]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/basic/fs-util.c
43558f6f248a6e251e6c7a404c22c4e93e97e701
[thirdparty/systemd.git] / src / basic / fs-util.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <errno.h>
4 #include <stddef.h>
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <sys/stat.h>
8 #include <linux/falloc.h>
9 #include <linux/magic.h>
10 #include <time.h>
11 #include <unistd.h>
12
13 #include "alloc-util.h"
14 #include "dirent-util.h"
15 #include "fd-util.h"
16 #include "fs-util.h"
17 #include "locale-util.h"
18 #include "log.h"
19 #include "macro.h"
20 #include "missing_fs.h"
21 #include "missing_syscall.h"
22 #include "mkdir.h"
23 #include "parse-util.h"
24 #include "path-util.h"
25 #include "process-util.h"
26 #include "stat-util.h"
27 #include "stdio-util.h"
28 #include "string-util.h"
29 #include "strv.h"
30 #include "time-util.h"
31 #include "tmpfile-util.h"
32 #include "user-util.h"
33 #include "util.h"
34
35 int unlink_noerrno(const char *path) {
36 PROTECT_ERRNO;
37 int r;
38
39 r = unlink(path);
40 if (r < 0)
41 return -errno;
42
43 return 0;
44 }
45
46 int rmdir_parents(const char *path, const char *stop) {
47 size_t l;
48 int r = 0;
49
50 assert(path);
51 assert(stop);
52
53 l = strlen(path);
54
55 /* Skip trailing slashes */
56 while (l > 0 && path[l-1] == '/')
57 l--;
58
59 while (l > 0) {
60 char *t;
61
62 /* Skip last component */
63 while (l > 0 && path[l-1] != '/')
64 l--;
65
66 /* Skip trailing slashes */
67 while (l > 0 && path[l-1] == '/')
68 l--;
69
70 if (l <= 0)
71 break;
72
73 t = strndup(path, l);
74 if (!t)
75 return -ENOMEM;
76
77 if (path_startswith(stop, t)) {
78 free(t);
79 return 0;
80 }
81
82 r = rmdir(t);
83 free(t);
84
85 if (r < 0)
86 if (errno != ENOENT)
87 return -errno;
88 }
89
90 return 0;
91 }
92
93 int rename_noreplace(int olddirfd, const char *oldpath, int newdirfd, const char *newpath) {
94 int r;
95
96 /* Try the ideal approach first */
97 if (renameat2(olddirfd, oldpath, newdirfd, newpath, RENAME_NOREPLACE) >= 0)
98 return 0;
99
100 /* renameat2() exists since Linux 3.15, btrfs and FAT added support for it later. If it is not implemented,
101 * fall back to a different method. */
102 if (!IN_SET(errno, EINVAL, ENOSYS, ENOTTY))
103 return -errno;
104
105 /* Let's try to use linkat()+unlinkat() as fallback. This doesn't work on directories and on some file systems
106 * that do not support hard links (such as FAT, most prominently), but for files it's pretty close to what we
107 * want — though not atomic (i.e. for a short period both the new and the old filename will exist). */
108 if (linkat(olddirfd, oldpath, newdirfd, newpath, 0) >= 0) {
109
110 if (unlinkat(olddirfd, oldpath, 0) < 0) {
111 r = -errno; /* Backup errno before the following unlinkat() alters it */
112 (void) unlinkat(newdirfd, newpath, 0);
113 return r;
114 }
115
116 return 0;
117 }
118
119 if (!IN_SET(errno, EINVAL, ENOSYS, ENOTTY, EPERM)) /* FAT returns EPERM on link()â€Ļ */
120 return -errno;
121
122 /* OK, neither RENAME_NOREPLACE nor linkat()+unlinkat() worked. Let's then fallback to the racy TOCTOU
123 * vulnerable accessat(F_OK) check followed by classic, replacing renameat(), we have nothing better. */
124
125 if (faccessat(newdirfd, newpath, F_OK, AT_SYMLINK_NOFOLLOW) >= 0)
126 return -EEXIST;
127 if (errno != ENOENT)
128 return -errno;
129
130 if (renameat(olddirfd, oldpath, newdirfd, newpath) < 0)
131 return -errno;
132
133 return 0;
134 }
135
136 int readlinkat_malloc(int fd, const char *p, char **ret) {
137 size_t l = FILENAME_MAX+1;
138 int r;
139
140 assert(p);
141 assert(ret);
142
143 for (;;) {
144 char *c;
145 ssize_t n;
146
147 c = new(char, l);
148 if (!c)
149 return -ENOMEM;
150
151 n = readlinkat(fd, p, c, l-1);
152 if (n < 0) {
153 r = -errno;
154 free(c);
155 return r;
156 }
157
158 if ((size_t) n < l-1) {
159 c[n] = 0;
160 *ret = c;
161 return 0;
162 }
163
164 free(c);
165 l *= 2;
166 }
167 }
168
169 int readlink_malloc(const char *p, char **ret) {
170 return readlinkat_malloc(AT_FDCWD, p, ret);
171 }
172
173 int readlink_value(const char *p, char **ret) {
174 _cleanup_free_ char *link = NULL;
175 char *value;
176 int r;
177
178 r = readlink_malloc(p, &link);
179 if (r < 0)
180 return r;
181
182 value = basename(link);
183 if (!value)
184 return -ENOENT;
185
186 value = strdup(value);
187 if (!value)
188 return -ENOMEM;
189
190 *ret = value;
191
192 return 0;
193 }
194
195 int readlink_and_make_absolute(const char *p, char **r) {
196 _cleanup_free_ char *target = NULL;
197 char *k;
198 int j;
199
200 assert(p);
201 assert(r);
202
203 j = readlink_malloc(p, &target);
204 if (j < 0)
205 return j;
206
207 k = file_in_same_dir(p, target);
208 if (!k)
209 return -ENOMEM;
210
211 *r = k;
212 return 0;
213 }
214
215 int chmod_and_chown(const char *path, mode_t mode, uid_t uid, gid_t gid) {
216 _cleanup_close_ int fd = -1;
217
218 assert(path);
219
220 fd = open(path, O_PATH|O_CLOEXEC|O_NOFOLLOW); /* Let's acquire an O_PATH fd, as precaution to change
221 * mode/owner on the same file */
222 if (fd < 0)
223 return -errno;
224
225 return fchmod_and_chown(fd, mode, uid, gid);
226 }
227
228 int fchmod_and_chown(int fd, mode_t mode, uid_t uid, gid_t gid) {
229 bool do_chown, do_chmod;
230 struct stat st;
231
232 /* Change ownership and access mode of the specified fd. Tries to do so safely, ensuring that at no
233 * point in time the access mode is above the old access mode under the old ownership or the new
234 * access mode under the new ownership. Note: this call tries hard to leave the access mode
235 * unaffected if the uid/gid is changed, i.e. it undoes implicit suid/sgid dropping the kernel does
236 * on chown().
