]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/basic/cgroup-util.c
Merge pull request #7044 from poettering/minidocfixes
[thirdparty/systemd.git] / src / basic / cgroup-util.c
1 /***
2 This file is part of systemd.
3
4 Copyright 2010 Lennart Poettering
5
6 systemd is free software; you can redistribute it and/or modify it
7 under the terms of the GNU Lesser General Public License as published by
8 the Free Software Foundation; either version 2.1 of the License, or
9 (at your option) any later version.
10
11 systemd is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public License
17 along with systemd; If not, see <http://www.gnu.org/licenses/>.
18 ***/
19
20 #include <dirent.h>
21 #include <errno.h>
22 #include <ftw.h>
23 #include <limits.h>
24 #include <signal.h>
25 #include <stddef.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include <sys/stat.h>
29 #include <sys/statfs.h>
30 #include <sys/types.h>
31 #include <sys/xattr.h>
32 #include <unistd.h>
33
34 #include "alloc-util.h"
35 #include "cgroup-util.h"
36 #include "def.h"
37 #include "dirent-util.h"
38 #include "extract-word.h"
39 #include "fd-util.h"
40 #include "fileio.h"
41 #include "format-util.h"
42 #include "fs-util.h"
43 #include "log.h"
44 #include "login-util.h"
45 #include "macro.h"
46 #include "missing.h"
47 #include "mkdir.h"
48 #include "parse-util.h"
49 #include "path-util.h"
50 #include "proc-cmdline.h"
51 #include "process-util.h"
52 #include "set.h"
53 #include "special.h"
54 #include "stat-util.h"
55 #include "stdio-util.h"
56 #include "string-table.h"
57 #include "string-util.h"
58 #include "strv.h"
59 #include "unit-name.h"
60 #include "user-util.h"
61
62 int cg_enumerate_processes(const char *controller, const char *path, FILE **_f) {
63 _cleanup_free_ char *fs = NULL;
64 FILE *f;
65 int r;
66
67 assert(_f);
68
69 r = cg_get_path(controller, path, "cgroup.procs", &fs);
70 if (r < 0)
71 return r;
72
73 f = fopen(fs, "re");
74 if (!f)
75 return -errno;
76
77 *_f = f;
78 return 0;
79 }
80
81 int cg_read_pid(FILE *f, pid_t *_pid) {
82 unsigned long ul;
83
84 /* Note that the cgroup.procs might contain duplicates! See
85 * cgroups.txt for details. */
86
87 assert(f);
88 assert(_pid);
89
90 errno = 0;
91 if (fscanf(f, "%lu", &ul) != 1) {
92
93 if (feof(f))
94 return 0;
95
96 return errno > 0 ? -errno : -EIO;
97 }
98
99 if (ul <= 0)
100 return -EIO;
101
102 *_pid = (pid_t) ul;
103 return 1;
104 }
105
106 int cg_read_event(
107 const char *controller,
108 const char *path,
109 const char *event,
110 char **val) {
111
112 _cleanup_free_ char *events = NULL, *content = NULL;
113 char *p, *line;
114 int r;
115
116 r = cg_get_path(controller, path, "cgroup.events", &events);
117 if (r < 0)
118 return r;
119
120 r = read_full_file(events, &content, NULL);
121 if (r < 0)
122 return r;
123
124 p = content;
125 while ((line = strsep(&p, "\n"))) {
126 char *key;
127
128 key = strsep(&line, " ");
129 if (!key || !line)
130 return -EINVAL;
131
132 if (strcmp(key, event))
133 continue;
134
135 *val = strdup(line);
136 return 0;
137 }
138
139 return -ENOENT;
140 }
141
142 bool cg_ns_supported(void) {
143 static thread_local int enabled = -1;
144
145 if (enabled >= 0)
146 return enabled;
147
148 if (access("/proc/self/ns/cgroup", F_OK) == 0)
149 enabled = 1;
150 else
151 enabled = 0;
152
153 return enabled;
154 }
155
156 int cg_enumerate_subgroups(const char *controller, const char *path, DIR **_d) {
157 _cleanup_free_ char *fs = NULL;
158 int r;
159 DIR *d;
160
161 assert(_d);
162
163 /* This is not recursive! */
164
165 r = cg_get_path(controller, path, NULL, &fs);
166 if (r < 0)
167 return r;
168
169 d = opendir(fs);
170 if (!d)
171 return -errno;
172
173 *_d = d;
174 return 0;
175 }
176
177 int cg_read_subgroup(DIR *d, char **fn) {
178 struct dirent *de;
179
180 assert(d);
181 assert(fn);
182
183 FOREACH_DIRENT_ALL(de, d, return -errno) {
184 char *b;
185
186 if (de->d_type != DT_DIR)
187 continue;
188
189 if (dot_or_dot_dot(de->d_name))
190 continue;
191
192 b = strdup(de->d_name);
193 if (!b)
194 return -ENOMEM;
195
196 *fn = b;
197 return 1;
198 }
199
200 return 0;
201 }
202
203 int cg_rmdir(const char *controller, const char *path) {
204 _cleanup_free_ char *p = NULL;
205 int r;
206
207 r = cg_get_path(controller, path, NULL, &p);
208 if (r < 0)
209 return r;
210
211 r = rmdir(p);
212 if (r < 0 && errno != ENOENT)
213 return -errno;
214
215 r = cg_hybrid_unified();
216 if (r < 0)
217 return r;
218 if (r == 0)
219 return 0;
220
221 if (streq(controller, SYSTEMD_CGROUP_CONTROLLER)) {
222 r = cg_rmdir(SYSTEMD_CGROUP_CONTROLLER_LEGACY, path);
223 if (r < 0)
224 log_warning_errno(r, "Failed to remove compat systemd cgroup %s: %m", path);
225 }
226
227 return 0;
228 }
229
230 int cg_kill(
231 const char *controller,
232 const char *path,
233 int sig,
234 CGroupFlags flags,
235 Set *s,
236 cg_kill_log_func_t log_kill,
237 void *userdata) {
238
239 _cleanup_set_free_ Set *allocated_set = NULL;
240 bool done = false;
241 int r, ret = 0;
242 pid_t my_pid;
243
244 assert(sig >= 0);
245
246 /* Don't send SIGCONT twice. Also, SIGKILL always works even when process is suspended, hence don't send
247 * SIGCONT on SIGKILL. */
248 if (IN_SET(sig, SIGCONT, SIGKILL))
249 flags &= ~CGROUP_SIGCONT;
250
251 /* This goes through the tasks list and kills them all. This
252 * is repeated until no further processes are added to the
253 * tasks list, to properly handle forking processes */
254
255 if (!s) {
256 s = allocated_set = set_new(NULL);
257 if (!s)
258 return -ENOMEM;
259 }
260
261 my_pid = getpid_cached();
262
263 do {
264 _cleanup_fclose_ FILE *f = NULL;
265 pid_t pid = 0;
266 done = true;
267
268 r = cg_enumerate_processes(controller, path, &f);
269 if (r < 0) {
270 if (ret >= 0 && r != -ENOENT)
271 return r;
272
273 return ret;
274 }
275
276 while ((r = cg_read_pid(f, &pid)) > 0) {
277
278 if ((flags & CGROUP_IGNORE_SELF) && pid == my_pid)
279 continue;
280
281 if (set_get(s, PID_TO_PTR(pid)) == PID_TO_PTR(pid))
282 continue;
283
284 if (log_kill)
285 log_kill(pid, sig, userdata);
286
287 /* If we haven't killed this process yet, kill
288 * it */
289 if (kill(pid, sig) < 0) {
290 if (ret >= 0 && errno != ESRCH)
291 ret = -errno;
292 } else {
293 if (flags & CGROUP_SIGCONT)
294 (void) kill(pid, SIGCONT);
295
296 if (ret == 0)
297 ret = 1;
298 }
299
300 done = false;
301
302 r = set_put(s, PID_TO_PTR(pid));
303 if (r < 0) {
304 if (ret >= 0)
305 return r;
306
307 return ret;
308 }
309 }
310
311 if (r < 0) {
312 if (ret >= 0)
313 return r;
314
315 return ret;
316 }
317
318 /* To avoid racing against processes which fork
319 * quicker than we can kill them we repeat this until
320 * no new pids need to be killed. */
321
322 } while (!done);
323
324 return ret;
325 }
326
327 int cg_kill_recursive(
328 const char *controller,
329 const char *path,
330 int sig,
331 CGroupFlags flags,
332 Set *s,
333 cg_kill_log_func_t log_kill,
334 void *userdata) {
335
336 _cleanup_set_free_ Set *allocated_set = NULL;
337 _cleanup_closedir_ DIR *d = NULL;
338 int r, ret;
339 char *fn;
340
341 assert(path);
342 assert(sig >= 0);
343
344 if (!s) {
345 s = allocated_set = set_new(NULL);
346 if (!s)
347 return -ENOMEM;
348 }
349
350 ret = cg_kill(controller, path, sig, flags, s, log_kill, userdata);
351
352 r = cg_enumerate_subgroups(controller, path, &d);
353 if (r < 0) {
354 if (ret >= 0 && r != -ENOENT)
355 return r;
356
357 return ret;
358 }
359
360 while ((r = cg_read_subgroup(d, &fn)) > 0) {
361 _cleanup_free_ char *p = NULL;
362
363 p = strjoin(path, "/", fn);
364 free(fn);
365 if (!p)
366 return -ENOMEM;
367
368 r = cg_kill_recursive(controller, p, sig, flags, s, log_kill, userdata);
369 if (r != 0 && ret >= 0)
370 ret = r;
371 }
372 if (ret >= 0 && r < 0)
373 ret = r;
374
375 if (flags & CGROUP_REMOVE) {
376 r = cg_rmdir(controller, path);
377 if (r < 0 && ret >= 0 && !IN_SET(r, -ENOENT, -EBUSY))
378 return r;
379 }
380
381 return ret;
382 }
383
384 int cg_migrate(
385 const char *cfrom,
386 const char *pfrom,
387 const char *cto,
388 const char *pto,
389 CGroupFlags flags) {
390
391 bool done = false;
392 _cleanup_set_free_ Set *s = NULL;
