]> git.ipfire.org Git - thirdparty/systemd.git/blob - man/systemd.network.xml
3ef6ff592cd7b44cf2fd860e6e205c96f7c312d1
[thirdparty/systemd.git] / man / systemd.network.xml
1 <?xml version='1.0'?>
2 <!DOCTYPE refentry PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"
3 "http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd">
4 <!-- SPDX-License-Identifier: LGPL-2.1+ -->
5
6 <refentry id="systemd.network" conditional='ENABLE_NETWORKD'>
7
8 <refentryinfo>
9 <title>systemd.network</title>
10 <productname>systemd</productname>
11 </refentryinfo>
12
13 <refmeta>
14 <refentrytitle>systemd.network</refentrytitle>
15 <manvolnum>5</manvolnum>
16 </refmeta>
17
18 <refnamediv>
19 <refname>systemd.network</refname>
20 <refpurpose>Network configuration</refpurpose>
21 </refnamediv>
22
23 <refsynopsisdiv>
24 <para><filename><replaceable>network</replaceable>.network</filename></para>
25 </refsynopsisdiv>
26
27 <refsect1>
28 <title>Description</title>
29
30 <para>Network setup is performed by
31 <citerefentry><refentrytitle>systemd-networkd</refentrytitle><manvolnum>8</manvolnum></citerefentry>.
32 </para>
33
34 <para>The main network file must have the extension <filename>.network</filename>; other
35 extensions are ignored. Networks are applied to links whenever the links appear.</para>
36
37 <para>The <filename>.network</filename> files are read from the files located in the system network
38 directories <filename>/usr/lib/systemd/network</filename> and
39 <filename>/usr/local/lib/systemd/network</filename>, the volatile runtime network directory
40 <filename>/run/systemd/network</filename> and the local administration network directory
41 <filename>/etc/systemd/network</filename>. All configuration files are collectively sorted and processed
42 in lexical order, regardless of the directories in which they live. However, files with identical
43 filenames replace each other. Files in <filename>/etc</filename> have the highest priority, files in
44 <filename>/run</filename> take precedence over files with the same name under
45 <filename>/usr</filename>. This can be used to override a system-supplied configuration file with a local
46 file if needed. As a special case, an empty file (file size 0) or symlink with the same name pointing to
47 <filename>/dev/null</filename> disables the configuration file entirely (it is "masked").</para>
48
49 <para>Along with the network file <filename>foo.network</filename>, a "drop-in" directory
50 <filename>foo.network.d/</filename> may exist. All files with the suffix
51 <literal>.conf</literal> from this directory will be parsed after the file itself is
52 parsed. This is useful to alter or add configuration settings, without having to modify the main
53 configuration file. Each drop-in file must have appropriate section headers.</para>
54
55 <para>In addition to <filename>/etc/systemd/network</filename>, drop-in <literal>.d</literal>
56 directories can be placed in <filename>/usr/lib/systemd/network</filename> or
57 <filename>/run/systemd/network</filename> directories. Drop-in files in
58 <filename>/etc</filename> take precedence over those in <filename>/run</filename> which in turn
59 take precedence over those in <filename>/usr/lib</filename>. Drop-in files under any of these
60 directories take precedence over the main network file wherever located.</para>
61
62 <para>Note that an interface without any static IPv6 addresses configured, and neither DHCPv6
63 nor IPv6LL enabled, shall be considered to have no IPv6 support. IPv6 will be automatically
64 disabled for that interface by writing "1" to
65 <filename>/proc/sys/net/ipv6/conf/<replaceable>ifname</replaceable>/disable_ipv6</filename>.
66 </para>
67 </refsect1>
68
69 <refsect1>
70 <title>[Match] Section Options</title>
71
72 <para>The network file contains a <literal>[Match]</literal>
73 section, which determines if a given network file may be applied
74 to a given device; and a <literal>[Network]</literal> section
75 specifying how the device should be configured. The first (in
76 lexical order) of the network files that matches a given device
77 is applied, all later files are ignored, even if they match as
78 well.</para>
79
80 <para>A network file is said to match a network interface if all matches specified by the
81 <literal>[Match]</literal> section are satisfied. When a network file does not contain valid
82 settings in <literal>[Match]</literal> section, then the file will match all interfaces and
83 <command>systemd-networkd</command> warns about that. Hint: to avoid the warning and to make it
84 clear that all interfaces shall be matched, add the following:
85 <programlisting>Name=*</programlisting>
86 The following keys are accepted:</para>
87
88 <variablelist class='network-directives'>
89 <varlistentry>
90 <term><varname>MACAddress=</varname></term>
91 <listitem>
92 <para>A whitespace-separated list of hardware addresses. Use full colon-, hyphen- or dot-delimited hexadecimal. See the example below.
93 This option may appear more than once, in which case the lists are merged. If the empty string is assigned to this option, the list
94 of hardware addresses defined prior to this is reset.</para>
95
96 <para>Example:
97 <programlisting>MACAddress=01:23:45:67:89:ab 00-11-22-33-44-55 AABB.CCDD.EEFF</programlisting></para>
98 </listitem>
99 </varlistentry>
100 <varlistentry>
101 <term><varname>Path=</varname></term>
102 <listitem>
103 <para>A whitespace-separated list of shell-style globs
104 matching the persistent path, as exposed by the udev
105 property <literal>ID_PATH</literal>. If the list is
106 prefixed with a "!", the test is inverted; i.e. it is
107 true when <literal>ID_PATH</literal> does not match any
108 item in the list.</para>
109 </listitem>
110 </varlistentry>
111 <varlistentry>
112 <term><varname>Driver=</varname></term>
113 <listitem>
114 <para>A whitespace-separated list of shell-style globs
115 matching the driver currently bound to the device, as
116 exposed by the udev property <literal>ID_NET_DRIVER</literal>
117 of its parent device, or if that is not set the driver
118 as exposed by <literal>ethtool -i</literal> of the
119 device itself. If the list is prefixed with a "!", the
120 test is inverted.</para>
121 </listitem>
122 </varlistentry>
123 <varlistentry>
124 <term><varname>Type=</varname></term>
125 <listitem>
126 <para>A whitespace-separated list of shell-style globs
127 matching the device type, as exposed by the udev property
128 <literal>DEVTYPE</literal>. If the list is prefixed with
129 a "!", the test is inverted.</para>
130 </listitem>
131 </varlistentry>
132 <varlistentry>
133 <term><varname>Name=</varname></term>
134 <listitem>
135 <para>A whitespace-separated list of shell-style globs
136 matching the device name, as exposed by the udev property
137 <literal>INTERFACE</literal>. If the list is prefixed
138 with a "!", the test is inverted.</para>
139 </listitem>
140 </varlistentry>
141 <varlistentry>
142 <term><varname>Property=</varname></term>
143 <listitem>
144 <para>A whitespace-separated list of udev property name with its value after a equal
145 (<literal>=</literal>). If multiple properties are specified, the test results are ANDed.
146 If the list is prefixed with a "!", the test is inverted. If a value contains white
147 spaces, then please quote whole key and value pair. If a value contains quotation, then
148 please escape the quotation with <literal>\</literal>.</para>
149
150 <para>Example: if a .network file has the following:
151 <programlisting>Property=ID_MODEL_ID=9999 "ID_VENDOR_FROM_DATABASE=vendor name" "KEY=with \"quotation\""</programlisting>
152 then, the .network file matches only when an interface has all the above three properties.
153 </para>
154 </listitem>
155 </varlistentry>
156 <varlistentry>
157 <term><varname>WLANInterfaceType=</varname></term>
158 <listitem>
159 <para>A whitespace-separated list of wireless network type. Supported values are
160 <literal>ad-hoc</literal>, <literal>station</literal>, <literal>ap</literal>,
161 <literal>ap-vlan</literal>, <literal>wds</literal>, <literal>monitor</literal>,
162 <literal>mesh-point</literal>, <literal>p2p-client</literal>, <literal>p2p-go</literal>,
163 <literal>p2p-device</literal>, <literal>ocb</literal>, and <literal>nan</literal>. If the
164 list is prefixed with a "!", the test is inverted.
165 </para>
166 </listitem>
167 </varlistentry>
168 <varlistentry>
169 <term><varname>SSID=</varname></term>
170 <listitem>
171 <para>A whitespace-separated list of shell-style globs matching the SSID of the currently
172 connected wireless LAN. If the list is prefixed with a "!", the test is inverted.
173 </para>
174 </listitem>
175 </varlistentry>
176 <varlistentry>
177 <term><varname>BSSID=</varname></term>
178 <listitem>
179 <para>A whitespace-separated list of hardware address of the currently connected wireless
180 LAN. Use full colon-, hyphen- or dot-delimited hexadecimal. See the example in
181 <varname>MACAddress=</varname>. This option may appear more than one, in which case the
182 lists are merged. If the empty string is assigned to this option, the list of BSSID defined
183 prior to this is reset.</para>
184 </listitem>
185 </varlistentry>
186 <varlistentry>
187 <term><varname>Host=</varname></term>
188 <listitem>
189 <para>Matches against the hostname or machine ID of the host. See
190 <literal>ConditionHost=</literal> in
191 <citerefentry><refentrytitle>systemd.unit</refentrytitle><manvolnum>5</manvolnum></citerefentry>
192 for details. When prefixed with an exclamation mark (<literal>!</literal>), the result is negated.
193 If an empty string is assigned, then previously assigned value is cleared.
194 </para>
195 </listitem>
196 </varlistentry>
197 <varlistentry>
198 <term><varname>Virtualization=</varname></term>
199 <listitem>
200 <para>Checks whether the system is executed in a virtualized environment and optionally test
201 whether it is a specific implementation. See <literal>ConditionVirtualization=</literal> in
202 <citerefentry><refentrytitle>systemd.unit</refentrytitle><manvolnum>5</manvolnum></citerefentry>
203 for details. When prefixed with an exclamation mark (<literal>!</literal>), the result is negated.
204 If an empty string is assigned, then previously assigned value is cleared.
205 </para>
206 </listitem>
207 </varlistentry>
208 <varlistentry>
209 <term><varname>KernelCommandLine=</varname></term>
210 <listitem>
211 <para>Checks whether a specific kernel command line option is set. See
212 <literal>ConditionKernelCommandLine=</literal> in
213 <citerefentry><refentrytitle>systemd.unit</refentrytitle><manvolnum>5</manvolnum></citerefentry>
214 for details. When prefixed with an exclamation mark (<literal>!</literal>), the result is negated.
215 If an empty string is assigned, then previously assigned value is cleared.
216 </para>
217 </listitem>
218 </varlistentry>
219 <varlistentry>
220 <term><varname>KernelVersion=</varname></term>
221 <listitem>
222 <para>Checks whether the kernel version (as reported by <command>uname -r</command>) matches a
223 certain expression. See <literal>ConditionKernelVersion=</literal> in
224 <citerefentry><refentrytitle>systemd.unit</refentrytitle><manvolnum>5</manvolnum></citerefentry>
225 for details. When prefixed with an exclamation mark (<literal>!</literal>), the result is negated.
226 If an empty string is assigned, then previously assigned value is cleared.
227 </para>
228 </listitem>
229 </varlistentry>
230 <varlistentry>
231 <term><varname>Architecture=</varname></term>
232 <listitem>
233 <para>Checks whether the system is running on a specific architecture. See
234 <literal>ConditionArchitecture=</literal> in
235 <citerefentry><refentrytitle>systemd.unit</refentrytitle><manvolnum>5</manvolnum></citerefentry>
236 for details. When prefixed with an exclamation mark (<literal>!</literal>), the result is negated.
237 If an empty string is assigned, then previously assigned value is cleared.
238 </para>
239 </listitem>
240 </varlistentry>
241 </variablelist>
242
243 </refsect1>
244
245 <refsect1>
246 <title>[Link] Section Options</title>
247
248 <para> The <literal>[Link]</literal> section accepts the following keys:</para>
249
250 <variablelist class='network-directives'>
251 <varlistentry>
252 <term><varname>MACAddress=</varname></term>
253 <listitem>
254 <para>The hardware address to set for the device.</para>
255 </listitem>
256 </varlistentry>
257 <varlistentry>
258 <term><varname>MTUBytes=</varname></term>
259 <listitem>
260 <para>The maximum transmission unit in bytes to set for the
261 device. The usual suffixes K, M, G, are supported and are
262 understood to the base of 1024.</para>
263 <para>Note that if IPv6 is enabled on the interface, and the MTU is chosen
264 below 1280 (the minimum MTU for IPv6) it will automatically be increased to this value.</para>
265 </listitem>
266 </varlistentry>
267 <varlistentry>
268 <term><varname>ARP=</varname></term>
269 <listitem>
270 <para>Takes a boolean. If set to true, the ARP (low-level Address Resolution Protocol)
271 for this interface is enabled. When unset, the kernel's default will be used.</para>
272 <para> For example, disabling ARP is useful when creating multiple MACVLAN or VLAN virtual
273 interfaces atop a single lower-level physical interface, which will then only serve as a
274 link/"bridge" device aggregating traffic to the same physical link and not participate in
275 the network otherwise.</para>
276 </listitem>
277 </varlistentry>
278 <varlistentry>
279 <term><varname>Multicast=</varname></term>
280 <listitem>
281 <para>Takes a boolean. If set to true, the multicast flag on the device is enabled.</para>
282 </listitem>
283 </varlistentry>
284 <varlistentry>
285 <term><varname>AllMulticast=</varname></term>
286 <listitem>
287 <para>Takes a boolean. If set to true, the driver retrieves all multicast packets from the network.
288 This happens when multicast routing is enabled.</para>
289 </listitem>
290 </varlistentry>
291 <varlistentry>
292 <term><varname>Unmanaged=</varname></term>
293 <listitem>
294 <para>Takes a boolean. When <literal>yes</literal>, no attempts are
295 made to bring up or configure matching links, equivalent to
296 when there are no matching network files. Defaults to
297 <literal>no</literal>.</para>
298 <para>This is useful for preventing later matching network
299 files from interfering with certain interfaces that are fully
300 controlled by other applications.</para>
301 </listitem>
302 </varlistentry>
303 <varlistentry>
304 <term><varname>RequiredForOnline=</varname></term>
305 <listitem>
306 <para>Takes a boolean or operational state. Please see
307 <citerefentry><refentrytitle>networkctl</refentrytitle><manvolnum>1</manvolnum></citerefentry>
308 for possible operational states. When <literal>yes</literal>, the network is deemed required when
309 determining whether the system is online when running
310 <command>systemd-networkd-wait-online</command>. When <literal>no</literal>, the network is ignored
311 when checking for online state. When an operational state is set, <literal>yes</literal> is implied,
312 and this controls the operational state required for the network interface to be considered online.
