LP
2228 assert(u);
2229
d5095dcd
LP
2230 /* Returns true if this unit is fully realized. We check four things:
2231 *
2232 * 1. Whether the cgroup was created at all
4e1dfa45
CD
2233 * 2. Whether the cgroup was created in all the hierarchies we need it to be created in (in case of cgroup v1)
2234 * 3. Whether the cgroup has all the right controllers enabled (in case of cgroup v2)
d5095dcd
LP
2235 * 4. Whether the invalidation mask is currently zero
2236 *
2237 * If you wonder why we mask the target realization and enable mask with CGROUP_MASK_V1/CGROUP_MASK_V2: note
4e1dfa45
CD
2238 * that there are three sets of bitmasks: CGROUP_MASK_V1 (for real cgroup v1 controllers), CGROUP_MASK_V2 (for
2239 * real cgroup v2 controllers) and CGROUP_MASK_BPF (for BPF-based pseudo-controllers). Now, cgroup_realized_mask
2240 * is only matters for cgroup v1 controllers, and cgroup_enabled_mask only used for cgroup v2, and if they
d5095dcd
LP
2241 * differ in the others, we don't really care. (After all, the cgroup_enabled_mask tracks with controllers are
2242 * enabled through cgroup.subtree_control, and since the BPF pseudo-controllers don't show up there, they
2243 * simply don't matter. */
2244
906c06f6 2245 return u->cgroup_realized &&
d5095dcd
LP
2246 ((u->cgroup_realized_mask ^ target_mask) & CGROUP_MASK_V1) == 0 &&
2247 ((u->cgroup_enabled_mask ^ enable_mask) & CGROUP_MASK_V2) == 0 &&
17f14955 2248 u->cgroup_invalidated_mask == 0;
6414b7c9
DS
2249}
2250
4f6f62e4
CD
2251static bool unit_has_mask_disables_realized(
2252 Unit *u,
2253 CGroupMask target_mask,
2254 CGroupMask enable_mask) {
2255
2256 assert(u);
2257
2258 /* Returns true if all controllers which should be disabled are indeed disabled.
2259 *
2260 * Unlike unit_has_mask_realized, we don't care what was enabled, only that anything we want to remove is
2261 * already removed. */
2262
2263 return !u->cgroup_realized ||
2264 (FLAGS_SET(u->cgroup_realized_mask, target_mask & CGROUP_MASK_V1) &&
2265 FLAGS_SET(u->cgroup_enabled_mask, enable_mask & CGROUP_MASK_V2));
2266}
2267
a57669d2
CD
2268static bool unit_has_mask_enables_realized(
2269 Unit *u,
2270 CGroupMask target_mask,
2271 CGroupMask enable_mask) {
2272
2273 assert(u);
2274
2275 /* Returns true if all controllers which should be enabled are indeed enabled.
2276 *
2277 * Unlike unit_has_mask_realized, we don't care about the controllers that are not present, only that anything
2278 * we want to add is already added. */
2279
2280 return u->cgroup_realized &&
c72703e2
CD
2281 ((u->cgroup_realized_mask | target_mask) & CGROUP_MASK_V1) == (u->cgroup_realized_mask & CGROUP_MASK_V1) &&
2282 ((u->cgroup_enabled_mask | enable_mask) & CGROUP_MASK_V2) == (u->cgroup_enabled_mask & CGROUP_MASK_V2);
a57669d2
CD
2283}
2284
27adcc97 2285void unit_add_to_cgroup_realize_queue(Unit *u) {
2aa57a65
LP
2286 assert(u);
2287
2288 if (u->in_cgroup_realize_queue)
2289 return;
2290
2291 LIST_PREPEND(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
2292 u->in_cgroup_realize_queue = true;
2293}
2294
2295static void unit_remove_from_cgroup_realize_queue(Unit *u) {
2296 assert(u);
2297
2298 if (!u->in_cgroup_realize_queue)
2299 return;
2300
2301 LIST_REMOVE(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
2302 u->in_cgroup_realize_queue = false;
2303}
2304
a57669d2
CD
2305/* Controllers can only be enabled breadth-first, from the root of the
2306 * hierarchy downwards to the unit in question. */
2307static int unit_realize_cgroup_now_enable(Unit *u, ManagerState state) {
2308 CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
2309 int r;
2310
2311 assert(u);
2312
2313 /* First go deal with this unit's parent, or we won't be able to enable
2314 * any new controllers at this layer. */
2315 if (UNIT_ISSET(u->slice)) {
2316 r = unit_realize_cgroup_now_enable(UNIT_DEREF(u->slice), state);
2317 if (r < 0)
2318 return r;
2319 }
2320
2321 target_mask = unit_get_target_mask(u);
2322 enable_mask = unit_get_enable_mask(u);
2323
2324 /* We can only enable in this direction, don't try to disable anything.
2325 */
2326 if (unit_has_mask_enables_realized(u, target_mask, enable_mask))
2327 return 0;
2328
2329 new_target_mask = u->cgroup_realized_mask | target_mask;
2330 new_enable_mask = u->cgroup_enabled_mask | enable_mask;
2331
c72703e2 2332 return unit_create_cgroup(u, new_target_mask, new_enable_mask, state);
a57669d2
CD
2333}
2334
4f6f62e4
CD
2335/* Controllers can only be disabled depth-first, from the leaves of the
2336 * hierarchy upwards to the unit in question. */
2337static int unit_realize_cgroup_now_disable(Unit *u, ManagerState state) {
2338 Iterator i;
2339 Unit *m;
2340 void *v;
2341
2342 assert(u);
2343
2344 if (u->type != UNIT_SLICE)
2345 return 0;
2346
2347 HASHMAP_FOREACH_KEY(v, m, u->dependencies[UNIT_BEFORE], i) {
2348 CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
2349 int r;
2350
2351 if (UNIT_DEREF(m->slice) != u)
2352 continue;
2353
2354 /* The cgroup for this unit might not actually be fully
2355 * realised yet, in which case it isn't holding any controllers
2356 * open anyway. */
2357 if (!m->cgroup_path)
2358 continue;
2359
2360 /* We must disable those below us first in order to release the
2361 * controller. */
2362 if (m->type == UNIT_SLICE)
2363 (void) unit_realize_cgroup_now_disable(m, state);
2364
2365 target_mask = unit_get_target_mask(m);
2366 enable_mask = unit_get_enable_mask(m);
2367
2368 /* We can only disable in this direction, don't try to enable
2369 * anything. */
2370 if (unit_has_mask_disables_realized(m, target_mask, enable_mask))
2371 continue;
2372
2373 new_target_mask = m->cgroup_realized_mask & target_mask;
2374 new_enable_mask = m->cgroup_enabled_mask & enable_mask;
2375
2376 r = unit_create_cgroup(m, new_target_mask, new_enable_mask, state);
2377 if (r < 0)
2378 return r;
2379 }
2380
2381 return 0;
2382}
a57669d2 2383
6414b7c9
DS
2384/* Check if necessary controllers and attributes for a unit are in place.
2385 *
a57669d2
CD
2386 * - If so, do nothing.
2387 * - If not, create paths, move processes over, and set attributes.
2388 *
2389 * Controllers can only be *enabled* in a breadth-first way, and *disabled* in
2390 * a depth-first way. As such the process looks like this:
2391 *
2392 * Suppose we have a cgroup hierarchy which looks like this:
2393 *
2394 * root
2395 * / \
2396 * / \
2397 * / \
2398 * a b
2399 * / \ / \
2400 * / \ / \
2401 * c d e f
2402 * / \ / \ / \ / \
2403 * h i j k l m n o
2404 *
2405 * 1. We want to realise cgroup "d" now.
c72703e2 2406 * 2. cgroup "a" has DisableControllers=cpu in the associated unit.
a57669d2
CD
2407 * 3. cgroup "k" just started requesting the memory controller.
2408 *
2409 * To make this work we must do the following in order:
2410 *
2411 * 1. Disable CPU controller in k, j
2412 * 2. Disable CPU controller in d
2413 * 3. Enable memory controller in root
2414 * 4. Enable memory controller in a
2415 * 5. Enable memory controller in d
2416 * 6. Enable memory controller in k
2417 *
2418 * Notice that we need to touch j in one direction, but not the other. We also
2419 * don't go beyond d when disabling -- it's up to "a" to get realized if it
2420 * wants to disable further. The basic rules are therefore:
2421 *
2422 * - If you're disabling something, you need to realise all of the cgroups from
2423 * your recursive descendants to the root. This starts from the leaves.