237 *
238 * This call is happy with O_PATH fds. */
239
240 if (fstat(fd, &st) < 0)
241 return -errno;
242
243 do_chown =
244 (uid != UID_INVALID && st.st_uid != uid) ||
245 (gid != GID_INVALID && st.st_gid != gid);
246
247 do_chmod =
248 !S_ISLNK(st.st_mode) && /* chmod is not defined on symlinks */
249 ((mode != MODE_INVALID && ((st.st_mode ^ mode) & 07777) != 0) ||
250 do_chown); /* If we change ownership, make sure we reset the mode afterwards, since chown()
251 * modifies the access mode too */
252
253 if (mode == MODE_INVALID)
254 mode = st.st_mode; /* If we only shall do a chown(), save original mode, since chown() might break it. */
255 else if ((mode & S_IFMT) != 0 && ((mode ^ st.st_mode) & S_IFMT) != 0)
256 return -EINVAL; /* insist on the right file type if it was specified */
257
258 if (do_chown && do_chmod) {
259 mode_t minimal = st.st_mode & mode; /* the subset of the old and the new mask */
260
261 if (((minimal ^ st.st_mode) & 07777) != 0)
262 if (fchmod_opath(fd, minimal & 07777) < 0)
263 return -errno;
264 }
265
266 if (do_chown)
267 if (fchownat(fd, "", uid, gid, AT_EMPTY_PATH) < 0)
268 return -errno;
269
270 if (do_chmod)
271 if (fchmod_opath(fd, mode & 07777) < 0)
272 return -errno;
273
274 return do_chown || do_chmod;
275 }
276
277 int fchmod_umask(int fd, mode_t m) {
278 mode_t u;
279 int r;
280
281 u = umask(0777);
282 r = fchmod(fd, m & (~u)) < 0 ? -errno : 0;
283 umask(u);
284
285 return r;
286 }
287
288 int fchmod_opath(int fd, mode_t m) {
289 char procfs_path[STRLEN("/proc/self/fd/") + DECIMAL_STR_MAX(int)];
290
291 /* This function operates also on fd that might have been opened with
292 * O_PATH. Indeed fchmodat() doesn't have the AT_EMPTY_PATH flag like
293 * fchownat() does. */
294
295 xsprintf(procfs_path, "/proc/self/fd/%i", fd);
296 if (chmod(procfs_path, m) < 0)
297 return -errno;
298
299 return 0;
300 }
301
302 int fd_warn_permissions(const char *path, int fd) {
303 struct stat st;
304
305 if (fstat(fd, &st) < 0)
306 return -errno;
307
308 /* Don't complain if we are reading something that is not a file, for example /dev/null */
309 if (!S_ISREG(st.st_mode))
310 return 0;
311
312 if (st.st_mode & 0111)
313 log_warning("Configuration file %s is marked executable. Please remove executable permission bits. Proceeding anyway.", path);
314
315 if (st.st_mode & 0002)
316 log_warning("Configuration file %s is marked world-writable. Please remove world writability permission bits. Proceeding anyway.", path);
317
318 if (getpid_cached() == 1 && (st.st_mode & 0044) != 0044)
319 log_warning("Configuration file %s is marked world-inaccessible. This has no effect as configuration data is accessible via APIs without restrictions. Proceeding anyway.", path);
320
321 return 0;
322 }
323
324 int touch_file(const char *path, bool parents, usec_t stamp, uid_t uid, gid_t gid, mode_t mode) {
325 char fdpath[STRLEN("/proc/self/fd/") + DECIMAL_STR_MAX(int)];
326 _cleanup_close_ int fd = -1;
327 int r, ret = 0;
328
329 assert(path);
330
331 /* Note that touch_file() does not follow symlinks: if invoked on an existing symlink, then it is the symlink
332 * itself which is updated, not its target
333 *
334 * Returns the first error we encounter, but tries to apply as much as possible. */
335
336 if (parents)
337 (void) mkdir_parents(path, 0755);
338
339 /* Initially, we try to open the node with O_PATH, so that we get a reference to the node. This is useful in
340 * case the path refers to an existing device or socket node, as we can open it successfully in all cases, and
341 * won't trigger any driver magic or so. */
342 fd = open(path, O_PATH|O_CLOEXEC|O_NOFOLLOW);
343 if (fd < 0) {
344 if (errno != ENOENT)
345 return -errno;
346
347 /* if the node doesn't exist yet, we create it, but with O_EXCL, so that we only create a regular file
348 * here, and nothing else */
349 fd = open(path, O_WRONLY|O_CREAT|O_EXCL|O_CLOEXEC, IN_SET(mode, 0, MODE_INVALID) ? 0644 : mode);
350 if (fd < 0)
351 return -errno;
352 }
353
354 /* Let's make a path from the fd, and operate on that. With this logic, we can adjust the access mode,
355 * ownership and time of the file node in all cases, even if the fd refers to an O_PATH object — which is
356 * something fchown(), fchmod(), futimensat() don't allow. */
357 xsprintf(fdpath, "/proc/self/fd/%i", fd);
358
359 ret = fchmod_and_chown(fd, mode, uid, gid);
360
361 if (stamp != USEC_INFINITY) {
362 struct timespec ts[2];
363
364 timespec_store(&ts[0], stamp);
365 ts[1] = ts[0];
366 r = utimensat(AT_FDCWD, fdpath, ts, 0);
367 } else
368 r = utimensat(AT_FDCWD, fdpath, NULL, 0);
369 if (r < 0 && ret >= 0)
370 return -errno;
371
372 return ret;
373 }
374
375 int touch(const char *path) {
376 return touch_file(path, false, USEC_INFINITY, UID_INVALID, GID_INVALID, MODE_INVALID);