393 int r, ret = 0;
394 pid_t my_pid;
395
396 assert(cfrom);
397 assert(pfrom);
398 assert(cto);
399 assert(pto);
400
401 s = set_new(NULL);
402 if (!s)
403 return -ENOMEM;
404
405 my_pid = getpid_cached();
406
407 do {
408 _cleanup_fclose_ FILE *f = NULL;
409 pid_t pid = 0;
410 done = true;
411
412 r = cg_enumerate_processes(cfrom, pfrom, &f);
413 if (r < 0) {
414 if (ret >= 0 && r != -ENOENT)
415 return r;
416
417 return ret;
418 }
419
420 while ((r = cg_read_pid(f, &pid)) > 0) {
421
422 /* This might do weird stuff if we aren't a
423 * single-threaded program. However, we
424 * luckily know we are not */
425 if ((flags & CGROUP_IGNORE_SELF) && pid == my_pid)
426 continue;
427
428 if (set_get(s, PID_TO_PTR(pid)) == PID_TO_PTR(pid))
429 continue;
430
431 /* Ignore kernel threads. Since they can only
432 * exist in the root cgroup, we only check for
433 * them there. */
434 if (cfrom &&
435 (isempty(pfrom) || path_equal(pfrom, "/")) &&
436 is_kernel_thread(pid) > 0)
437 continue;
438
439 r = cg_attach(cto, pto, pid);
440 if (r < 0) {
441 if (ret >= 0 && r != -ESRCH)
442 ret = r;
443 } else if (ret == 0)
444 ret = 1;
445
446 done = false;
447
448 r = set_put(s, PID_TO_PTR(pid));
449 if (r < 0) {
450 if (ret >= 0)
451 return r;
452
453 return ret;
454 }
455 }
456
457 if (r < 0) {
458 if (ret >= 0)
459 return r;
460
461 return ret;
462 }
463 } while (!done);
464
465 return ret;
466 }
467
468 int cg_migrate_recursive(
469 const char *cfrom,
470 const char *pfrom,
471 const char *cto,
472 const char *pto,
473 CGroupFlags flags) {
474
475 _cleanup_closedir_ DIR *d = NULL;
476 int r, ret = 0;
477 char *fn;
478
479 assert(cfrom);
480 assert(pfrom);
481 assert(cto);
482 assert(pto);
483
484 ret = cg_migrate(cfrom, pfrom, cto, pto, flags);
485
486 r = cg_enumerate_subgroups(cfrom, pfrom, &d);
487 if (r < 0) {
488 if (ret >= 0 && r != -ENOENT)
489 return r;
490
491 return ret;
492 }
493
494 while ((r = cg_read_subgroup(d, &fn)) > 0) {
495 _cleanup_free_ char *p = NULL;
496
497 p = strjoin(pfrom, "/", fn);
498 free(fn);
499 if (!p)
500 return -ENOMEM;
501
502 r = cg_migrate_recursive(cfrom, p, cto, pto, flags);
503 if (r != 0 && ret >= 0)
504 ret = r;
505 }
506
507 if (r < 0 && ret >= 0)
508 ret = r;
509
510 if (flags & CGROUP_REMOVE) {
511 r = cg_rmdir(cfrom, pfrom);
512 if (r < 0 && ret >= 0 && !IN_SET(r, -ENOENT, -EBUSY))
513 return r;
514 }
515
516 return ret;
517 }
518
519 int cg_migrate_recursive_fallback(
520 const char *cfrom,
521 const char *pfrom,
522 const char *cto,
523 const char *pto,
524 CGroupFlags flags) {
525
526 int r;
527
528 assert(cfrom);
529 assert(pfrom);
530 assert(cto);
531 assert(pto);
532
533 r = cg_migrate_recursive(cfrom, pfrom, cto, pto, flags);
534 if (r < 0) {
535 char prefix[strlen(pto) + 1];
536
537 /* This didn't work? Then let's try all prefixes of the destination */
538
539 PATH_FOREACH_PREFIX(prefix, pto) {
540 int q;
541
542 q = cg_migrate_recursive(cfrom, pfrom, cto, prefix, flags);
543 if (q >= 0)
544 return q;
545 }
546 }
547
548 return r;
549 }
550
551 static const char *controller_to_dirname(const char *controller) {
552 const char *e;
553
554 assert(controller);
555
556 /* Converts a controller name to the directory name below
557 * /sys/fs/cgroup/ we want to mount it to. Effectively, this
558 * just cuts off the name= prefixed used for named
559 * hierarchies, if it is specified. */
560
561 if (streq(controller, SYSTEMD_CGROUP_CONTROLLER)) {
562 if (cg_hybrid_unified() > 0)
563 controller = SYSTEMD_CGROUP_CONTROLLER_HYBRID;
564 else
565 controller = SYSTEMD_CGROUP_CONTROLLER_LEGACY;
566 }
567
568 e = startswith(controller, "name=");
569 if (e)
570 return e;
571
572 return controller;
573 }
574
575 static int join_path_legacy(const char *controller, const char *path, const char *suffix, char **fs) {
576 const char *dn;
577 char *t = NULL;
578
579 assert(fs);
580 assert(controller);
581
582 dn = controller_to_dirname(controller);
583
584 if (isempty(path) && isempty(suffix))
585 t = strappend("/sys/fs/cgroup/", dn);
586 else if (isempty(path))
587 t = strjoin("/sys/fs/cgroup/", dn, "/", suffix);
588 else if (isempty(suffix))
589 t = strjoin("/sys/fs/cgroup/", dn, "/", path);
590 else
591 t = strjoin("/sys/fs/cgroup/", dn, "/", path, "/", suffix);
592 if (!t)
593 return -ENOMEM;
594
595 *fs = t;
596 return 0;
597 }
598
599 static int join_path_unified(const char *path, const char *suffix, char **fs) {
600 char *t;
601
602 assert(fs);
603
604 if (isempty(path) && isempty(suffix))
605 t = strdup("/sys/fs/cgroup");
606 else if (isempty(path))
607 t = strappend("/sys/fs/cgroup/", suffix);
608 else if (isempty(suffix))
609 t = strappend("/sys/fs/cgroup/", path);
610 else
611 t = strjoin("/sys/fs/cgroup/", path, "/", suffix);
612 if (!t)
613 return -ENOMEM;
614
615 *fs = t;
616 return 0;
617 }
618
619 int cg_get_path(const char *controller, const char *path, const char *suffix, char **fs) {
620 int r;
621
622 assert(fs);
623
624 if (!controller) {
625 char *t;
626
627 /* If no controller is specified, we return the path
628 * *below* the controllers, without any prefix. */
629
630 if (!path && !suffix)
631 return -EINVAL;
632
633 if (!suffix)
634 t = strdup(path);
635 else if (!path)
636 t = strdup(suffix);
637 else
638 t = strjoin(path, "/", suffix);
639 if (!t)
640 return -ENOMEM;
641
642 *fs = path_kill_slashes(t);
643 return 0;
644 }
645
646 if (!cg_controller_is_valid(controller))
647 return -EINVAL;
648
649 r = cg_all_unified();
650 if (r < 0)
651 return r;
652 if (r > 0)
653 r = join_path_unified(path, suffix, fs);
654 else
655 r = join_path_legacy(controller, path, suffix, fs);
656 if (r < 0)
657 return r;
658
659 path_kill_slashes(*fs);
660 return 0;
661 }
662
663 static int controller_is_accessible(const char *controller) {
664 int r;
665
666 assert(controller);
667
668 /* Checks whether a specific controller is accessible,
669 * i.e. its hierarchy mounted. In the unified hierarchy all
670 * controllers are considered accessible, except for the named
671 * hierarchies */
672
673 if (!cg_controller_is_valid(controller))
674 return -EINVAL;
675
676 r = cg_all_unified();
677 if (r < 0)
678 return r;
679 if (r > 0) {
680 /* We don't support named hierarchies if we are using
681 * the unified hierarchy. */
682
683 if (streq(controller, SYSTEMD_CGROUP_CONTROLLER))
684 return 0;
685
686 if (startswith(controller, "name="))
687 return -EOPNOTSUPP;
688
689 } else {
690 const char *cc, *dn;
691
692 dn = controller_to_dirname(controller);
693 cc = strjoina("/sys/fs/cgroup/", dn);
694
695 if (laccess(cc, F_OK) < 0)
696 return -errno;
697 }
698
699 return 0;
700 }
701
702 int cg_get_path_and_check(const char *controller, const char *path, const char *suffix, char **fs) {
703 int r;
704
705 assert(controller);
706 assert(fs);
707
708 /* Check if the specified controller is actually accessible */
709 r = controller_is_accessible(controller);
710 if (r < 0)
711 return r;
712
713 return cg_get_path(controller, path, suffix, fs);
714 }
715
716 static int trim_cb(const char *path, const struct stat *sb, int typeflag, struct FTW *ftwbuf) {
717 assert(path);
718 assert(sb);
719 assert(ftwbuf);
720
721 if (typeflag != FTW_DP)
722 return 0;
723
724 if (ftwbuf->level < 1)
725 return 0;
726
727 (void) rmdir(path);
728 return 0;
729 }
730
731 int cg_trim(const char *controller, const char *path, bool delete_root) {
732 _cleanup_free_ char *fs = NULL;
733 int r = 0, q;
734
735 assert(path);
736
737 r = cg_get_path(controller, path, NULL, &fs);
738 if (r < 0)
739 return r;
740
741 errno = 0;
742 if (nftw(fs, trim_cb, 64, FTW_DEPTH|FTW_MOUNT|FTW_PHYS) != 0) {
743 if (errno == ENOENT)
744 r = 0;
745 else if (errno > 0)
746 r = -errno;
747 else
748 r = -EIO;
749 }
750
751 if (delete_root) {
752 if (rmdir(fs) < 0 && errno != ENOENT)
753 return -errno;
754 }
755
756 q = cg_hybrid_unified();
757 if (q < 0)
758 return q;
759 if (q > 0 && streq(controller, SYSTEMD_CGROUP_CONTROLLER)) {
760 q = cg_trim(SYSTEMD_CGROUP_CONTROLLER_LEGACY, path, delete_root);
761 if (q < 0)
762 log_warning_errno(q, "Failed to trim compat systemd cgroup %s: %m", path);
763 }
764
765 return r;