2424 * - If you're enabling something, you need to realise from the root cgroup
2425 * downwards, but you don't need to iterate your recursive descendants.
6414b7c9
DS
2426 *
2427 * Returns 0 on success and < 0 on failure. */
db785129 2428static int unit_realize_cgroup_now(Unit *u, ManagerState state) {
efdb0237 2429 CGroupMask target_mask, enable_mask;
6414b7c9 2430 int r;
64747e2d 2431
4ad49000 2432 assert(u);
64747e2d 2433
2aa57a65 2434 unit_remove_from_cgroup_realize_queue(u);
64747e2d 2435
efdb0237 2436 target_mask = unit_get_target_mask(u);
ccf78df1
TH
2437 enable_mask = unit_get_enable_mask(u);
2438
17f14955 2439 if (unit_has_mask_realized(u, target_mask, enable_mask))
0a1eb06d 2440 return 0;
64747e2d 2441
4f6f62e4
CD
2442 /* Disable controllers below us, if there are any */
2443 r = unit_realize_cgroup_now_disable(u, state);
2444 if (r < 0)
2445 return r;
2446
2447 /* Enable controllers above us, if there are any */
6414b7c9 2448 if (UNIT_ISSET(u->slice)) {
a57669d2 2449 r = unit_realize_cgroup_now_enable(UNIT_DEREF(u->slice), state);
6414b7c9
DS
2450 if (r < 0)
2451 return r;
2452 }
4ad49000 2453
0d2d6fbf
CD
2454 /* Now actually deal with the cgroup we were trying to realise and set attributes */
2455 r = unit_create_cgroup(u, target_mask, enable_mask, state);
6414b7c9
DS
2456 if (r < 0)
2457 return r;
2458
c2baf11c
LP
2459 /* Now, reset the invalidation mask */
2460 u->cgroup_invalidated_mask = 0;
6414b7c9 2461 return 0;
64747e2d
LP
2462}
2463
91a6073e 2464unsigned manager_dispatch_cgroup_realize_queue(Manager *m) {
db785129 2465 ManagerState state;
4ad49000 2466 unsigned n = 0;
db785129 2467 Unit *i;
6414b7c9 2468 int r;
ecedd90f 2469
91a6073e
LP
2470 assert(m);
2471
db785129
LP
2472 state = manager_state(m);
2473
91a6073e
LP
2474 while ((i = m->cgroup_realize_queue)) {
2475 assert(i->in_cgroup_realize_queue);
ecedd90f 2476
2aa57a65
LP
2477 if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(i))) {
2478 /* Maybe things changed, and the unit is not actually active anymore? */
2479 unit_remove_from_cgroup_realize_queue(i);
2480 continue;
2481 }
2482
db785129 2483 r = unit_realize_cgroup_now(i, state);
6414b7c9 2484 if (r < 0)
efdb0237 2485 log_warning_errno(r, "Failed to realize cgroups for queued unit %s, ignoring: %m", i->id);
0a1eb06d 2486
4ad49000
LP
2487 n++;
2488 }
ecedd90f 2489
4ad49000 2490 return n;
8e274523
LP
2491}
2492
91a6073e 2493static void unit_add_siblings_to_cgroup_realize_queue(Unit *u) {
4ad49000 2494 Unit *slice;
ca949c9d 2495
4ad49000
LP
2496 /* This adds the siblings of the specified unit and the
2497 * siblings of all parent units to the cgroup queue. (But
2498 * neither the specified unit itself nor the parents.) */
2499
2500 while ((slice = UNIT_DEREF(u->slice))) {
2501 Iterator i;
2502 Unit *m;
eef85c4a 2503 void *v;
8f53a7b8 2504
eef85c4a 2505 HASHMAP_FOREACH_KEY(v, m, u->dependencies[UNIT_BEFORE], i) {
6414b7c9
DS
2506 /* Skip units that have a dependency on the slice
2507 * but aren't actually in it. */
4ad49000 2508 if (UNIT_DEREF(m->slice) != slice)
50159e6a 2509 continue;
8e274523 2510
6414b7c9
DS
2511 /* No point in doing cgroup application for units
2512 * without active processes. */
2513 if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(m)))
2514 continue;
2515
2516 /* If the unit doesn't need any new controllers
2517 * and has current ones realized, it doesn't need
2518 * any changes. */
906c06f6
DM
2519 if (unit_has_mask_realized(m,
2520 unit_get_target_mask(m),
17f14955 2521 unit_get_enable_mask(m)))
6414b7c9
DS
2522 continue;
2523
91a6073e 2524 unit_add_to_cgroup_realize_queue(m);
50159e6a
LP
2525 }
2526
4ad49000 2527 u = slice;
8e274523 2528 }
4ad49000
LP
2529}
2530
0a1eb06d 2531int unit_realize_cgroup(Unit *u) {
4ad49000
LP
2532 assert(u);
2533
35b7ff80 2534 if (!UNIT_HAS_CGROUP_CONTEXT(u))
0a1eb06d 2535 return 0;
8e274523 2536
4ad49000
LP
2537 /* So, here's the deal: when realizing the cgroups for this
2538 * unit, we need to first create all parents, but there's more
2539 * actually: for the weight-based controllers we also need to
2540 * make sure that all our siblings (i.e. units that are in the
73e231ab 2541 * same slice as we are) have cgroups, too. Otherwise, things
4ad49000
LP
2542 * would become very uneven as each of their processes would
2543 * get as much resources as all our group together. This call
2544 * will synchronously create the parent cgroups, but will
2545 * defer work on the siblings to the next event loop
2546 * iteration. */
ca949c9d 2547
4ad49000 2548 /* Add all sibling slices to the cgroup queue. */
91a6073e 2549 unit_add_siblings_to_cgroup_realize_queue(u);
4ad49000 2550
6414b7c9 2551 /* And realize this one now (and apply the values) */
db785129 2552 return unit_realize_cgroup_now(u, manager_state(u->manager));
8e274523
LP
2553}
2554
efdb0237
LP
2555void unit_release_cgroup(Unit *u) {
2556 assert(u);
2557
8a0d5388
LP
2558 /* Forgets all cgroup details for this cgroup — but does *not* destroy the cgroup. This is hence OK to call
2559 * when we close down everything for reexecution, where we really want to leave the cgroup in place. */
efdb0237
LP
2560
2561 if (u->cgroup_path) {
2562 (void) hashmap_remove(u->manager->cgroup_unit, u->cgroup_path);
2563 u->cgroup_path = mfree(u->cgroup_path);
2564 }
2565
0bb814c2
LP
2566 if (u->cgroup_control_inotify_wd >= 0) {
2567 if (inotify_rm_watch(u->manager->cgroup_inotify_fd, u->cgroup_control_inotify_wd) < 0)
2568 log_unit_debug_errno(u, errno, "Failed to remove cgroup control inotify watch %i for %s, ignoring: %m", u->cgroup_control_inotify_wd, u->id);
efdb0237 2569
0bb814c2
LP
2570 (void) hashmap_remove(u->manager->cgroup_control_inotify_wd_unit, INT_TO_PTR(u->cgroup_control_inotify_wd));
2571 u->cgroup_control_inotify_wd = -1;
efdb0237 2572 }
afcfaa69
LP
2573
2574 if (u->cgroup_memory_inotify_wd >= 0) {
2575 if (inotify_rm_watch(u->manager->cgroup_inotify_fd, u->cgroup_memory_inotify_wd) < 0)
2576 log_unit_debug_errno(u, errno, "Failed to remove cgroup memory inotify watch %i for %s, ignoring: %m", u->cgroup_memory_inotify_wd, u->id);
2577
2578 (void) hashmap_remove(u->manager->cgroup_memory_inotify_wd_unit, INT_TO_PTR(u->cgroup_memory_inotify_wd));
2579 u->cgroup_memory_inotify_wd = -1;
2580 }
efdb0237
LP
2581}
2582
2583void unit_prune_cgroup(Unit *u) {
8e274523 2584 int r;
efdb0237 2585 bool is_root_slice;
8e274523 2586
4ad49000 2587 assert(u);
8e274523 2588
efdb0237
LP
2589 /* Removes the cgroup, if empty and possible, and stops watching it. */
2590
4ad49000
LP
2591 if (!u->cgroup_path)
2592 return;
8e274523 2593
fe700f46
LP
2594 (void) unit_get_cpu_usage(u, NULL); /* Cache the last CPU usage value before we destroy the cgroup */
2595
efdb0237
LP
2596 is_root_slice = unit_has_name(u, SPECIAL_ROOT_SLICE);
2597
2598 r = cg_trim_everywhere(u->manager->cgroup_supported, u->cgroup_path, !is_root_slice);
0219b352
DB
2599 if (r < 0)
2600 /* One reason we could have failed here is, that the cgroup still contains a process.