313 Defaults to <literal>yes</literal>.</para>
314
315 <para>The network will be brought up normally in all cases, but in
316 the event that there is no address being assigned by DHCP or the
317 cable is not plugged in, the link will simply remain offline and be
318 skipped automatically by <command>systemd-networkd-wait-online</command>
319 if <literal>RequiredForOnline=no</literal>.</para>
320 </listitem>
321 </varlistentry>
322 </variablelist>
323 </refsect1>
324
325 <refsect1>
326 <title>[Network] Section Options</title>
327
328 <para>The <literal>[Network]</literal> section accepts the following keys:</para>
329
330 <variablelist class='network-directives'>
331 <varlistentry>
332 <term><varname>Description=</varname></term>
333 <listitem>
334 <para>A description of the device. This is only used for
335 presentation purposes.</para>
336 </listitem>
337 </varlistentry>
338 <varlistentry>
339 <term><varname>DHCP=</varname></term>
340 <listitem>
341 <para>Enables DHCPv4 and/or DHCPv6 client support. Accepts
342 <literal>yes</literal>, <literal>no</literal>,
343 <literal>ipv4</literal>, or <literal>ipv6</literal>. Defaults
344 to <literal>no</literal>.</para>
345
346 <para>Note that DHCPv6 will by default be triggered by Router
347 Advertisement, if that is enabled, regardless of this parameter.
348 By enabling DHCPv6 support explicitly, the DHCPv6 client will
349 be started regardless of the presence of routers on the link,
350 or what flags the routers pass. See
351 <literal>IPv6AcceptRA=</literal>.</para>
352
353 <para>Furthermore, note that by default the domain name
354 specified through DHCP is not used for name resolution.
355 See option <option>UseDomains=</option> below.</para>
356
357 <para>See the <literal>[DHCPv4]</literal> or <literal>[DHCPv6]</literal> section below for
358 further configuration options for the DHCP client support.</para>
359 </listitem>
360 </varlistentry>
361 <varlistentry>
362 <term><varname>DHCPServer=</varname></term>
363 <listitem>
364 <para>Takes a boolean. If set to <literal>yes</literal>, DHCPv4 server will be started. Defaults
365 to <literal>no</literal>. Further settings for the DHCP
366 server may be set in the <literal>[DHCPServer]</literal>
367 section described below.</para>
368 </listitem>
369 </varlistentry>
370 <varlistentry>
371 <term><varname>LinkLocalAddressing=</varname></term>
372 <listitem>
373 <para>Enables link-local address autoconfiguration. Accepts <literal>yes</literal>,
374 <literal>no</literal>, <literal>ipv4</literal>, <literal>ipv6</literal>,
375 <literal>fallback</literal>, or <literal>ipv4-fallback</literal>. If
376 <literal>fallback</literal> or <literal>ipv4-fallback</literal> is specified, then an IPv4
377 link-local address is configured only when DHCPv4 fails. If <literal>fallback</literal>,
378 an IPv6 link-local address is always configured, and if <literal>ipv4-fallback</literal>,
379 the address is not configured. Note that, the fallback mechanism works only when DHCPv4
380 client is enabled, that is, it requires <literal>DHCP=yes</literal> or
381 <literal>DHCP=ipv4</literal>. If <varname>Bridge=</varname> is set, defaults to
382 <literal>no</literal>, and if not, defaults to <literal>ipv6</literal>.
383 </para>
384 </listitem>
385 </varlistentry>
386 <varlistentry>
387 <term><varname>IPv4LLRoute=</varname></term>
388 <listitem>
389 <para>Takes a boolean. If set to true, sets up the route needed for
390 non-IPv4LL hosts to communicate with IPv4LL-only hosts. Defaults
391 to false.
392 </para>
393 </listitem>
394 </varlistentry>
395 <varlistentry>
396 <term><varname>DefaultRouteOnDevice=</varname></term>
397 <listitem>
398 <para>Takes a boolean. If set to true, sets up the default route bound to the interface.
399 Defaults to false. This is useful when creating routes on point-to-point interfaces.
400 This is equivalent to e.g. the following.
401 <programlisting>ip route add default dev veth99</programlisting></para>
402 </listitem>
403 </varlistentry>
404 <varlistentry>
405 <term><varname>IPv6Token=</varname></term>
406 <listitem>
407 <para>An IPv6 address with the top 64 bits unset. When set, indicates the
408 64-bit interface part of SLAAC IPv6 addresses for this link. Note that
409 the token is only ever used for SLAAC, and not for DHCPv6 addresses, even
410 in the case DHCP is requested by router advertisement. By default, the
411 token is autogenerated.</para>
412 </listitem>
413 </varlistentry>
414 <varlistentry>
415 <term><varname>LLMNR=</varname></term>
416 <listitem>
417 <para>Takes a boolean or <literal>resolve</literal>. When true,
418 enables <ulink
419 url="https://tools.ietf.org/html/rfc4795">Link-Local
420 Multicast Name Resolution</ulink> on the link. When set to
421 <literal>resolve</literal>, only resolution is enabled,
422 but not host registration and announcement. Defaults to
423 true. This setting is read by
424 <citerefentry><refentrytitle>systemd-resolved.service</refentrytitle><manvolnum>8</manvolnum></citerefentry>.</para>
425 </listitem>
426 </varlistentry>
427 <varlistentry>
428 <term><varname>MulticastDNS=</varname></term>
429 <listitem>
430 <para>Takes a boolean or <literal>resolve</literal>. When true,
431 enables <ulink
432 url="https://tools.ietf.org/html/rfc6762">Multicast
433 DNS</ulink> support on the link. When set to
434 <literal>resolve</literal>, only resolution is enabled,
435 but not host or service registration and
436 announcement. Defaults to false. This setting is read by
437 <citerefentry><refentrytitle>systemd-resolved.service</refentrytitle><manvolnum>8</manvolnum></citerefentry>.</para>
438 </listitem>
439 </varlistentry>
440 <varlistentry>
441 <term><varname>DNSOverTLS=</varname></term>
442 <listitem>
443 <para>Takes a boolean or <literal>opportunistic</literal>.
444 When true, enables
445 <ulink
446 url="https://tools.ietf.org/html/rfc7858">DNS-over-TLS</ulink>
447 support on the link.
448 When set to <literal>opportunistic</literal>, compatibility with
449 non-DNS-over-TLS servers is increased, by automatically
450 turning off DNS-over-TLS servers in this case.
451 This option defines a per-interface setting for
452 <citerefentry><refentrytitle>resolved.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>'s
453 global <varname>DNSOverTLS=</varname> option. Defaults to
454 false. This setting is read by
455 <citerefentry><refentrytitle>systemd-resolved.service</refentrytitle><manvolnum>8</manvolnum></citerefentry>.</para>
456 </listitem>
457 </varlistentry>
458 <varlistentry>
459 <term><varname>DNSSEC=</varname></term>
460 <listitem>
461 <para>Takes a boolean. or
462 <literal>allow-downgrade</literal>. When true, enables
463 <ulink
464 url="https://tools.ietf.org/html/rfc4033">DNSSEC</ulink>
465 DNS validation support on the link. When set to
466 <literal>allow-downgrade</literal>, compatibility with
467 non-DNSSEC capable networks is increased, by automatically
468 turning off DNSSEC in this case. This option defines a
469 per-interface setting for
470 <citerefentry><refentrytitle>resolved.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>'s
471 global <varname>DNSSEC=</varname> option. Defaults to
472 false. This setting is read by
473 <citerefentry><refentrytitle>systemd-resolved.service</refentrytitle><manvolnum>8</manvolnum></citerefentry>.</para>
474 </listitem>
475 </varlistentry>
476 <varlistentry>
477 <term><varname>DNSSECNegativeTrustAnchors=</varname></term>
478 <listitem><para>A space-separated list of DNSSEC negative
479 trust anchor domains. If specified and DNSSEC is enabled,
480 look-ups done via the interface's DNS server will be subject
481 to the list of negative trust anchors, and not require
482 authentication for the specified domains, or anything below
483 it. Use this to disable DNSSEC authentication for specific
484 private domains, that cannot be proven valid using the
485 Internet DNS hierarchy. Defaults to the empty list. This
486 setting is read by
487 <citerefentry><refentrytitle>systemd-resolved.service</refentrytitle><manvolnum>8</manvolnum></citerefentry>.</para>
488 </listitem>
489 </varlistentry>
490 <varlistentry>
491 <term><varname>LLDP=</varname></term>
492 <listitem>
493 <para>Controls support for Ethernet LLDP packet reception. LLDP is a link-layer protocol commonly
494 implemented on professional routers and bridges which announces which physical port a system is connected
495 to, as well as other related data. Accepts a boolean or the special value
496 <literal>routers-only</literal>. When true, incoming LLDP packets are accepted and a database of all LLDP
497 neighbors maintained. If <literal>routers-only</literal> is set only LLDP data of various types of routers
498 is collected and LLDP data about other types of devices ignored (such as stations, telephones and
499 others). If false, LLDP reception is disabled. Defaults to <literal>routers-only</literal>. Use
500 <citerefentry><refentrytitle>networkctl</refentrytitle><manvolnum>1</manvolnum></citerefentry> to query the
501 collected neighbor data. LLDP is only available on Ethernet links. See <varname>EmitLLDP=</varname> below
502 for enabling LLDP packet emission from the local system.
503 </para>
504 </listitem>
505 </varlistentry>
506 <varlistentry>
507 <term><varname>EmitLLDP=</varname></term>
508 <listitem>
509 <para>Controls support for Ethernet LLDP packet emission. Accepts a boolean parameter or the special values
510 <literal>nearest-bridge</literal>, <literal>non-tpmr-bridge</literal> and
511 <literal>customer-bridge</literal>. Defaults to false, which turns off LLDP packet emission. If not false,
512 a short LLDP packet with information about the local system is sent out in regular intervals on the
513 link. The LLDP packet will contain information about the local host name, the local machine ID (as stored
514 in <citerefentry><refentrytitle>machine-id</refentrytitle><manvolnum>5</manvolnum></citerefentry>) and the
515 local interface name, as well as the pretty hostname of the system (as set in
516 <citerefentry><refentrytitle>machine-info</refentrytitle><manvolnum>5</manvolnum></citerefentry>). LLDP
517 emission is only available on Ethernet links. Note that this setting passes data suitable for
518 identification of host to the network and should thus not be enabled on untrusted networks, where such
519 identification data should not be made available. Use this option to permit other systems to identify on
520 which interfaces they are connected to this system. The three special values control propagation of the
521 LLDP packets. The <literal>nearest-bridge</literal> setting permits propagation only to the nearest
522 connected bridge, <literal>non-tpmr-bridge</literal> permits propagation across Two-Port MAC Relays, but
523 not any other bridges, and <literal>customer-bridge</literal> permits propagation until a customer bridge
524 is reached. For details about these concepts, see <ulink
525 url="https://standards.ieee.org/findstds/standard/802.1AB-2016.html">IEEE 802.1AB-2016</ulink>. Note that
526 configuring this setting to true is equivalent to <literal>nearest-bridge</literal>, the recommended and
527 most restricted level of propagation. See <varname>LLDP=</varname> above for an option to enable LLDP
528 reception.</para>
529 </listitem>
530 </varlistentry>
531 <varlistentry>
532 <term><varname>BindCarrier=</varname></term>
533 <listitem>
534 <para>A link name or a list of link names. When set, controls the behavior of the current
535 link. When all links in the list are in an operational down state, the current link is brought
536 down. When at least one link has carrier, the current interface is brought up.
537 </para>
538 </listitem>
539 </varlistentry>
540 <varlistentry>
541 <term><varname>Address=</varname></term>
542 <listitem>
543 <para>A static IPv4 or IPv6 address and its prefix length,
544 separated by a <literal>/</literal> character. Specify
545 this key more than once to configure several addresses.
546 The format of the address must be as described in
547 <citerefentry project='man-pages'><refentrytitle>inet_pton</refentrytitle><manvolnum>3</manvolnum></citerefentry>.
548 This is a short-hand for an [Address] section only
549 containing an Address key (see below). This option may be
550 specified more than once.
551 </para>
552
553 <para>If the specified address is <literal>0.0.0.0</literal> (for IPv4) or <literal>::</literal>
554 (for IPv6), a new address range of the requested size is automatically allocated from a
555 system-wide pool of unused ranges. Note that the prefix length must be equal or larger than 8 for
556 IPv4, and 64 for IPv6. The allocated range is checked against all current network interfaces and
557 all known network configuration files to avoid address range conflicts. The default system-wide
558 pool consists of 192.168.0.0/16, 172.16.0.0/12 and 10.0.0.0/8 for IPv4, and fd00::/8 for IPv6.
559 This functionality is useful to manage a large number of dynamically created network interfaces
560 with the same network configuration and automatic address range assignment.</para>
561
562 </listitem>
563 </varlistentry>
564 <varlistentry>
565 <term><varname>Gateway=</varname></term>
566 <listitem>
567 <para>The gateway address, which must be in the format
568 described in
569 <citerefentry project='man-pages'><refentrytitle>inet_pton</refentrytitle><manvolnum>3</manvolnum></citerefentry>.
570 This is a short-hand for a [Route] section only containing
571 a Gateway key. This option may be specified more than
572 once.</para>
573 </listitem>
574 </varlistentry>
575 <varlistentry>
576 <term><varname>DNS=</varname></term>
577 <listitem>
578 <para>A DNS server address, which must be in the format
579 described in
580 <citerefentry project='man-pages'><refentrytitle>inet_pton</refentrytitle><manvolnum>3</manvolnum></citerefentry>.
581 This option may be specified more than once. This setting is read by
582 <citerefentry><refentrytitle>systemd-resolved.service</refentrytitle><manvolnum>8</manvolnum></citerefentry>.</para>
583 </listitem>
584 </varlistentry>
585 <varlistentry>
586 <term><varname>Domains=</varname></term>
587 <listitem>
588 <para>A list of domains which should be resolved using the DNS servers on this link. Each item in the list
589 should be a domain name, optionally prefixed with a tilde (<literal>~</literal>). The domains with the
590 prefix are called "routing-only domains". The domains without the prefix are called "search domains" and
591 are first used as search suffixes for extending single-label host names (host names containing no dots) to
592 become fully qualified domain names (FQDNs). If a single-label host name is resolved on this interface,
593 each of the specified search domains are appended to it in turn, converting it into a fully qualified
594 domain name, until one of them may be successfully resolved.</para>
595
596 <para>Both "search" and "routing-only" domains are used for routing of DNS queries: look-ups for host names
597 ending in those domains (hence also single label names, if any "search domains" are listed), are routed to
598 the DNS servers configured for this interface. The domain routing logic is particularly useful on
599 multi-homed hosts with DNS servers serving particular private DNS zones on each interface.</para>
600
601 <para>The "routing-only" domain <literal>~.</literal> (the tilde indicating definition of a routing domain,
602 the dot referring to the DNS root domain which is the implied suffix of all valid DNS names) has special
603 effect. It causes all DNS traffic which does not match another configured domain routing entry to be routed
604 to DNS servers specified for this interface. This setting is useful to prefer a certain set of DNS servers
605 if a link on which they are connected is available.</para>
606
607 <para>This setting is read by
608 <citerefentry><refentrytitle>systemd-resolved.service</refentrytitle><manvolnum>8</manvolnum></citerefentry>.