766 }
767
768 int cg_create(const char *controller, const char *path) {
769 _cleanup_free_ char *fs = NULL;
770 int r;
771
772 r = cg_get_path_and_check(controller, path, NULL, &fs);
773 if (r < 0)
774 return r;
775
776 r = mkdir_parents(fs, 0755);
777 if (r < 0)
778 return r;
779
780 if (mkdir(fs, 0755) < 0) {
781
782 if (errno == EEXIST)
783 return 0;
784
785 return -errno;
786 }
787
788 r = cg_hybrid_unified();
789 if (r < 0)
790 return r;
791
792 if (r > 0 && streq(controller, SYSTEMD_CGROUP_CONTROLLER)) {
793 r = cg_create(SYSTEMD_CGROUP_CONTROLLER_LEGACY, path);
794 if (r < 0)
795 log_warning_errno(r, "Failed to create compat systemd cgroup %s: %m", path);
796 }
797
798 return 1;
799 }
800
801 int cg_create_and_attach(const char *controller, const char *path, pid_t pid) {
802 int r, q;
803
804 assert(pid >= 0);
805
806 r = cg_create(controller, path);
807 if (r < 0)
808 return r;
809
810 q = cg_attach(controller, path, pid);
811 if (q < 0)
812 return q;
813
814 /* This does not remove the cgroup on failure */
815 return r;
816 }
817
818 int cg_attach(const char *controller, const char *path, pid_t pid) {
819 _cleanup_free_ char *fs = NULL;
820 char c[DECIMAL_STR_MAX(pid_t) + 2];
821 int r;
822
823 assert(path);
824 assert(pid >= 0);
825
826 r = cg_get_path_and_check(controller, path, "cgroup.procs", &fs);
827 if (r < 0)
828 return r;
829
830 if (pid == 0)
831 pid = getpid_cached();
832
833 xsprintf(c, PID_FMT "\n", pid);
834
835 r = write_string_file(fs, c, 0);
836 if (r < 0)
837 return r;
838
839 r = cg_hybrid_unified();
840 if (r < 0)
841 return r;
842
843 if (r > 0 && streq(controller, SYSTEMD_CGROUP_CONTROLLER)) {
844 r = cg_attach(SYSTEMD_CGROUP_CONTROLLER_LEGACY, path, pid);
845 if (r < 0)
846 log_warning_errno(r, "Failed to attach "PID_FMT" to compat systemd cgroup %s: %m", pid, path);
847 }
848
849 return 0;
850 }
851
852 int cg_attach_fallback(const char *controller, const char *path, pid_t pid) {
853 int r;
854
855 assert(controller);
856 assert(path);
857 assert(pid >= 0);
858
859 r = cg_attach(controller, path, pid);
860 if (r < 0) {
861 char prefix[strlen(path) + 1];
862
863 /* This didn't work? Then let's try all prefixes of
864 * the destination */
865
866 PATH_FOREACH_PREFIX(prefix, path) {
867 int q;
868
869 q = cg_attach(controller, prefix, pid);
870 if (q >= 0)
871 return q;
872 }
873 }
874
875 return r;
876 }
877
878 int cg_set_group_access(
879 const char *controller,
880 const char *path,
881 mode_t mode,
882 uid_t uid,
883 gid_t gid) {
884
885 _cleanup_free_ char *fs = NULL;
886 int r;
887
888 if (mode == MODE_INVALID && uid == UID_INVALID && gid == GID_INVALID)
889 return 0;
890
891 if (mode != MODE_INVALID)
892 mode &= 0777;
893
894 r = cg_get_path(controller, path, NULL, &fs);
895 if (r < 0)
896 return r;
897
898 r = chmod_and_chown(fs, mode, uid, gid);
899 if (r < 0)
900 return r;
901
902 r = cg_hybrid_unified();
903 if (r < 0)
904 return r;
905 if (r > 0 && streq(controller, SYSTEMD_CGROUP_CONTROLLER)) {
906 r = cg_set_group_access(SYSTEMD_CGROUP_CONTROLLER_LEGACY, path, mode, uid, gid);
907 if (r < 0)
908 log_debug_errno(r, "Failed to set group access on compatibility systemd cgroup %s, ignoring: %m", path);
909 }
910
911 return 0;
912 }
913
914 int cg_set_task_access(
915 const char *controller,
916 const char *path,
917 mode_t mode,
918 uid_t uid,
919 gid_t gid) {
920
921 _cleanup_free_ char *fs = NULL;
922 int r;
923
924 assert(path);
925
926 if (mode == MODE_INVALID && uid == UID_INVALID && gid == GID_INVALID)
927 return 0;
928
929 if (mode != MODE_INVALID)
930 mode &= 0666;
931
932 /* For both the legacy and unified hierarchies, "cgroup.procs" is the main entry point for PIDs */
933 r = cg_get_path(controller, path, "cgroup.procs", &fs);
934 if (r < 0)
935 return r;
936
937 r = chmod_and_chown(fs, mode, uid, gid);
938 if (r < 0)
939 return r;
940
941 r = cg_unified_controller(controller);
942 if (r < 0)
943 return r;
944 if (r == 0) {
945 const char *fn;
946
947 /* Compatibility: on cgroupsv1 always keep values for the legacy files "tasks" and
948 * "cgroup.clone_children" in sync with "cgroup.procs". Since this is legacy stuff, we don't care if
949 * this fails. */
950
951 FOREACH_STRING(fn,
952 "tasks",
953 "cgroup.clone_children") {
954
955 fs = mfree(fs);
956
957 r = cg_get_path(controller, path, fn, &fs);
958 if (r < 0)
959 log_debug_errno(r, "Failed to get path for %s of %s, ignoring: %m", fn, path);
960
961 r = chmod_and_chown(fs, mode, uid, gid);
962 if (r < 0)
963 log_debug_errno(r, "Failed to to change ownership/access mode for %s of %s, ignoring: %m", fn, path);
964 }
965 } else {
966 /* On the unified controller, we want to permit subtree controllers too. */
967
968 fs = mfree(fs);
969 r = cg_get_path(controller, path, "cgroup.subtree_control", &fs);
970 if (r < 0)
971 return r;
972
973 r = chmod_and_chown(fs, mode, uid, gid);
974 if (r < 0)
975 return r;
976 }
977
978 r = cg_hybrid_unified();
979 if (r < 0)
980 return r;
981 if (r > 0 && streq(controller, SYSTEMD_CGROUP_CONTROLLER)) {
982 /* Always propagate access mode from unified to legacy controller */
983
984 r = cg_set_task_access(SYSTEMD_CGROUP_CONTROLLER_LEGACY, path, mode, uid, gid);
985 if (r < 0)
986 log_debug_errno(r, "Failed to set task access on compatibility systemd cgroup %s, ignoring: %m", path);
987 }
988
989 return 0;
990 }
991
992 int cg_set_xattr(const char *controller, const char *path, const char *name, const void *value, size_t size, int flags) {
993 _cleanup_free_ char *fs = NULL;
994 int r;
995
996 assert(path);
997 assert(name);
998 assert(value || size <= 0);
999
1000 r = cg_get_path(controller, path, NULL, &fs);
1001 if (r < 0)
1002 return r;
1003
1004 if (setxattr(fs, name, value, size, flags) < 0)
1005 return -errno;
1006
1007 return 0;
1008 }
1009
1010 int cg_get_xattr(const char *controller, const char *path, const char *name, void *value, size_t size) {
1011 _cleanup_free_ char *fs = NULL;
1012 ssize_t n;
1013 int r;
1014
1015 assert(path);
1016 assert(name);
1017
1018 r = cg_get_path(controller, path, NULL, &fs);
1019 if (r < 0)
1020 return r;
1021
1022 n = getxattr(fs, name, value, size);
1023 if (n < 0)
1024 return -errno;
1025
1026 return (int) n;
1027 }
1028
1029 int cg_pid_get_path(const char *controller, pid_t pid, char **path) {
1030 _cleanup_fclose_ FILE *f = NULL;
1031 char line[LINE_MAX];
1032 const char *fs, *controller_str;
1033 size_t cs = 0;
1034 int unified;
1035
1036 assert(path);
1037 assert(pid >= 0);
1038
1039 if (controller) {
1040 if (!cg_controller_is_valid(controller))
1041 return -EINVAL;
1042 } else
1043 controller = SYSTEMD_CGROUP_CONTROLLER;
1044
1045 unified = cg_unified_controller(controller);
1046 if (unified < 0)
1047 return unified;
1048 if (unified == 0) {
1049 if (streq(controller, SYSTEMD_CGROUP_CONTROLLER))
1050 controller_str = SYSTEMD_CGROUP_CONTROLLER_LEGACY;
1051 else
1052 controller_str = controller;
1053
1054 cs = strlen(controller_str);
1055 }
1056
1057 fs = procfs_file_alloca(pid, "cgroup");
1058 f = fopen(fs, "re");
1059 if (!f)
1060 return errno == ENOENT ? -ESRCH : -errno;
1061
1062 FOREACH_LINE(line, f, return -errno) {
1063 char *e, *p;
1064
1065 truncate_nl(line);
1066
1067 if (unified) {
1068 e = startswith(line, "0:");
1069 if (!e)
1070 continue;
1071
1072 e = strchr(e, ':');
1073 if (!e)
1074 continue;
1075 } else {
1076 char *l;
1077 size_t k;
1078 const char *word, *state;
1079 bool found = false;
1080
1081 l = strchr(line, ':');
1082 if (!l)
1083 continue;
1084
1085 l++;
1086 e = strchr(l, ':');
1087 if (!e)
1088 continue;
1089
1090 *e = 0;
1091 FOREACH_WORD_SEPARATOR(word, k, l, ",", state) {
1092 if (k == cs && memcmp(word, controller_str, cs) == 0) {
1093 found = true;
1094 break;
1095 }
1096 }
1097
1098 if (!found)
1099 continue;
1100 }
1101
1102 p = strdup(e + 1);
1103 if (!p)
1104 return -ENOMEM;
1105
1106 *path = p;
1107 return 0;
1108 }
1109
1110 return -ENODATA;
1111 }
1112
1113 int cg_install_release_agent(const char *controller, const char *agent) {
1114 _cleanup_free_ char *fs = NULL, *contents = NULL;
1115 const char *sc;
1116 int r;
1117
1118 assert(agent);
1119
