]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/basic/fd-util.c
1024490f23bc4b60a9466bb359605ad97617494f
[thirdparty/systemd.git] / src / basic / fd-util.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <errno.h>
4 #include <fcntl.h>
5 #include <sys/resource.h>
6 #include <sys/socket.h>
7 #include <sys/stat.h>
8 #include <unistd.h>
9
10 #include "alloc-util.h"
11 #include "copy.h"
12 #include "dirent-util.h"
13 #include "fd-util.h"
14 #include "fileio.h"
15 #include "fs-util.h"
16 #include "io-util.h"
17 #include "macro.h"
18 #include "memfd-util.h"
19 #include "missing_syscall.h"
20 #include "parse-util.h"
21 #include "path-util.h"
22 #include "process-util.h"
23 #include "socket-util.h"
24 #include "stdio-util.h"
25 #include "util.h"
26 #include "tmpfile-util.h"
27
28 /* The maximum number of iterations in the loop to close descriptors in the fallback case
29 * when /proc/self/fd/ is inaccessible. */
30 #define MAX_FD_LOOP_LIMIT (1024*1024)
31
32 int close_nointr(int fd) {
33 assert(fd >= 0);
34
35 if (close(fd) >= 0)
36 return 0;
37
38 /*
39 * Just ignore EINTR; a retry loop is the wrong thing to do on
40 * Linux.
41 *
42 * http://lkml.indiana.edu/hypermail/linux/kernel/0509.1/0877.html
43 * https://bugzilla.gnome.org/show_bug.cgi?id=682819
44 * http://utcc.utoronto.ca/~cks/space/blog/unix/CloseEINTR
45 * https://sites.google.com/site/michaelsafyan/software-engineering/checkforeintrwheninvokingclosethinkagain
46 */
47 if (errno == EINTR)
48 return 0;
49
50 return -errno;
51 }
52
53 int safe_close(int fd) {
54
55 /*
56 * Like close_nointr() but cannot fail. Guarantees errno is
57 * unchanged. Is a NOP with negative fds passed, and returns
58 * -1, so that it can be used in this syntax:
59 *
60 * fd = safe_close(fd);
61 */
62
63 if (fd >= 0) {
64 PROTECT_ERRNO;
65
66 /* The kernel might return pretty much any error code
67 * via close(), but the fd will be closed anyway. The
68 * only condition we want to check for here is whether
69 * the fd was invalid at all... */
70
71 assert_se(close_nointr(fd) != -EBADF);
72 }
73
74 return -1;
75 }
76
77 void safe_close_pair(int p[static 2]) {
78 assert(p);
79
80 if (p[0] == p[1]) {
81 /* Special case pairs which use the same fd in both
82 * directions... */
83 p[0] = p[1] = safe_close(p[0]);
84 return;
85 }
86
87 p[0] = safe_close(p[0]);
88 p[1] = safe_close(p[1]);
89 }
90
91 void close_many(const int fds[], size_t n_fd) {
92 size_t i;
93
94 assert(fds || n_fd <= 0);
95
96 for (i = 0; i < n_fd; i++)
97 safe_close(fds[i]);
98 }
99
100 int fclose_nointr(FILE *f) {
101 assert(f);
102
103 /* Same as close_nointr(), but for fclose() */
104
105 if (fclose(f) == 0)
106 return 0;
107
108 if (errno == EINTR)
109 return 0;
110
111 return -errno;
112 }
113
114 FILE* safe_fclose(FILE *f) {
115
116 /* Same as safe_close(), but for fclose() */
117
118 if (f) {
119 PROTECT_ERRNO;
120
121 assert_se(fclose_nointr(f) != -EBADF);
122 }
123
124 return NULL;
125 }
126
127 DIR* safe_closedir(DIR *d) {
128
129 if (d) {
130 PROTECT_ERRNO;
131
132 assert_se(closedir(d) >= 0 || errno != EBADF);
133 }
134
135 return NULL;
136 }
137
138 int fd_nonblock(int fd, bool nonblock) {
139 int flags, nflags;
140
141 assert(fd >= 0);
142
143 flags = fcntl(fd, F_GETFL, 0);
144 if (flags < 0)
145 return -errno;
146
147 if (nonblock)
148 nflags = flags | O_NONBLOCK;
149 else