377 }
378
379 int symlink_idempotent(const char *from, const char *to, bool make_relative) {
380 _cleanup_free_ char *relpath = NULL;
381 int r;
382
383 assert(from);
384 assert(to);
385
386 if (make_relative) {
387 _cleanup_free_ char *parent = NULL;
388
389 parent = dirname_malloc(to);
390 if (!parent)
391 return -ENOMEM;
392
393 r = path_make_relative(parent, from, &relpath);
394 if (r < 0)
395 return r;
396
397 from = relpath;
398 }
399
400 if (symlink(from, to) < 0) {
401 _cleanup_free_ char *p = NULL;
402
403 if (errno != EEXIST)
404 return -errno;
405
406 r = readlink_malloc(to, &p);
407 if (r == -EINVAL) /* Not a symlink? In that case return the original error we encountered: -EEXIST */
408 return -EEXIST;
409 if (r < 0) /* Any other error? In that case propagate it as is */
410 return r;
411
412 if (!streq(p, from)) /* Not the symlink we want it to be? In that case, propagate the original -EEXIST */
413 return -EEXIST;
414 }
415
416 return 0;
417 }
418
419 int symlink_atomic(const char *from, const char *to) {
420 _cleanup_free_ char *t = NULL;
421 int r;
422
423 assert(from);
424 assert(to);
425
426 r = tempfn_random(to, NULL, &t);
427 if (r < 0)
428 return r;
429
430 if (symlink(from, t) < 0)
431 return -errno;
432
433 if (rename(t, to) < 0) {
434 unlink_noerrno(t);
435 return -errno;
436 }
437
438 return 0;
439 }
440
441 int mknod_atomic(const char *path, mode_t mode, dev_t dev) {
442 _cleanup_free_ char *t = NULL;
443 int r;
444
445 assert(path);
446
447 r = tempfn_random(path, NULL, &t);
448 if (r < 0)
449 return r;
450
451 if (mknod(t, mode, dev) < 0)
452 return -errno;
453
454 if (rename(t, path) < 0) {
455 unlink_noerrno(t);
456 return -errno;
457 }
458
459 return 0;
460 }
461
462 int mkfifo_atomic(const char *path, mode_t mode) {
463 _cleanup_free_ char *t = NULL;
464 int r;
465
466 assert(path);
467
468 r = tempfn_random(path, NULL, &t);
469 if (r < 0)
470 return r;
471
472 if (mkfifo(t, mode) < 0)
473 return -errno;
474
475 if (rename(t, path) < 0) {
476 unlink_noerrno(t);
477 return -errno;
478 }
479
480 return 0;
481 }
482
483 int mkfifoat_atomic(int dirfd, const char *path, mode_t mode) {
484 _cleanup_free_ char *t = NULL;
485 int r;
486
487 assert(path);
488
489 if (path_is_absolute(path))
490 return mkfifo_atomic(path, mode);
491
492 /* We're only interested in the (random) filename. */
493 r = tempfn_random_child("", NULL, &t);
494 if (r < 0)
495 return r;
496
497 if (mkfifoat(dirfd, t, mode) < 0)
498 return -errno;
499
500 if (renameat(dirfd, t, dirfd, path) < 0) {
501 unlink_noerrno(t);
502 return -errno;
503 }
504
505 return 0;
506 }
507
508 int get_files_in_directory(const char *path, char ***list) {
509 _cleanup_closedir_ DIR *d = NULL;
510 struct dirent *de;
511 size_t bufsize = 0, n = 0;
512 _cleanup_strv_free_ char **l = NULL;
513
514 assert(path);
515
516 /* Returns all files in a directory in *list, and the number
517 * of files as return value. If list is NULL returns only the
518 * number. */
519
520 d = opendir(path);
521 if (!d)
522 return -errno;
523
524 FOREACH_DIRENT_ALL(de, d, return -errno) {
525 dirent_ensure_type(d, de);
526
527 if (!dirent_is_file(de))
528 continue;
529
530 if (list) {
531 /* one extra slot is needed for the terminating NULL */
532 if (!GREEDY_REALLOC(l, bufsize, n + 2))
533 return -ENOMEM;
534
535 l[n] = strdup(de->d_name);
536 if (!l[n])
537 return -ENOMEM;
538
539 l[++n] = NULL;
540 } else
541 n++;
542 }
543
544 if (list)
545 *list = TAKE_PTR(l);
546
547 return n;
548 }
549
550 static int getenv_tmp_dir(const char **ret_path) {
551 const char *n;
552 int r, ret = 0;
553
554 assert(ret_path);
555
556 /* We use the same order of environment variables python uses in tempfile.gettempdir():
557 * https://docs.python.org/3/library/tempfile.html#tempfile.gettempdir */
558 FOREACH_STRING(n, "TMPDIR", "TEMP", "TMP") {
559 const char *e;
560
561 e = secure_getenv(n);
562 if (!e)
563 continue;
564 if (!path_is_absolute(e)) {
565 r = -ENOTDIR;
566 goto next;
567 }
568 if (!path_is_normalized(e)) {
569 r = -EPERM;
570 goto next;
571 }
572
573 r = is_dir(e, true);
574 if (r < 0)
575 goto next;
576 if (r == 0) {
577 r = -ENOTDIR;
578 goto next;
579 }
580
581 *ret_path = e;
582 return 1;
583
584 next:
585 /* Remember first error, to make this more debuggable */
586 if (ret >= 0)
587 ret = r;
588 }
589
590 if (ret < 0)
591 return ret;
592
593 *ret_path = NULL;
594 return ret;
595 }
596
597 static int tmp_dir_internal(const char *def, const char **ret) {
598 const char *e;
599 int r, k;
600
601 assert(def);
602 assert(ret);
603
604 r = getenv_tmp_dir(&e);
605 if (r > 0) {
606 *ret = e;
607 return 0;
608 }
609
610 k = is_dir(def, true);
611 if (k == 0)
612 k = -ENOTDIR;
613 if (k < 0)
614 return r < 0 ? r : k;
615
616 *ret = def;
617 return 0;