609 "Search domains" correspond to the <varname>domain</varname> and <varname>search</varname> entries in
610 <citerefentry project='man-pages'><refentrytitle>resolv.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>.
611 Domain name routing has no equivalent in the traditional glibc API, which has no concept of domain
612 name servers limited to a specific link.</para>
613 </listitem>
614 </varlistentry>
615 <varlistentry>
616 <term><varname>DNSDefaultRoute=</varname></term>
617 <listitem>
618 <para>Takes a boolean argument. If true, this link's configured DNS servers are used for resolving domain
619 names that do not match any link's configured <varname>Domains=</varname> setting. If false, this link's
620 configured DNS servers are never used for such domains, and are exclusively used for resolving names that
621 match at least one of the domains configured on this link. If not specified defaults to an automatic mode:
622 queries not matching any link's configured domains will be routed to this link if it has no routing-only
623 domains configured.</para>
624 </listitem>
625 </varlistentry>
626 <varlistentry>
627 <term><varname>NTP=</varname></term>
628 <listitem>
629 <para>An NTP server address. This option may be specified more than once. This setting is read by
630 <citerefentry><refentrytitle>systemd-timesyncd.service</refentrytitle><manvolnum>8</manvolnum></citerefentry>.</para>
631 </listitem>
632 </varlistentry>
633 <varlistentry>
634 <term><varname>IPForward=</varname></term>
635 <listitem><para>Configures IP packet forwarding for the
636 system. If enabled, incoming packets on any network
637 interface will be forwarded to any other interfaces
638 according to the routing table. Takes a boolean,
639 or the values <literal>ipv4</literal> or
640 <literal>ipv6</literal>, which only enable IP packet
641 forwarding for the specified address family. This controls
642 the <filename>net.ipv4.ip_forward</filename> and
643 <filename>net.ipv6.conf.all.forwarding</filename> sysctl
644 options of the network interface (see <ulink
645 url="https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt">ip-sysctl.txt</ulink>
646 for details about sysctl options). Defaults to
647 <literal>no</literal>.</para>
648
649 <para>Note: this setting controls a global kernel option,
650 and does so one way only: if a network that has this setting
651 enabled is set up the global setting is turned on. However,
652 it is never turned off again, even after all networks with
653 this setting enabled are shut down again.</para>
654
655 <para>To allow IP packet forwarding only between specific
656 network interfaces use a firewall.</para>
657 </listitem>
658 </varlistentry>
659 <varlistentry>
660 <term><varname>IPMasquerade=</varname></term>
661 <listitem><para>Configures IP masquerading for the network
662 interface. If enabled, packets forwarded from the network
663 interface will be appear as coming from the local host.
664 Takes a boolean argument. Implies
665 <varname>IPForward=ipv4</varname>. Defaults to
666 <literal>no</literal>.</para></listitem>
667 </varlistentry>
668 <varlistentry>
669 <term><varname>IPv6PrivacyExtensions=</varname></term>
670 <listitem><para>Configures use of stateless temporary
671 addresses that change over time (see <ulink
672 url="https://tools.ietf.org/html/rfc4941">RFC 4941</ulink>,
673 Privacy Extensions for Stateless Address Autoconfiguration
674 in IPv6). Takes a boolean or the special values
675 <literal>prefer-public</literal> and
676 <literal>kernel</literal>. When true, enables the privacy
677 extensions and prefers temporary addresses over public
678 addresses. When <literal>prefer-public</literal>, enables the
679 privacy extensions, but prefers public addresses over
680 temporary addresses. When false, the privacy extensions
681 remain disabled. When <literal>kernel</literal>, the kernel's
682 default setting will be left in place. Defaults to
683 <literal>no</literal>.</para></listitem>
684 </varlistentry>
685 <varlistentry>
686 <term><varname>IPv6AcceptRA=</varname></term>
687 <listitem><para>Takes a boolean. Controls IPv6 Router Advertisement (RA) reception support
688 for the interface. If true, RAs are accepted; if false, RAs are ignored, independently of the
689 local forwarding state. When RAs are accepted, they may trigger the start of the DHCPv6
690 client if the relevant flags are set in the RA data, or if no routers are found on the link.</para>
691
692 <para>Further settings for the IPv6 RA support may be configured in the
693 <literal>[IPv6AcceptRA]</literal> section, see below.</para>
694
695 <para>Also see <ulink
696 url="https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt">ip-sysctl.txt</ulink> in the kernel
697 documentation regarding <literal>accept_ra</literal>, but note that systemd's setting of
698 <constant>1</constant> (i.e. true) corresponds to kernel's setting of <constant>2</constant>.</para>
699
700 <para>Note that kernel's implementation of the IPv6 RA protocol is always disabled,
701 regardless of this setting. If this option is enabled, a userspace implementation of the IPv6
702 RA protocol is used, and the kernel's own implementation remains disabled, since
703 <command>systemd-networkd</command> needs to know all details supplied in the advertisements,
704 and these are not available from the kernel if the kernel's own implementation is used.</para>
705 </listitem>
706 </varlistentry>
707 <varlistentry>
708 <term><varname>IPv6DuplicateAddressDetection=</varname></term>
709 <listitem><para>Configures the amount of IPv6 Duplicate
710 Address Detection (DAD) probes to send. When unset, the kernel's default will be used.
711 </para></listitem>
712 </varlistentry>
713 <varlistentry>
714 <term><varname>IPv6HopLimit=</varname></term>
715 <listitem><para>Configures IPv6 Hop Limit. For each router that
716 forwards the packet, the hop limit is decremented by 1. When the
717 hop limit field reaches zero, the packet is discarded.
718 When unset, the kernel's default will be used.
719 </para></listitem>
720 </varlistentry>
721 <varlistentry>
722 <term><varname>IPv4ProxyARP=</varname></term>
723 <listitem><para>Takes a boolean. Configures proxy ARP for IPv4. Proxy ARP is the technique in which one host,
724 usually a router, answers ARP requests intended for another machine. By "faking" its identity,
725 the router accepts responsibility for routing packets to the "real" destination. (see <ulink
726 url="https://tools.ietf.org/html/rfc1027">RFC 1027</ulink>.
727 When unset, the kernel's default will be used.
728 </para></listitem>
729 </varlistentry>
730 <varlistentry>
731 <term><varname>IPv6ProxyNDP=</varname></term>
732 <listitem><para>Takes a boolean. Configures proxy NDP for IPv6. Proxy NDP (Neighbor Discovery
733 Protocol) is a technique for IPv6 to allow routing of addresses to a different
734 destination when peers expect them to be present on a certain physical link.
735 In this case a router answers Neighbour Advertisement messages intended for
736 another machine by offering its own MAC address as destination.
737 Unlike proxy ARP for IPv4, it is not enabled globally, but will only send Neighbour
738 Advertisement messages for addresses in the IPv6 neighbor proxy table,
739 which can also be shown by <command>ip -6 neighbour show proxy</command>.
740 systemd-networkd will control the per-interface `proxy_ndp` switch for each configured
741 interface depending on this option.
742 When unset, the kernel's default will be used.
743 </para></listitem>
744 </varlistentry>
745 <varlistentry>
746 <term><varname>IPv6ProxyNDPAddress=</varname></term>
747 <listitem><para>An IPv6 address, for which Neighbour Advertisement messages will be
748 proxied. This option may be specified more than once. systemd-networkd will add the
749 <option>IPv6ProxyNDPAddress=</option> entries to the kernel's IPv6 neighbor proxy table.
750 This option implies <option>IPv6ProxyNDP=yes</option> but has no effect if
751 <option>IPv6ProxyNDP</option> has been set to false. When unset, the kernel's default will be used.
752 </para></listitem>
753 </varlistentry>
754 <varlistentry>
755 <term><varname>IPv6PrefixDelegation=</varname></term>
756 <listitem><para>Whether to enable or disable Router Advertisement sending on a link.
757 Allowed values are <literal>static</literal> which distributes prefixes as defined in
758 the <literal>[IPv6PrefixDelegation]</literal> and any <literal>[IPv6Prefix]</literal>
759 sections, <literal>dhcpv6</literal> which requests prefixes using a DHCPv6 client
760 configured for another link and any values configured in the
761 <literal>[IPv6PrefixDelegation]</literal> section while ignoring all static prefix
762 configuration sections, <literal>yes</literal> which uses both static configuration
763 and DHCPv6, and <literal>false</literal> which turns off IPv6 prefix delegation
764 altogether. Defaults to <literal>false</literal>. See the
765 <literal>[IPv6PrefixDelegation]</literal> and the <literal>[IPv6Prefix]</literal>
766 sections for more configuration options.
767 </para></listitem>
768 </varlistentry>
769 <varlistentry>
770 <term><varname>IPv6MTUBytes=</varname></term>
771 <listitem><para>Configures IPv6 maximum transmission unit (MTU).
772 An integer greater than or equal to 1280 bytes. When unset, the kernel's default will be used.
773 </para></listitem>
774 </varlistentry>
775 <varlistentry>
776 <term><varname>Bridge=</varname></term>
777 <listitem>
778 <para>The name of the bridge to add the link to. See
779 <citerefentry><refentrytitle>systemd.netdev</refentrytitle><manvolnum>5</manvolnum></citerefentry>.
780 </para>
781 </listitem>
782 </varlistentry>
783 <varlistentry>
784 <term><varname>Bond=</varname></term>
785 <listitem>
786 <para>The name of the bond to add the link to. See
787 <citerefentry><refentrytitle>systemd.netdev</refentrytitle><manvolnum>5</manvolnum></citerefentry>.
788 </para>
789 </listitem>
790 </varlistentry>
791 <varlistentry>
792 <term><varname>VRF=</varname></term>
793 <listitem>
794 <para>The name of the VRF to add the link to. See
795 <citerefentry><refentrytitle>systemd.netdev</refentrytitle><manvolnum>5</manvolnum></citerefentry>.
796 </para>
797 </listitem>
798 </varlistentry>
799 <varlistentry>
800 <term><varname>VLAN=</varname></term>
801 <listitem>
802 <para>The name of a VLAN to create on the link. See
803 <citerefentry><refentrytitle>systemd.netdev</refentrytitle><manvolnum>5</manvolnum></citerefentry>.
804 This option may be specified more than once.</para>
805 </listitem>
806 </varlistentry>
807 <varlistentry>
808 <term><varname>IPVLAN=</varname></term>
809 <listitem>
810 <para>The name of a IPVLAN to create on the link. See
811 <citerefentry><refentrytitle>systemd.netdev</refentrytitle><manvolnum>5</manvolnum></citerefentry>.
812 This option may be specified more than once.</para>
813 </listitem>
814 </varlistentry>
815 <varlistentry>
816 <term><varname>MACVLAN=</varname></term>
817 <listitem>
818 <para>The name of a MACVLAN to create on the link. See
819 <citerefentry><refentrytitle>systemd.netdev</refentrytitle><manvolnum>5</manvolnum></citerefentry>.
820 This option may be specified more than once.</para>
821 </listitem>
822 </varlistentry>
823 <varlistentry>
824 <term><varname>VXLAN=</varname></term>
825 <listitem>
826 <para>The name of a VXLAN to create on the link. See
827 <citerefentry><refentrytitle>systemd.netdev</refentrytitle><manvolnum>5</manvolnum></citerefentry>.
828 This option may be specified more than once.</para>
829 </listitem>
830 </varlistentry>
831 <varlistentry>
832 <term><varname>Tunnel=</varname></term>
833 <listitem>
834 <para>The name of a Tunnel to create on the link. See
835 <citerefentry><refentrytitle>systemd.netdev</refentrytitle><manvolnum>5</manvolnum></citerefentry>.
836 This option may be specified more than once.</para>
837 </listitem>
838 </varlistentry>
839 <varlistentry>
840 <term><varname>MACsec=</varname></term>
841 <listitem>
842 <para>The name of a MACsec device to create on the link. See
843 <citerefentry><refentrytitle>systemd.netdev</refentrytitle><manvolnum>5</manvolnum></citerefentry>.
844 This option may be specified more than once.</para>
845 </listitem>
846 </varlistentry>
847 <varlistentry>
848 <term><varname>ActiveSlave=</varname></term>
849 <listitem>
850 <para>Takes a boolean. Specifies the new active slave. The <literal>ActiveSlave=</literal>
851 option is only valid for following modes:
852 <literal>active-backup</literal>,
853 <literal>balance-alb</literal> and
854 <literal>balance-tlb</literal>. Defaults to false.
855 </para>
856 </listitem>
857 </varlistentry>
858 <varlistentry>
859 <term><varname>PrimarySlave=</varname></term>
860 <listitem>
861 <para>Takes a boolean. Specifies which slave is the primary device. The specified
862 device will always be the active slave while it is available. Only when the
863 primary is off-line will alternate devices be used. This is useful when
864 one slave is preferred over another, e.g. when one slave has higher throughput
865 than another. The <literal>PrimarySlave=</literal> option is only valid for
866 following modes:
867 <literal>active-backup</literal>,
868 <literal>balance-alb</literal> and
869 <literal>balance-tlb</literal>. Defaults to false.
870 </para>
871 </listitem>
872 </varlistentry>
873 <varlistentry>
874 <term><varname>ConfigureWithoutCarrier=</varname></term>
875 <listitem>
876 <para>Takes a boolean. Allows networkd to configure a specific link even if it has no carrier.
877 Defaults to false.
878 </para>
879 </listitem>
880 </varlistentry>
881 <varlistentry>
882 <term><varname>IgnoreCarrierLoss=</varname></term>
883 <listitem>
884 <para>A boolean. Allows networkd to retain both the static and dynamic configuration of the
885 interface even if its carrier is lost. Defaults to false.
886 </para>
887 </listitem>
888 </varlistentry>
889 <varlistentry>
890 <term><varname>Xfrm=</varname></term>
891 <listitem>
892 <para>The name of the xfrm to create on the link. See
893 <citerefentry><refentrytitle>systemd.netdev</refentrytitle><manvolnum>5</manvolnum></citerefentry>.
894 This option may be specified more than once.</para>
895 </listitem>
896 </varlistentry>
897 <varlistentry>
898 <term><varname>KeepConfiguration=</varname></term>
899 <listitem>
900 <para>Takes a boolean or one of <literal>static</literal>, <literal>dhcp-on-stop</literal>,
901 <literal>dhcp</literal>. When <literal>static</literal>, <command>systemd-networkd</command>
902 will not drop static addresses and routes on starting up process. When set to
903 <literal>dhcp-on-stop</literal>, <command>systemd-networkd</command> will not drop addresses
904 and routes on stopping the daemon. When <literal>dhcp</literal>,
905 the addresses and routes provided by a DHCP server will never be dropped even if the DHCP
906 lease expires. This is contrary to the DHCP specification, but may be the best choice if,
907 e.g., the root filesystem relies on this connection. The setting <literal>dhcp</literal>
908 implies <literal>dhcp-on-stop</literal>, and <literal>yes</literal> implies
909 <literal>dhcp</literal> and <literal>static</literal>. Defaults to <literal>no</literal>.