150 nflags = flags & ~O_NONBLOCK;
151
152 if (nflags == flags)
153 return 0;
154
155 if (fcntl(fd, F_SETFL, nflags) < 0)
156 return -errno;
157
158 return 0;
159 }
160
161 int fd_cloexec(int fd, bool cloexec) {
162 int flags, nflags;
163
164 assert(fd >= 0);
165
166 flags = fcntl(fd, F_GETFD, 0);
167 if (flags < 0)
168 return -errno;
169
170 if (cloexec)
171 nflags = flags | FD_CLOEXEC;
172 else
173 nflags = flags & ~FD_CLOEXEC;
174
175 if (nflags == flags)
176 return 0;
177
178 if (fcntl(fd, F_SETFD, nflags) < 0)
179 return -errno;
180
181 return 0;
182 }
183
184 _pure_ static bool fd_in_set(int fd, const int fdset[], size_t n_fdset) {
185 size_t i;
186
187 assert(n_fdset == 0 || fdset);
188
189 for (i = 0; i < n_fdset; i++)
190 if (fdset[i] == fd)
191 return true;
192
193 return false;
194 }
195
196 static int get_max_fd(void) {
197 struct rlimit rl;
198 rlim_t m;
199
200 /* Return the highest possible fd, based RLIMIT_NOFILE, but enforcing FD_SETSIZE-1 as lower boundary
201 * and INT_MAX as upper boundary. */
202
203 if (getrlimit(RLIMIT_NOFILE, &rl) < 0)
204 return -errno;
205
206 m = MAX(rl.rlim_cur, rl.rlim_max);
207 if (m < FD_SETSIZE) /* Let's always cover at least 1024 fds */
208 return FD_SETSIZE-1;
209
210 if (m == RLIM_INFINITY || m > INT_MAX) /* Saturate on overflow. After all fds are "int", hence can
211 * never be above INT_MAX */
212 return INT_MAX;
213
214 return (int) (m - 1);
215 }
216
217 int close_all_fds(const int except[], size_t n_except) {
218 _cleanup_closedir_ DIR *d = NULL;
219 struct dirent *de;
220 int r = 0;
221
222 assert(n_except == 0 || except);
223
224 d = opendir("/proc/self/fd");
225 if (!d) {
226 int fd, max_fd;
227
228 /* When /proc isn't available (for example in chroots) the fallback is brute forcing through
229 * the fd table */
230
231 max_fd = get_max_fd();
232 if (max_fd < 0)
233 return max_fd;
234
235 /* Refuse to do the loop over more too many elements. It's better to fail immediately than to
236 * spin the CPU for a long time. */
237 if (max_fd > MAX_FD_LOOP_LIMIT)
238 return log_debug_errno(SYNTHETIC_ERRNO(EPERM),
239 "/proc/self/fd is inaccessible. Refusing to loop over %d potential fds.",
240 max_fd);
241
242 for (fd = 3; fd >= 0; fd = fd < max_fd ? fd + 1 : -1) {
243 int q;
244
245 if (fd_in_set(fd, except, n_except))
246 continue;
247
248 q = close_nointr(fd);
249 if (q < 0 && q != -EBADF && r >= 0)
250 r = q;
251 }
252
253 return r;
254 }
255
256 FOREACH_DIRENT(de, d, return -errno) {
257 int fd = -1, q;
258
259 if (safe_atoi(de->d_name, &fd) < 0)
260 /* Let's better ignore this, just in case */
261 continue;
262
263 if (fd < 3)
264 continue;
265
266 if (fd == dirfd(d))
267 continue;
268
269 if (fd_in_set(fd, except, n_except))
270 continue;
271
272 q = close_nointr(fd);
273 if (q < 0 && q != -EBADF && r >= 0) /* Valgrind has its own FD and doesn't want to have it closed */
274 r = q;
275 }
276
277 return r;
278 }
279
280 int same_fd(int a, int b) {
281 struct stat sta, stb;
282 pid_t pid;
283 int r, fa, fb;
284
285 assert(a >= 0);
286 assert(b >= 0);
287
288 /* Compares two file descriptors. Note that semantics are
289 * quite different depending on whether we have kcmp() or we
290 * don't. If we have kcmp() this will only return true for
291 * dup()ed file descriptors, but not otherwise. If we don't
292 * have kcmp() this will also return true for two fds of the same