618 }
619
620 int var_tmp_dir(const char **ret) {
621
622 /* Returns the location for "larger" temporary files, that is backed by physical storage if available, and thus
623 * even might survive a boot: /var/tmp. If $TMPDIR (or related environment variables) are set, its value is
624 * returned preferably however. Note that both this function and tmp_dir() below are affected by $TMPDIR,
625 * making it a variable that overrides all temporary file storage locations. */
626
627 return tmp_dir_internal("/var/tmp", ret);
628 }
629
630 int tmp_dir(const char **ret) {
631
632 /* Similar to var_tmp_dir() above, but returns the location for "smaller" temporary files, which is usually
633 * backed by an in-memory file system: /tmp. */
634
635 return tmp_dir_internal("/tmp", ret);
636 }
637
638 int unlink_or_warn(const char *filename) {
639 if (unlink(filename) < 0 && errno != ENOENT)
640 /* If the file doesn't exist and the fs simply was read-only (in which
641 * case unlink() returns EROFS even if the file doesn't exist), don't
642 * complain */
643 if (errno != EROFS || access(filename, F_OK) >= 0)
644 return log_error_errno(errno, "Failed to remove \"%s\": %m", filename);
645
646 return 0;
647 }
648
649 int inotify_add_watch_fd(int fd, int what, uint32_t mask) {
650 char path[STRLEN("/proc/self/fd/") + DECIMAL_STR_MAX(int) + 1];
651 int r;
652
653 /* This is like inotify_add_watch(), except that the file to watch is not referenced by a path, but by an fd */
654 xsprintf(path, "/proc/self/fd/%i", what);
655
656 r = inotify_add_watch(fd, path, mask);
657 if (r < 0)
658 return -errno;
659
660 return r;
661 }
662
663 int inotify_add_watch_and_warn(int fd, const char *pathname, uint32_t mask) {
664
665 if (inotify_add_watch(fd, pathname, mask) < 0) {
666 if (errno == ENOSPC)
667 return log_error_errno(errno, "Failed to add a watch for %s: inotify watch limit reached", pathname);
668
669 return log_error_errno(errno, "Failed to add a watch for %s: %m", pathname);
670 }
671
672 return 0;
673 }
674
675 static bool unsafe_transition(const struct stat *a, const struct stat *b) {
676 /* Returns true if the transition from a to b is safe, i.e. that we never transition from unprivileged to
677 * privileged files or directories. Why bother? So that unprivileged code can't symlink to privileged files
678 * making us believe we read something safe even though it isn't safe in the specific context we open it in. */
679
680 if (a->st_uid == 0) /* Transitioning from privileged to unprivileged is always fine */
681 return false;
682
683 return a->st_uid != b->st_uid; /* Otherwise we need to stay within the same UID */
684 }
685
686 static int log_unsafe_transition(int a, int b, const char *path, unsigned flags) {
687 _cleanup_free_ char *n1 = NULL, *n2 = NULL;
688
689 if (!FLAGS_SET(flags, CHASE_WARN))
690 return -ENOLINK;
691
692 (void) fd_get_path(a, &n1);
693 (void) fd_get_path(b, &n2);
694
695 return log_warning_errno(SYNTHETIC_ERRNO(ENOLINK),
696 "Detected unsafe path transition %s %s %s during canonicalization of %s.",
697 n1, special_glyph(SPECIAL_GLYPH_ARROW), n2, path);
698 }
699
700 static int log_autofs_mount_point(int fd, const char *path, unsigned flags) {
701 _cleanup_free_ char *n1 = NULL;
702
703 if (!FLAGS_SET(flags, CHASE_WARN))
704 return -EREMOTE;
705
706 (void) fd_get_path(fd, &n1);
707
708 return log_warning_errno(SYNTHETIC_ERRNO(EREMOTE),
709 "Detected autofs mount point %s during canonicalization of %s.",
710 n1, path);
711 }
712
713 int chase_symlinks(const char *path, const char *original_root, unsigned flags, char **ret_path, int *ret_fd) {
714 _cleanup_free_ char *buffer = NULL, *done = NULL, *root = NULL;
715 _cleanup_close_ int fd = -1;
716 unsigned max_follow = CHASE_SYMLINKS_MAX; /* how many symlinks to follow before giving up and returning ELOOP */
717 struct stat previous_stat;
718 bool exists = true;
719 char *todo;
720 int r;
721
722 assert(path);
723
724 /* Either the file may be missing, or we return an fd to the final object, but both make no sense */
725 if ((flags & CHASE_NONEXISTENT) && ret_fd)
726 return -EINVAL;
727
728 if ((flags & CHASE_STEP) && ret_fd)
729 return -EINVAL;
730
731 if (isempty(path))
732 return -EINVAL;
733
734 /* This is a lot like canonicalize_file_name(), but takes an additional "root" parameter, that allows following
735 * symlinks relative to a root directory, instead of the root of the host.
736 *
737 * Note that "root" primarily matters if we encounter an absolute symlink. It is also used when following
738 * relative symlinks to ensure they cannot be used to "escape" the root directory. The path parameter passed is
739 * assumed to be already prefixed by it, except if the CHASE_PREFIX_ROOT flag is set, in which case it is first
740 * prefixed accordingly.