2601 * However, if the cgroup becomes removable at a later time, it might be removed when
2602 * the containing slice is stopped. So even if we failed now, this unit shouldn't assume
2603 * that the cgroup is still realized the next time it is started. Do not return early
2604 * on error, continue cleanup. */
2605 log_unit_full(u, r == -EBUSY ? LOG_DEBUG : LOG_WARNING, r, "Failed to destroy cgroup %s, ignoring: %m", u->cgroup_path);
8e274523 2606
efdb0237
LP
2607 if (is_root_slice)
2608 return;
2609
2610 unit_release_cgroup(u);
0a1eb06d 2611
4ad49000 2612 u->cgroup_realized = false;
bc432dc7 2613 u->cgroup_realized_mask = 0;
ccf78df1 2614 u->cgroup_enabled_mask = 0;
084c7007
RG
2615
2616 u->bpf_device_control_installed = bpf_program_unref(u->bpf_device_control_installed);
8e274523
LP
2617}
2618
efdb0237 2619int unit_search_main_pid(Unit *u, pid_t *ret) {
4ad49000 2620 _cleanup_fclose_ FILE *f = NULL;
4d051546 2621 pid_t pid = 0, npid;
efdb0237 2622 int r;
4ad49000
LP
2623
2624 assert(u);
efdb0237 2625 assert(ret);
4ad49000
LP
2626
2627 if (!u->cgroup_path)
efdb0237 2628 return -ENXIO;
4ad49000 2629
efdb0237
LP
2630 r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, &f);
2631 if (r < 0)
2632 return r;
4ad49000 2633
4ad49000 2634 while (cg_read_pid(f, &npid) > 0) {
4ad49000
LP
2635
2636 if (npid == pid)
2637 continue;
8e274523 2638
4d051546 2639 if (pid_is_my_child(npid) == 0)
4ad49000 2640 continue;
8e274523 2641
efdb0237 2642 if (pid != 0)
4ad49000
LP
2643 /* Dang, there's more than one daemonized PID
2644 in this group, so we don't know what process
2645 is the main process. */
efdb0237
LP
2646
2647 return -ENODATA;
8e274523 2648
4ad49000 2649 pid = npid;
8e274523
LP
2650 }
2651
efdb0237
LP
2652 *ret = pid;
2653 return 0;
2654}
2655
2656static int unit_watch_pids_in_path(Unit *u, const char *path) {
b3c5bad3 2657 _cleanup_closedir_ DIR *d = NULL;
efdb0237
LP
2658 _cleanup_fclose_ FILE *f = NULL;
2659 int ret = 0, r;
2660
2661 assert(u);
2662 assert(path);
2663
2664 r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, path, &f);
2665 if (r < 0)
2666 ret = r;
2667 else {
2668 pid_t pid;
2669
2670 while ((r = cg_read_pid(f, &pid)) > 0) {
f75f613d 2671 r = unit_watch_pid(u, pid, false);
efdb0237
LP
2672 if (r < 0 && ret >= 0)
2673 ret = r;
2674 }
2675
2676 if (r < 0 && ret >= 0)
2677 ret = r;
2678 }
2679
2680 r = cg_enumerate_subgroups(SYSTEMD_CGROUP_CONTROLLER, path, &d);
2681 if (r < 0) {
2682 if (ret >= 0)
2683 ret = r;
2684 } else {
2685 char *fn;
2686
2687 while ((r = cg_read_subgroup(d, &fn)) > 0) {
2688 _cleanup_free_ char *p = NULL;
2689
95b21cff 2690 p = path_join(empty_to_root(path), fn);
efdb0237
LP
2691 free(fn);
2692
2693 if (!p)
2694 return -ENOMEM;
2695
2696 r = unit_watch_pids_in_path(u, p);
2697 if (r < 0 && ret >= 0)
2698 ret = r;
2699 }
2700
2701 if (r < 0 && ret >= 0)
2702 ret = r;
2703 }
2704
2705 return ret;
2706}
2707
11aef522
LP
2708int unit_synthesize_cgroup_empty_event(Unit *u) {
2709 int r;
2710
2711 assert(u);
2712
2713 /* Enqueue a synthetic cgroup empty event if this unit doesn't watch any PIDs anymore. This is compatibility
2714 * support for non-unified systems where notifications aren't reliable, and hence need to take whatever we can
2715 * get as notification source as soon as we stopped having any useful PIDs to watch for. */
2716
2717 if (!u->cgroup_path)
2718 return -ENOENT;
2719
2720 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2721 if (r < 0)
2722 return r;
2723 if (r > 0) /* On unified we have reliable notifications, and don't need this */
2724 return 0;
2725
2726 if (!set_isempty(u->pids))
2727 return 0;
2728
2729 unit_add_to_cgroup_empty_queue(u);
2730 return 0;
2731}
2732
efdb0237 2733int unit_watch_all_pids(Unit *u) {
b4cccbc1
LP
2734 int r;
2735
efdb0237
LP
2736 assert(u);
2737
2738 /* Adds all PIDs from our cgroup to the set of PIDs we
2739 * watch. This is a fallback logic for cases where we do not
2740 * get reliable cgroup empty notifications: we try to use
2741 * SIGCHLD as replacement. */
2742
2743 if (!u->cgroup_path)
2744 return -ENOENT;
2745
c22800e4 2746 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
b4cccbc1
LP
2747 if (r < 0)
2748 return r;
2749 if (r > 0) /* On unified we can use proper notifications */
efdb0237
LP
2750 return 0;
2751
2752 return unit_watch_pids_in_path(u, u->cgroup_path);
2753}
2754
09e24654
LP
2755static int on_cgroup_empty_event(sd_event_source *s, void *userdata) {
2756 Manager *m = userdata;
2757 Unit *u;
efdb0237
LP
2758 int r;
2759
09e24654
LP
2760 assert(s);
2761 assert(m);
efdb0237 2762
09e24654
LP
2763 u = m->cgroup_empty_queue;
2764 if (!u)
efdb0237
LP
2765 return 0;
2766
09e24654
LP
2767 assert(u->in_cgroup_empty_queue);
2768 u->in_cgroup_empty_queue = false;
2769 LIST_REMOVE(cgroup_empty_queue, m->cgroup_empty_queue, u);
2770
2771 if (m->cgroup_empty_queue) {
2772 /* More stuff queued, let's make sure we remain enabled */
2773 r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
2774 if (r < 0)
19a691a9 2775 log_debug_errno(r, "Failed to reenable cgroup empty event source, ignoring: %m");
09e24654 2776 }
efdb0237
LP
2777
2778 unit_add_to_gc_queue(u);
2779
2780 if (UNIT_VTABLE(u)->notify_cgroup_empty)
2781 UNIT_VTABLE(u)->notify_cgroup_empty(u);
2782
2783 return 0;
2784}
2785
09e24654
LP
2786void unit_add_to_cgroup_empty_queue(Unit *u) {
2787 int r;
2788
2789 assert(u);
2790
2791 /* Note that there are four different ways how cgroup empty events reach us:
2792 *
2793 * 1. On the unified hierarchy we get an inotify event on the cgroup
2794 *
2795 * 2. On the legacy hierarchy, when running in system mode, we get a datagram on the cgroup agent socket
2796 *
2797 * 3. On the legacy hierarchy, when running in user mode, we get a D-Bus signal on the system bus
2798 *
2799 * 4. On the legacy hierarchy, in service units we start watching all processes of the cgroup for SIGCHLD as
2800 * soon as we get one SIGCHLD, to deal with unreliable cgroup notifications.