293 * file, created by separate open() calls. Since we use this
294 * call mostly for filtering out duplicates in the fd store
295 * this difference hopefully doesn't matter too much. */
296
297 if (a == b)
298 return true;
299
300 /* Try to use kcmp() if we have it. */
301 pid = getpid_cached();
302 r = kcmp(pid, pid, KCMP_FILE, a, b);
303 if (r == 0)
304 return true;
305 if (r > 0)
306 return false;
307 if (!IN_SET(errno, ENOSYS, EACCES, EPERM))
308 return -errno;
309
310 /* We don't have kcmp(), use fstat() instead. */
311 if (fstat(a, &sta) < 0)
312 return -errno;
313
314 if (fstat(b, &stb) < 0)
315 return -errno;
316
317 if ((sta.st_mode & S_IFMT) != (stb.st_mode & S_IFMT))
318 return false;
319
320 /* We consider all device fds different, since two device fds
321 * might refer to quite different device contexts even though
322 * they share the same inode and backing dev_t. */
323
324 if (S_ISCHR(sta.st_mode) || S_ISBLK(sta.st_mode))
325 return false;
326
327 if (sta.st_dev != stb.st_dev || sta.st_ino != stb.st_ino)
328 return false;
329
330 /* The fds refer to the same inode on disk, let's also check
331 * if they have the same fd flags. This is useful to
332 * distinguish the read and write side of a pipe created with
333 * pipe(). */
334 fa = fcntl(a, F_GETFL);
335 if (fa < 0)
336 return -errno;
337
338 fb = fcntl(b, F_GETFL);
339 if (fb < 0)
340 return -errno;
341
342 return fa == fb;
343 }
344
345 void cmsg_close_all(struct msghdr *mh) {
346 struct cmsghdr *cmsg;
347
348 assert(mh);
349
350 CMSG_FOREACH(cmsg, mh)
351 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS)
352 close_many((int*) CMSG_DATA(cmsg), (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(int));
353 }
354
355 bool fdname_is_valid(const char *s) {
356 const char *p;
357
358 /* Validates a name for $LISTEN_FDNAMES. We basically allow
359 * everything ASCII that's not a control character. Also, as
360 * special exception the ":" character is not allowed, as we
361 * use that as field separator in $LISTEN_FDNAMES.
362 *
363 * Note that the empty string is explicitly allowed
364 * here. However, we limit the length of the names to 255
365 * characters. */
366
367 if (!s)
368 return false;
369
370 for (p = s; *p; p++) {
371 if (*p < ' ')
372 return false;
373 if (*p >= 127)
374 return false;
375 if (*p == ':')
376 return false;
377 }
378
379 return p - s < 256;
380 }
381
382 int fd_get_path(int fd, char **ret) {
383 char procfs_path[STRLEN("/proc/self/fd/") + DECIMAL_STR_MAX(int)];
384 int r;
385
386 xsprintf(procfs_path, "/proc/self/fd/%i", fd);
387 r = readlink_malloc(procfs_path, ret);
388 if (r == -ENOENT) {
389 /* ENOENT can mean two things: that the fd does not exist or that /proc is not mounted. Let's make
390 * things debuggable and distinguish the two. */
391
392 if (access("/proc/self/fd/", F_OK) < 0)
393 /* /proc is not available or not set up properly, we're most likely in some chroot
394 * environment. */
395 return errno == ENOENT ? -EOPNOTSUPP : -errno;
396
397 return -EBADF; /* The directory exists, hence it's the fd that doesn't. */
398 }
399
400 return r;
401 }
402
403 int move_fd(int from, int to, int cloexec) {
404 int r;
405
406 /* Move fd 'from' to 'to', make sure FD_CLOEXEC remains equal if requested, and release the old fd. If