741 *
742 * Algorithmically this operates on two path buffers: "done" are the components of the path we already
743 * processed and resolved symlinks, "." and ".." of. "todo" are the components of the path we still need to
744 * process. On each iteration, we move one component from "todo" to "done", processing it's special meaning
745 * each time. The "todo" path always starts with at least one slash, the "done" path always ends in no
746 * slash. We always keep an O_PATH fd to the component we are currently processing, thus keeping lookup races
747 * to a minimum.
748 *
749 * Suggested usage: whenever you want to canonicalize a path, use this function. Pass the absolute path you got
750 * as-is: fully qualified and relative to your host's root. Optionally, specify the root parameter to tell this
751 * function what to do when encountering a symlink with an absolute path as directory: prefix it by the
752 * specified path.
753 *
754 * There are five ways to invoke this function:
755 *
756 * 1. Without CHASE_STEP or ret_fd: in this case the path is resolved and the normalized path is
757 * returned in `ret_path`. The return value is < 0 on error. If CHASE_NONEXISTENT is also set, 0
758 * is returned if the file doesn't exist, > 0 otherwise. If CHASE_NONEXISTENT is not set, >= 0 is
759 * returned if the destination was found, -ENOENT if it wasn't.
760 *
761 * 2. With ret_fd: in this case the destination is opened after chasing it as O_PATH and this file
762 * descriptor is returned as return value. This is useful to open files relative to some root
763 * directory. Note that the returned O_PATH file descriptors must be converted into a regular one (using
764 * fd_reopen() or such) before it can be used for reading/writing. ret_fd may not be combined with
765 * CHASE_NONEXISTENT.
766 *
767 * 3. With CHASE_STEP: in this case only a single step of the normalization is executed, i.e. only the first
768 * symlink or ".." component of the path is resolved, and the resulting path is returned. This is useful if
769 * a caller wants to trace the a path through the file system verbosely. Returns < 0 on error, > 0 if the
770 * path is fully normalized, and == 0 for each normalization step. This may be combined with
771 * CHASE_NONEXISTENT, in which case 1 is returned when a component is not found.
772 *
773 * 4. With CHASE_SAFE: in this case the path must not contain unsafe transitions, i.e. transitions from
774 * unprivileged to privileged files or directories. In such cases the return value is -ENOLINK. If
775 * CHASE_WARN is also set, a warning describing the unsafe transition is emitted.
776 *
777 * 5. With CHASE_NO_AUTOFS: in this case if an autofs mount point is encountered, path normalization
778 * is aborted and -EREMOTE is returned. If CHASE_WARN is also set, a warning showing the path of
779 * the mount point is emitted.
780 */
781
782 /* A root directory of "/" or "" is identical to none */
783 if (empty_or_root(original_root))
784 original_root = NULL;
785
786 if (!original_root && !ret_path && !(flags & (CHASE_NONEXISTENT|CHASE_NO_AUTOFS|CHASE_SAFE|CHASE_STEP)) && ret_fd) {
787 /* Shortcut the ret_fd case if the caller isn't interested in the actual path and has no root set
788 * and doesn't care about any of the other special features we provide either. */
789 r = open(path, O_PATH|O_CLOEXEC|((flags & CHASE_NOFOLLOW) ? O_NOFOLLOW : 0));
790 if (r < 0)
791 return -errno;
792
793 *ret_fd = r;
794 return 0;
795 }
796
797 if (original_root) {
798 r = path_make_absolute_cwd(original_root, &root);
799 if (r < 0)
800 return r;
801
802 if (flags & CHASE_PREFIX_ROOT) {
803 /* We don't support relative paths in combination with a root directory */
804 if (!path_is_absolute(path))
805 return -EINVAL;
806
807 path = prefix_roota(root, path);
808 }
809 }
810
811 r = path_make_absolute_cwd(path, &buffer);
812 if (r < 0)
813 return r;
814
815 fd = open("/", O_CLOEXEC|O_NOFOLLOW|O_PATH);
816 if (fd < 0)
817 return -errno;
818
819 if (flags & CHASE_SAFE) {
820 if (fstat(fd, &previous_stat) < 0)
821 return -errno;
822 }
823
824 todo = buffer;
825 for (;;) {
826 _cleanup_free_ char *first = NULL;
827 _cleanup_close_ int child = -1;
828 struct stat st;
829 size_t n, m;
830
831 /* Determine length of first component in the path */
832 n = strspn(todo, "/"); /* The slashes */
833 m = n + strcspn(todo + n, "/"); /* The entire length of the component */
834
835 /* Extract the first component. */
836 first = strndup(todo, m);
837 if (!first)
838 return -ENOMEM;
839
840 todo += m;
841
842 /* Empty? Then we reached the end. */
843 if (isempty(first))
844 break;
845
846 /* Just a single slash? Then we reached the end. */
847 if (path_equal(first, "/")) {
848 /* Preserve the trailing slash */
849
850 if (flags & CHASE_TRAIL_SLASH)
851 if (!strextend(&done, "/", NULL))
852 return -ENOMEM;
853
854 break;
855 }
856
857 /* Just a dot? Then let's eat this up. */
858 if (path_equal(first, "/."))