910 </para>
911 </listitem>
912 </varlistentry>
913
914 </variablelist>
915
916 </refsect1>
917
918 <refsect1>
919 <title>[Address] Section Options</title>
920
921 <para>An <literal>[Address]</literal> section accepts the
922 following keys. Specify several <literal>[Address]</literal>
923 sections to configure several addresses.</para>
924
925 <variablelist class='network-directives'>
926 <varlistentry>
927 <term><varname>Address=</varname></term>
928 <listitem>
929 <para>As in the <literal>[Network]</literal> section. This key is mandatory. Each
930 <literal>[Address]</literal> section can contain one <varname>Address=</varname> setting.</para>
931 </listitem>
932 </varlistentry>
933 <varlistentry>
934 <term><varname>Peer=</varname></term>
935 <listitem>
936 <para>The peer address in a point-to-point connection.
937 Accepts the same format as the <varname>Address=</varname>
938 key.</para>
939 </listitem>
940 </varlistentry>
941 <varlistentry>
942 <term><varname>Broadcast=</varname></term>
943 <listitem>
944 <para>The broadcast address, which must be in the format
945 described in
946 <citerefentry project='man-pages'><refentrytitle>inet_pton</refentrytitle><manvolnum>3</manvolnum></citerefentry>.
947 This key only applies to IPv4 addresses. If it is not
948 given, it is derived from the <varname>Address=</varname>
949 key.</para>
950 </listitem>
951 </varlistentry>
952 <varlistentry>
953 <term><varname>Label=</varname></term>
954 <listitem>
955 <para>An address label.</para>
956 </listitem>
957 </varlistentry>
958 <varlistentry>
959 <term><varname>PreferredLifetime=</varname></term>
960 <listitem>
961 <para>Allows the default "preferred lifetime" of the address to be overridden.
962 Only three settings are accepted: <literal>forever</literal> or <literal>infinity</literal>
963 which is the default and means that the address never expires, and <literal>0</literal> which means
964 that the address is considered immediately "expired" and will not be used,
965 unless explicitly requested. A setting of PreferredLifetime=0 is useful for
966 addresses which are added to be used only by a specific application,
967 which is then configured to use them explicitly.</para>
968 </listitem>
969 </varlistentry>
970 <varlistentry>
971 <term><varname>Scope=</varname></term>
972 <listitem>
973 <para>The scope of the address, which can be <literal>global</literal>,
974 <literal>link</literal> or <literal>host</literal> or an unsigned integer ranges 0 to 255.
975 Defaults to <literal>global</literal>.</para>
976 </listitem>
977 </varlistentry>
978 <varlistentry>
979 <term><varname>HomeAddress=</varname></term>
980 <listitem>
981 <para>Takes a boolean. Designates this address the "home address" as defined in
982 <ulink url="https://tools.ietf.org/html/rfc6275">RFC 6275</ulink>.
983 Supported only on IPv6. Defaults to false.</para>
984 </listitem>
985 </varlistentry>
986 <varlistentry>
987 <term><varname>DuplicateAddressDetection=</varname></term>
988 <listitem>
989 <para>Takes a boolean. Do not perform Duplicate Address Detection
990 <ulink url="https://tools.ietf.org/html/rfc4862">RFC 4862</ulink> when adding this address.
991 Supported only on IPv6. Defaults to false.</para>
992 </listitem>
993 </varlistentry>
994 <varlistentry>
995 <term><varname>ManageTemporaryAddress=</varname></term>
996 <listitem>
997 <para>Takes a boolean. If true the kernel manage temporary addresses created
998 from this one as template on behalf of Privacy Extensions
999 <ulink url="https://tools.ietf.org/html/rfc3041">RFC 3041</ulink>. For this to become
1000 active, the use_tempaddr sysctl setting has to be set to a value greater than zero.
1001 The given address needs to have a prefix length of 64. This flag allows to use privacy
1002 extensions in a manually configured network, just like if stateless auto-configuration
1003 was active. Defaults to false. </para>
1004 </listitem>
1005 </varlistentry>
1006 <varlistentry>
1007 <term><varname>PrefixRoute=</varname></term>
1008 <listitem>
1009 <para>Takes a boolean. When adding or modifying an IPv6 address, the userspace
1010 application needs a way to suppress adding a prefix route. This is for example relevant
1011 together with IFA_F_MANAGERTEMPADDR, where userspace creates autoconf generated addresses,
1012 but depending on on-link, no route for the prefix should be added. Defaults to false.</para>
1013 </listitem>
1014 </varlistentry>
1015 <varlistentry>
1016 <term><varname>AutoJoin=</varname></term>
1017 <listitem>
1018 <para>Takes a boolean. Joining multicast group on ethernet level via
1019 <command>ip maddr</command> command would not work if we have an Ethernet switch that does
1020 IGMP snooping since the switch would not replicate multicast packets on ports that did not
1021 have IGMP reports for the multicast addresses. Linux vxlan interfaces created via
1022 <command>ip link add vxlan</command> or networkd's netdev kind vxlan have the group option
1023 that enables then to do the required join. By extending ip address command with option
1024 <literal>autojoin</literal> we can get similar functionality for openvswitch (OVS) vxlan
1025 interfaces as well as other tunneling mechanisms that need to receive multicast traffic.
1026 Defaults to <literal>no</literal>.</para>
1027 </listitem>
1028 </varlistentry>
1029 </variablelist>
1030 </refsect1>
1031
1032 <refsect1>
1033 <title>[Neighbor] Section Options</title>
1034 <para>A <literal>[Neighbor]</literal> section accepts the
1035 following keys. The neighbor section adds a permanent, static
1036 entry to the neighbor table (IPv6) or ARP table (IPv4) for
1037 the given hardware address on the links matched for the network.
1038 Specify several <literal>[Neighbor]</literal> sections to configure
1039 several static neighbors.</para>
1040
1041 <variablelist class='network-directives'>
1042 <varlistentry>
1043 <term><varname>Address=</varname></term>
1044 <listitem>
1045 <para>The IP address of the neighbor.</para>
1046 </listitem>
1047 </varlistentry>
1048 <varlistentry>
1049 <term><varname>LinkLayerAddress=</varname></term>
1050 <listitem>
1051 <para>The link layer address (MAC address or IP address) of the neighbor.</para>
1052 </listitem>
1053 </varlistentry>
1054 </variablelist>
1055 </refsect1>
1056
1057 <refsect1>
1058 <title>[IPv6AddressLabel] Section Options</title>
1059
1060 <para>An <literal>[IPv6AddressLabel]</literal> section accepts the
1061 following keys. Specify several <literal>[IPv6AddressLabel]</literal>
1062 sections to configure several address labels. IPv6 address labels are
1063 used for address selection. See <ulink url="https://tools.ietf.org/html/rfc3484">RFC 3484</ulink>.
1064 Precedence is managed by userspace, and only the label itself is stored in the kernel</para>
1065
1066 <variablelist class='network-directives'>
1067 <varlistentry>
1068 <term><varname>Label=</varname></term>
1069 <listitem>
1070 <para> The label for the prefix (an unsigned integer) ranges 0 to 4294967294.
1071 0xffffffff is reserved. This key is mandatory.</para>
1072 </listitem>
1073 </varlistentry>
1074 <varlistentry>
1075 <term><varname>Prefix=</varname></term>
1076 <listitem>
1077 <para>IPv6 prefix is an address with a prefix length, separated by a slash <literal>/</literal> character.
1078 This key is mandatory. </para>
1079 </listitem>
1080 </varlistentry>
1081 </variablelist>
1082 </refsect1>
1083
1084 <refsect1>
1085 <title>[RoutingPolicyRule] Section Options</title>
1086
1087 <para>An <literal>[RoutingPolicyRule]</literal> section accepts the
1088 following keys. Specify several <literal>[RoutingPolicyRule]</literal>
1089 sections to configure several rules.</para>
1090
1091 <variablelist class='network-directives'>
1092 <varlistentry>
1093 <term><varname>TypeOfService=</varname></term>
1094 <listitem>
1095 <para>Specifies the type of service to match a number between 0 to 255.</para>
1096 </listitem>
1097 </varlistentry>
1098 <varlistentry>
1099 <term><varname>From=</varname></term>
1100 <listitem>
1101 <para>Specifies the source address prefix to match. Possibly followed by a slash and the prefix length.</para>
1102 </listitem>
1103 </varlistentry>
1104 <varlistentry>
1105 <term><varname>To=</varname></term>
1106 <listitem>
1107 <para>Specifies the destination address prefix to match. Possibly followed by a slash and the prefix length.</para>
1108 </listitem>
1109 </varlistentry>
1110 <varlistentry>
1111 <term><varname>FirewallMark=</varname></term>
1112 <listitem>
1113 <para>Specifies the iptables firewall mark value to match (a number between 1 and 4294967295).</para>
1114 </listitem>
1115 </varlistentry>
1116 <varlistentry>
1117 <term><varname>Table=</varname></term>
1118 <listitem>
1119 <para>Specifies the routing table identifier to lookup if the rule selector matches. Takes
1120 one of <literal>default</literal>, <literal>main</literal>, and <literal>local</literal>,
1121 or a number between 1 and 4294967295. Defaults to <literal>main</literal>.</para>
1122 </listitem>
1123 </varlistentry>
1124 <varlistentry>
1125 <term><varname>Priority=</varname></term>
1126 <listitem>
1127 <para>Specifies the priority of this rule. <varname>Priority=</varname> is an unsigned
1128 integer. Higher number means lower priority, and rules get processed in order of increasing number.</para>
1129 </listitem>
1130 </varlistentry>
1131 <varlistentry>
1132 <term><varname>IncomingInterface=</varname></term>
1133 <listitem>
1134 <para>Specifies incoming device to match. If the interface is loopback, the rule only matches packets originating from this host.</para>
1135 </listitem>
1136 </varlistentry>
1137 <varlistentry>
1138 <term><varname>OutgoingInterface=</varname></term>
1139 <listitem>
1140 <para>Specifies the outgoing device to match. The outgoing interface is only available for packets originating from local sockets that are bound to a device.</para>
1141 </listitem>
1142 </varlistentry>
1143 <varlistentry>
1144 <term><varname>SourcePort=</varname></term>
1145 <listitem>
1146 <para>Specifies the source IP port or IP port range match in forwarding information base (FIB) rules.
1147 A port range is specified by the lower and upper port separated by a dash. Defaults to unset.</para>
1148 </listitem>
1149 </varlistentry>
1150 <varlistentry>
1151 <term><varname>DestinationPort=</varname></term>
1152 <listitem>
1153 <para>Specifies the destination IP port or IP port range match in forwarding information base (FIB) rules.
1154 A port range is specified by the lower and upper port separated by a dash. Defaults to unset.</para>
1155 </listitem>
1156 </varlistentry>
1157 <varlistentry>
1158 <term><varname>IPProtocol=</varname></term>
1159 <listitem>
1160 <para>Specifies the IP protocol to match in forwarding information base (FIB) rules. Takes IP protocol name such as <literal>tcp</literal>,
1161 <literal>udp</literal> or <literal>sctp</literal>, or IP protocol number such as <literal>6</literal> for <literal>tcp</literal> or
1162 <literal>17</literal> for <literal>udp</literal>.
1163 Defaults to unset.</para>
1164 </listitem>
1165 </varlistentry>
1166 <varlistentry>
1167 <term><varname>InvertRule=</varname></term>
1168 <listitem>
1169 <para>A boolean. Specifies whether the rule to be inverted. Defaults to false.</para>
1170 </listitem>
1171 </varlistentry>
1172 <varlistentry>
1173 <term><varname>Family=</varname></term>
1174 <listitem>
1175 <para>Takes a special value <literal>ipv4</literal>, <literal>ipv6</literal>, or
1176 <literal>both</literal>. By default, the address family is determined by the address
1177 specified in <varname>To=</varname> or <varname>From=</varname>. If neither
1178 <varname>To=</varname> nor <varname>From=</varname> are specified, then defaults to
1179 <literal>ipv4</literal>.</para>
1180 </listitem>
1181 </varlistentry>
1182 </variablelist>
1183 </refsect1>
1184
1185 <refsect1>
1186 <title>[NextHop] Section Options</title>
1187 <para>The <literal>[NextHop]</literal> section accepts the
1188 following keys. Specify several <literal>[NextHop]</literal>
1189 sections to configure several nexthop. Nexthop is used to manipulate entries in the kernel's nexthop
1190 tables.</para>
1191
1192 <variablelist class='network-directives'>
1193 <varlistentry>
1194 <term><varname>Gateway=</varname></term>
1195 <listitem>
1196 <para>As in the <literal>[Network]</literal> section. This is mandatory.</para>
1197 </listitem>
1198 </varlistentry>
1199 <varlistentry>
1200 <term><varname>Id=</varname></term>
1201 <listitem>
1202 <para>The id of the nexthop (an unsigned integer). If unspecified or '0' then automatically chosen by kernel.</para>
1203 </listitem>
1204 </varlistentry>
1205 </variablelist>
1206 </refsect1>
1207
1208 <refsect1>
1209 <title>[Route] Section Options</title>
1210 <para>The <literal>[Route]</literal> section accepts the
1211 following keys. Specify several <literal>[Route]</literal>
1212 sections to configure several routes.</para>
1213
1214 <variablelist class='network-directives'>
1215 <varlistentry>
1216 <term><varname>Gateway=</varname></term>
1217 <listitem>
1218 <para>As in the <literal>[Network]</literal> section.</para>
1219 </listitem>
1220 </varlistentry>
1221 <varlistentry>
1222 <term><varname>GatewayOnLink=</varname></term>
1223 <listitem>
1224 <para>Takes a boolean. If set to true, the kernel does not have
1225 to check if the gateway is reachable directly by the current machine (i.e., the kernel does
1226 not need to check if the gateway is attached to the local network), so that we can insert the
1227 route in the kernel table without it being complained about. Defaults to <literal>no</literal>.
1228 </para>
1229 </listitem>
1230 </varlistentry>
1231 <varlistentry>
1232 <term><varname>Destination=</varname></term>
1233 <listitem>
1234 <para>The destination prefix of the route. Possibly
1235 followed by a slash and the prefix length. If omitted, a
1236 full-length host route is assumed.</para>
1237 </listitem>
1238 </varlistentry>
1239 <varlistentry>
1240 <term><varname>Source=</varname></term>
1241 <listitem>
1242 <para>The source prefix of the route. Possibly followed by
1243 a slash and the prefix length. If omitted, a full-length
1244 host route is assumed.</para>
1245 </listitem>
1246 </varlistentry>
1247 <varlistentry>
1248 <term><varname>Metric=</varname></term>
1249 <listitem>
1250 <para>The metric of the route (an unsigned integer).</para>
1251 </listitem>
1252 </varlistentry>
1253 <varlistentry>
1254 <term><varname>IPv6Preference=</varname></term>
1255 <listitem>
1256 <para>Specifies the route preference as defined in <ulink
1257 url="https://tools.ietf.org/html/rfc4191">RFC4191</ulink> for Router Discovery messages.