407 * 'cloexec' is passed as -1, the original FD_CLOEXEC is inherited for the new fd. If it is 0, it is turned
408 * off, if it is > 0 it is turned on. */
409
410 if (from < 0)
411 return -EBADF;
412 if (to < 0)
413 return -EBADF;
414
415 if (from == to) {
416
417 if (cloexec >= 0) {
418 r = fd_cloexec(to, cloexec);
419 if (r < 0)
420 return r;
421 }
422
423 return to;
424 }
425
426 if (cloexec < 0) {
427 int fl;
428
429 fl = fcntl(from, F_GETFD, 0);
430 if (fl < 0)
431 return -errno;
432
433 cloexec = !!(fl & FD_CLOEXEC);
434 }
435
436 r = dup3(from, to, cloexec ? O_CLOEXEC : 0);
437 if (r < 0)
438 return -errno;
439
440 assert(r == to);
441
442 safe_close(from);
443
444 return to;
445 }
446
447 int acquire_data_fd(const void *data, size_t size, unsigned flags) {
448
449 _cleanup_close_pair_ int pipefds[2] = { -1, -1 };
450 char pattern[] = "/dev/shm/data-fd-XXXXXX";
451 _cleanup_close_ int fd = -1;
452 int isz = 0, r;
453 ssize_t n;
454 off_t f;
455
456 assert(data || size == 0);
457
458 /* Acquire a read-only file descriptor that when read from returns the specified data. This is much more
459 * complex than I wish it was. But here's why:
460 *
461 * a) First we try to use memfds. They are the best option, as we can seal them nicely to make them
462 * read-only. Unfortunately they require kernel 3.17, and – at the time of writing – we still support 3.14.
463 *
464 * b) Then, we try classic pipes. They are the second best options, as we can close the writing side, retaining
465 * a nicely read-only fd in the reading side. However, they are by default quite small, and unprivileged
466 * clients can only bump their size to a system-wide limit, which might be quite low.
467 *
468 * c) Then, we try an O_TMPFILE file in /dev/shm (that dir is the only suitable one known to exist from
469 * earliest boot on). To make it read-only we open the fd a second time with O_RDONLY via
470 * /proc/self/<fd>. Unfortunately O_TMPFILE is not available on older kernels on tmpfs.
471 *
472 * d) Finally, we try creating a regular file in /dev/shm, which we then delete.
473 *
474 * It sucks a bit that depending on the situation we return very different objects here, but that's Linux I
475 * figure. */
476
477 if (size == 0 && ((flags & ACQUIRE_NO_DEV_NULL) == 0)) {
478 /* As a special case, return /dev/null if we have been called for an empty data block */
479 r = open("/dev/null", O_RDONLY|O_CLOEXEC|O_NOCTTY);
480 if (r < 0)
481 return -errno;
482
483 return r;
484 }
485
486 if ((flags & ACQUIRE_NO_MEMFD) == 0) {
487 fd = memfd_new("data-fd");
488 if (fd < 0)
489 goto try_pipe;
490
491 n = write(fd, data, size);
492 if (n < 0)
493 return -errno;
494 if ((size_t) n != size)
495 return -EIO;
496
497 f = lseek(fd, 0, SEEK_SET);
498 if (f != 0)
499 return -errno;
500
501 r = memfd_set_sealed(fd);
502 if (r < 0)
503 return r;
504
505 return TAKE_FD(fd);
506 }
507
508 try_pipe:
509 if ((flags & ACQUIRE_NO_PIPE) == 0) {
510 if (pipe2(pipefds, O_CLOEXEC|O_NONBLOCK) < 0)
511 return -errno;
512
513 isz = fcntl(pipefds[1], F_GETPIPE_SZ, 0);
514 if (isz < 0)
515 return -errno;
516
517 if ((size_t) isz < size) {
518 isz = (int) size;
519 if (isz < 0 || (size_t) isz != size)
520 return -E2BIG;
521
522 /* Try to bump the pipe size */
523 (void) fcntl(pipefds[1], F_SETPIPE_SZ, isz);
524
525 /* See if that worked */
526 isz = fcntl(pipefds[1], F_GETPIPE_SZ, 0);