859 continue;
860
861 /* Two dots? Then chop off the last bit of what we already found out. */
862 if (path_equal(first, "/..")) {
863 _cleanup_free_ char *parent = NULL;
864 _cleanup_close_ int fd_parent = -1;
865
866 /* If we already are at the top, then going up will not change anything. This is in-line with
867 * how the kernel handles this. */
868 if (empty_or_root(done))
869 continue;
870
871 parent = dirname_malloc(done);
872 if (!parent)
873 return -ENOMEM;
874
875 /* Don't allow this to leave the root dir. */
876 if (root &&
877 path_startswith(done, root) &&
878 !path_startswith(parent, root))
879 continue;
880
881 free_and_replace(done, parent);
882
883 if (flags & CHASE_STEP)
884 goto chased_one;
885
886 fd_parent = openat(fd, "..", O_CLOEXEC|O_NOFOLLOW|O_PATH);
887 if (fd_parent < 0)
888 return -errno;
889
890 if (flags & CHASE_SAFE) {
891 if (fstat(fd_parent, &st) < 0)
892 return -errno;
893
894 if (unsafe_transition(&previous_stat, &st))
895 return log_unsafe_transition(fd, fd_parent, path, flags);
896
897 previous_stat = st;
898 }
899
900 safe_close(fd);
901 fd = TAKE_FD(fd_parent);
902
903 continue;
904 }
905
906 /* Otherwise let's see what this is. */
907 child = openat(fd, first + n, O_CLOEXEC|O_NOFOLLOW|O_PATH);
908 if (child < 0) {
909
910 if (errno == ENOENT &&
911 (flags & CHASE_NONEXISTENT) &&
912 (isempty(todo) || path_is_normalized(todo))) {
913
914 /* If CHASE_NONEXISTENT is set, and the path does not exist, then that's OK, return
915 * what we got so far. But don't allow this if the remaining path contains "../ or "./"
916 * or something else weird. */
917
918 /* If done is "/", as first also contains slash at the head, then remove this redundant slash. */
919 if (streq_ptr(done, "/"))
920 *done = '\0';
921
922 if (!strextend(&done, first, todo, NULL))
923 return -ENOMEM;
924
925 exists = false;
926 break;
927 }
928
929 return -errno;
930 }
931
932 if (fstat(child, &st) < 0)
933 return -errno;
934 if ((flags & CHASE_SAFE) &&
935 (empty_or_root(root) || (size_t)(todo - buffer) > strlen(root)) &&
936 unsafe_transition(&previous_stat, &st))
937 return log_unsafe_transition(fd, child, path, flags);
938
939 previous_stat = st;
940
941 if ((flags & CHASE_NO_AUTOFS) &&
942 fd_is_fs_type(child, AUTOFS_SUPER_MAGIC) > 0)
943 return log_autofs_mount_point(child, path, flags);
944
945 if (S_ISLNK(st.st_mode) && !((flags & CHASE_NOFOLLOW) && isempty(todo))) {
946 char *joined;
947 _cleanup_free_ char *destination = NULL;
948
949 /* This is a symlink, in this case read the destination. But let's make sure we don't follow
950 * symlinks without bounds. */
951 if (--max_follow <= 0)
952 return -ELOOP;
953
954 r = readlinkat_malloc(fd, first + n, &destination);
955 if (r < 0)
956 return r;
957 if (isempty(destination))
958 return -EINVAL;
959
960 if (path_is_absolute(destination)) {
961
962 /* An absolute destination. Start the loop from the beginning, but use the root
963 * directory as base. */
964
965 safe_close(fd);
966 fd = open(root ?: "/", O_CLOEXEC|O_NOFOLLOW|O_PATH);
967 if (fd < 0)
968 return -errno;
969
970 if (flags & CHASE_SAFE) {
971 if (fstat(fd, &st) < 0)
972 return -errno;
973
974 if (unsafe_transition(&previous_stat, &st))
975 return log_unsafe_transition(child, fd, path, flags);
976
977 previous_stat = st;
978 }
979
980 free(done);
981
982 /* Note that we do not revalidate the root, we take it as is. */
983 if (isempty(root))
984 done = NULL;
985 else {
986 done = strdup(root);
987 if (!done)
988 return -ENOMEM;
989 }
990
991 /* Prefix what's left to do with what we just read, and start the loop again, but
992 * remain in the current directory. */
993 joined = path_join(destination, todo);
994 } else
995 joined = path_join("/", destination, todo);
996 if (!joined)
997 return -ENOMEM;
998
999 free(buffer);
1000 todo = buffer = joined;
1001
1002 if (flags & CHASE_STEP)
1003 goto chased_one;
1004
1005 continue;
1006 }
1007
1008 /* If this is not a symlink, then let's just add the name we read to what we already verified. */
1009 if (!done)
1010 done = TAKE_PTR(first);
1011 else {
1012 /* If done is "/", as first also contains slash at the head, then remove this redundant slash. */
1013 if (streq(done, "/"))
1014 *done = '\0';
1015
1016 if (!strextend(&done, first, NULL))
1017 return -ENOMEM;
1018 }
1019
1020 /* And iterate again, but go one directory further down. */
1021 safe_close(fd);
1022 fd = TAKE_FD(child);
1023 }
1024
1025 if (!done) {
1026 /* Special case, turn the empty string into "/", to indicate the root directory. */
1027 done = strdup("/");
1028 if (!done)
1029 return -ENOMEM;
1030 }
1031
1032 if (ret_path)
1033 *ret_path = TAKE_PTR(done);
1034
1035 if (ret_fd) {
1036 /* Return the O_PATH fd we currently are looking to the caller. It can translate it to a
1037 * proper fd by opening /proc/self/fd/xyz. */
1038
1039 assert(fd >= 0);
1040 *ret_fd = TAKE_FD(fd);
1041 }
1042
1043 if (flags & CHASE_STEP)
1044 return 1;
1045
1046 return exists;
1047
1048 chased_one:
1049 if (ret_path) {
1050 char *c;
1051
1052 c = strjoin(strempty(done), todo);
1053 if (!c)
1054 return -ENOMEM;
1055