2801 *
2802 * Regardless which way we got the notification, we'll verify it here, and then add it to a separate
2803 * queue. This queue will be dispatched at a lower priority than the SIGCHLD handler, so that we always use
2804 * SIGCHLD if we can get it first, and only use the cgroup empty notifications if there's no SIGCHLD pending
2805 * (which might happen if the cgroup doesn't contain processes that are our own child, which is typically the
2806 * case for scope units). */
2807
2808 if (u->in_cgroup_empty_queue)
2809 return;
2810
2811 /* Let's verify that the cgroup is really empty */
2812 if (!u->cgroup_path)
2813 return;
2814 r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
2815 if (r < 0) {
2816 log_unit_debug_errno(u, r, "Failed to determine whether cgroup %s is empty: %m", u->cgroup_path);
2817 return;
2818 }
2819 if (r == 0)
2820 return;
2821
2822 LIST_PREPEND(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
2823 u->in_cgroup_empty_queue = true;
2824
2825 /* Trigger the defer event */
2826 r = sd_event_source_set_enabled(u->manager->cgroup_empty_event_source, SD_EVENT_ONESHOT);
2827 if (r < 0)
2828 log_debug_errno(r, "Failed to enable cgroup empty event source: %m");
2829}
2830
2ba6ae6b 2831int unit_check_oom(Unit *u) {
afcfaa69
LP
2832 _cleanup_free_ char *oom_kill = NULL;
2833 bool increased;
2834 uint64_t c;
2835 int r;
2836
2837 if (!u->cgroup_path)
2838 return 0;
2839
2840 r = cg_get_keyed_attribute("memory", u->cgroup_path, "memory.events", STRV_MAKE("oom_kill"), &oom_kill);
2841 if (r < 0)
2842 return log_unit_debug_errno(u, r, "Failed to read oom_kill field of memory.events cgroup attribute: %m");
2843
2844 r = safe_atou64(oom_kill, &c);
2845 if (r < 0)
2846 return log_unit_debug_errno(u, r, "Failed to parse oom_kill field: %m");
2847
2848 increased = c > u->oom_kill_last;
2849 u->oom_kill_last = c;
2850
2851 if (!increased)
2852 return 0;
2853
2854 log_struct(LOG_NOTICE,
2855 "MESSAGE_ID=" SD_MESSAGE_UNIT_OUT_OF_MEMORY_STR,
2856 LOG_UNIT_ID(u),
2857 LOG_UNIT_INVOCATION_ID(u),
2858 LOG_UNIT_MESSAGE(u, "A process of this unit has been killed by the OOM killer."));
2859
2860 if (UNIT_VTABLE(u)->notify_cgroup_oom)
2861 UNIT_VTABLE(u)->notify_cgroup_oom(u);
2862
2863 return 1;
2864}
2865
2866static int on_cgroup_oom_event(sd_event_source *s, void *userdata) {
2867 Manager *m = userdata;
2868 Unit *u;
2869 int r;
2870
2871 assert(s);
2872 assert(m);
2873
2874 u = m->cgroup_oom_queue;
2875 if (!u)
2876 return 0;
2877
2878 assert(u->in_cgroup_oom_queue);
2879 u->in_cgroup_oom_queue = false;
2880 LIST_REMOVE(cgroup_oom_queue, m->cgroup_oom_queue, u);
2881
2882 if (m->cgroup_oom_queue) {
2883 /* More stuff queued, let's make sure we remain enabled */
2884 r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
2885 if (r < 0)
2886 log_debug_errno(r, "Failed to reenable cgroup oom event source, ignoring: %m");
2887 }
2888
2889 (void) unit_check_oom(u);
2890 return 0;
2891}
2892
2893static void unit_add_to_cgroup_oom_queue(Unit *u) {
2894 int r;
2895
2896 assert(u);
2897
2898 if (u->in_cgroup_oom_queue)
2899 return;
2900 if (!u->cgroup_path)
2901 return;
2902
2903 LIST_PREPEND(cgroup_oom_queue, u->manager->cgroup_oom_queue, u);
2904 u->in_cgroup_oom_queue = true;
2905
2906 /* Trigger the defer event */
2907 if (!u->manager->cgroup_oom_event_source) {
2908 _cleanup_(sd_event_source_unrefp) sd_event_source *s = NULL;
2909
2910 r = sd_event_add_defer(u->manager->event, &s, on_cgroup_oom_event, u->manager);
2911 if (r < 0) {
2912 log_error_errno(r, "Failed to create cgroup oom event source: %m");
2913 return;
2914 }
2915
2916 r = sd_event_source_set_priority(s, SD_EVENT_PRIORITY_NORMAL-8);
2917 if (r < 0) {
2918 log_error_errno(r, "Failed to set priority of cgroup oom event source: %m");
2919 return;
2920 }
2921
2922 (void) sd_event_source_set_description(s, "cgroup-oom");
2923 u->manager->cgroup_oom_event_source = TAKE_PTR(s);
2924 }
2925
2926 r = sd_event_source_set_enabled(u->manager->cgroup_oom_event_source, SD_EVENT_ONESHOT);
2927 if (r < 0)
2928 log_error_errno(r, "Failed to enable cgroup oom event source: %m");
2929}
2930
efdb0237
LP
2931static int on_cgroup_inotify_event(sd_event_source *s, int fd, uint32_t revents, void *userdata) {
2932 Manager *m = userdata;
2933
2934 assert(s);
2935 assert(fd >= 0);
2936 assert(m);
2937
2938 for (;;) {
2939 union inotify_event_buffer buffer;
2940 struct inotify_event *e;
2941 ssize_t l;
2942
2943 l = read(fd, &buffer, sizeof(buffer));
2944 if (l < 0) {
47249640 2945 if (IN_SET(errno, EINTR, EAGAIN))
efdb0237
LP
2946 return 0;
2947
2948 return log_error_errno(errno, "Failed to read control group inotify events: %m");
2949 }
2950
2951 FOREACH_INOTIFY_EVENT(e, buffer, l) {
2952 Unit *u;
2953
2954 if (e->wd < 0)
2955 /* Queue overflow has no watch descriptor */
2956 continue;
2957
2958 if (e->mask & IN_IGNORED)
2959 /* The watch was just removed */
2960 continue;
2961
afcfaa69
LP
2962 /* Note that inotify might deliver events for a watch even after it was removed,
2963 * because it was queued before the removal. Let's ignore this here safely. */
2964
0bb814c2 2965 u = hashmap_get(m->cgroup_control_inotify_wd_unit, INT_TO_PTR(e->wd));
afcfaa69
LP
2966 if (u)
2967 unit_add_to_cgroup_empty_queue(u);
efdb0237 2968
afcfaa69
LP
2969 u = hashmap_get(m->cgroup_memory_inotify_wd_unit, INT_TO_PTR(e->wd));
2970 if (u)
2971 unit_add_to_cgroup_oom_queue(u);
efdb0237
LP
2972 }
2973 }
8e274523
LP
2974}
2975
17f14955
RG
2976static int cg_bpf_mask_supported(CGroupMask *ret) {
2977 CGroupMask mask = 0;
2978 int r;
2979
2980 /* BPF-based firewall */
2981 r = bpf_firewall_supported();
2982 if (r > 0)
2983 mask |= CGROUP_MASK_BPF_FIREWALL;
2984
084c7007
RG
2985 /* BPF-based device access control */
2986 r = bpf_devices_supported();
2987 if (r > 0)
2988 mask |= CGROUP_MASK_BPF_DEVICES;
2989
17f14955
RG
2990 *ret = mask;
2991 return 0;
2992}
2993
8e274523 2994int manager_setup_cgroup(Manager *m) {
9444b1f2 2995 _cleanup_free_ char *path = NULL;
10bd3e2e 2996 const char *scope_path;
efdb0237 2997 CGroupController c;
b4cccbc1 2998 int r, all_unified;
17f14955 2999 CGroupMask mask;
efdb0237 3000 char *e;
8e274523
LP
3001
3002 assert(m);
3003
35d2e7ec 3004 /* 1. Determine hierarchy */
efdb0237 3005 m->cgroup_root = mfree(m->cgroup_root);
9444b1f2 3006 r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, 0, &m->cgroup_root);
23bbb0de
MS
3007 if (r < 0)
3008 return log_error_errno(r, "Cannot determine cgroup we are running in: %m");