1120 r = cg_unified_controller(controller);
1121 if (r < 0)
1122 return r;
1123 if (r > 0) /* doesn't apply to unified hierarchy */
1124 return -EOPNOTSUPP;
1125
1126 r = cg_get_path(controller, NULL, "release_agent", &fs);
1127 if (r < 0)
1128 return r;
1129
1130 r = read_one_line_file(fs, &contents);
1131 if (r < 0)
1132 return r;
1133
1134 sc = strstrip(contents);
1135 if (isempty(sc)) {
1136 r = write_string_file(fs, agent, 0);
1137 if (r < 0)
1138 return r;
1139 } else if (!path_equal(sc, agent))
1140 return -EEXIST;
1141
1142 fs = mfree(fs);
1143 r = cg_get_path(controller, NULL, "notify_on_release", &fs);
1144 if (r < 0)
1145 return r;
1146
1147 contents = mfree(contents);
1148 r = read_one_line_file(fs, &contents);
1149 if (r < 0)
1150 return r;
1151
1152 sc = strstrip(contents);
1153 if (streq(sc, "0")) {
1154 r = write_string_file(fs, "1", 0);
1155 if (r < 0)
1156 return r;
1157
1158 return 1;
1159 }
1160
1161 if (!streq(sc, "1"))
1162 return -EIO;
1163
1164 return 0;
1165 }
1166
1167 int cg_uninstall_release_agent(const char *controller) {
1168 _cleanup_free_ char *fs = NULL;
1169 int r;
1170
1171 r = cg_unified_controller(controller);
1172 if (r < 0)
1173 return r;
1174 if (r > 0) /* Doesn't apply to unified hierarchy */
1175 return -EOPNOTSUPP;
1176
1177 r = cg_get_path(controller, NULL, "notify_on_release", &fs);
1178 if (r < 0)
1179 return r;
1180
1181 r = write_string_file(fs, "0", 0);
1182 if (r < 0)
1183 return r;
1184
1185 fs = mfree(fs);
1186
1187 r = cg_get_path(controller, NULL, "release_agent", &fs);
1188 if (r < 0)
1189 return r;
1190
1191 r = write_string_file(fs, "", 0);
1192 if (r < 0)
1193 return r;
1194
1195 return 0;
1196 }
1197
1198 int cg_is_empty(const char *controller, const char *path) {
1199 _cleanup_fclose_ FILE *f = NULL;
1200 pid_t pid;
1201 int r;
1202
1203 assert(path);
1204
1205 r = cg_enumerate_processes(controller, path, &f);
1206 if (r == -ENOENT)
1207 return 1;
1208 if (r < 0)
1209 return r;
1210
1211 r = cg_read_pid(f, &pid);
1212 if (r < 0)
1213 return r;
1214
1215 return r == 0;
1216 }
1217
1218 int cg_is_empty_recursive(const char *controller, const char *path) {
1219 int r;
1220
1221 assert(path);
1222
1223 /* The root cgroup is always populated */
1224 if (controller && (isempty(path) || path_equal(path, "/")))
1225 return false;
1226
1227 r = cg_unified_controller(controller);
1228 if (r < 0)
1229 return r;
1230 if (r > 0) {
1231 _cleanup_free_ char *t = NULL;
1232
1233 /* On the unified hierarchy we can check empty state
1234 * via the "populated" attribute of "cgroup.events". */
1235
1236 r = cg_read_event(controller, path, "populated", &t);
1237 if (r < 0)
1238 return r;
1239
1240 return streq(t, "0");
1241 } else {
1242 _cleanup_closedir_ DIR *d = NULL;
1243 char *fn;
1244
1245 r = cg_is_empty(controller, path);
1246 if (r <= 0)
1247 return r;
1248
1249 r = cg_enumerate_subgroups(controller, path, &d);
1250 if (r == -ENOENT)
1251 return 1;
1252 if (r < 0)
1253 return r;
1254
1255 while ((r = cg_read_subgroup(d, &fn)) > 0) {
1256 _cleanup_free_ char *p = NULL;
1257
1258 p = strjoin(path, "/", fn);
1259 free(fn);
1260 if (!p)
1261 return -ENOMEM;
1262
1263 r = cg_is_empty_recursive(controller, p);
1264 if (r <= 0)
1265 return r;
1266 }
1267 if (r < 0)
1268 return r;
1269
1270 return true;
1271 }
1272 }
1273
1274 int cg_split_spec(const char *spec, char **controller, char **path) {
1275 char *t = NULL, *u = NULL;
1276 const char *e;
1277
1278 assert(spec);
1279
1280 if (*spec == '/') {
1281 if (!path_is_safe(spec))
1282 return -EINVAL;
1283
1284 if (path) {
1285 t = strdup(spec);
1286 if (!t)
1287 return -ENOMEM;
1288
1289 *path = path_kill_slashes(t);
1290 }
1291
1292 if (controller)
1293 *controller = NULL;
1294
1295 return 0;
1296 }
1297
1298 e = strchr(spec, ':');
1299 if (!e) {
1300 if (!cg_controller_is_valid(spec))
1301 return -EINVAL;
1302
1303 if (controller) {
1304 t = strdup(spec);
1305 if (!t)
1306 return -ENOMEM;
1307
1308 *controller = t;
1309 }
1310
1311 if (path)
1312 *path = NULL;
1313
1314 return 0;
1315 }
1316
1317 t = strndup(spec, e-spec);
1318 if (!t)
1319 return -ENOMEM;
1320 if (!cg_controller_is_valid(t)) {
1321 free(t);
1322 return -EINVAL;
1323 }
1324
1325 if (isempty(e+1))
1326 u = NULL;
1327 else {
1328 u = strdup(e+1);
1329 if (!u) {
1330 free(t);
1331 return -ENOMEM;
1332 }
1333
1334 if (!path_is_safe(u) ||
1335 !path_is_absolute(u)) {
1336 free(t);
1337 free(u);
1338 return -EINVAL;
1339 }
1340
1341 path_kill_slashes(u);
1342 }
1343
1344 if (controller)
1345 *controller = t;
1346 else
1347 free(t);
1348
1349 if (path)
1350 *path = u;
1351 else
1352 free(u);
1353
1354 return 0;
1355 }
1356
1357 int cg_mangle_path(const char *path, char **result) {
1358 _cleanup_free_ char *c = NULL, *p = NULL;
1359 char *t;
1360 int r;
1361
1362 assert(path);
1363 assert(result);
1364
1365 /* First, check if it already is a filesystem path */
1366 if (path_startswith(path, "/sys/fs/cgroup")) {
1367
1368 t = strdup(path);
1369 if (!t)
1370 return -ENOMEM;
1371
1372 *result = path_kill_slashes(t);
1373 return 0;
1374 }
1375
1376 /* Otherwise, treat it as cg spec */
1377 r = cg_split_spec(path, &c, &p);
1378 if (r < 0)
1379 return r;
1380
1381 return cg_get_path(c ?: SYSTEMD_CGROUP_CONTROLLER, p ?: "/", NULL, result);
1382 }
1383
1384 int cg_get_root_path(char **path) {
1385 char *p, *e;
1386 int r;
1387
1388 assert(path);
1389
1390 r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, 1, &p);
1391 if (r < 0)
1392 return r;
1393
1394 e = endswith(p, "/" SPECIAL_INIT_SCOPE);
1395 if (!e)
1396 e = endswith(p, "/" SPECIAL_SYSTEM_SLICE); /* legacy */
1397 if (!e)
1398 e = endswith(p, "/system"); /* even more legacy */
1399 if (e)
1400 *e = 0;
1401
1402 *path = p;
1403 return 0;
1404 }
1405
1406 int cg_shift_path(const char *cgroup, const char *root, const char **shifted) {
1407 _cleanup_free_ char *rt = NULL;
1408 char *p;
1409 int r;
1410
1411 assert(cgroup);
1412 assert(shifted);
1413
1414 if (!root) {
1415 /* If the root was specified let's use that, otherwise
1416 * let's determine it from PID 1 */
1417
1418 r = cg_get_root_path(&rt);
1419 if (r < 0)
1420 return r;
1421
1422 root = rt;
1423 }
1424
1425 p = path_startswith(cgroup, root);
1426 if (p && p > cgroup)
1427 *shifted = p - 1;
1428 else
1429 *shifted = cgroup;
1430
1431 return 0;
1432 }
1433
1434 int cg_pid_get_path_shifted(pid_t pid, const char *root, char **cgroup) {
1435 _cleanup_free_ char *raw = NULL;
1436 const char *c;
1437 int r;
1438
1439 assert(pid >= 0);
1440 assert(cgroup);
1441
1442 r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, pid, &raw);
1443 if (r < 0)
1444 return r;
1445
1446 r = cg_shift_path(raw, root, &c);
1447 if (r < 0)
1448 return r;
1449
1450 if (c == raw) {
1451 *cgroup = raw;
1452 raw = NULL;
1453 } else {
1454 char *n;
1455
1456 n = strdup(c);
1457 if (!n)
1458 return -ENOMEM;
1459
1460 *cgroup = n;
1461 }
1462
1463 return 0;
1464 }
1465
1466 int cg_path_decode_unit(const char *cgroup, char **unit) {
1467 char *c, *s;
1468 size_t n;
1469
1470 assert(cgroup);
1471 assert(unit);
1472
1473 n = strcspn(cgroup, "/");
1474 if (n < 3)
1475 return -ENXIO;
1476
1477 c = strndupa(cgroup, n);
1478 c = cg_unescape(c);
1479
1480 if (!unit_name_is_valid(c, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE))
1481 return -ENXIO;
1482
1483 s = strdup(c);
1484 if (!s)
1485 return -ENOMEM;
1486
1487 *unit = s;
1488 return 0;
1489 }
1490
1491 static bool valid_slice_name(const char *p, size_t n) {
1492
1493 if (!p)
1494 return false;
1495
1496 if (n < strlen("x.slice"))
1497 return false;
1498
1499 if (memcmp(p + n - 6, ".slice", 6) == 0) {
1500 char buf[n+1], *c;
1501
1502 memcpy(buf, p, n);
1503 buf[n] = 0;
1504
1505 c = cg_unescape(buf);
1506
1507 return unit_name_is_valid(c, UNIT_NAME_PLAIN);
1508 }
1509
1510 return false;
1511 }
1512
1513 static const char *skip_slices(const char *p) {
1514 assert(p);
1515
1516 /* Skips over all slice assignments */
1517
1518 for (;;) {
1519 size_t n;
1520
1521 p += strspn(p, "/");
1522
1523 n = strcspn(p, "/");
1524 if (!valid_slice_name(p, n))
1525 return p;
1526
1527 p += n;
1528 }
1529 }
1530