1056 *ret_path = c;
1057 }
1058
1059 return 0;
1060 }
1061
1062 int chase_symlinks_and_open(
1063 const char *path,
1064 const char *root,
1065 unsigned chase_flags,
1066 int open_flags,
1067 char **ret_path) {
1068
1069 _cleanup_close_ int path_fd = -1;
1070 _cleanup_free_ char *p = NULL;
1071 int r;
1072
1073 if (chase_flags & CHASE_NONEXISTENT)
1074 return -EINVAL;
1075
1076 if (empty_or_root(root) && !ret_path && (chase_flags & (CHASE_NO_AUTOFS|CHASE_SAFE)) == 0) {
1077 /* Shortcut this call if none of the special features of this call are requested */
1078 r = open(path, open_flags);
1079 if (r < 0)
1080 return -errno;
1081
1082 return r;
1083 }
1084
1085 r = chase_symlinks(path, root, chase_flags, ret_path ? &p : NULL, &path_fd);
1086 if (r < 0)
1087 return r;
1088 assert(path_fd >= 0);
1089
1090 r = fd_reopen(path_fd, open_flags);
1091 if (r < 0)
1092 return r;
1093
1094 if (ret_path)
1095 *ret_path = TAKE_PTR(p);
1096
1097 return r;
1098 }
1099
1100 int chase_symlinks_and_opendir(
1101 const char *path,
1102 const char *root,
1103 unsigned chase_flags,
1104 char **ret_path,
1105 DIR **ret_dir) {
1106
1107 char procfs_path[STRLEN("/proc/self/fd/") + DECIMAL_STR_MAX(int)];
1108 _cleanup_close_ int path_fd = -1;
1109 _cleanup_free_ char *p = NULL;
1110 DIR *d;
1111 int r;
1112
1113 if (!ret_dir)
1114 return -EINVAL;
1115 if (chase_flags & CHASE_NONEXISTENT)
1116 return -EINVAL;
1117
1118 if (empty_or_root(root) && !ret_path && (chase_flags & (CHASE_NO_AUTOFS|CHASE_SAFE)) == 0) {
1119 /* Shortcut this call if none of the special features of this call are requested */
1120 d = opendir(path);
1121 if (!d)
1122 return -errno;
1123
1124 *ret_dir = d;
1125 return 0;
1126 }
1127
1128 r = chase_symlinks(path, root, chase_flags, ret_path ? &p : NULL, &path_fd);
1129 if (r < 0)
1130 return r;
1131 assert(path_fd >= 0);
1132
1133 xsprintf(procfs_path, "/proc/self/fd/%i", path_fd);
1134 d = opendir(procfs_path);
1135 if (!d)
1136 return -errno;
1137
1138 if (ret_path)
1139 *ret_path = TAKE_PTR(p);
1140
1141 *ret_dir = d;
1142 return 0;
1143 }
1144
1145 int chase_symlinks_and_stat(
1146 const char *path,
1147 const char *root,
1148 unsigned chase_flags,
1149 char **ret_path,
1150 struct stat *ret_stat,
1151 int *ret_fd) {
1152
1153 _cleanup_close_ int path_fd = -1;
1154 _cleanup_free_ char *p = NULL;
1155 int r;
1156
1157 assert(path);
1158 assert(ret_stat);
1159
1160 if (chase_flags & CHASE_NONEXISTENT)
1161 return -EINVAL;
1162
1163 if (empty_or_root(root) && !ret_path && (chase_flags & (CHASE_NO_AUTOFS|CHASE_SAFE)) == 0) {
1164 /* Shortcut this call if none of the special features of this call are requested */
1165 if (stat(path, ret_stat) < 0)
1166 return -errno;
1167
1168 return 1;
1169 }
1170
1171 r = chase_symlinks(path, root, chase_flags, ret_path ? &p : NULL, &path_fd);
1172 if (r < 0)
1173 return r;
1174 assert(path_fd >= 0);
1175
1176 if (fstat(path_fd, ret_stat) < 0)
1177 return -errno;
1178
1179 if (ret_path)
1180 *ret_path = TAKE_PTR(p);
1181 if (ret_fd)
1182 *ret_fd = TAKE_FD(path_fd);
1183
1184 return 1;
1185 }
1186
1187 int access_fd(int fd, int mode) {
1188 char p[STRLEN("/proc/self/fd/") + DECIMAL_STR_MAX(fd) + 1];
1189 int r;
1190
1191 /* Like access() but operates on an already open fd */
1192
1193 xsprintf(p, "/proc/self/fd/%i", fd);
1194 r = access(p, mode);
1195 if (r < 0)
1196 return -errno;
1197
1198 return r;
1199 }
1200
1201 void unlink_tempfilep(char (*p)[]) {
1202 /* If the file is created with mkstemp(), it will (almost always)
1203 * change the suffix. Treat this as a sign that the file was
1204 * successfully created. We ignore both the rare case where the
1205 * original suffix is used and unlink failures. */
1206 if (!endswith(*p, ".XXXXXX"))
1207 (void) unlink_noerrno(*p);
1208 }
1209
1210 int unlinkat_deallocate(int fd, const char *name, int flags) {
1211 _cleanup_close_ int truncate_fd = -1;
1212 struct stat st;
1213 off_t l, bs;
1214
1215 /* Operates like unlinkat() but also deallocates the file contents if it is a regular file and there's no other
1216 * link to it. This is useful to ensure that other processes that might have the file open for reading won't be
1217 * able to keep the data pinned on disk forever. This call is particular useful whenever we execute clean-up
1218 * jobs ("vacuuming"), where we want to make sure the data is really gone and the disk space released and
1219 * returned to the free pool.
1220 *
1221 * Deallocation is preferably done by FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE (👊) if supported, which means
1222 * the file won't change size. That's a good thing since we shouldn't needlessly trigger SIGBUS in other
1223 * programs that have mmap()ed the file. (The assumption here is that changing file contents to all zeroes
1224 * underneath those programs is the better choice than simply triggering SIGBUS in them which truncation does.)
1225 * However if hole punching is not implemented in the kernel or file system we'll fall back to normal file
1226 * truncation (đŸ”Ē), as our goal of deallocating the data space trumps our goal of being nice to readers (💐).