8e274523 3009
efdb0237
LP
3010 /* Chop off the init scope, if we are already located in it */
3011 e = endswith(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
0d8c31ff 3012
efdb0237
LP
3013 /* LEGACY: Also chop off the system slice if we are in
3014 * it. This is to support live upgrades from older systemd
3015 * versions where PID 1 was moved there. Also see
3016 * cg_get_root_path(). */
463d0d15 3017 if (!e && MANAGER_IS_SYSTEM(m)) {
9444b1f2 3018 e = endswith(m->cgroup_root, "/" SPECIAL_SYSTEM_SLICE);
15c60e99 3019 if (!e)
efdb0237 3020 e = endswith(m->cgroup_root, "/system"); /* even more legacy */
0baf24dd 3021 }
efdb0237
LP
3022 if (e)
3023 *e = 0;
7ccfb64a 3024
7546145e
LP
3025 /* And make sure to store away the root value without trailing slash, even for the root dir, so that we can
3026 * easily prepend it everywhere. */
3027 delete_trailing_chars(m->cgroup_root, "/");
8e274523 3028
35d2e7ec 3029 /* 2. Show data */
9444b1f2 3030 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, NULL, &path);
23bbb0de
MS
3031 if (r < 0)
3032 return log_error_errno(r, "Cannot find cgroup mount point: %m");
8e274523 3033
d4d99bc6 3034 r = cg_unified();
415fc41c
TH
3035 if (r < 0)
3036 return log_error_errno(r, "Couldn't determine if we are running in the unified hierarchy: %m");
5da38d07 3037
b4cccbc1 3038 all_unified = cg_all_unified();
d4c819ed
ZJS
3039 if (all_unified < 0)
3040 return log_error_errno(all_unified, "Couldn't determine whether we are in all unified mode: %m");
3041 if (all_unified > 0)
efdb0237 3042 log_debug("Unified cgroup hierarchy is located at %s.", path);
b4cccbc1 3043 else {
c22800e4 3044 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
b4cccbc1
LP
3045 if (r < 0)
3046 return log_error_errno(r, "Failed to determine whether systemd's own controller is in unified mode: %m");
3047 if (r > 0)
3048 log_debug("Unified cgroup hierarchy is located at %s. Controllers are on legacy hierarchies.", path);
3049 else
3050 log_debug("Using cgroup controller " SYSTEMD_CGROUP_CONTROLLER_LEGACY ". File system hierarchy is at %s.", path);
3051 }
efdb0237 3052
09e24654
LP
3053 /* 3. Allocate cgroup empty defer event source */
3054 m->cgroup_empty_event_source = sd_event_source_unref(m->cgroup_empty_event_source);
3055 r = sd_event_add_defer(m->event, &m->cgroup_empty_event_source, on_cgroup_empty_event, m);
3056 if (r < 0)
3057 return log_error_errno(r, "Failed to create cgroup empty event source: %m");
3058
cbe83389
LP
3059 /* Schedule cgroup empty checks early, but after having processed service notification messages or
3060 * SIGCHLD signals, so that a cgroup running empty is always just the last safety net of
3061 * notification, and we collected the metadata the notification and SIGCHLD stuff offers first. */
09e24654
LP
3062 r = sd_event_source_set_priority(m->cgroup_empty_event_source, SD_EVENT_PRIORITY_NORMAL-5);
3063 if (r < 0)
3064 return log_error_errno(r, "Failed to set priority of cgroup empty event source: %m");
3065
3066 r = sd_event_source_set_enabled(m->cgroup_empty_event_source, SD_EVENT_OFF);
3067 if (r < 0)
3068 return log_error_errno(r, "Failed to disable cgroup empty event source: %m");
3069
3070 (void) sd_event_source_set_description(m->cgroup_empty_event_source, "cgroup-empty");
3071
3072 /* 4. Install notifier inotify object, or agent */
10bd3e2e 3073 if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0) {
c6c18be3 3074
09e24654 3075 /* In the unified hierarchy we can get cgroup empty notifications via inotify. */
efdb0237 3076
10bd3e2e
LP
3077 m->cgroup_inotify_event_source = sd_event_source_unref(m->cgroup_inotify_event_source);
3078 safe_close(m->cgroup_inotify_fd);
efdb0237 3079
10bd3e2e
LP
3080 m->cgroup_inotify_fd = inotify_init1(IN_NONBLOCK|IN_CLOEXEC);
3081 if (m->cgroup_inotify_fd < 0)
3082 return log_error_errno(errno, "Failed to create control group inotify object: %m");
efdb0237 3083
10bd3e2e
LP
3084 r = sd_event_add_io(m->event, &m->cgroup_inotify_event_source, m->cgroup_inotify_fd, EPOLLIN, on_cgroup_inotify_event, m);
3085 if (r < 0)
3086 return log_error_errno(r, "Failed to watch control group inotify object: %m");
efdb0237 3087
cbe83389
LP
3088 /* Process cgroup empty notifications early. Note that when this event is dispatched it'll
3089 * just add the unit to a cgroup empty queue, hence let's run earlier than that. Also see
3090 * handling of cgroup agent notifications, for the classic cgroup hierarchy support. */
3091 r = sd_event_source_set_priority(m->cgroup_inotify_event_source, SD_EVENT_PRIORITY_NORMAL-9);
10bd3e2e
LP
3092 if (r < 0)
3093 return log_error_errno(r, "Failed to set priority of inotify event source: %m");
efdb0237 3094
10bd3e2e 3095 (void) sd_event_source_set_description(m->cgroup_inotify_event_source, "cgroup-inotify");
efdb0237 3096
611c4f8a 3097 } else if (MANAGER_IS_SYSTEM(m) && manager_owns_host_root_cgroup(m) && !MANAGER_IS_TEST_RUN(m)) {
efdb0237 3098
10bd3e2e
LP
3099 /* On the legacy hierarchy we only get notifications via cgroup agents. (Which isn't really reliable,
3100 * since it does not generate events when control groups with children run empty. */
8e274523 3101
10bd3e2e 3102 r = cg_install_release_agent(SYSTEMD_CGROUP_CONTROLLER, SYSTEMD_CGROUP_AGENT_PATH);
23bbb0de 3103 if (r < 0)
10bd3e2e
LP
3104 log_warning_errno(r, "Failed to install release agent, ignoring: %m");
3105 else if (r > 0)
3106 log_debug("Installed release agent.");
3107 else if (r == 0)
3108 log_debug("Release agent already installed.");
3109 }
efdb0237 3110
09e24654 3111 /* 5. Make sure we are in the special "init.scope" unit in the root slice. */
10bd3e2e
LP
3112 scope_path = strjoina(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
3113 r = cg_create_and_attach(SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
aa77e234
MS
3114 if (r >= 0) {
3115 /* Also, move all other userspace processes remaining in the root cgroup into that scope. */
3116 r = cg_migrate(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
3117 if (r < 0)
3118 log_warning_errno(r, "Couldn't move remaining userspace processes, ignoring: %m");
c6c18be3 3119
aa77e234
MS
3120 /* 6. And pin it, so that it cannot be unmounted */
3121 safe_close(m->pin_cgroupfs_fd);
3122 m->pin_cgroupfs_fd = open(path, O_RDONLY|O_CLOEXEC|O_DIRECTORY|O_NOCTTY|O_NONBLOCK);
3123 if (m->pin_cgroupfs_fd < 0)
3124 return log_error_errno(errno, "Failed to open pin file: %m");
0d8c31ff 3125
638cece4 3126 } else if (!MANAGER_IS_TEST_RUN(m))