527 if (isz < 0)
528 return -errno;
529
530 if ((size_t) isz < size)
531 goto try_dev_shm;
532 }
533
534 n = write(pipefds[1], data, size);
535 if (n < 0)
536 return -errno;
537 if ((size_t) n != size)
538 return -EIO;
539
540 (void) fd_nonblock(pipefds[0], false);
541
542 return TAKE_FD(pipefds[0]);
543 }
544
545 try_dev_shm:
546 if ((flags & ACQUIRE_NO_TMPFILE) == 0) {
547 fd = open("/dev/shm", O_RDWR|O_TMPFILE|O_CLOEXEC, 0500);
548 if (fd < 0)
549 goto try_dev_shm_without_o_tmpfile;
550
551 n = write(fd, data, size);
552 if (n < 0)
553 return -errno;
554 if ((size_t) n != size)
555 return -EIO;
556
557 /* Let's reopen the thing, in order to get an O_RDONLY fd for the original O_RDWR one */
558 return fd_reopen(fd, O_RDONLY|O_CLOEXEC);
559 }
560
561 try_dev_shm_without_o_tmpfile:
562 if ((flags & ACQUIRE_NO_REGULAR) == 0) {
563 fd = mkostemp_safe(pattern);
564 if (fd < 0)
565 return fd;
566
567 n = write(fd, data, size);
568 if (n < 0) {
569 r = -errno;
570 goto unlink_and_return;
571 }
572 if ((size_t) n != size) {
573 r = -EIO;
574 goto unlink_and_return;
575 }
576
577 /* Let's reopen the thing, in order to get an O_RDONLY fd for the original O_RDWR one */
578 r = open(pattern, O_RDONLY|O_CLOEXEC);
579 if (r < 0)
580 r = -errno;
581
582 unlink_and_return:
583 (void) unlink(pattern);
584 return r;
585 }
586
587 return -EOPNOTSUPP;
588 }
589
590 /* When the data is smaller or equal to 64K, try to place the copy in a memfd/pipe */
591 #define DATA_FD_MEMORY_LIMIT (64U*1024U)
592
593 /* If memfd/pipe didn't work out, then let's use a file in /tmp up to a size of 1M. If it's large than that use /var/tmp instead. */
594 #define DATA_FD_TMP_LIMIT (1024U*1024U)
595
596 int fd_duplicate_data_fd(int fd) {
597
598 _cleanup_close_ int copy_fd = -1, tmp_fd = -1;
599 _cleanup_free_ void *remains = NULL;
600 size_t remains_size = 0;
601 const char *td;
602 struct stat st;
603 int r;
604
605 /* Creates a 'data' fd from the specified source fd, containing all the same data in a read-only fashion, but
606 * independent of it (i.e. the source fd can be closed and unmounted after this call succeeded). Tries to be
607 * somewhat smart about where to place the data. In the best case uses a memfd(). If memfd() are not supported
608 * uses a pipe instead. For larger data will use an unlinked file in /tmp, and for even larger data one in
609 * /var/tmp. */
610
611 if (fstat(fd, &st) < 0)
612 return -errno;
613
614 /* For now, let's only accept regular files, sockets, pipes and char devices */
615 if (S_ISDIR(st.st_mode))
616 return -EISDIR;
617 if (S_ISLNK(st.st_mode))
618 return -ELOOP;
619 if (!S_ISREG(st.st_mode) && !S_ISSOCK(st.st_mode) && !S_ISFIFO(st.st_mode) && !S_ISCHR(st.st_mode))
620 return -EBADFD;
621
622 /* If we have reason to believe the data is bounded in size, then let's use memfds or pipes as backing fd. Note
623 * that we use the reported regular file size only as a hint, given that there are plenty special files in
624 * /proc and /sys which report a zero file size but can be read from. */
625
626 if (!S_ISREG(st.st_mode) || st.st_size < DATA_FD_MEMORY_LIMIT) {
627
628 /* Try a memfd first */
629 copy_fd = memfd_new("data-fd");
630 if (copy_fd >= 0) {
631 off_t f;
632
633 r = copy_bytes(fd, copy_fd, DATA_FD_MEMORY_LIMIT, 0);
634 if (r < 0)
635 return r;
636
637 f = lseek(copy_fd, 0, SEEK_SET);