1258 Which can be one of <literal>low</literal> the route has a lowest priority,
1259 <literal>medium</literal> the route has a default priority or
1260 <literal>high</literal> the route has a highest priority.</para>
1261 </listitem>
1262 </varlistentry>
1263 <varlistentry>
1264 <term><varname>Scope=</varname></term>
1265 <listitem>
1266 <para>The scope of the route, which can be <literal>global</literal>,
1267 <literal>link</literal> or <literal>host</literal>. Defaults to
1268 <literal>global</literal>.</para>
1269 </listitem>
1270 </varlistentry>
1271 <varlistentry>
1272 <term><varname>PreferredSource=</varname></term>
1273 <listitem>
1274 <para>The preferred source address of the route. The address
1275 must be in the format described in
1276 <citerefentry project='man-pages'><refentrytitle>inet_pton</refentrytitle><manvolnum>3</manvolnum></citerefentry>.</para>
1277 </listitem>
1278 </varlistentry>
1279 <varlistentry>
1280 <term><varname>Table=<replaceable>num</replaceable></varname></term>
1281 <listitem>
1282 <para>The table identifier for the route (a number between 1 and 4294967295, or 0 to unset).
1283 The table can be retrieved using <command>ip route show table <replaceable>num</replaceable></command>.
1284 </para>
1285 </listitem>
1286 </varlistentry>
1287 <varlistentry>
1288 <term><varname>Protocol=</varname></term>
1289 <listitem>
1290 <para>The protocol identifier for the route. Takes a number between 0 and 255 or the special values
1291 <literal>kernel</literal>, <literal>boot</literal>, <literal>static</literal>,
1292 <literal>ra</literal> and <literal>dhcp</literal>. Defaults to <literal>static</literal>.
1293 </para>
1294 </listitem>
1295 </varlistentry>
1296 <varlistentry>
1297 <term><varname>Type=</varname></term>
1298 <listitem>
1299 <para>Specifies the type for the route. Takes one of <literal>unicast</literal>,
1300 <literal>local</literal>, <literal>broadcast</literal>, <literal>anycast</literal>,
1301 <literal>multicast</literal>, <literal>blackhole</literal>, <literal>unreachable</literal>,
1302 <literal>prohibit</literal>, <literal>throw</literal>, <literal>nat</literal>, and
1303 <literal>xresolve</literal>. If <literal>unicast</literal>, a regular route is defined, i.e. a
1304 route indicating the path to take to a destination network address. If <literal>blackhole</literal>, packets
1305 to the defined route are discarded silently. If <literal>unreachable</literal>, packets to the defined route
1306 are discarded and the ICMP message "Host Unreachable" is generated. If <literal>prohibit</literal>, packets
1307 to the defined route are discarded and the ICMP message "Communication Administratively Prohibited" is
1308 generated. If <literal>throw</literal>, route lookup in the current routing table will fail and the route
1309 selection process will return to Routing Policy Database (RPDB). Defaults to <literal>unicast</literal>.
1310 </para>
1311 </listitem>
1312 </varlistentry>
1313 <varlistentry>
1314 <term><varname>InitialCongestionWindow=</varname></term>
1315 <listitem>
1316 <para>The TCP initial congestion window is used during the start of a TCP connection. During the start of a TCP
1317 session, when a client requests a resource, the server's initial congestion window determines how many data bytes
1318 will be sent during the initial burst of data. Takes a size in bytes between 1 and 4294967295 (2^32 - 1). The usual
1319 suffixes K, M, G are supported and are understood to the base of 1024. When unset, the kernel's default will be used.
1320 </para>
1321 </listitem>
1322 </varlistentry>
1323 <varlistentry>
1324 <term><varname>InitialAdvertisedReceiveWindow=</varname></term>
1325 <listitem>
1326 <para>The TCP initial advertised receive window is the amount of receive data (in bytes) that can initially be buffered at one time
1327 on a connection. The sending host can send only that amount of data before waiting for an acknowledgment and window update
1328 from the receiving host. Takes a size in bytes between 1 and 4294967295 (2^32 - 1). The usual suffixes K, M, G are supported
1329 and are understood to the base of 1024. When unset, the kernel's default will be used.
1330 </para>
1331 </listitem>
1332 </varlistentry>
1333 <varlistentry>
1334 <term><varname>QuickAck=</varname></term>
1335 <listitem>
1336 <para>Takes a boolean. When true enables TCP quick ack mode for the route. When unset, the kernel's default will be used.
1337 </para>
1338 </listitem>
1339 </varlistentry>
1340 <varlistentry>
1341 <term><varname>FastOpenNoCookie=</varname></term>
1342 <listitem>
1343 <para>Takes a boolean. When true enables TCP fastopen without a cookie on a per-route basis.
1344 When unset, the kernel's default will be used.
1345 </para>
1346 </listitem>
1347 </varlistentry>
1348 <varlistentry>
1349 <term><varname>TTLPropagate=</varname></term>
1350 <listitem>
1351 <para>Takes a boolean. When true enables TTL propagation at Label Switched Path (LSP) egress.
1352 When unset, the kernel's default will be used.
1353 </para>
1354 </listitem>
1355 </varlistentry>
1356 <varlistentry>
1357 <term><varname>MTUBytes=</varname></term>
1358 <listitem>
1359 <para>The maximum transmission unit in bytes to set for the
1360 route. The usual suffixes K, M, G, are supported and are
1361 understood to the base of 1024.</para>
1362 <para>Note that if IPv6 is enabled on the interface, and the MTU is chosen
1363 below 1280 (the minimum MTU for IPv6) it will automatically be increased to this value.</para>
1364 </listitem>
1365 </varlistentry>
1366 <varlistentry>
1367 <term><varname>IPServiceType=</varname></term>
1368 <listitem>
1369 <para>Takes string; "CS6" or "CS4". Used to set IP service type to CS6 (network control)
1370 or CS4 (Realtime). IPServiceType defaults to CS6 if nothing is specified.</para>
1371 </listitem>
1372 </varlistentry>
1373 </variablelist>
1374 </refsect1>
1375
1376 <refsect1>
1377 <title>[DHCPv4] Section Options</title>
1378 <para>The <literal>[DHCPv4]</literal> section configures the
1379 DHCPv4 client, if it is enabled with the
1380 <varname>DHCP=</varname> setting described above:</para>
1381
1382 <variablelist class='network-directives'>
1383 <varlistentry>
1384 <term><varname>UseDNS=</varname></term>
1385 <listitem>
1386 <para>When true (the default), the DNS servers received
1387 from the DHCP server will be used and take precedence over
1388 any statically configured ones.</para>
1389
1390 <para>This corresponds to the <option>nameserver</option>
1391 option in <citerefentry
1392 project='man-pages'><refentrytitle>resolv.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>.</para>
1393 </listitem>
1394 </varlistentry>
1395 <varlistentry>
1396 <term><varname>RoutesToDNS=</varname></term>
1397 <listitem>
1398 <para>When true, the routes to the DNS servers received from the DHCP server will be
1399 configured. When <varname>UseDNS=</varname> is disabled, this setting is ignored.
1400 Defaults to false.</para>
1401 </listitem>
1402 </varlistentry>
1403 <varlistentry>
1404 <term><varname>UseNTP=</varname></term>
1405 <listitem>
1406 <para>When true (the default), the NTP servers received
1407 from the DHCP server will be used by systemd-timesyncd
1408 and take precedence over any statically configured ones.</para>
1409 </listitem>
1410 </varlistentry>
1411 <varlistentry>
1412 <term><varname>UseSIP=</varname></term>
1413 <listitem>
1414 <para>When true (the default), the SIP servers received
1415 from the DHCP server will be saved at the state files and can be
1416 read via <function>sd_network_link_get_sip_servers()</function> function.</para>
1417 </listitem>
1418 </varlistentry>
1419 <varlistentry>
1420 <term><varname>UseMTU=</varname></term>
1421 <listitem>
1422 <para>When true, the interface maximum transmission unit
1423 from the DHCP server will be used on the current link.
1424 If <varname>MTUBytes=</varname> is set, then this setting is ignored.
1425 Defaults to false.</para>
1426 </listitem>
1427 </varlistentry>
1428 <varlistentry>
1429 <term><varname>Anonymize=</varname></term>
1430 <listitem>
1431 <para>Takes a boolean. When true, the options sent to the DHCP server will
1432 follow the <ulink url="https://tools.ietf.org/html/rfc7844">RFC 7844</ulink>
1433 (Anonymity Profiles for DHCP Clients) to minimize disclosure of identifying information.
1434 Defaults to false.</para>
1435
1436 <para>This option should only be set to true when
1437 <varname>MACAddressPolicy=</varname> is set to <literal>random</literal>
1438 (see <citerefentry
1439 project='man-pages'><refentrytitle>systemd.link</refentrytitle><manvolnum>5</manvolnum></citerefentry>).</para>
1440
1441 <para>Note that this configuration will overwrite others.
1442 In concrete, the following variables will be ignored:
1443 <varname>SendHostname=</varname>, <varname>ClientIdentifier=</varname>,
1444 <varname>UseRoutes=</varname>, <varname>SendHostname=</varname>,
1445 <varname>UseMTU=</varname>, <varname>VendorClassIdentifier=</varname>,
1446 <varname>UseTimezone=</varname>.</para>
1447
1448 <para>With this option enabled DHCP requests will mimic those generated by Microsoft Windows, in
1449 order to reduce the ability to fingerprint and recognize installations. This means DHCP request
1450 sizes will grow and lease data will be more comprehensive than normally, though most of the
1451 requested data is not actually used.</para>
1452 </listitem>
1453 </varlistentry>
1454 <varlistentry>
1455 <term><varname>SendHostname=</varname></term>
1456 <listitem>
1457 <para>When true (the default), the machine's hostname will be sent to the DHCP server.
1458 Note that the machine's hostname must consist only of 7-bit ASCII lower-case characters and
1459 no spaces or dots, and be formatted as a valid DNS domain name. Otherwise, the hostname is not
1460 sent even if this is set to true.</para>
1461 </listitem>
1462 </varlistentry>
1463 <varlistentry>
1464 <term><varname>UseHostname=</varname></term>
1465 <listitem>
1466 <para>When true (the default), the hostname received from
1467 the DHCP server will be set as the transient hostname of the system.
1468 </para>
1469 </listitem>
1470 </varlistentry>
1471 <varlistentry>
1472 <term><varname>Hostname=</varname></term>
1473 <listitem>
1474 <para>Use this value for the hostname which is sent to the DHCP server, instead of machine's hostname.
1475 Note that the specified hostname must consist only of 7-bit ASCII lower-case characters and
1476 no spaces or dots, and be formatted as a valid DNS domain name.</para>
1477 </listitem>
1478 </varlistentry>
1479 <varlistentry>
1480 <term><varname>UseDomains=</varname></term>
1481 <listitem>
1482 <para>Takes a boolean, or the special value <literal>route</literal>. When true, the domain name
1483 received from the DHCP server will be used as DNS search domain over this link, similar to the effect of
1484 the <option>Domains=</option> setting. If set to <literal>route</literal>, the domain name received from
1485 the DHCP server will be used for routing DNS queries only, but not for searching, similar to the effect of
1486 the <option>Domains=</option> setting when the argument is prefixed with <literal>~</literal>. Defaults to
1487 false.</para>
1488
1489 <para>It is recommended to enable this option only on trusted networks, as setting this affects resolution
1490 of all host names, in particular of single-label names. It is generally safer to use the supplied domain
1491 only as routing domain, rather than as search domain, in order to not have it affect local resolution of
1492 single-label names.</para>
1493
1494 <para>When set to true, this setting corresponds to the <option>domain</option> option in <citerefentry
1495 project='man-pages'><refentrytitle>resolv.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>.</para>
1496 </listitem>
1497 </varlistentry>
1498 <varlistentry>
1499 <term><varname>UseRoutes=</varname></term>
1500 <listitem>
1501 <para>When true (the default), the static routes will be requested from the DHCP server and added to the
1502 routing table with a metric of 1024, and a scope of "global", "link" or "host", depending on the route's
1503 destination and gateway. If the destination is on the local host, e.g., 127.x.x.x, or the same as the
1504 link's own address, the scope will be set to "host". Otherwise if the gateway is null (a direct route), a
1505 "link" scope will be used. For anything else, scope defaults to "global".</para>
1506 </listitem>
1507 </varlistentry>
1508
1509 <varlistentry>
1510 <term><varname>UseTimezone=</varname></term>
1511
1512 <listitem><para>When true, the timezone received from the
1513 DHCP server will be set as timezone of the local
1514 system. Defaults to <literal>no</literal>.</para></listitem>
1515 </varlistentry>
1516
1517 <varlistentry>
1518 <term><varname>ClientIdentifier=</varname></term>
1519 <listitem>
1520 <para>The DHCPv4 client identifier to use. Takes one of <literal>mac</literal>, <literal>duid</literal> or <literal>duid-only</literal>.
1521 If set to <literal>mac</literal>, the MAC address of the link is used.
1522 If set to <literal>duid</literal>, an RFC4361-compliant Client ID, which is the combination of IAID and DUID (see below), is used.
1523 If set to <literal>duid-only</literal>, only DUID is used, this may not be RFC compliant, but some setups may require to use this.
1524 Defaults to <literal>duid</literal>.</para>
1525 </listitem>
1526 </varlistentry>
1527
1528 <varlistentry>
1529 <term><varname>VendorClassIdentifier=</varname></term>
1530 <listitem>
1531 <para>The vendor class identifier used to identify vendor
1532 type and configuration.</para>
1533 </listitem>
1534 </varlistentry>
1535
1536 <varlistentry>
1537 <term><varname>UserClass=</varname></term>
1538 <listitem>
1539 <para>A DHCPv4 client can use UserClass option to identify the type or category of user or applications
1540 it represents. The information contained in this option is a string that represents the user class of which
1541 the client is a member. Each class sets an identifying string of information to be used by the DHCP
1542 service to classify clients. Takes a whitespace-separated list of strings.</para>
1543 </listitem>
1544 </varlistentry>
1545
1546 <varlistentry>
1547 <term><varname>MaxAttempts=</varname></term>
1548 <listitem>
1549 <para>Specifies how many times the DHCPv4 client configuration should be attempted. Takes a
1550 number or <literal>infinity</literal>. Defaults to <literal>infinity</literal>.