aa77e234 3127 return log_error_errno(r, "Failed to create %s control group: %m", scope_path);
10bd3e2e 3128
09e24654 3129 /* 7. Always enable hierarchical support if it exists... */
638cece4 3130 if (!all_unified && !MANAGER_IS_TEST_RUN(m))
10bd3e2e 3131 (void) cg_set_attribute("memory", "/", "memory.use_hierarchy", "1");
c6c18be3 3132
17f14955 3133 /* 8. Figure out which controllers are supported */
efdb0237
LP
3134 r = cg_mask_supported(&m->cgroup_supported);
3135 if (r < 0)
3136 return log_error_errno(r, "Failed to determine supported controllers: %m");
17f14955
RG
3137
3138 /* 9. Figure out which bpf-based pseudo-controllers are supported */
3139 r = cg_bpf_mask_supported(&mask);
3140 if (r < 0)
3141 return log_error_errno(r, "Failed to determine supported bpf-based pseudo-controllers: %m");
3142 m->cgroup_supported |= mask;
3143
3144 /* 10. Log which controllers are supported */
efdb0237 3145 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++)
eee0a1e4 3146 log_debug("Controller '%s' supported: %s", cgroup_controller_to_string(c), yes_no(m->cgroup_supported & CGROUP_CONTROLLER_TO_MASK(c)));
9156e799 3147
a32360f1 3148 return 0;
8e274523
LP
3149}
3150
c6c18be3 3151void manager_shutdown_cgroup(Manager *m, bool delete) {
8e274523
LP
3152 assert(m);
3153
9444b1f2
LP
3154 /* We can't really delete the group, since we are in it. But
3155 * let's trim it. */
f6c63f6f 3156 if (delete && m->cgroup_root && m->test_run_flags != MANAGER_TEST_RUN_MINIMAL)
efdb0237
LP
3157 (void) cg_trim(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, false);
3158
09e24654
LP
3159 m->cgroup_empty_event_source = sd_event_source_unref(m->cgroup_empty_event_source);
3160
0bb814c2 3161 m->cgroup_control_inotify_wd_unit = hashmap_free(m->cgroup_control_inotify_wd_unit);
afcfaa69 3162 m->cgroup_memory_inotify_wd_unit = hashmap_free(m->cgroup_memory_inotify_wd_unit);
efdb0237
LP
3163
3164 m->cgroup_inotify_event_source = sd_event_source_unref(m->cgroup_inotify_event_source);
3165 m->cgroup_inotify_fd = safe_close(m->cgroup_inotify_fd);
8e274523 3166
03e334a1 3167 m->pin_cgroupfs_fd = safe_close(m->pin_cgroupfs_fd);
c6c18be3 3168
efdb0237 3169 m->cgroup_root = mfree(m->cgroup_root);
8e274523
LP
3170}
3171
4ad49000 3172Unit* manager_get_unit_by_cgroup(Manager *m, const char *cgroup) {
acb14d31 3173 char *p;
4ad49000 3174 Unit *u;
acb14d31
LP
3175
3176 assert(m);
3177 assert(cgroup);
acb14d31 3178
4ad49000
LP
3179 u = hashmap_get(m->cgroup_unit, cgroup);
3180 if (u)
3181 return u;
acb14d31 3182
8e70580b 3183 p = strdupa(cgroup);
acb14d31
LP
3184 for (;;) {
3185 char *e;
3186
3187 e = strrchr(p, '/');
efdb0237
LP
3188 if (!e || e == p)
3189 return hashmap_get(m->cgroup_unit, SPECIAL_ROOT_SLICE);
acb14d31
LP
3190
3191 *e = 0;
3192
4ad49000
LP
3193 u = hashmap_get(m->cgroup_unit, p);
3194 if (u)
3195 return u;
acb14d31
LP
3196 }
3197}
3198
b3ac818b 3199Unit *manager_get_unit_by_pid_cgroup(Manager *m, pid_t pid) {
4ad49000 3200 _cleanup_free_ char *cgroup = NULL;
8e274523 3201
8c47c732
LP
3202 assert(m);
3203
62a76913 3204 if (!pid_is_valid(pid))
b3ac818b
LP
3205 return NULL;
3206
62a76913 3207 if (cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, pid, &cgroup) < 0)
b3ac818b
LP
3208 return NULL;
3209
3210 return manager_get_unit_by_cgroup(m, cgroup);
3211}
3212
3213Unit *manager_get_unit_by_pid(Manager *m, pid_t pid) {
62a76913 3214 Unit *u, **array;
b3ac818b
LP
3215
3216 assert(m);
3217
62a76913
LP
3218 /* Note that a process might be owned by multiple units, we return only one here, which is good enough for most
3219 * cases, though not strictly correct. We prefer the one reported by cgroup membership, as that's the most
3220 * relevant one as children of the process will be assigned to that one, too, before all else. */
3221
3222 if (!pid_is_valid(pid))
8c47c732
LP
3223 return NULL;
3224
2ca9d979 3225 if (pid == getpid_cached())
efdb0237
LP
3226 return hashmap_get(m->units, SPECIAL_INIT_SCOPE);
3227
62a76913 3228 u = manager_get_unit_by_pid_cgroup(m, pid);
5fe8876b
LP
3229 if (u)
3230 return u;
3231
62a76913 3232 u = hashmap_get(m->watch_pids, PID_TO_PTR(pid));
5fe8876b
LP
3233 if (u)
3234 return u;
3235
62a76913
LP
3236 array = hashmap_get(m->watch_pids, PID_TO_PTR(-pid));
3237 if (array)
3238 return array[0];
3239
3240 return NULL;
6dde1f33 3241}
4fbf50b3 3242
4ad49000
LP
3243int manager_notify_cgroup_empty(Manager *m, const char *cgroup) {
3244 Unit *u;
4fbf50b3 3245
4ad49000
LP
3246 assert(m);
3247 assert(cgroup);
4fbf50b3 3248
09e24654
LP
3249 /* Called on the legacy hierarchy whenever we get an explicit cgroup notification from the cgroup agent process
3250 * or from the --system instance */
3251
d8fdc620
LP
3252 log_debug("Got cgroup empty notification for: %s", cgroup);
3253
4ad49000 3254 u = manager_get_unit_by_cgroup(m, cgroup);
5ad096b3
LP
3255 if (!u)
3256 return 0;
b56c28c3 3257
09e24654
LP
3258 unit_add_to_cgroup_empty_queue(u);
3259 return 1;
5ad096b3
LP
3260}
3261
3262int unit_get_memory_current(Unit *u, uint64_t *ret) {
3263 _cleanup_free_ char *v = NULL;
3264 int r;
3265
3266 assert(u);
3267 assert(ret);
3268
2e4025c0 3269 if (!UNIT_CGROUP_BOOL(u, memory_accounting))
cf3b4be1
LP
3270 return -ENODATA;
3271
5ad096b3
LP
3272 if (!u->cgroup_path)
3273 return -ENODATA;
3274
1f73aa00 3275 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
611c4f8a 3276 if (unit_has_host_root_cgroup(u))
c482724a 3277 return procfs_memory_get_used(ret);
1f73aa00 3278
efdb0237 3279 if ((u->cgroup_realized_mask & CGROUP_MASK_MEMORY) == 0)
5ad096b3
LP
3280 return -ENODATA;
3281
b4cccbc1
LP
3282 r = cg_all_unified();
3283 if (r < 0)
3284 return r;
3285 if (r > 0)
efdb0237 3286 r = cg_get_attribute("memory", u->cgroup_path, "memory.current", &v);
b4cccbc1
LP
3287 else
3288 r = cg_get_attribute("memory", u->cgroup_path, "memory.usage_in_bytes", &v);
5ad096b3
LP
3289 if (r == -ENOENT)
3290 return -ENODATA;
3291 if (r < 0)
3292 return r;
3293
3294 return safe_atou64(v, ret);
3295}
3296
03a7b521
LP
3297int unit_get_tasks_current(Unit *u, uint64_t *ret) {
3298 _cleanup_free_ char *v = NULL;
3299 int r;
3300
3301 assert(u);
3302 assert(ret);
3303
2e4025c0 3304 if (!UNIT_CGROUP_BOOL(u, tasks_accounting))
cf3b4be1
LP
3305 return -ENODATA;
3306
03a7b521
LP
3307 if (!u->cgroup_path)
3308 return -ENODATA;
3309
c36a69f4 3310 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
611c4f8a 3311 if (unit_has_host_root_cgroup(u))
c36a69f4
LP
3312 return procfs_tasks_get_current(ret);
3313
1f73aa00
LP