638 if (f != 0)
639 return -errno;
640
641 if (r == 0) {
642 /* Did it fit into the limit? If so, we are done. */
643 r = memfd_set_sealed(copy_fd);
644 if (r < 0)
645 return r;
646
647 return TAKE_FD(copy_fd);
648 }
649
650 /* Hmm, pity, this didn't fit. Let's fall back to /tmp then, see below */
651
652 } else {
653 _cleanup_(close_pairp) int pipefds[2] = { -1, -1 };
654 int isz;
655
656 /* If memfds aren't available, use a pipe. Set O_NONBLOCK so that we will get EAGAIN rather
657 * then block indefinitely when we hit the pipe size limit */
658
659 if (pipe2(pipefds, O_CLOEXEC|O_NONBLOCK) < 0)
660 return -errno;
661
662 isz = fcntl(pipefds[1], F_GETPIPE_SZ, 0);
663 if (isz < 0)
664 return -errno;
665
666 /* Try to enlarge the pipe size if necessary */
667 if ((size_t) isz < DATA_FD_MEMORY_LIMIT) {
668
669 (void) fcntl(pipefds[1], F_SETPIPE_SZ, DATA_FD_MEMORY_LIMIT);
670
671 isz = fcntl(pipefds[1], F_GETPIPE_SZ, 0);
672 if (isz < 0)
673 return -errno;
674 }
675
676 if ((size_t) isz >= DATA_FD_MEMORY_LIMIT) {
677
678 r = copy_bytes_full(fd, pipefds[1], DATA_FD_MEMORY_LIMIT, 0, &remains, &remains_size, NULL, NULL);
679 if (r < 0 && r != -EAGAIN)
680 return r; /* If we get EAGAIN it could be because of the source or because of
681 * the destination fd, we can't know, as sendfile() and friends won't
682 * tell us. Hence, treat this as reason to fall back, just to be
683 * sure. */
684 if (r == 0) {
685 /* Everything fit in, yay! */
686 (void) fd_nonblock(pipefds[0], false);
687
688 return TAKE_FD(pipefds[0]);
689 }
690
691 /* Things didn't fit in. But we read data into the pipe, let's remember that, so that
692 * when writing the new file we incorporate this first. */
693 copy_fd = TAKE_FD(pipefds[0]);
694 }
695 }
696 }
697
698 /* If we have reason to believe this will fit fine in /tmp, then use that as first fallback. */
699 if ((!S_ISREG(st.st_mode) || st.st_size < DATA_FD_TMP_LIMIT) &&
700 (DATA_FD_MEMORY_LIMIT + remains_size) < DATA_FD_TMP_LIMIT) {
701 off_t f;
702
703 tmp_fd = open_tmpfile_unlinkable(NULL /* NULL as directory means /tmp */, O_RDWR|O_CLOEXEC);
704 if (tmp_fd < 0)
705 return tmp_fd;
706
707 if (copy_fd >= 0) {
708 /* If we tried a memfd/pipe first and it ended up being too large, then copy this into the
709 * temporary file first. */
710
711 r = copy_bytes(copy_fd, tmp_fd, UINT64_MAX, 0);
712 if (r < 0)
713 return r;
714
715 assert(r == 0);
716 }
717
718 if (remains_size > 0) {
719 /* If there were remaining bytes (i.e. read into memory, but not written out yet) from the
720 * failed copy operation, let's flush them out next. */
721
722 r = loop_write(tmp_fd, remains, remains_size, false);
723 if (r < 0)
724 return r;
725 }
726
727 r = copy_bytes(fd, tmp_fd, DATA_FD_TMP_LIMIT - DATA_FD_MEMORY_LIMIT - remains_size, COPY_REFLINK);
728 if (r < 0)
729 return r;
730 if (r == 0)
731 goto finish; /* Yay, it fit in */
732
733 /* It didn't fit in. Let's not forget to use what we already used */
734 f = lseek(tmp_fd, 0, SEEK_SET);
735 if (f != 0)
736 return -errno;
737
738 safe_close(copy_fd);
739 copy_fd = TAKE_FD(tmp_fd);
740
741 remains = mfree(remains);
742 remains_size = 0;
743 }
744
745 /* As last fallback use /var/tmp */
746 r = var_tmp_dir(&td);
747 if (r < 0)
748 return r;
749
750 tmp_fd = open_tmpfile_unlinkable(td, O_RDWR|O_CLOEXEC);
751 if (tmp_fd < 0)
752 return tmp_fd;