1551 Note that the time between retries is increased exponentially, so the network will not be
1552 overloaded even if this number is high.</para>
1553 </listitem>
1554 </varlistentry>
1555
1556 <varlistentry>
1557 <term><varname>DUIDType=</varname></term>
1558 <listitem>
1559 <para>Override the global <varname>DUIDType</varname> setting for this network. See
1560 <citerefentry><refentrytitle>networkd.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>
1561 for a description of possible values.</para>
1562 </listitem>
1563 </varlistentry>
1564
1565 <varlistentry>
1566 <term><varname>DUIDRawData=</varname></term>
1567 <listitem>
1568 <para>Override the global <varname>DUIDRawData</varname> setting for this network. See
1569 <citerefentry><refentrytitle>networkd.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>
1570 for a description of possible values.</para>
1571 </listitem>
1572 </varlistentry>
1573
1574 <varlistentry>
1575 <term><varname>IAID=</varname></term>
1576 <listitem>
1577 <para>The DHCP Identity Association Identifier (IAID) for the interface, a 32-bit unsigned integer.</para>
1578 </listitem>
1579 </varlistentry>
1580
1581 <varlistentry>
1582 <term><varname>RequestBroadcast=</varname></term>
1583 <listitem>
1584 <para>Request the server to use broadcast messages before
1585 the IP address has been configured. This is necessary for
1586 devices that cannot receive RAW packets, or that cannot
1587 receive packets at all before an IP address has been
1588 configured. On the other hand, this must not be enabled on
1589 networks where broadcasts are filtered out.</para>
1590 </listitem>
1591 </varlistentry>
1592
1593 <varlistentry>
1594 <term><varname>RouteMetric=</varname></term>
1595 <listitem>
1596 <para>Set the routing metric for routes specified by the
1597 DHCP server.</para>
1598 </listitem>
1599 </varlistentry>
1600
1601 <varlistentry>
1602 <term><varname>RouteTable=<replaceable>num</replaceable></varname></term>
1603 <listitem>
1604 <para>The table identifier for DHCP routes (a number between 1 and 4294967295, or 0 to unset).
1605 The table can be retrieved using <command>ip route show table <replaceable>num</replaceable></command>.
1606 </para>
1607 <para>When used in combination with <varname>VRF=</varname> the
1608 VRF's routing table is used unless this parameter is specified.
1609 </para>
1610 </listitem>
1611 </varlistentry>
1612
1613 <varlistentry>
1614 <term><varname>ListenPort=</varname></term>
1615 <listitem>
1616 <para>Allow setting custom port for the DHCP client to listen on.</para>
1617 </listitem>
1618 </varlistentry>
1619
1620 <varlistentry>
1621 <term><varname>SendRelease=</varname></term>
1622 <listitem>
1623 <para>When true, the DHCPv4 client sends a DHCP release packet when it stops.
1624 Defaults to true.</para>
1625 </listitem>
1626 </varlistentry>
1627
1628 <varlistentry>
1629 <term><varname>BlackList=</varname></term>
1630 <listitem>
1631 <para>A whitespace-separated list of IPv4 addresses. DHCP offers from servers in the list are rejected.</para>
1632 </listitem>
1633 </varlistentry>
1634
1635 <varlistentry>
1636 <term><varname>RequestOptions=</varname></term>
1637 <listitem>
1638 <para>A whitespace-separated list of integers in the range 1–254.</para>
1639 </listitem>
1640 </varlistentry>
1641
1642 <varlistentry>
1643 <term><varname>SendOption=</varname></term>
1644 <listitem>
1645 <para>Send a raw option with value via DHCPv4 client. Takes a DHCP option and base64 encoded
1646 data separated with a colon (option:value). The option ranges [1-254]. This option can be
1647 specified multiple times. If an empty string is specified, then all options specified earlier
1648 are cleared. Defaults to unset.</para>
1649 </listitem>
1650 </varlistentry>
1651 </variablelist>
1652 </refsect1>
1653
1654 <refsect1>
1655 <title>[DHCPv6] Section Options</title>
1656 <para>The <literal>[DHCPv6]</literal> section configures the DHCPv6 client, if it is enabled with the
1657 <varname>DHCP=</varname> setting described above, or invoked by the IPv6 Router Advertisement:</para>
1658
1659 <variablelist class='network-directives'>
1660 <varlistentry>
1661 <term><varname>UseDNS=</varname></term>
1662 <term><varname>UseNTP=</varname></term>
1663 <listitem>
1664 <para>As in the <literal>[DHCPv4]</literal> section.</para>
1665 </listitem>
1666 </varlistentry>
1667
1668 <varlistentry>
1669 <term><varname>RapidCommit=</varname></term>
1670 <listitem>
1671 <para>Takes a boolean. The DHCPv6 client can obtain configuration parameters from a DHCPv6 server through
1672 a rapid two-message exchange (solicit and reply). When the rapid commit option is enabled by both
1673 the DHCPv6 client and the DHCPv6 server, the two-message exchange is used, rather than the default
1674 four-method exchange (solicit, advertise, request, and reply). The two-message exchange provides
1675 faster client configuration and is beneficial in environments in which networks are under a heavy load.
1676 See <ulink url="https://tools.ietf.org/html/rfc3315#section-17.2.1">RFC 3315</ulink> for details.
1677 Defaults to true.</para>
1678 </listitem>
1679 </varlistentry>
1680
1681 <varlistentry>
1682 <term><varname>ForceDHCPv6PDOtherInformation=</varname></term>
1683 <listitem>
1684 <para>Takes a boolean that enforces DHCPv6 stateful mode when the 'Other information' bit is set in
1685 Router Advertisement messages. By default setting only the 'O' bit in Router Advertisements
1686 makes DHCPv6 request network information in a stateless manner using a two-message Information
1687 Request and Information Reply message exchange.
1688 <ulink url="https://tools.ietf.org/html/rfc7084">RFC 7084</ulink>, requirement WPD-4, updates
1689 this behavior for a Customer Edge router so that stateful DHCPv6 Prefix Delegation is also
1690 requested when only the 'O' bit is set in Router Advertisements. This option enables such a CE
1691 behavior as it is impossible to automatically distinguish the intention of the 'O' bit otherwise.
1692 By default this option is set to 'false', enable it if no prefixes are delegated when the device
1693 should be acting as a CE router.</para>
1694 </listitem>
1695 </varlistentry>
1696
1697 <varlistentry>
1698 <term><varname>PrefixDelegationHint=</varname></term>
1699 <listitem>
1700 <para>Takes an IPv6 address with prefix length as <varname>Addresss=</varname> in
1701 the "[Network]" section. Specifies the DHCPv6 client for the requesting router to include
1702 a prefix-hint in the DHCPv6 solicitation. Prefix ranges 1-128. Defaults to unset.</para>
1703 </listitem>
1704 </varlistentry>
1705 </variablelist>
1706 </refsect1>
1707
1708 <refsect1>
1709 <title>[IPv6AcceptRA] Section Options</title>
1710 <para>The <literal>[IPv6AcceptRA]</literal> section configures the IPv6 Router Advertisement
1711 (RA) client, if it is enabled with the <varname>IPv6AcceptRA=</varname> setting described
1712 above:</para>
1713
1714 <variablelist class='network-directives'>
1715 <varlistentry>
1716 <term><varname>UseDNS=</varname></term>
1717 <listitem>
1718 <para>When true (the default), the DNS servers received in the Router Advertisement will be used and take
1719 precedence over any statically configured ones.</para>
1720
1721 <para>This corresponds to the <option>nameserver</option> option in <citerefentry
1722 project='man-pages'><refentrytitle>resolv.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>.</para>
1723 </listitem>
1724 </varlistentry>
1725
1726 <varlistentry>
1727 <term><varname>UseDomains=</varname></term>
1728 <listitem>
1729 <para>Takes a boolean, or the special value <literal>route</literal>. When true, the domain name
1730 received via IPv6 Router Advertisement (RA) will be used as DNS search domain over this link, similar to
1731 the effect of the <option>Domains=</option> setting. If set to <literal>route</literal>, the domain name
1732 received via IPv6 RA will be used for routing DNS queries only, but not for searching, similar to the
1733 effect of the <option>Domains=</option> setting when the argument is prefixed with
1734 <literal>~</literal>. Defaults to false.</para>
1735
1736 <para>It is recommended to enable this option only on trusted networks, as setting this affects resolution
1737 of all host names, in particular of single-label names. It is generally safer to use the supplied domain
1738 only as routing domain, rather than as search domain, in order to not have it affect local resolution of
1739 single-label names.</para>
1740
1741 <para>When set to true, this setting corresponds to the <option>domain</option> option in <citerefentry
1742 project='man-pages'><refentrytitle>resolv.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>.</para>
1743 </listitem>
1744 </varlistentry>
1745
1746 <varlistentry>
1747 <term><varname>RouteTable=<replaceable>num</replaceable></varname></term>
1748 <listitem>
1749 <para>The table identifier for the routes received in the Router Advertisement
1750 (a number between 1 and 4294967295, or 0 to unset).
1751 The table can be retrieved using <command>ip route show table <replaceable>num</replaceable></command>.
1752 </para>
1753 </listitem>
1754 </varlistentry>
1755
1756 <varlistentry>
1757 <term><varname>UseAutonomousPrefix=</varname></term>
1758 <listitem>
1759 <para>When true (the default), the autonomous prefix received in the Router Advertisement will be used and take
1760 precedence over any statically configured ones.</para>
1761 </listitem>
1762 </varlistentry>
1763
1764 <varlistentry>
1765 <term><varname>UseOnLinkPrefix=</varname></term>
1766 <listitem>
1767 <para>When true (the default), the onlink prefix received in the Router Advertisement will be used and take
1768 precedence over any statically configured ones.</para>
1769 </listitem>
1770 </varlistentry>
1771
1772 <varlistentry>
1773 <term><varname>BlackList=</varname></term>
1774 <listitem>
1775 <para>A whitespace-separated list of IPv6 prefixes. IPv6 prefixes supplied via router advertisements in the list are ignored.</para>
1776 </listitem>
1777 </varlistentry>
1778
1779 </variablelist>
1780 </refsect1>
1781
1782 <refsect1>
1783 <title>[DHCPServer] Section Options</title>
1784 <para>The <literal>[DHCPServer]</literal> section contains
1785 settings for the DHCP server, if enabled via the
1786 <varname>DHCPServer=</varname> option described above:</para>
1787
1788 <variablelist class='network-directives'>
1789
1790 <varlistentry>
1791 <term><varname>PoolOffset=</varname></term>
1792 <term><varname>PoolSize=</varname></term>
1793
1794 <listitem><para>Configures the pool of addresses to hand out. The pool
1795 is a contiguous sequence of IP addresses in the subnet configured for
1796 the server address, which does not include the subnet nor the broadcast
1797 address. <varname>PoolOffset=</varname> takes the offset of the pool
1798 from the start of subnet, or zero to use the default value.
1799 <varname>PoolSize=</varname> takes the number of IP addresses in the
1800 pool or zero to use the default value. By default, the pool starts at
1801 the first address after the subnet address and takes up the rest of
1802 the subnet, excluding the broadcast address. If the pool includes
1803 the server address (the default), this is reserved and not handed
1804 out to clients.</para></listitem>
1805 </varlistentry>
1806
1807 <varlistentry>
1808 <term><varname>DefaultLeaseTimeSec=</varname></term>
1809 <term><varname>MaxLeaseTimeSec=</varname></term>
1810
1811 <listitem><para>Control the default and maximum DHCP lease
1812 time to pass to clients. These settings take time values in seconds or
1813 another common time unit, depending on the suffix. The default
1814 lease time is used for clients that did not ask for a specific
1815 lease time. If a client asks for a lease time longer than the
1816 maximum lease time, it is automatically shortened to the
1817 specified time. The default lease time defaults to 1h, the
1818 maximum lease time to 12h. Shorter lease times are beneficial
1819 if the configuration data in DHCP leases changes frequently
1820 and clients shall learn the new settings with shorter
1821 latencies. Longer lease times reduce the generated DHCP
1822 network traffic.</para></listitem>
1823 </varlistentry>
1824
1825 <varlistentry>
1826 <term><varname>EmitDNS=</varname></term>
1827 <term><varname>DNS=</varname></term>
1828
1829 <listitem><para>Takes a boolean. Configures whether the DHCP leases handed out
1830 to clients shall contain DNS server information. Defaults to <literal>yes</literal>.
1831 The DNS servers to pass to clients may be configured with the
1832 <varname>DNS=</varname> option, which takes a list of IPv4
1833 addresses. If the <varname>EmitDNS=</varname> option is
1834 enabled but no servers configured, the servers are
1835 automatically propagated from an "uplink" interface that has
1836 appropriate servers set. The "uplink" interface is determined
1837 by the default route of the system with the highest
1838 priority. Note that this information is acquired at the time
1839 the lease is handed out, and does not take uplink interfaces
1840 into account that acquire DNS or NTP server information at a
1841 later point. DNS server propagation does not take
1842 <filename>/etc/resolv.conf</filename> into account. Also, note
1843 that the leases are not refreshed if the uplink network
1844 configuration changes. To ensure clients regularly acquire the
1845 most current uplink DNS server information, it is thus
1846 advisable to shorten the DHCP lease time via
1847 <varname>MaxLeaseTimeSec=</varname> described
1848 above.</para></listitem>
1849 </varlistentry>
1850
1851 <varlistentry>
1852 <term><varname>EmitNTP=</varname></term>
1853 <term><varname>NTP=</varname></term>
1854
1855 <listitem><para>Similar to the <varname>EmitDNS=</varname> and
1856 <varname>DNS=</varname> settings described above, these
1857 settings configure whether and what NTP server information
1858 shall be emitted as part of the DHCP lease. The same syntax,
1859 propagation semantics and defaults apply as for
1860 <varname>EmitDNS=</varname> and
1861 <varname>DNS=</varname>.</para></listitem>
1862 </varlistentry>
1863
1864 <varlistentry>
1865 <term><varname>EmitSIP=</varname></term>
1866 <term><varname>SIP=</varname></term>
1867
1868 <listitem><para>Similar to the <varname>EmitDNS=</varname> and
1869 <varname>DNS=</varname> settings described above, these
1870 settings configure whether and what SIP server information
1871 shall be emitted as part of the DHCP lease. The same syntax,
1872 propagation semantics and defaults apply as for
1873 <varname>EmitDNS=</varname> and
1874 <varname>DNS=</varname>.</para></listitem>
1875 </varlistentry>
1876
1877 <varlistentry>
1878 <term><varname>EmitRouter=</varname></term>
1879
1880 <listitem><para>Similar to the <varname>EmitDNS=</varname>
1881 setting described above, this setting configures whether the
1882 DHCP lease should contain the router option. The same syntax,
1883 propagation semantics and defaults apply as for
1884 <varname>EmitDNS=</varname>.</para></listitem>
1885 </varlistentry>
1886
1887 <varlistentry>
1888 <term><varname>EmitTimezone=</varname></term>
1889 <term><varname>Timezone=</varname></term>
1890
1891 <listitem><para>Takes a boolean. Configures whether the DHCP leases handed out
1892 to clients shall contain timezone information. Defaults to <literal>yes</literal>. The
1893 <varname>Timezone=</varname> setting takes a timezone string
1894 (such as <literal>Europe/Berlin</literal> or
1895 <literal>UTC</literal>) to pass to clients. If no explicit
1896 timezone is set, the system timezone of the local host is
1897 propagated, as determined by the
1898 <filename>/etc/localtime</filename> symlink.</para></listitem>
1899 </varlistentry>
1900
1901 </variablelist>
1902 </refsect1>
1903
1904 <refsect1>
1905 <title>[IPv6PrefixDelegation] Section Options</title>
1906 <para>The <literal>[IPv6PrefixDelegation]</literal> section contains
1907 settings for sending IPv6 Router Advertisements and whether to act as
1908 a router, if enabled via the <varname>IPv6PrefixDelegation=</varname>
1909 option described above. IPv6 network prefixes are defined with one or
1910 more <literal>[IPv6Prefix]</literal> sections.</para>
1911
1912 <variablelist class='network-directives'>
1913
1914 <varlistentry>
1915 <term><varname>Managed=</varname></term>
1916 <term><varname>OtherInformation=</varname></term>
1917
1918 <listitem><para>Takes a boolean. Controls whether a DHCPv6 server is used to acquire IPv6
1919 addresses on the network link when <varname>Managed=</varname>
1920 is set to <literal>true</literal> or if only additional network
1921 information can be obtained via DHCPv6 for the network link when
1922 <varname>OtherInformation=</varname> is set to
1923 <literal>true</literal>. Both settings default to
1924 <literal>false</literal>, which means that a DHCPv6 server is not being
1925 used.</para></listitem>
1926 </varlistentry>
1927
1928 <varlistentry>
1929 <term><varname>RouterLifetimeSec=</varname></term>
1930
1931 <listitem><para>Takes a timespan. Configures the IPv6 router lifetime in seconds. If set,
1932 this host also announces itself in Router Advertisements as an IPv6
1933 router for the network link. When unset, the host is not acting as a router.</para>
1934 </listitem>
1935 </varlistentry>
1936
1937 <varlistentry>
1938 <term><varname>RouterPreference=</varname></term>
1939
1940 <listitem><para>Configures IPv6 router preference if
1941 <varname>RouterLifetimeSec=</varname> is non-zero. Valid values are
1942 <literal>high</literal>, <literal>medium</literal> and
1943 <literal>low</literal>, with <literal>normal</literal> and
1944 <literal>default</literal> added as synonyms for
1945 <literal>medium</literal> just to make configuration easier. See
1946 <ulink url="https://tools.ietf.org/html/rfc4191">RFC 4191</ulink>
1947 for details. Defaults to <literal>medium</literal>.</para></listitem>
1948 </varlistentry>
1949
1950 <varlistentry>
1951 <term><varname>EmitDNS=</varname></term>
1952 <term><varname>DNS=</varname></term>
1953
1954 <listitem><para><varname>DNS=</varname> specifies a list of recursive
1955 DNS server IPv6 addresses that distributed via Router Advertisement
1956 messages when <varname>EmitDNS=</varname> is true. If <varname>DNS=
1957 </varname> is empty, DNS servers are read from the
1958 <literal>[Network]</literal> section. If the
1959 <literal>[Network]</literal> section does not contain any DNS servers
1960 either, DNS servers from the uplink with the highest priority default
1961 route are used. When <varname>EmitDNS=</varname> is false, no DNS server
1962 information is sent in Router Advertisement messages.