3314 if ((u->cgroup_realized_mask & CGROUP_MASK_PIDS) == 0)
3315 return -ENODATA;
3316
03a7b521
LP
3317 r = cg_get_attribute("pids", u->cgroup_path, "pids.current", &v);
3318 if (r == -ENOENT)
3319 return -ENODATA;
3320 if (r < 0)
3321 return r;
3322
3323 return safe_atou64(v, ret);
3324}
3325
5ad096b3
LP
3326static int unit_get_cpu_usage_raw(Unit *u, nsec_t *ret) {
3327 _cleanup_free_ char *v = NULL;
3328 uint64_t ns;
3329 int r;
3330
3331 assert(u);
3332 assert(ret);
3333
3334 if (!u->cgroup_path)
3335 return -ENODATA;
3336
1f73aa00 3337 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
611c4f8a 3338 if (unit_has_host_root_cgroup(u))
1f73aa00
LP
3339 return procfs_cpu_get_usage(ret);
3340
f98c2585
CD
3341 /* Requisite controllers for CPU accounting are not enabled */
3342 if ((get_cpu_accounting_mask() & ~u->cgroup_realized_mask) != 0)
3343 return -ENODATA;
3344
92a99304
LP
3345 r = cg_all_unified();
3346 if (r < 0)
3347 return r;
b4cccbc1 3348 if (r > 0) {
66ebf6c0
TH
3349 _cleanup_free_ char *val = NULL;
3350 uint64_t us;
5ad096b3 3351
b734a4ff 3352 r = cg_get_keyed_attribute("cpu", u->cgroup_path, "cpu.stat", STRV_MAKE("usage_usec"), &val);
b734a4ff
LP
3353 if (IN_SET(r, -ENOENT, -ENXIO))
3354 return -ENODATA;
d742f4b5
LP
3355 if (r < 0)
3356 return r;
66ebf6c0
TH
3357
3358 r = safe_atou64(val, &us);
3359 if (r < 0)
3360 return r;
3361
3362 ns = us * NSEC_PER_USEC;
3363 } else {
66ebf6c0
TH
3364 r = cg_get_attribute("cpuacct", u->cgroup_path, "cpuacct.usage", &v);
3365 if (r == -ENOENT)
3366 return -ENODATA;
3367 if (r < 0)
3368 return r;
3369
3370 r = safe_atou64(v, &ns);
3371 if (r < 0)
3372 return r;
3373 }
5ad096b3
LP
3374
3375 *ret = ns;
3376 return 0;
3377}
3378
3379int unit_get_cpu_usage(Unit *u, nsec_t *ret) {
3380 nsec_t ns;
3381 int r;
3382
fe700f46
LP
3383 assert(u);
3384
3385 /* Retrieve the current CPU usage counter. This will subtract the CPU counter taken when the unit was
3386 * started. If the cgroup has been removed already, returns the last cached value. To cache the value, simply
3387 * call this function with a NULL return value. */
3388
2e4025c0 3389 if (!UNIT_CGROUP_BOOL(u, cpu_accounting))
cf3b4be1
LP
3390 return -ENODATA;
3391
5ad096b3 3392 r = unit_get_cpu_usage_raw(u, &ns);
fe700f46
LP
3393 if (r == -ENODATA && u->cpu_usage_last != NSEC_INFINITY) {
3394 /* If we can't get the CPU usage anymore (because the cgroup was already removed, for example), use our
3395 * cached value. */
3396
3397 if (ret)
3398 *ret = u->cpu_usage_last;
3399 return 0;
3400 }
5ad096b3
LP
3401 if (r < 0)
3402 return r;
3403
66ebf6c0
TH
3404 if (ns > u->cpu_usage_base)
3405 ns -= u->cpu_usage_base;
5ad096b3
LP
3406 else
3407 ns = 0;
3408
fe700f46
LP
3409 u->cpu_usage_last = ns;
3410 if (ret)
3411 *ret = ns;
3412
5ad096b3
LP
3413 return 0;
3414}
3415
906c06f6
DM
3416int unit_get_ip_accounting(
3417 Unit *u,
3418 CGroupIPAccountingMetric metric,
3419 uint64_t *ret) {
3420
6b659ed8 3421 uint64_t value;
906c06f6
DM
3422 int fd, r;
3423
3424 assert(u);
3425 assert(metric >= 0);
3426 assert(metric < _CGROUP_IP_ACCOUNTING_METRIC_MAX);
3427 assert(ret);
3428
2e4025c0 3429 if (!UNIT_CGROUP_BOOL(u, ip_accounting))
cf3b4be1
LP
3430 return -ENODATA;
3431
906c06f6
DM
3432 fd = IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_INGRESS_PACKETS) ?
3433 u->ip_accounting_ingress_map_fd :
3434 u->ip_accounting_egress_map_fd;
906c06f6
DM
3435 if (fd < 0)
3436 return -ENODATA;
3437
3438 if (IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_EGRESS_BYTES))
6b659ed8 3439 r = bpf_firewall_read_accounting(fd, &value, NULL);
906c06f6 3440 else
6b659ed8
LP
3441 r = bpf_firewall_read_accounting(fd, NULL, &value);
3442 if (r < 0)
3443 return r;
3444
3445 /* Add in additional metrics from a previous runtime. Note that when reexecing/reloading the daemon we compile
3446 * all BPF programs and maps anew, but serialize the old counters. When deserializing we store them in the
3447 * ip_accounting_extra[] field, and add them in here transparently. */
3448
3449 *ret = value + u->ip_accounting_extra[metric];
906c06f6
DM
3450
3451 return r;
3452}
3453
fbe14fc9
LP
3454static int unit_get_io_accounting_raw(Unit *u, uint64_t ret[static _CGROUP_IO_ACCOUNTING_METRIC_MAX]) {
3455 static const char *const field_names[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
3456 [CGROUP_IO_READ_BYTES] = "rbytes=",
3457 [CGROUP_IO_WRITE_BYTES] = "wbytes=",
3458 [CGROUP_IO_READ_OPERATIONS] = "rios=",
3459 [CGROUP_IO_WRITE_OPERATIONS] = "wios=",
3460 };
3461 uint64_t acc[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {};
3462 _cleanup_free_ char *path = NULL;
3463 _cleanup_fclose_ FILE *f = NULL;
3464 int r;
3465
3466 assert(u);
3467
3468 if (!u->cgroup_path)
3469 return -ENODATA;
3470
3471 if (unit_has_host_root_cgroup(u))
3472 return -ENODATA; /* TODO: return useful data for the top-level cgroup */
3473
3474 r = cg_all_unified();
3475 if (r < 0)
3476 return r;
3477 if (r == 0) /* TODO: support cgroupv1 */
3478 return -ENODATA;
3479
3480 if (!FLAGS_SET(u->cgroup_realized_mask, CGROUP_MASK_IO))
3481 return -ENODATA;
3482
3483 r = cg_get_path("io", u->cgroup_path, "io.stat", &path);
3484 if (r < 0)
3485 return r;
3486
3487 f = fopen(path, "re");
3488 if (!f)
3489 return -errno;
3490
3491 for (;;) {
3492 _cleanup_free_ char *line = NULL;
3493 const char *p;
3494
3495 r = read_line(f, LONG_LINE_MAX, &line);
3496 if (r < 0)
3497 return r;
3498 if (r == 0)
3499 break;
3500
3501 p = line;
3502 p += strcspn(p, WHITESPACE); /* Skip over device major/minor */
3503 p += strspn(p, WHITESPACE); /* Skip over following whitespace */
3504
3505 for (;;) {
3506 _cleanup_free_ char *word = NULL;
3507
3508 r = extract_first_word(&p, &word, NULL, EXTRACT_RETAIN_ESCAPE);
3509 if (r < 0)
3510 return r;
3511 if (r == 0)
3512 break;
3513
3514 for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++) {
3515 const char *x;
3516
3517 x = startswith(word, field_names[i]);
3518 if (x) {
3519 uint64_t w;
3520
3521 r = safe_atou64(x, &w);
3522 if (r < 0)
3523 return r;
3524
3525 /* Sum up the stats of all devices */
3526 acc[i] += w;
3527 break;
3528 }
3529 }
3530 }
3531 }
3532
3533 memcpy(ret, acc, sizeof(acc));
3534 return 0;
3535}
3536
3537int unit_get_io_accounting(
3538 Unit *u,
3539 CGroupIOAccountingMetric metric,
3540 bool allow_cache,
3541 uint64_t *ret) {
3542
3543 uint64_t raw[_CGROUP_IO_ACCOUNTING_METRIC_MAX];
3544 int r;
3545
3546 /* Retrieve an IO account parameter. This will subtract the counter when the unit was started. */