753
754 if (copy_fd >= 0) {
755 /* If we tried a memfd/pipe first, or a file in /tmp, and it ended up being too large, than copy this
756 * into the temporary file first. */
757 r = copy_bytes(copy_fd, tmp_fd, UINT64_MAX, COPY_REFLINK);
758 if (r < 0)
759 return r;
760
761 assert(r == 0);
762 }
763
764 if (remains_size > 0) {
765 /* Then, copy in any read but not yet written bytes. */
766 r = loop_write(tmp_fd, remains, remains_size, false);
767 if (r < 0)
768 return r;
769 }
770
771 /* Copy in the rest */
772 r = copy_bytes(fd, tmp_fd, UINT64_MAX, COPY_REFLINK);
773 if (r < 0)
774 return r;
775
776 assert(r == 0);
777
778 finish:
779 /* Now convert the O_RDWR file descriptor into an O_RDONLY one (and as side effect seek to the beginning of the
780 * file again */
781
782 return fd_reopen(tmp_fd, O_RDONLY|O_CLOEXEC);
783 }
784
785 int fd_move_above_stdio(int fd) {
786 int flags, copy;
787 PROTECT_ERRNO;
788
789 /* Moves the specified file descriptor if possible out of the range [0…2], i.e. the range of
790 * stdin/stdout/stderr. If it can't be moved outside of this range the original file descriptor is
791 * returned. This call is supposed to be used for long-lasting file descriptors we allocate in our code that
792 * might get loaded into foreign code, and where we want ensure our fds are unlikely used accidentally as
793 * stdin/stdout/stderr of unrelated code.
794 *
795 * Note that this doesn't fix any real bugs, it just makes it less likely that our code will be affected by
796 * buggy code from others that mindlessly invokes 'fprintf(stderr, …' or similar in places where stderr has
797 * been closed before.
798 *
799 * This function is written in a "best-effort" and "least-impact" style. This means whenever we encounter an
800 * error we simply return the original file descriptor, and we do not touch errno. */
801
802 if (fd < 0 || fd > 2)
803 return fd;
804
805 flags = fcntl(fd, F_GETFD, 0);
806 if (flags < 0)
807 return fd;
808
809 if (flags & FD_CLOEXEC)
810 copy = fcntl(fd, F_DUPFD_CLOEXEC, 3);
811 else
812 copy = fcntl(fd, F_DUPFD, 3);
813 if (copy < 0)
814 return fd;
815
816 assert(copy > 2);
817
818 (void) close(fd);
819 return copy;
820 }
821
822 int rearrange_stdio(int original_input_fd, int original_output_fd, int original_error_fd) {
823
824 int fd[3] = { /* Put together an array of fds we work on */
825 original_input_fd,
826 original_output_fd,
827 original_error_fd
828 };
829
830 int r, i,
831 null_fd = -1, /* if we open /dev/null, we store the fd to it here */
832 copy_fd[3] = { -1, -1, -1 }; /* This contains all fds we duplicate here temporarily, and hence need to close at the end */
833 bool null_readable, null_writable;
834
835 /* Sets up stdin, stdout, stderr with the three file descriptors passed in. If any of the descriptors is
836 * specified as -1 it will be connected with /dev/null instead. If any of the file descriptors is passed as
837 * itself (e.g. stdin as STDIN_FILENO) it is left unmodified, but the O_CLOEXEC bit is turned off should it be
838 * on.
839 *
840 * Note that if any of the passed file descriptors are > 2 they will be closed — both on success and on
841 * failure! Thus, callers should assume that when this function returns the input fds are invalidated.
842 *
843 * Note that when this function fails stdin/stdout/stderr might remain half set up!