1963 <varname>EmitDNS=</varname> defaults to true.
1964 </para></listitem>
1965 </varlistentry>
1966
1967 <varlistentry>
1968 <term><varname>EmitDomains=</varname></term>
1969 <term><varname>Domains=</varname></term>
1970
1971 <listitem><para>A list of DNS search domains distributed via Router
1972 Advertisement messages when <varname>EmitDomains=</varname> is true. If
1973 <varname>Domains=</varname> is empty, DNS search domains are read from the
1974 <literal>[Network]</literal> section. If the <literal>[Network]</literal>
1975 section does not contain any DNS search domains either, DNS search
1976 domains from the uplink with the highest priority default route are
1977 used. When <varname>EmitDomains=</varname> is false, no DNS search domain
1978 information is sent in Router Advertisement messages.
1979 <varname>EmitDomains=</varname> defaults to true.
1980 </para></listitem>
1981 </varlistentry>
1982
1983 <varlistentry>
1984 <term><varname>DNSLifetimeSec=</varname></term>
1985
1986 <listitem><para>Lifetime in seconds for the DNS server addresses listed
1987 in <varname>DNS=</varname> and search domains listed in
1988 <varname>Domains=</varname>.</para></listitem>
1989 </varlistentry>
1990
1991 </variablelist>
1992 </refsect1>
1993
1994 <refsect1>
1995 <title>[IPv6Prefix] Section Options</title>
1996 <para>One or more <literal>[IPv6Prefix]</literal> sections contain the IPv6
1997 prefixes that are announced via Router Advertisements. See
1998 <ulink url="https://tools.ietf.org/html/rfc4861">RFC 4861</ulink>
1999 for further details.</para>
2000
2001 <variablelist class='network-directives'>
2002
2003 <varlistentry>
2004 <term><varname>AddressAutoconfiguration=</varname></term>
2005 <term><varname>OnLink=</varname></term>
2006
2007 <listitem><para>Takes a boolean to specify whether IPv6 addresses can be
2008 autoconfigured with this prefix and whether the prefix can be used for
2009 onlink determination. Both settings default to <literal>true</literal>
2010 in order to ease configuration.
2011 </para></listitem>
2012 </varlistentry>
2013
2014 <varlistentry>
2015 <term><varname>Prefix=</varname></term>
2016
2017 <listitem><para>The IPv6 prefix that is to be distributed to hosts.
2018 Similarly to configuring static IPv6 addresses, the setting is
2019 configured as an IPv6 prefix and its prefix length, separated by a
2020 <literal>/</literal> character. Use multiple
2021 <literal>[IPv6Prefix]</literal> sections to configure multiple IPv6
2022 prefixes since prefix lifetimes, address autoconfiguration and onlink
2023 status may differ from one prefix to another.</para></listitem>
2024 </varlistentry>
2025
2026 <varlistentry>
2027 <term><varname>PreferredLifetimeSec=</varname></term>
2028 <term><varname>ValidLifetimeSec=</varname></term>
2029
2030 <listitem><para>Preferred and valid lifetimes for the prefix measured in
2031 seconds. <varname>PreferredLifetimeSec=</varname> defaults to 604800
2032 seconds (one week) and <varname>ValidLifetimeSec=</varname> defaults
2033 to 2592000 seconds (30 days).</para></listitem>
2034 </varlistentry>
2035
2036 </variablelist>
2037 </refsect1>
2038
2039 <refsect1>
2040 <title>[IPv6RoutePrefix] Section Options</title>
2041 <para>One or more <literal>[IPv6RoutePrefix]</literal> sections contain the IPv6
2042 prefix routes that are announced via Router Advertisements. See
2043 <ulink url="https://tools.ietf.org/html/rfc4191">RFC 4191</ulink>
2044 for further details.</para>
2045
2046 <variablelist class='network-directives'>
2047
2048 <varlistentry>
2049 <term><varname>Route=</varname></term>
2050
2051 <listitem><para>The IPv6 route that is to be distributed to hosts.
2052 Similarly to configuring static IPv6 routes, the setting is
2053 configured as an IPv6 prefix routes and its prefix route length,
2054 separated by a<literal>/</literal> character. Use multiple
2055 <literal>[IPv6PrefixRoutes]</literal> sections to configure multiple IPv6
2056 prefix routes.</para></listitem>
2057 </varlistentry>
2058
2059 <varlistentry>
2060 <term><varname>LifetimeSec=</varname></term>
2061
2062 <listitem><para>Lifetime for the route prefix measured in
2063 seconds. <varname>LifetimeSec=</varname> defaults to 604800 seconds (one week).
2064 </para></listitem>
2065 </varlistentry>
2066
2067 </variablelist>
2068 </refsect1>
2069
2070 <refsect1>
2071 <title>[Bridge] Section Options</title>
2072 <para>The <literal>[Bridge]</literal> section accepts the
2073 following keys.</para>
2074 <variablelist class='network-directives'>
2075 <varlistentry>
2076 <term><varname>UnicastFlood=</varname></term>
2077 <listitem>
2078 <para>Takes a boolean. Controls whether the bridge should flood
2079 traffic for which an FDB entry is missing and the destination
2080 is unknown through this port. When unset, the kernel's default will be used.
2081 </para>
2082 </listitem>
2083 </varlistentry>
2084 <varlistentry>
2085 <term><varname>MulticastFlood=</varname></term>
2086 <listitem>
2087 <para>Takes a boolean. Controls whether the bridge should flood
2088 traffic for which an MDB entry is missing and the destination
2089 is unknown through this port. When unset, the kernel's default will be used.
2090 </para>
2091 </listitem>
2092 </varlistentry>
2093 <varlistentry>
2094 <term><varname>MulticastToUnicast=</varname></term>
2095 <listitem>
2096 <para>Takes a boolean. Multicast to unicast works on top of the multicast snooping feature of
2097 the bridge. Which means unicast copies are only delivered to hosts which are interested in it.
2098 When unset, the kernel's default will be used.
2099 </para>
2100 </listitem>
2101 </varlistentry>
2102 <varlistentry>
2103 <term><varname>NeighborSuppression=</varname></term>
2104 <listitem>
2105 <para>Takes a boolean. Configures whether ARP and ND neighbor suppression is enabled for
2106 this port. When unset, the kernel's default will be used.
2107 </para>
2108 </listitem>
2109 </varlistentry>
2110 <varlistentry>
2111 <term><varname>Learning=</varname></term>
2112 <listitem>
2113 <para>Takes a boolean. Configures whether MAC address learning is enabled for
2114 this port. When unset, the kernel's default will be used.
2115 </para>
2116 </listitem>
2117 </varlistentry>
2118 <varlistentry>
2119 <term><varname>HairPin=</varname></term>
2120 <listitem>
2121 <para>Takes a boolean. Configures whether traffic may be sent back
2122 out of the port on which it was received. When this flag is false, and the bridge
2123 will not forward traffic back out of the receiving port.
2124 When unset, the kernel's default will be used.</para>
2125 </listitem>
2126 </varlistentry>
2127 <varlistentry>
2128 <term><varname>UseBPDU=</varname></term>
2129 <listitem>
2130 <para>Takes a boolean. Configures whether STP Bridge Protocol Data Units will be
2131 processed by the bridge port. When unset, the kernel's default will be used.</para>
2132 </listitem>
2133 </varlistentry>
2134 <varlistentry>
2135 <term><varname>FastLeave=</varname></term>
2136 <listitem>
2137 <para>Takes a boolean. This flag allows the bridge to immediately stop multicast
2138 traffic on a port that receives an IGMP Leave message. It is only used with
2139 IGMP snooping if enabled on the bridge. When unset, the kernel's default will be used.</para>
2140 </listitem>
2141 </varlistentry>
2142 <varlistentry>
2143 <term><varname>AllowPortToBeRoot=</varname></term>
2144 <listitem>
2145 <para>Takes a boolean. Configures whether a given port is allowed to
2146 become a root port. Only used when STP is enabled on the bridge.
2147 When unset, the kernel's default will be used.</para>
2148 </listitem>
2149 </varlistentry>
2150 <varlistentry>
2151 <term><varname>ProxyARP=</varname></term>
2152 <listitem>
2153 <para>Takes a boolean. Configures whether proxy ARP to be enabled on this port.
2154 When unset, the kernel's default will be used.</para>
2155 </listitem>
2156 </varlistentry>
2157 <varlistentry>
2158 <term><varname>ProxyARPWiFi=</varname></term>
2159 <listitem>
2160 <para>Takes a boolean. Configures whether proxy ARP to be enabled on this port
2161 which meets extended requirements by IEEE 802.11 and Hotspot 2.0 specifications.
2162 When unset, the kernel's default will be used.</para>
2163 </listitem>
2164 </varlistentry>
2165 <varlistentry>
2166 <term><varname>MulticastRouter=</varname></term>
2167 <listitem>
2168 <para>Configures this port for having multicast routers attached. A port with a multicast
2169 router will receive all multicast traffic. Takes one of <literal>no</literal>
2170 to disable multicast routers on this port, <literal>query</literal> to let the system detect
2171 the presence of routers, <literal>permanent</literal> to permanently enable multicast traffic
2172 forwarding on this port, or <literal>temporary</literal> to enable multicast routers temporarily
2173 on this port, not depending on incoming queries. When unset, the kernel's default will be used.</para>
2174 </listitem>
2175 </varlistentry>
2176 <varlistentry>
2177 <term><varname>Cost=</varname></term>
2178 <listitem>
2179 <para>Sets the "cost" of sending packets of this interface.
2180 Each port in a bridge may have a different speed and the cost
2181 is used to decide which link to use. Faster interfaces
2182 should have lower costs. It is an integer value between 1 and
2183 65535.</para>
2184 </listitem>
2185 </varlistentry>
2186 <varlistentry>
2187 <term><varname>Priority=</varname></term>
2188 <listitem>
2189 <para>Sets the "priority" of sending packets on this interface.
2190 Each port in a bridge may have a different priority which is used
2191 to decide which link to use. Lower value means higher priority.
2192 It is an integer value between 0 to 63. Networkd does not set any
2193 default, meaning the kernel default value of 32 is used.</para>
2194 </listitem>
2195 </varlistentry>
2196 </variablelist>
2197 </refsect1>
2198 <refsect1>
2199 <title>[BridgeFDB] Section Options</title>
2200 <para>The <literal>[BridgeFDB]</literal> section manages the
2201 forwarding database table of a port and accepts the following
2202 keys. Specify several <literal>[BridgeFDB]</literal> sections to
2203 configure several static MAC table entries.</para>
2204
2205 <variablelist class='network-directives'>
2206 <varlistentry>
2207 <term><varname>MACAddress=</varname></term>
2208 <listitem>
2209 <para>As in the <literal>[Network]</literal> section. This
2210 key is mandatory.</para>
2211 </listitem>
2212 </varlistentry>
2213 <varlistentry>
2214 <term><varname>Destination=</varname></term>
2215 <listitem>
2216 <para>Takes an IP address of the destination VXLAN tunnel endpoint.</para>
2217 </listitem>
2218 </varlistentry>
2219 <varlistentry>
2220 <term><varname>VLANId=</varname></term>
2221 <listitem>
2222 <para>The VLAN ID for the new static MAC table entry. If
2223 omitted, no VLAN ID information is appended to the new static MAC
2224 table entry.</para>
2225 </listitem>
2226 </varlistentry>
2227 <varlistentry>
2228 <term><varname>VNI=</varname></term>
2229 <listitem>
2230 <para>The VXLAN Network Identifier (or VXLAN Segment ID) to use to connect to
2231 the remote VXLAN tunnel endpoint. Takes a number in the range 1-16777215.
2232 Defaults to unset.</para>
2233 </listitem>
2234 </varlistentry>
2235 <varlistentry>
2236 <term><varname>AssociatedWith=</varname></term>
2237 <listitem>
2238 <para>Specifies where the address is associated with. Takes one of <literal>use</literal>,
2239 <literal>self</literal>, <literal>master</literal> or <literal>router</literal>.