3547
3548 if (!UNIT_CGROUP_BOOL(u, io_accounting))
3549 return -ENODATA;
3550
3551 if (allow_cache && u->io_accounting_last[metric] != UINT64_MAX)
3552 goto done;
3553
3554 r = unit_get_io_accounting_raw(u, raw);
3555 if (r == -ENODATA && u->io_accounting_last[metric] != UINT64_MAX)
3556 goto done;
3557 if (r < 0)
3558 return r;
3559
3560 for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++) {
3561 /* Saturated subtraction */
3562 if (raw[i] > u->io_accounting_base[i])
3563 u->io_accounting_last[i] = raw[i] - u->io_accounting_base[i];
3564 else
3565 u->io_accounting_last[i] = 0;
3566 }
3567
3568done:
3569 if (ret)
3570 *ret = u->io_accounting_last[metric];
3571
3572 return 0;
3573}
3574
906c06f6 3575int unit_reset_cpu_accounting(Unit *u) {
5ad096b3
LP
3576 int r;
3577
3578 assert(u);
3579
fe700f46
LP
3580 u->cpu_usage_last = NSEC_INFINITY;
3581
0bbff7d6 3582 r = unit_get_cpu_usage_raw(u, &u->cpu_usage_base);
5ad096b3 3583 if (r < 0) {
66ebf6c0 3584 u->cpu_usage_base = 0;
5ad096b3 3585 return r;
b56c28c3 3586 }
2633eb83 3587
4ad49000 3588 return 0;
4fbf50b3
LP
3589}
3590
906c06f6
DM
3591int unit_reset_ip_accounting(Unit *u) {
3592 int r = 0, q = 0;
3593
3594 assert(u);
3595
3596 if (u->ip_accounting_ingress_map_fd >= 0)
3597 r = bpf_firewall_reset_accounting(u->ip_accounting_ingress_map_fd);
3598
3599 if (u->ip_accounting_egress_map_fd >= 0)
3600 q = bpf_firewall_reset_accounting(u->ip_accounting_egress_map_fd);
3601
6b659ed8
LP
3602 zero(u->ip_accounting_extra);
3603
906c06f6
DM
3604 return r < 0 ? r : q;
3605}
3606
fbe14fc9
LP
3607int unit_reset_io_accounting(Unit *u) {
3608 int r;
3609
3610 assert(u);
3611
3612 for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++)
3613 u->io_accounting_last[i] = UINT64_MAX;
3614
3615 r = unit_get_io_accounting_raw(u, u->io_accounting_base);
3616 if (r < 0) {
3617 zero(u->io_accounting_base);
3618 return r;
3619 }
3620
3621 return 0;
3622}
3623
9b2559a1 3624int unit_reset_accounting(Unit *u) {
fbe14fc9 3625 int r, q, v;
9b2559a1
LP
3626
3627 assert(u);
3628
3629 r = unit_reset_cpu_accounting(u);
fbe14fc9
LP
3630 q = unit_reset_io_accounting(u);
3631 v = unit_reset_ip_accounting(u);
9b2559a1 3632
fbe14fc9 3633 return r < 0 ? r : q < 0 ? q : v;
9b2559a1
LP
3634}
3635
e7ab4d1a
LP
3636void unit_invalidate_cgroup(Unit *u, CGroupMask m) {
3637 assert(u);
3638
3639 if (!UNIT_HAS_CGROUP_CONTEXT(u))
3640 return;
3641
3642 if (m == 0)
3643 return;
3644
538b4852
TH
3645 /* always invalidate compat pairs together */
3646 if (m & (CGROUP_MASK_IO | CGROUP_MASK_BLKIO))
3647 m |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
3648
7cce4fb7
LP
3649 if (m & (CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT))
3650 m |= CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT;
3651
e00068e7 3652 if (FLAGS_SET(u->cgroup_invalidated_mask, m)) /* NOP? */
e7ab4d1a
LP
3653 return;
3654
e00068e7 3655 u->cgroup_invalidated_mask |= m;
91a6073e 3656 unit_add_to_cgroup_realize_queue(u);
e7ab4d1a
LP
3657}
3658
906c06f6
DM
3659void unit_invalidate_cgroup_bpf(Unit *u) {
3660 assert(u);
3661
3662 if (!UNIT_HAS_CGROUP_CONTEXT(u))
3663 return;
3664
17f14955 3665 if (u->cgroup_invalidated_mask & CGROUP_MASK_BPF_FIREWALL) /* NOP? */
906c06f6
DM
3666 return;
3667
17f14955 3668 u->cgroup_invalidated_mask |= CGROUP_MASK_BPF_FIREWALL;
91a6073e 3669 unit_add_to_cgroup_realize_queue(u);
906c06f6
DM
3670
3671 /* If we are a slice unit, we also need to put compile a new BPF program for all our children, as the IP access
3672 * list of our children includes our own. */
3673 if (u->type == UNIT_SLICE) {
3674 Unit *member;
3675 Iterator i;
eef85c4a 3676 void *v;
906c06f6 3677
eef85c4a 3678 HASHMAP_FOREACH_KEY(v, member, u->dependencies[UNIT_BEFORE], i) {
cb5e3bc3
CD
3679 if (UNIT_DEREF(member->slice) == u)
3680 unit_invalidate_cgroup_bpf(member);
906c06f6
DM
3681 }
3682 }
3683}
3684
1d9cc876
LP
3685bool unit_cgroup_delegate(Unit *u) {
3686 CGroupContext *c;
3687
3688 assert(u);
3689
3690 if (!UNIT_VTABLE(u)->can_delegate)
3691 return false;
3692
3693 c = unit_get_cgroup_context(u);
3694 if (!c)
3695 return false;
3696
3697 return c->delegate;
3698}
3699
e7ab4d1a
LP
3700void manager_invalidate_startup_units(Manager *m) {
3701 Iterator i;
3702 Unit *u;
3703
3704 assert(m);
3705
3706 SET_FOREACH(u, m->startup_units, i)
13c31542 3707 unit_invalidate_cgroup(u, CGROUP_MASK_CPU|CGROUP_MASK_IO|CGROUP_MASK_BLKIO);
e7ab4d1a
LP
3708}
3709
da8e1782
MO
3710static int unit_get_nice(Unit *u) {
3711 ExecContext *ec;
3712
3713 ec = unit_get_exec_context(u);
3714 return ec ? ec->nice : 0;
3715}
3716
3717static uint64_t unit_get_cpu_weight(Unit *u) {
3718 ManagerState state = manager_state(u->manager);
3719 CGroupContext *cc;
3720
3721 cc = unit_get_cgroup_context(u);
3722 return cc ? cgroup_context_cpu_weight(cc, state) : CGROUP_WEIGHT_DEFAULT;
3723}
3724
3725int compare_job_priority(const void *a, const void *b) {
3726 const Job *x = a, *y = b;
3727 int nice_x, nice_y;
3728 uint64_t weight_x, weight_y;
3729 int ret;
3730
217b7b33
ZJS
3731 if ((ret = CMP(x->unit->type, y->unit->type)) != 0)
3732 return -ret;
3733
da8e1782
MO
3734 weight_x = unit_get_cpu_weight(x->unit);
3735 weight_y = unit_get_cpu_weight(y->unit);
3736
217b7b33
ZJS
3737 if ((ret = CMP(weight_x, weight_y)) != 0)
3738 return -ret;
da8e1782
MO
3739
3740 nice_x = unit_get_nice(x->unit);
3741 nice_y = unit_get_nice(y->unit);
3742
3743 if ((ret = CMP(nice_x, nice_y)) != 0)
3744 return ret;
3745
da8e1782
MO
3746 return strcmp(x->unit->id, y->unit->id);
3747}
3748
4ad49000
LP
3749static const char* const cgroup_device_policy_table[_CGROUP_DEVICE_POLICY_MAX] = {
3750 [CGROUP_AUTO] = "auto",
3751 [CGROUP_CLOSED] = "closed",
3752 [CGROUP_STRICT] = "strict",
3753};
4fbf50b3 3754
047f5d63
PH
3755int unit_get_cpuset(Unit *u, CPUSet *cpus, const char *name) {
3756 _cleanup_free_ char *v = NULL;
3757 int r;
3758
3759 assert(u);
3760 assert(cpus);
3761
3762 if (!u->cgroup_path)
3763 return -ENODATA;
3764
3765 if ((u->cgroup_realized_mask & CGROUP_MASK_CPUSET) == 0)
3766 return -ENODATA;
3767
3768 r = cg_all_unified();
3769 if (r < 0)
3770 return r;
3771 if (r == 0)
3772 return -ENODATA;
3773 if (r > 0)
3774 r = cg_get_attribute("cpuset", u->cgroup_path, name, &v);
3775 if (r == -ENOENT)
3776 return -ENODATA;
3777 if (r < 0)
3778 return r;
3779
3780 return parse_cpu_set_full(v, cpus, false, NULL, NULL, 0, NULL);
3781}
3782
4ad49000 3783DEFINE_STRING_TABLE_LOOKUP(cgroup_device_policy, CGroupDevicePolicy);