1227 *
1228 * Note that we attempt deallocation, but failure to succeed with that is not considered fatal, as long as the
1229 * primary job – to delete the file – is accomplished. */
1230
1231 if ((flags & AT_REMOVEDIR) == 0) {
1232 truncate_fd = openat(fd, name, O_WRONLY|O_CLOEXEC|O_NOCTTY|O_NOFOLLOW|O_NONBLOCK);
1233 if (truncate_fd < 0) {
1234
1235 /* If this failed because the file doesn't exist propagate the error right-away. Also,
1236 * AT_REMOVEDIR wasn't set, and we tried to open the file for writing, which means EISDIR is
1237 * returned when this is a directory but we are not supposed to delete those, hence propagate
1238 * the error right-away too. */
1239 if (IN_SET(errno, ENOENT, EISDIR))
1240 return -errno;
1241
1242 if (errno != ELOOP) /* don't complain if this is a symlink */
1243 log_debug_errno(errno, "Failed to open file '%s' for deallocation, ignoring: %m", name);
1244 }
1245 }
1246
1247 if (unlinkat(fd, name, flags) < 0)
1248 return -errno;
1249
1250 if (truncate_fd < 0) /* Don't have a file handle, can't do more ☚ī¸ */
1251 return 0;
1252
1253 if (fstat(truncate_fd, &st) < 0) {
1254 log_debug_errno(errno, "Failed to stat file '%s' for deallocation, ignoring: %m", name);
1255 return 0;
1256 }
1257
1258 if (!S_ISREG(st.st_mode) || st.st_blocks == 0 || st.st_nlink > 0)
1259 return 0;
1260
1261 /* If this is a regular file, it actually took up space on disk and there are no other links it's time to
1262 * punch-hole/truncate this to release the disk space. */
1263
1264 bs = MAX(st.st_blksize, 512);
1265 l = DIV_ROUND_UP(st.st_size, bs) * bs; /* Round up to next block size */
1266
1267 if (fallocate(truncate_fd, FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE, 0, l) >= 0)
1268 return 0; /* Successfully punched a hole! 😊 */
1269
1270 /* Fall back to truncation */
1271 if (ftruncate(truncate_fd, 0) < 0) {
1272 log_debug_errno(errno, "Failed to truncate file to 0, ignoring: %m");
1273 return 0;
1274 }
1275
1276 return 0;
1277 }
1278
1279 int fsync_directory_of_file(int fd) {
1280 _cleanup_free_ char *path = NULL;
1281 _cleanup_close_ int dfd = -1;
1282 int r;
1283
1284 r = fd_verify_regular(fd);
1285 if (r < 0)
1286 return r;
1287
1288 r = fd_get_path(fd, &path);
1289 if (r < 0) {
1290 log_debug_errno(r, "Failed to query /proc/self/fd/%d%s: %m",
1291 fd,
1292 r == -EOPNOTSUPP ? ", ignoring" : "");
1293
1294 if (r == -EOPNOTSUPP)
1295 /* If /proc is not available, we're most likely running in some
1296 * chroot environment, and syncing the directory is not very
1297 * important in that case. Let's just silently do nothing. */
1298 return 0;
1299
1300 return r;
1301 }
1302
1303 if (!path_is_absolute(path))
1304 return -EINVAL;
1305
1306 dfd = open_parent(path, O_CLOEXEC, 0);
1307 if (dfd < 0)
1308 return dfd;
1309
1310 if (fsync(dfd) < 0)
1311 return -errno;
1312
1313 return 0;
1314 }
1315
1316 int fsync_full(int fd) {
1317 int r, q;
1318
1319 /* Sync both the file and the directory */
1320
1321 r = fsync(fd) < 0 ? -errno : 0;
1322 q = fsync_directory_of_file(fd);
1323
1324 return r < 0 ? r : q;
1325 }
1326
1327 int fsync_path_at(int at_fd, const char *path) {
1328 _cleanup_close_ int opened_fd = -1;
1329 int fd;
1330
1331 if (isempty(path)) {
1332 if (at_fd == AT_FDCWD) {
1333 opened_fd = open(".", O_RDONLY|O_DIRECTORY|O_CLOEXEC);
1334 if (opened_fd < 0)
1335 return -errno;
1336
1337 fd = opened_fd;
1338 } else
1339 fd = at_fd;
1340 } else {
1341
1342 opened_fd = openat(at_fd, path, O_RDONLY|O_CLOEXEC);
1343 if (opened_fd < 0)
1344 return -errno;
1345
1346 fd = opened_fd;
1347 }
1348
1349 if (fsync(fd) < 0)
1350 return -errno;
1351
1352 return 0;
1353 }
1354
1355 int syncfs_path(int atfd, const char *path) {
1356 _cleanup_close_ int fd = -1;
1357
1358 assert(path);
1359
1360 fd = openat(atfd, path, O_CLOEXEC|O_RDONLY|O_NONBLOCK);
1361 if (fd < 0)
1362 return -errno;
1363
1364 if (syncfs(fd) < 0)
1365 return -errno;
1366
1367 return 0;
1368 }
1369
1370 int open_parent(const char *path, int flags, mode_t mode) {
1371 _cleanup_free_ char *parent = NULL;
1372 int fd;
1373
1374 if (isempty(path))
1375 return -EINVAL;
1376 if (path_equal(path, "/")) /* requesting the parent of the root dir is fishy, let's prohibit that */
1377 return -EINVAL;
1378
1379 parent = dirname_malloc(path);
1380 if (!parent)
1381 return -ENOMEM;
1382
1383 /* Let's insist on O_DIRECTORY since the parent of a file or directory is a directory. Except if we open an
1384 * O_TMPFILE file, because in that case we are actually create a regular file below the parent directory. */
1385
1386 if (FLAGS_SET(flags, O_PATH))
1387 flags |= O_DIRECTORY;
1388 else if (!FLAGS_SET(flags, O_TMPFILE))
1389 flags |= O_DIRECTORY|O_RDONLY;
1390
1391 fd = open(parent, flags, mode);
1392 if (fd < 0)
1393 return -errno;
1394
1395 return fd;
1396 }