2240 <literal>use</literal> means the address is in use. User space can use this option to
2241 indicate to the kernel that the fdb entry is in use. <literal>self</literal> means
2242 the address is associated with the port drivers fdb. Usually hardware. <literal>master</literal>
2243 means the address is associated with master devices fdb. <literal>router</literal> means
2244 the destination address is associated with a router. Note that it's valid if the referenced
2245 device is a VXLAN type device and has route shortcircuit enabled. Defaults to <literal>self</literal>.</para>
2246 </listitem>
2247 </varlistentry>
2248 </variablelist>
2249 </refsect1>
2250
2251 <refsect1>
2252 <title>[CAN] Section Options</title>
2253 <para>The <literal>[CAN]</literal> section manages the Controller Area Network (CAN bus) and accepts the
2254 following keys.</para>
2255 <variablelist class='network-directives'>
2256 <varlistentry>
2257 <term><varname>BitRate=</varname></term>
2258 <listitem>
2259 <para>The bitrate of CAN device in bits per second. The usual SI prefixes (K, M) with the base of 1000 can
2260 be used here.</para>
2261 </listitem>
2262 </varlistentry>
2263 <varlistentry>
2264 <term><varname>SamplePoint=</varname></term>
2265 <listitem>
2266 <para>Optional sample point in percent with one decimal (e.g. <literal>75%</literal>,
2267 <literal>87.5%</literal>) or permille (e.g. <literal>875‰</literal>).</para>
2268 </listitem>
2269 </varlistentry>
2270 <varlistentry>
2271 <term><varname>RestartSec=</varname></term>
2272 <listitem>
2273 <para>Automatic restart delay time. If set to a non-zero value, a restart of the CAN controller will be
2274 triggered automatically in case of a bus-off condition after the specified delay time. Subsecond delays can
2275 be specified using decimals (e.g. <literal>0.1s</literal>) or a <literal>ms</literal> or
2276 <literal>us</literal> postfix. Using <literal>infinity</literal> or <literal>0</literal> will turn the
2277 automatic restart off. By default automatic restart is disabled.</para>
2278 </listitem>
2279 </varlistentry>
2280 <varlistentry>
2281 <term><varname>TripleSampling=</varname></term>
2282 <listitem>
2283 <para>Takes a boolean. When <literal>yes</literal>, three samples (instead of one) are used to determine
2284 the value of a received bit by majority rule. When unset, the kernel's default will be used.</para>
2285 </listitem>
2286 </varlistentry>
2287 </variablelist>
2288 </refsect1>
2289
2290 <refsect1>
2291 <title>[TrafficControlQueueingDiscipline] Section Options</title>
2292 <para>The <literal>[TrafficControlQueueingDiscipline]</literal> section manages the Traffic control. It can be used
2293 to configure the kernel packet scheduler and simulate packet delay and loss for UDP or TCP applications,
2294 or limit the bandwidth usage of a particular service to simulate internet connections.</para>
2295
2296 <variablelist class='network-directives'>
2297 <varlistentry>
2298 <term><varname>Parent=</varname></term>
2299 <listitem>
2300 <para>Specifies the parent Queueing Discipline (qdisc). Takes one of <literal>root</literal>
2301 or <literal>clsact</literal>. Defaults to <literal>root</literal>.</para>
2302 </listitem>
2303 </varlistentry>
2304
2305 <varlistentry>
2306 <term><varname>NetworkEmulatorDelaySec=</varname></term>
2307 <listitem>
2308 <para>Specifies the fixed amount of delay to be added to all packets going out of the
2309 interface. Defaults to unset.</para>
2310 </listitem>
2311 </varlistentry>
2312
2313 <varlistentry>
2314 <term><varname>NetworkEmulatorDelayJitterSec=</varname></term>
2315 <listitem>
2316 <para>Specifies the chosen delay to be added to the packets outgoing to the network
2317 interface. Defaults to unset.</para>
2318 </listitem>
2319 </varlistentry>
2320
2321 <varlistentry>
2322 <term><varname>NetworkEmulatorPacketLimit=</varname></term>
2323 <listitem>
2324 <para>Specifies the maximum number of packets the qdisc may hold queued at a time.
2325 An unsigned integer ranges 0 to 4294967294. Defaults to 1000.</para>
2326 </listitem>
2327 </varlistentry>
2328
2329 <varlistentry>
2330 <term><varname>NetworkEmulatorLossRate=</varname></term>
2331 <listitem>
2332 <para>Specifies an independent loss probability to be added to the packets outgoing from the
2333 network interface. Takes a percentage value, suffixed with "%". Defaults to unset.</para>
2334 </listitem>
2335 </varlistentry>
2336
2337 </variablelist>
2338 </refsect1>
2339
2340 <refsect1>
2341 <title>[BridgeVLAN] Section Options</title>
2342 <para>The <literal>[BridgeVLAN]</literal> section manages the VLAN ID configuration of a bridge port and accepts
2343 the following keys. Specify several <literal>[BridgeVLAN]</literal> sections to configure several VLAN entries.
2344 The <varname>VLANFiltering=</varname> option has to be enabled, see <literal>[Bridge]</literal> section in
2345 <citerefentry><refentrytitle>systemd.netdev</refentrytitle><manvolnum>5</manvolnum></citerefentry>.</para>
2346
2347 <variablelist class='network-directives'>
2348 <varlistentry>
2349 <term><varname>VLAN=</varname></term>
2350 <listitem>
2351 <para>The VLAN ID allowed on the port. This can be either a single ID or a range M-N. VLAN IDs are valid
2352 from 1 to 4094.</para>
2353 </listitem>
2354 </varlistentry>
2355 <varlistentry>
2356 <term><varname>EgressUntagged=</varname></term>
2357 <listitem>
2358 <para>The VLAN ID specified here will be used to untag frames on egress. Configuring
2359 <varname>EgressUntagged=</varname> implicates the use of <varname>VLAN=</varname> above and will enable the
2360 VLAN ID for ingress as well. This can be either a single ID or a range M-N.</para>
2361 </listitem>
2362 </varlistentry>
2363 <varlistentry>
2364 <term><varname>PVID=</varname></term>
2365 <listitem>
2366 <para>The Port VLAN ID specified here is assigned to all untagged frames at ingress.
2367 <varname>PVID=</varname> can be used only once. Configuring <varname>PVID=</varname> implicates the use of
2368 <varname>VLAN=</varname> above and will enable the VLAN ID for ingress as well.</para>
2369 </listitem>
2370 </varlistentry>
2371 </variablelist>
2372 </refsect1>
2373
2374 <refsect1>
2375 <title>Examples</title>
2376 <example>
2377 <title>Static network configuration</title>
2378
2379 <programlisting># /etc/systemd/network/50-static.network
2380 [Match]
2381 Name=enp2s0
2382
2383 [Network]
2384 Address=192.168.0.15/24
2385 Gateway=192.168.0.1</programlisting>
2386
2387 <para>This brings interface <literal>enp2s0</literal> up with a static address. The
2388 specified gateway will be used for a default route.</para>
2389 </example>
2390
2391 <example>
2392 <title>DHCP on ethernet links</title>
2393
2394 <programlisting># /etc/systemd/network/80-dhcp.network
2395 [Match]
2396 Name=en*
2397
2398 [Network]
2399 DHCP=yes</programlisting>
2400
2401 <para>This will enable DHCPv4 and DHCPv6 on all interfaces with names starting with
2402 <literal>en</literal> (i.e. ethernet interfaces).</para>
2403 </example>
2404
2405 <example>
2406 <title>IPv6 Prefix Delegation</title>
2407
2408 <programlisting># /etc/systemd/network/55-ipv6-pd-upstream.network
2409 [Match]
2410 Name=enp1s0
2411
2412 [Network]
2413 DHCP=ipv6</programlisting>
2414
2415 <programlisting># /etc/systemd/network/56-ipv6-pd-downstream.network
2416 [Match]
2417 Name=enp2s0
2418
2419 [Network]
2420 IPv6PrefixDelegation=dhcpv6</programlisting>
2421
2422 <para>This will enable IPv6 PD on the interface enp1s0 as an upstream interface where the
2423 DHCPv6 client is running and enp2s0 as a downstream interface where the prefix is delegated to.</para>
2424 </example>
2425
2426 <example>
2427 <title>A bridge with two enslaved links</title>
2428
2429 <programlisting># /etc/systemd/network/25-bridge-static.network
2430 [Match]
2431 Name=bridge0
2432
2433 [Network]
2434 Address=192.168.0.15/24
2435 Gateway=192.168.0.1
2436 DNS=192.168.0.1</programlisting>
2437
2438 <programlisting># /etc/systemd/network/25-bridge-slave-interface-1.network
2439 [Match]
2440 Name=enp2s0
2441
2442 [Network]
2443 Bridge=bridge0</programlisting>
2444
2445 <programlisting># /etc/systemd/network/25-bridge-slave-interface-2.network
2446 [Match]
2447 Name=wlp3s0
2448
2449 [Network]
2450 Bridge=bridge0</programlisting>
2451
2452 <para>This creates a bridge and attaches devices <literal>enp2s0</literal> and
2453 <literal>wlp3s0</literal> to it. The bridge will have the specified static address
2454 and network assigned, and a default route via the specified gateway will be
2455 added. The specified DNS server will be added to the global list of DNS resolvers.
2456 </para>
2457 </example>
2458
2459 <example>
2460 <title></title>
2461
2462 <programlisting>
2463 # /etc/systemd/network/20-bridge-slave-interface-vlan.network
2464 [Match]
2465 Name=enp2s0
2466
2467 [Network]
2468 Bridge=bridge0
2469
2470 [BridgeVLAN]
2471 VLAN=1-32
2472 PVID=42
2473 EgressUntagged=42
2474
2475 [BridgeVLAN]
2476 VLAN=100-200
2477
2478 [BridgeVLAN]
2479 EgressUntagged=300-400</programlisting>
2480
2481 <para>This overrides the configuration specified in the previous example for the
2482 interface <literal>enp2s0</literal>, and enables VLAN on that bridge port. VLAN IDs
2483 1-32, 42, 100-400 will be allowed. Packets tagged with VLAN IDs 42, 300-400 will be
2484 untagged when they leave on this interface. Untagged packets which arrive on this
2485 interface will be assigned VLAN ID 42.</para>
2486 </example>
2487
2488 <example>
2489 <title>Various tunnels</title>
2490
2491 <programlisting>/etc/systemd/network/25-tunnels.network
2492 [Match]
2493 Name=ens1
2494
2495 [Network]
2496 Tunnel=ipip-tun
2497 Tunnel=sit-tun
2498 Tunnel=gre-tun
2499 Tunnel=vti-tun
2500 </programlisting>
2501
2502 <programlisting>/etc/systemd/network/25-tunnel-ipip.netdev
2503 [NetDev]
2504 Name=ipip-tun
2505 Kind=ipip
2506 </programlisting>
2507
2508 <programlisting>/etc/systemd/network/25-tunnel-sit.netdev
2509 [NetDev]
2510 Name=sit-tun
2511 Kind=sit
2512 </programlisting>
2513
2514 <programlisting>/etc/systemd/network/25-tunnel-gre.netdev
2515 [NetDev]
2516 Name=gre-tun
2517 Kind=gre
2518 </programlisting>
2519
2520 <programlisting>/etc/systemd/network/25-tunnel-vti.netdev
2521 [NetDev]
2522 Name=vti-tun
2523 Kind=vti
2524 </programlisting>
2525
2526 <para>This will bring interface <literal>ens1</literal> up and create an IPIP tunnel,
2527 a SIT tunnel, a GRE tunnel, and a VTI tunnel using it.</para>
2528 </example>
2529
2530 <example>
2531 <title>A bond device</title>
2532
2533 <programlisting># /etc/systemd/network/30-bond1.network
2534 [Match]
2535 Name=bond1
2536
2537 [Network]
2538 DHCP=ipv6
2539 </programlisting>
2540
2541 <programlisting># /etc/systemd/network/30-bond1.netdev
2542 [NetDev]
2543 Name=bond1
2544 Kind=bond
2545 </programlisting>
2546
2547 <programlisting># /etc/systemd/network/30-bond1-dev1.network
2548 [Match]
2549 MACAddress=52:54:00:e9:64:41
2550
2551 [Network]
2552 Bond=bond1
2553 </programlisting>
2554
2555 <programlisting># /etc/systemd/network/30-bond1-dev2.network
2556 [Match]
2557 MACAddress=52:54:00:e9:64:42
2558
2559 [Network]
2560 Bond=bond1
2561 </programlisting>
2562
2563 <para>This will create a bond device <literal>bond1</literal> and enslave the two
2564 devices with MAC addresses 52:54:00:e9:64:41 and 52:54:00:e9:64:42 to it. IPv6 DHCP
2565 will be used to acquire an address.</para>
2566 </example>
2567
2568 <example>
2569 <title>Virtual Routing and Forwarding (VRF)</title>
2570 <para>Add the <literal>bond1</literal> interface to the VRF master interface
2571 <literal>vrf1</literal>. This will redirect routes generated on this interface to be
2572 within the routing table defined during VRF creation. For kernels before 4.8 traffic
2573 won't be redirected towards the VRFs routing table unless specific ip-rules are added.
2574 </para>
2575 <programlisting># /etc/systemd/network/25-vrf.network
2576 [Match]
2577 Name=bond1
2578
2579 [Network]
2580 VRF=vrf1
2581 </programlisting>
2582 </example>
2583
2584 <example>
2585 <title>MacVTap</title>
2586 <para>This brings up a network interface <literal>macvtap-test</literal>
2587 and attaches it to <literal>enp0s25</literal>.</para>
2588 <programlisting># /usr/lib/systemd/network/25-macvtap.network
2589 [Match]
2590 Name=enp0s25
2591
2592 [Network]
2593 MACVTAP=macvtap-test
2594 </programlisting>
2595 </example>
2596
2597 <example>
2598 <title>A Xfrm interface with physical underlying device.</title>
2599
2600 <programlisting># /etc/systemd/network/27-xfrm.netdev
2601 [NetDev]
2602 Name=xfrm0
2603
2604 [Xfrm]
2605 InterfaceId=7</programlisting>
2606
2607 <programlisting># /etc/systemd/network/27-eth0.network
2608 [Match]
2609 Name=eth0
2610
2611 [Network]
2612 Xfrm=xfrm0</programlisting>
2613
2614 <para>This creates a <literal>xfrm0</literal> interface and binds it to the <literal>eth0</literal> device.
2615 This allows hardware based ipsec offloading to the <literal>eth0</literal> nic.
2616 If offloading is not needed, xfrm interfaces can be assigned to the <literal>lo</literal> device.
2617 </para>
2618 </example>
2619 </refsect1>
2620
2621 <refsect1>
2622 <title>See Also</title>
2623 <para>
2624 <citerefentry><refentrytitle>systemd</refentrytitle><manvolnum>1</manvolnum></citerefentry>,
2625 <citerefentry><refentrytitle>systemd-networkd.service</refentrytitle><manvolnum>8</manvolnum></citerefentry>,
2626 <citerefentry><refentrytitle>systemd.link</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
2627 <citerefentry><refentrytitle>systemd.netdev</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
2628 <citerefentry><refentrytitle>systemd-resolved.service</refentrytitle><manvolnum>8</manvolnum></citerefentry>
2629 </para>
2630 </refsect1>
2631
2632 </refentry>