844 *
845 * O_CLOEXEC is turned off for all three file descriptors (which is how it should be for
846 * stdin/stdout/stderr). */
847
848 null_readable = original_input_fd < 0;
849 null_writable = original_output_fd < 0 || original_error_fd < 0;
850
851 /* First step, open /dev/null once, if we need it */
852 if (null_readable || null_writable) {
853
854 /* Let's open this with O_CLOEXEC first, and convert it to non-O_CLOEXEC when we move the fd to the final position. */
855 null_fd = open("/dev/null", (null_readable && null_writable ? O_RDWR :
856 null_readable ? O_RDONLY : O_WRONLY) | O_CLOEXEC);
857 if (null_fd < 0) {
858 r = -errno;
859 goto finish;
860 }
861
862 /* If this fd is in the 0…2 range, let's move it out of it */
863 if (null_fd < 3) {
864 int copy;
865
866 copy = fcntl(null_fd, F_DUPFD_CLOEXEC, 3); /* Duplicate this with O_CLOEXEC set */
867 if (copy < 0) {
868 r = -errno;
869 goto finish;
870 }
871
872 safe_close(null_fd);
873 null_fd = copy;
874 }
875 }
876
877 /* Let's assemble fd[] with the fds to install in place of stdin/stdout/stderr */
878 for (i = 0; i < 3; i++) {
879
880 if (fd[i] < 0)
881 fd[i] = null_fd; /* A negative parameter means: connect this one to /dev/null */
882 else if (fd[i] != i && fd[i] < 3) {
883 /* This fd is in the 0…2 territory, but not at its intended place, move it out of there, so that we can work there. */
884 copy_fd[i] = fcntl(fd[i], F_DUPFD_CLOEXEC, 3); /* Duplicate this with O_CLOEXEC set */
885 if (copy_fd[i] < 0) {
886 r = -errno;
887 goto finish;
888 }
889
890 fd[i] = copy_fd[i];
891 }
892 }
893
894 /* At this point we now have the fds to use in fd[], and they are all above the stdio range, so that we
895 * have freedom to move them around. If the fds already were at the right places then the specific fds are
896 * -1. Let's now move them to the right places. This is the point of no return. */
897 for (i = 0; i < 3; i++) {
898
899 if (fd[i] == i) {
900
901 /* fd is already in place, but let's make sure O_CLOEXEC is off */
902 r = fd_cloexec(i, false);
903 if (r < 0)
904 goto finish;
905
906 } else {
907 assert(fd[i] > 2);
908
909 if (dup2(fd[i], i) < 0) { /* Turns off O_CLOEXEC on the new fd. */
910 r = -errno;
911 goto finish;
912 }
913 }
914 }
915
916 r = 0;
917
918 finish:
919 /* Close the original fds, but only if they were outside of the stdio range. Also, properly check for the same
920 * fd passed in multiple times. */
921 safe_close_above_stdio(original_input_fd);
922 if (original_output_fd != original_input_fd)
923 safe_close_above_stdio(original_output_fd);
924 if (original_error_fd != original_input_fd && original_error_fd != original_output_fd)
925 safe_close_above_stdio(original_error_fd);
926
927 /* Close the copies we moved > 2 */
928 for (i = 0; i < 3; i++)
929 safe_close(copy_fd[i]);
930
931 /* Close our null fd, if it's > 2 */
932 safe_close_above_stdio(null_fd);
933
934 return r;
935 }
936
937 int fd_reopen(int fd, int flags) {
938 char procfs_path[STRLEN("/proc/self/fd/") + DECIMAL_STR_MAX(int)];
939 int new_fd;
940
941 /* Reopens the specified fd with new flags. This is useful for convert an O_PATH fd into a regular one, or to
942 * turn O_RDWR fds into O_RDONLY fds.
943 *
944 * This doesn't work on sockets (since they cannot be open()ed, ever).
945 *
946 * This implicitly resets the file read index to 0. */
947
948 xsprintf(procfs_path, "/proc/self/fd/%i", fd);
949 new_fd = open(procfs_path, flags);
950 if (new_fd < 0)
951 return -errno;
952
953 return new_fd;
954 }
955
956 int read_nr_open(void) {
957 _cleanup_free_ char *nr_open = NULL;
958 int r;
959
960 /* Returns the kernel's current fd limit, either by reading it of /proc/sys if that works, or using the
961 * hard-coded default compiled-in value of current kernels (1M) if not. This call will never fail. */
962
963 r = read_one_line_file("/proc/sys/fs/nr_open", &nr_open);
964 if (r < 0)
965 log_debug_errno(r, "Failed to read /proc/sys/fs/nr_open, ignoring: %m");
966 else {
967 int v;
968
969 r = safe_atoi(nr_open, &v);
970 if (r < 0)
971 log_debug_errno(r, "Failed to parse /proc/sys/fs/nr_open value '%s', ignoring: %m", nr_open);
972 else
973 return v;
974 }
975
976 /* If we fail, fallback to the hard-coded kernel limit of 1024 * 1024. */
977 return 1024 * 1024;
978 }