1531 int cg_path_get_unit(const char *path, char **ret) {
1532 const char *e;
1533 char *unit;
1534 int r;
1535
1536 assert(path);
1537 assert(ret);
1538
1539 e = skip_slices(path);
1540
1541 r = cg_path_decode_unit(e, &unit);
1542 if (r < 0)
1543 return r;
1544
1545 /* We skipped over the slices, don't accept any now */
1546 if (endswith(unit, ".slice")) {
1547 free(unit);
1548 return -ENXIO;
1549 }
1550
1551 *ret = unit;
1552 return 0;
1553 }
1554
1555 int cg_pid_get_unit(pid_t pid, char **unit) {
1556 _cleanup_free_ char *cgroup = NULL;
1557 int r;
1558
1559 assert(unit);
1560
1561 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1562 if (r < 0)
1563 return r;
1564
1565 return cg_path_get_unit(cgroup, unit);
1566 }
1567
1568 /**
1569 * Skip session-*.scope, but require it to be there.
1570 */
1571 static const char *skip_session(const char *p) {
1572 size_t n;
1573
1574 if (isempty(p))
1575 return NULL;
1576
1577 p += strspn(p, "/");
1578
1579 n = strcspn(p, "/");
1580 if (n < strlen("session-x.scope"))
1581 return NULL;
1582
1583 if (memcmp(p, "session-", 8) == 0 && memcmp(p + n - 6, ".scope", 6) == 0) {
1584 char buf[n - 8 - 6 + 1];
1585
1586 memcpy(buf, p + 8, n - 8 - 6);
1587 buf[n - 8 - 6] = 0;
1588
1589 /* Note that session scopes never need unescaping,
1590 * since they cannot conflict with the kernel's own
1591 * names, hence we don't need to call cg_unescape()
1592 * here. */
1593
1594 if (!session_id_valid(buf))
1595 return false;
1596
1597 p += n;
1598 p += strspn(p, "/");
1599 return p;
1600 }
1601
1602 return NULL;
1603 }
1604
1605 /**
1606 * Skip user@*.service, but require it to be there.
1607 */
1608 static const char *skip_user_manager(const char *p) {
1609 size_t n;
1610
1611 if (isempty(p))
1612 return NULL;
1613
1614 p += strspn(p, "/");
1615
1616 n = strcspn(p, "/");
1617 if (n < strlen("user@x.service"))
1618 return NULL;
1619
1620 if (memcmp(p, "user@", 5) == 0 && memcmp(p + n - 8, ".service", 8) == 0) {
1621 char buf[n - 5 - 8 + 1];
1622
1623 memcpy(buf, p + 5, n - 5 - 8);
1624 buf[n - 5 - 8] = 0;
1625
1626 /* Note that user manager services never need unescaping,
1627 * since they cannot conflict with the kernel's own
1628 * names, hence we don't need to call cg_unescape()
1629 * here. */
1630
1631 if (parse_uid(buf, NULL) < 0)
1632 return NULL;
1633
1634 p += n;
1635 p += strspn(p, "/");
1636
1637 return p;
1638 }
1639
1640 return NULL;
1641 }
1642
1643 static const char *skip_user_prefix(const char *path) {
1644 const char *e, *t;
1645
1646 assert(path);
1647
1648 /* Skip slices, if there are any */
1649 e = skip_slices(path);
1650
1651 /* Skip the user manager, if it's in the path now... */
1652 t = skip_user_manager(e);
1653 if (t)
1654 return t;
1655
1656 /* Alternatively skip the user session if it is in the path... */
1657 return skip_session(e);
1658 }
1659
1660 int cg_path_get_user_unit(const char *path, char **ret) {
1661 const char *t;
1662
1663 assert(path);
1664 assert(ret);
1665
1666 t = skip_user_prefix(path);
1667 if (!t)
1668 return -ENXIO;
1669
1670 /* And from here on it looks pretty much the same as for a
1671 * system unit, hence let's use the same parser from here
1672 * on. */
1673 return cg_path_get_unit(t, ret);
1674 }
1675
1676 int cg_pid_get_user_unit(pid_t pid, char **unit) {
1677 _cleanup_free_ char *cgroup = NULL;
1678 int r;
1679
1680 assert(unit);
1681
1682 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1683 if (r < 0)
1684 return r;
1685
1686 return cg_path_get_user_unit(cgroup, unit);
1687 }
1688
1689 int cg_path_get_machine_name(const char *path, char **machine) {
1690 _cleanup_free_ char *u = NULL;
1691 const char *sl;
1692 int r;
1693
1694 r = cg_path_get_unit(path, &u);
1695 if (r < 0)
1696 return r;
1697
1698 sl = strjoina("/run/systemd/machines/unit:", u);
1699 return readlink_malloc(sl, machine);
1700 }
1701
1702 int cg_pid_get_machine_name(pid_t pid, char **machine) {
1703 _cleanup_free_ char *cgroup = NULL;
1704 int r;
1705
1706 assert(machine);
1707
1708 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1709 if (r < 0)
1710 return r;
1711
1712 return cg_path_get_machine_name(cgroup, machine);
1713 }
1714
1715 int cg_path_get_session(const char *path, char **session) {
1716 _cleanup_free_ char *unit = NULL;
1717 char *start, *end;
1718 int r;
1719
1720 assert(path);
1721
1722 r = cg_path_get_unit(path, &unit);
1723 if (r < 0)
1724 return r;
1725
1726 start = startswith(unit, "session-");
1727 if (!start)
1728 return -ENXIO;
1729 end = endswith(start, ".scope");
1730 if (!end)
1731 return -ENXIO;
1732
1733 *end = 0;
1734 if (!session_id_valid(start))
1735 return -ENXIO;
1736
1737 if (session) {
1738 char *rr;
1739
1740 rr = strdup(start);
1741 if (!rr)
1742 return -ENOMEM;
1743
1744 *session = rr;
1745 }
1746
1747 return 0;
1748 }
1749
1750 int cg_pid_get_session(pid_t pid, char **session) {
1751 _cleanup_free_ char *cgroup = NULL;
1752 int r;
1753
1754 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1755 if (r < 0)
1756 return r;
1757
1758 return cg_path_get_session(cgroup, session);
1759 }
1760
1761 int cg_path_get_owner_uid(const char *path, uid_t *uid) {
1762 _cleanup_free_ char *slice = NULL;
1763 char *start, *end;
1764 int r;
1765
1766 assert(path);
1767
1768 r = cg_path_get_slice(path, &slice);
1769 if (r < 0)
1770 return r;
1771
1772 start = startswith(slice, "user-");
1773 if (!start)
1774 return -ENXIO;
1775 end = endswith(start, ".slice");
1776 if (!end)
1777 return -ENXIO;
1778
1779 *end = 0;
1780 if (parse_uid(start, uid) < 0)
1781 return -ENXIO;
1782
1783 return 0;
1784 }
1785
1786 int cg_pid_get_owner_uid(pid_t pid, uid_t *uid) {
1787 _cleanup_free_ char *cgroup = NULL;
1788 int r;
1789
1790 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1791 if (r < 0)
1792 return r;
1793
1794 return cg_path_get_owner_uid(cgroup, uid);
1795 }
1796
1797 int cg_path_get_slice(const char *p, char **slice) {
1798 const char *e = NULL;
1799
1800 assert(p);
1801 assert(slice);
1802
1803 /* Finds the right-most slice unit from the beginning, but
1804 * stops before we come to the first non-slice unit. */
1805
1806 for (;;) {
1807 size_t n;
1808
1809 p += strspn(p, "/");
1810
1811 n = strcspn(p, "/");
1812 if (!valid_slice_name(p, n)) {
1813
1814 if (!e) {
1815 char *s;
1816
1817 s = strdup(SPECIAL_ROOT_SLICE);
1818 if (!s)
1819 return -ENOMEM;
1820
1821 *slice = s;
1822 return 0;
1823 }
1824
1825 return cg_path_decode_unit(e, slice);
1826 }
1827
1828 e = p;
1829 p += n;
1830 }
1831 }
1832
1833 int cg_pid_get_slice(pid_t pid, char **slice) {
1834 _cleanup_free_ char *cgroup = NULL;
1835 int r;
1836
1837 assert(slice);
1838
1839 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1840 if (r < 0)
1841 return r;
1842
1843 return cg_path_get_slice(cgroup, slice);
1844 }
1845
1846 int cg_path_get_user_slice(const char *p, char **slice) {
1847 const char *t;
1848 assert(p);
1849 assert(slice);
1850
1851 t = skip_user_prefix(p);
1852 if (!t)
1853 return -ENXIO;
1854
1855 /* And now it looks pretty much the same as for a system
1856 * slice, so let's just use the same parser from here on. */
1857 return cg_path_get_slice(t, slice);
1858 }
1859
1860 int cg_pid_get_user_slice(pid_t pid, char **slice) {
1861 _cleanup_free_ char *cgroup = NULL;
1862 int r;
1863
1864 assert(slice);
1865
1866 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1867 if (r < 0)
1868 return r;
1869
1870 return cg_path_get_user_slice(cgroup, slice);
1871 }
1872
1873 char *cg_escape(const char *p) {
1874 bool need_prefix = false;
1875
1876 /* This implements very minimal escaping for names to be used
1877 * as file names in the cgroup tree: any name which might
1878 * conflict with a kernel name or is prefixed with '_' is
1879 * prefixed with a '_'. That way, when reading cgroup names it
1880 * is sufficient to remove a single prefixing underscore if
1881 * there is one. */
1882
1883 /* The return value of this function (unlike cg_unescape())
1884 * needs free()! */
1885
1886 if (IN_SET(p[0], 0, '_', '.') ||
1887 streq(p, "notify_on_release") ||
1888 streq(p, "release_agent") ||
1889 streq(p, "tasks") ||
1890 startswith(p, "cgroup."))
1891 need_prefix = true;
1892 else {
1893 const char *dot;
1894
1895 dot = strrchr(p, '.');
1896 if (dot) {
1897 CGroupController c;
1898 size_t l = dot - p;
1899
1900 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
1901 const char *n;
1902
1903 n = cgroup_controller_to_string(c);
1904
1905 if (l != strlen(n))
1906 continue;
1907
1908 if (memcmp(p, n, l) != 0)
1909 continue;
1910
1911 need_prefix = true;
1912 break;
1913 }
1914 }
1915 }
1916
1917 if (need_prefix)
1918 return strappend("_", p);
1919
1920 return strdup(p);
1921 }
1922
1923 char *cg_unescape(const char *p) {
1924 assert(p);
1925
1926 /* The return value of this function (unlike cg_escape())
1927 * doesn't need free()! */
1928
1929 if (p[0] == '_')
1930 return (char*) p+1;
1931
1932 return (char*) p;
1933 }
1934
1935 #define CONTROLLER_VALID \
1936 DIGITS LETTERS \
1937 "_"
1938
1939 bool cg_controller_is_valid(const char *p) {
1940 const char *t, *s;
1941
1942 if (!p)
1943 return false;
1944
1945 if (streq(p, SYSTEMD_CGROUP_CONTROLLER))
1946 return true;
1947
1948 s = startswith(p, "name=");
1949 if (s)
1950 p = s;
1951
1952 if (IN_SET(*p, 0, '_'))
1953 return false;
1954
1955 for (t = p; *t; t++)
1956 if (!strchr(CONTROLLER_VALID, *t))
1957 return false;
1958
1959 if (t - p > FILENAME_MAX)
1960 return false;
1961
1962 return true;
1963 }
1964
1965 int cg_slice_to_path(const char *unit, char **ret) {
1966 _cleanup_free_ char *p = NULL, *s = NULL, *e = NULL;
1967 const char *dash;
1968 int r;
1969
1970 assert(unit);
1971 assert(ret);
1972
1973 if (streq(unit, SPECIAL_ROOT_SLICE)) {
1974 char *x;
1975
1976 x = strdup("");
1977 if (!x)
1978 return -ENOMEM;
1979 *ret = x;
1980 return 0;
1981 }
1982
1983 if (!unit_name_is_valid(unit, UNIT_NAME_PLAIN))
1984 return -EINVAL;
1985
1986 if (!endswith(unit, ".slice"))
1987 return -EINVAL;
1988
1989 r = unit_name_to_prefix(unit, &p);
1990 if (r < 0)
1991 return r;
1992
1993 dash = strchr(p, '-');
1994
1995 /* Don't allow initial dashes */
1996 if (dash == p)
1997 return -EINVAL;
1998
1999 while (dash) {
2000 _cleanup_free_ char *escaped = NULL;
2001 char n[dash - p + sizeof(".slice")];
2002
2003 /* Don't allow trailing or double dashes */
2004 if (IN_SET(dash[1], 0, '-'))
2005 return -EINVAL;
2006
2007 strcpy(stpncpy(n, p, dash - p), ".slice");
2008 if (!unit_name_is_valid(n, UNIT_NAME_PLAIN))
2009 return -EINVAL;
2010
2011 escaped = cg_escape(n);
2012 if (!escaped)
2013 return -ENOMEM;
2014
2015 if (!strextend(&s, escaped, "/", NULL))
2016 return -ENOMEM;
2017
2018 dash = strchr(dash+1, '-');
2019 }
2020
2021 e = cg_escape(unit);
2022 if (!e)
2023 return -ENOMEM;
2024
2025 if (!strextend(&s, e, NULL))
2026 return -ENOMEM;
2027
2028 *ret = s;
2029 s = NULL;
2030
2031 return 0;
2032 }
2033
2034 int cg_set_attribute(const char *controller, const char *path, const char *attribute, const char *value) {
2035 _cleanup_free_ char *p = NULL;
2036 int r;
2037
2038 r = cg_get_path(controller, path, attribute, &p);
2039 if (r < 0)
2040 return r;
2041
2042 return write_string_file(p, value, 0);
2043 }
2044
2045 int cg_get_attribute(const char *controller, const char *path, const char *attribute, char **ret) {
2046 _cleanup_free_ char *p = NULL;
2047 int r;
2048
2049 r = cg_get_path(controller, path, attribute, &p);
2050 if (r < 0)
2051 return r;
2052
2053 return read_one_line_file(p, ret);
2054 }
2055
2056 int cg_get_keyed_attribute(const char *controller, const char *path, const char *attribute, const char **keys, char **values) {
2057 _cleanup_free_ char *filename = NULL, *content = NULL;
2058 char *line, *p;
2059 int i, r;
2060
2061 for (i = 0; keys[i]; i++)
2062 values[i] = NULL;
2063
2064 r = cg_get_path(controller, path, attribute, &filename);
2065 if (r < 0)
2066 return r;
2067
2068 r = read_full_file(filename, &content, NULL);
2069 if (r < 0)
2070 return r;
2071
2072 p = content;
2073 while ((line = strsep(&p, "\n"))) {
2074 char *key;
2075
2076 key = strsep(&line, " ");
2077
2078 for (i = 0; keys[i]; i++) {
2079 if (streq(key, keys[i])) {
2080 values[i] = strdup(line);
2081 break;
2082 }
2083 }
2084 }
2085
2086 for (i = 0; keys[i]; i++) {
2087 if (!values[i]) {
2088 for (i = 0; keys[i]; i++) {
2089 free(values[i]);
2090 values[i] = NULL;
2091 }
2092 return -ENOENT;
2093 }
2094 }
2095
2096 return 0;
2097 }
2098
2099 int cg_create_everywhere(CGroupMask supported, CGroupMask mask, const char *path) {
2100 CGroupController c;
2101 int r;
2102
2103 /* This one will create a cgroup in our private tree, but also
2104 * duplicate it in the trees specified in mask, and remove it
2105 * in all others */
2106
2107 /* First create the cgroup in our own hierarchy. */
2108 r = cg_create(SYSTEMD_CGROUP_CONTROLLER, path);
2109 if (r < 0)
2110 return r;
2111
2112 /* If we are in the unified hierarchy, we are done now */
2113 r = cg_all_unified();
2114 if (r < 0)
2115 return r;
2116 if (r > 0)
2117 return 0;
2118
2119 /* Otherwise, do the same in the other hierarchies */
2120 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
2121 CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c);
2122 const char *n;
2123
2124 n = cgroup_controller_to_string(c);
2125
2126 if (mask & bit)
2127 (void) cg_create(n, path);
2128 else if (supported & bit)
2129 (void) cg_trim(n, path, true);
2130 }
2131
2132 return 0;
2133 }
2134
2135 int cg_attach_everywhere(CGroupMask supported, const char *path, pid_t pid, cg_migrate_callback_t path_callback, void *userdata) {
2136 CGroupController c;
2137 int r;
2138
2139 r = cg_attach(SYSTEMD_CGROUP_CONTROLLER, path, pid);
2140 if (r < 0)
2141 return r;
2142
2143 r = cg_all_unified();
2144 if (r < 0)
2145 return r;
2146 if (r > 0)
2147 return 0;
2148
2149 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
2150 CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c);
2151 const char *p = NULL;
2152
2153 if (!(supported & bit))
2154 continue;
2155
2156 if (path_callback)
2157 p = path_callback(bit, userdata);
2158
2159 if (!p)
2160 p = path;
2161
2162 (void) cg_attach_fallback(cgroup_controller_to_string(c), p, pid);
2163 }
2164
2165 return 0;
2166 }
2167
2168 int cg_attach_many_everywhere(CGroupMask supported, const char *path, Set* pids, cg_migrate_callback_t path_callback, void *userdata) {
2169 Iterator i;
2170 void *pidp;
2171 int r = 0;
2172
2173 SET_FOREACH(pidp, pids, i) {
2174 pid_t pid = PTR_TO_PID(pidp);
2175 int q;
2176
2177 q = cg_attach_everywhere(supported, path, pid, path_callback, userdata);
2178 if (q < 0 && r >= 0)
2179 r = q;
2180 }
2181
2182 return r;
2183 }
2184
2185 int cg_migrate_everywhere(CGroupMask supported, const char *from, const char *to, cg_migrate_callback_t to_callback, void *userdata) {
2186 CGroupController c;
2187 int r = 0, q;
2188
2189 if (!path_equal(from, to)) {
2190 r = cg_migrate_recursive(SYSTEMD_CGROUP_CONTROLLER, from, SYSTEMD_CGROUP_CONTROLLER, to, CGROUP_REMOVE);
2191 if (r < 0)
2192 return r;
2193 }
2194
2195 q = cg_all_unified();
2196 if (q < 0)
2197 return q;
2198 if (q > 0)
2199 return r;
2200
2201 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
2202 CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c);
2203 const char *p = NULL;
2204
2205 if (!(supported & bit))
2206 continue;
2207
2208 if (to_callback)
2209 p = to_callback(bit, userdata);
2210
2211 if (!p)
2212 p = to;
2213
2214 (void) cg_migrate_recursive_fallback(SYSTEMD_CGROUP_CONTROLLER, to, cgroup_controller_to_string(c), p, 0);
2215 }
2216
2217 return 0;
2218 }
2219
2220 int cg_trim_everywhere(CGroupMask supported, const char *path, bool delete_root) {
2221 CGroupController c;
2222 int r, q;
2223
2224 r = cg_trim(SYSTEMD_CGROUP_CONTROLLER, path, delete_root);
2225 if (r < 0)
2226 return r;
2227
2228 q = cg_all_unified();
2229 if (q < 0)
2230 return q;
2231 if (q > 0)
2232 return r;
2233
2234 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
2235 CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c);
2236
2237 if (!(supported & bit))
2238 continue;
2239
2240 (void) cg_trim(cgroup_controller_to_string(c), path, delete_root);
2241 }
2242
2243 return 0;
2244 }
2245
2246 int cg_mask_to_string(CGroupMask mask, char **ret) {
2247 const char *controllers[_CGROUP_CONTROLLER_MAX + 1];
2248 CGroupController c;
2249 int i = 0;
2250 char *s;
2251
2252 assert(ret);
2253
2254 if (mask == 0) {
2255 *ret = NULL;
2256 return 0;
2257 }
2258
2259 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
2260
2261 if (!(mask & CGROUP_CONTROLLER_TO_MASK(c)))
2262 continue;
2263
2264 controllers[i++] = cgroup_controller_to_string(c);
2265 controllers[i] = NULL;
2266 }
2267
2268 s = strv_join((char **)controllers, NULL);
2269 if (!s)
2270 return -ENOMEM;
2271
2272 *ret = s;
2273 return 0;
2274 }
2275
2276 int cg_mask_from_string(const char *value, CGroupMask *mask) {
2277 assert(mask);
2278 assert(value);
2279
2280 for (;;) {
2281 _cleanup_free_ char *n = NULL;
2282 CGroupController v;
2283 int r;
2284
2285 r = extract_first_word(&value, &n, NULL, 0);
2286 if (r < 0)
2287 return r;
2288 if (r == 0)
2289 break;
2290
2291 v = cgroup_controller_from_string(n);
2292 if (v < 0)
2293 continue;
2294
2295 *mask |= CGROUP_CONTROLLER_TO_MASK(v);
2296 }
2297 return 0;
2298 }
2299
2300 int cg_mask_supported(CGroupMask *ret) {
2301 CGroupMask mask = 0;
2302 int r;
2303
2304 /* Determines the mask of supported cgroup controllers. Only
2305 * includes controllers we can make sense of and that are
2306 * actually accessible. */
2307
2308 r = cg_all_unified();
2309 if (r < 0)
2310 return r;
2311 if (r > 0) {
2312 _cleanup_free_ char *root = NULL, *controllers = NULL, *path = NULL;
2313
2314 /* In the unified hierarchy we can read the supported
2315 * and accessible controllers from a the top-level
2316 * cgroup attribute */
2317
2318 r = cg_get_root_path(&root);
2319 if (r < 0)
2320 return r;
2321
2322 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, root, "cgroup.controllers", &path);
2323 if (r < 0)
2324 return r;
2325
2326 r = read_one_line_file(path, &controllers);
2327 if (r < 0)
2328 return r;
2329
2330 r = cg_mask_from_string(controllers, &mask);
2331 if (r < 0)
2332 return r;
2333
2334 /* Currently, we support the cpu, memory, io and pids
2335 * controller in the unified hierarchy, mask
2336 * everything else off. */
2337 mask &= CGROUP_MASK_CPU | CGROUP_MASK_MEMORY | CGROUP_MASK_IO | CGROUP_MASK_PIDS;
2338
2339 } else {
2340 CGroupController c;
2341
2342 /* In the legacy hierarchy, we check whether which
2343 * hierarchies are mounted. */
2344
2345 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
2346 const char *n;
2347
2348 n = cgroup_controller_to_string(c);
2349 if (controller_is_accessible(n) >= 0)
2350 mask |= CGROUP_CONTROLLER_TO_MASK(c);
2351 }
2352 }
2353
2354 *ret = mask;
2355 return 0;
2356 }
2357
2358 int cg_kernel_controllers(Set *controllers) {
2359 _cleanup_fclose_ FILE *f = NULL;
2360 int r;
2361
2362 assert(controllers);
2363
2364 /* Determines the full list of kernel-known controllers. Might
2365 * include controllers we don't actually support, arbitrary
2366 * named hierarchies and controllers that aren't currently
2367 * accessible (because not mounted). */
2368
2369 f = fopen("/proc/cgroups", "re");
2370 if (!f) {
2371 if (errno == ENOENT)
2372 return 0;
2373 return -errno;
2374 }
2375
2376 /* Ignore the header line */
2377 (void) read_line(f, (size_t) -1, NULL);
2378
2379 for (;;) {
2380 char *controller;
2381 int enabled = 0;
2382
2383 errno = 0;
2384 if (fscanf(f, "%ms %*i %*i %i", &controller, &enabled) != 2) {
2385
2386 if (feof(f))
2387 break;
2388
2389 if (ferror(f) && errno > 0)
2390 return -errno;
2391
2392 return -EBADMSG;
2393 }
2394
2395 if (!enabled) {
2396 free(controller);
2397 continue;
2398 }
2399
2400 if (!cg_controller_is_valid(controller)) {
2401 free(controller);
2402 return -EBADMSG;
2403 }
2404
2405 r = set_consume(controllers, controller);
2406 if (r < 0)
2407 return r;
2408 }
2409
2410 return 0;
2411 }
2412
2413 static thread_local CGroupUnified unified_cache = CGROUP_UNIFIED_UNKNOWN;
2414
2415 /* The hybrid mode was initially implemented in v232 and simply mounted cgroup v2 on /sys/fs/cgroup/systemd. This
2416 * unfortunately broke other tools (such as docker) which expected the v1 "name=systemd" hierarchy on
2417 * /sys/fs/cgroup/systemd. From v233 and on, the hybrid mode mountnbs v2 on /sys/fs/cgroup/unified and maintains
2418 * "name=systemd" hierarchy on /sys/fs/cgroup/systemd for compatibility with other tools.
2419 *
2420 * To keep live upgrade working, we detect and support v232 layout. When v232 layout is detected, to keep cgroup v2
2421 * process management but disable the compat dual layout, we return %true on
2422 * cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) and %false on cg_hybrid_unified().
2423 */
2424 static thread_local bool unified_systemd_v232;
2425
2426 static int cg_unified_update(void) {
2427
2428 struct statfs fs;
2429
2430 /* Checks if we support the unified hierarchy. Returns an
2431 * error when the cgroup hierarchies aren't mounted yet or we
2432 * have any other trouble determining if the unified hierarchy
2433 * is supported. */
2434
2435 if (unified_cache >= CGROUP_UNIFIED_NONE)
2436 return 0;
2437
2438 if (statfs("/sys/fs/cgroup/", &fs) < 0)
2439 return -errno;
2440
2441 if (F_TYPE_EQUAL(fs.f_type, CGROUP2_SUPER_MAGIC))
2442 unified_cache = CGROUP_UNIFIED_ALL;
2443 else if (F_TYPE_EQUAL(fs.f_type, TMPFS_MAGIC)) {
2444 if (statfs("/sys/fs/cgroup/unified/", &fs) == 0 &&
2445 F_TYPE_EQUAL(fs.f_type, CGROUP2_SUPER_MAGIC)) {
2446 unified_cache = CGROUP_UNIFIED_SYSTEMD;
2447 unified_systemd_v232 = false;
2448 } else if (statfs("/sys/fs/cgroup/systemd/", &fs) == 0 &&
2449 F_TYPE_EQUAL(fs.f_type, CGROUP2_SUPER_MAGIC)) {
2450 unified_cache = CGROUP_UNIFIED_SYSTEMD;
2451 unified_systemd_v232 = true;
2452 } else {
2453 if (statfs("/sys/fs/cgroup/systemd/", &fs) < 0)
2454 return -errno;
2455 if (!F_TYPE_EQUAL(fs.f_type, CGROUP_SUPER_MAGIC))
2456 return -ENOMEDIUM;
2457 unified_cache = CGROUP_UNIFIED_NONE;
2458 }
2459 } else {
2460 log_debug("Unknown filesystem type %llx mounted on /sys/fs/cgroup.",
2461 (unsigned long long) fs.f_type);
2462 return -ENOMEDIUM;
2463 }
2464
2465 return 0;
2466 }
2467
2468 int cg_unified_controller(const char *controller) {
2469 int r;
2470
2471 r = cg_unified_update();
2472 if (r < 0)
2473 return r;
2474
2475 if (unified_cache == CGROUP_UNIFIED_NONE)
2476 return false;
2477
2478 if (unified_cache >= CGROUP_UNIFIED_ALL)
2479 return true;
2480
2481 return streq_ptr(controller, SYSTEMD_CGROUP_CONTROLLER);
2482 }
2483
2484 int cg_all_unified(void) {
2485 int r;
2486
2487 r = cg_unified_update();
2488 if (r < 0)
2489 return r;
2490
2491 return unified_cache >= CGROUP_UNIFIED_ALL;
2492 }
2493
2494 int cg_hybrid_unified(void) {
2495 int r;
2496
2497 r = cg_unified_update();
2498 if (r < 0)
2499 return r;
2500
2501 return unified_cache == CGROUP_UNIFIED_SYSTEMD && !unified_systemd_v232;
2502 }
2503
2504 int cg_unified_flush(void) {
2505 unified_cache = CGROUP_UNIFIED_UNKNOWN;
2506
2507 return cg_unified_update();
2508 }
2509
2510 int cg_enable_everywhere(CGroupMask supported, CGroupMask mask, const char *p) {
2511 _cleanup_free_ char *fs = NULL;
2512 CGroupController c;
2513 int r;
2514
2515 assert(p);
2516
2517 if (supported == 0)
2518 return 0;
2519
2520 r = cg_all_unified();
2521 if (r < 0)
2522 return r;
2523 if (r == 0) /* on the legacy hiearchy there's no joining of controllers defined */
2524 return 0;
2525
2526 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, p, "cgroup.subtree_control", &fs);
2527 if (r < 0)
2528 return r;
2529
2530 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
2531 CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c);
2532 const char *n;
2533
2534 if (!(supported & bit))
2535 continue;
2536
2537 n = cgroup_controller_to_string(c);
2538 {
2539 char s[1 + strlen(n) + 1];
2540
2541 s[0] = mask & bit ? '+' : '-';
2542 strcpy(s + 1, n);
2543
2544 r = write_string_file(fs, s, 0);
2545 if (r < 0)
2546 log_debug_errno(r, "Failed to enable controller %s for %s (%s): %m", n, p, fs);
2547 }
2548 }
2549
2550 return 0;
2551 }
2552
2553 bool cg_is_unified_wanted(void) {
2554 static thread_local int wanted = -1;
2555 int r;
2556 bool b;
2557 const bool is_default = DEFAULT_HIERARCHY == CGROUP_UNIFIED_ALL;
2558
2559 /* If we have a cached value, return that. */
2560 if (wanted >= 0)
2561 return wanted;
2562
2563 /* If the hierarchy is already mounted, then follow whatever
2564 * was chosen for it. */
2565 if (cg_unified_flush() >= 0)
2566 return (wanted = unified_cache >= CGROUP_UNIFIED_ALL);
2567
2568 /* Otherwise, let's see what the kernel command line has to say.
2569 * Since checking is expensive, cache a non-error result. */
2570 r = proc_cmdline_get_bool("systemd.unified_cgroup_hierarchy", &b);
2571
2572 return (wanted = r > 0 ? b : is_default);
2573 }
2574
2575 bool cg_is_legacy_wanted(void) {
2576 static thread_local int wanted = -1;
2577
2578 /* If we have a cached value, return that. */
2579 if (wanted >= 0)
2580 return wanted;
2581
2582 /* Check if we have cgroups2 already mounted. */
2583 if (cg_unified_flush() >= 0 &&
2584 unified_cache == CGROUP_UNIFIED_ALL)
2585 return (wanted = false);
2586
2587 /* Otherwise, assume that at least partial legacy is wanted,
2588 * since cgroups2 should already be mounted at this point. */
2589 return (wanted = true);
2590 }
2591
2592 bool cg_is_hybrid_wanted(void) {
2593 static thread_local int wanted = -1;
2594 int r;
2595 bool b;
2596 const bool is_default = DEFAULT_HIERARCHY >= CGROUP_UNIFIED_SYSTEMD;
2597 /* We default to true if the default is "hybrid", obviously,
2598 * but also when the default is "unified", because if we get
2599 * called, it means that unified hierarchy was not mounted. */
2600
2601 /* If we have a cached value, return that. */
2602 if (wanted >= 0)
2603 return wanted;
2604
2605 /* If the hierarchy is already mounted, then follow whatever
2606 * was chosen for it. */
2607 if (cg_unified_flush() >= 0 &&
2608 unified_cache == CGROUP_UNIFIED_ALL)
2609 return (wanted = false);
2610
2611 /* Otherwise, let's see what the kernel command line has to say.
2612 * Since checking is expensive, cache a non-error result. */
2613 r = proc_cmdline_get_bool("systemd.legacy_systemd_cgroup_controller", &b);
2614
2615 /* The meaning of the kernel option is reversed wrt. to the return value
2616 * of this function, hence the negation. */
2617 return (wanted = r > 0 ? !b : is_default);
2618 }
2619
2620 int cg_weight_parse(const char *s, uint64_t *ret) {
2621 uint64_t u;
2622 int r;
2623
2624 if (isempty(s)) {
2625 *ret = CGROUP_WEIGHT_INVALID;
2626 return 0;
2627 }
2628
2629 r = safe_atou64(s, &u);
2630 if (r < 0)
2631 return r;
2632
2633 if (u < CGROUP_WEIGHT_MIN || u > CGROUP_WEIGHT_MAX)
2634 return -ERANGE;
2635
2636 *ret = u;
2637 return 0;
2638 }
2639
2640 const uint64_t cgroup_io_limit_defaults[_CGROUP_IO_LIMIT_TYPE_MAX] = {
2641 [CGROUP_IO_RBPS_MAX] = CGROUP_LIMIT_MAX,
2642 [CGROUP_IO_WBPS_MAX] = CGROUP_LIMIT_MAX,
2643 [CGROUP_IO_RIOPS_MAX] = CGROUP_LIMIT_MAX,
2644 [CGROUP_IO_WIOPS_MAX] = CGROUP_LIMIT_MAX,
2645 };
2646
2647 static const char* const cgroup_io_limit_type_table[_CGROUP_IO_LIMIT_TYPE_MAX] = {
2648 [CGROUP_IO_RBPS_MAX] = "IOReadBandwidthMax",
2649 [CGROUP_IO_WBPS_MAX] = "IOWriteBandwidthMax",
2650 [CGROUP_IO_RIOPS_MAX] = "IOReadIOPSMax",
2651 [CGROUP_IO_WIOPS_MAX] = "IOWriteIOPSMax",
2652 };
2653
2654 DEFINE_STRING_TABLE_LOOKUP(cgroup_io_limit_type, CGroupIOLimitType);
2655
2656 int cg_cpu_shares_parse(const char *s, uint64_t *ret) {
2657 uint64_t u;
2658 int r;
2659
2660 if (isempty(s)) {
2661 *ret = CGROUP_CPU_SHARES_INVALID;
2662 return 0;
2663 }
2664
2665 r = safe_atou64(s, &u);
2666 if (r < 0)
2667 return r;
2668
2669 if (u < CGROUP_CPU_SHARES_MIN || u > CGROUP_CPU_SHARES_MAX)
2670 return -ERANGE;
2671
2672 *ret = u;
2673 return 0;
2674 }
2675
2676 int cg_blkio_weight_parse(const char *s, uint64_t *ret) {
2677 uint64_t u;
2678 int r;
2679
2680 if (isempty(s)) {
2681 *ret = CGROUP_BLKIO_WEIGHT_INVALID;
2682 return 0;
2683 }
2684
2685 r = safe_atou64(s, &u);
2686 if (r < 0)
2687 return r;
2688
2689 if (u < CGROUP_BLKIO_WEIGHT_MIN || u > CGROUP_BLKIO_WEIGHT_MAX)
2690 return -ERANGE;
2691
2692 *ret = u;
2693 return 0;
2694 }
2695
2696 bool is_cgroup_fs(const struct statfs *s) {
2697 return is_fs_type(s, CGROUP_SUPER_MAGIC) ||
2698 is_fs_type(s, CGROUP2_SUPER_MAGIC);
2699 }
2700
2701 bool fd_is_cgroup_fs(int fd) {
2702 struct statfs s;
2703
2704 if (fstatfs(fd, &s) < 0)
2705 return -errno;
2706
2707 return is_cgroup_fs(&s);
2708 }
2709
2710 static const char *cgroup_controller_table[_CGROUP_CONTROLLER_MAX] = {
2711 [CGROUP_CONTROLLER_CPU] = "cpu",
2712 [CGROUP_CONTROLLER_CPUACCT] = "cpuacct",
2713 [CGROUP_CONTROLLER_IO] = "io",
2714 [CGROUP_CONTROLLER_BLKIO] = "blkio",
2715 [CGROUP_CONTROLLER_MEMORY] = "memory",
2716 [CGROUP_CONTROLLER_DEVICES] = "devices",
2717 [CGROUP_CONTROLLER_PIDS] = "pids",
2718 };
2719
2720 DEFINE_STRING_TABLE_LOOKUP(cgroup_controller, CGroupController);