]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/basic/fs-util.c
tree-wide: drop time.h when time-util.h is included
[thirdparty/systemd.git] / src / basic / fs-util.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <errno.h>
4 #include <stddef.h>
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <sys/stat.h>
8 #include <linux/falloc.h>
9 #include <linux/magic.h>
10 #include <unistd.h>
11
12 #include "alloc-util.h"
13 #include "dirent-util.h"
14 #include "fd-util.h"
15 #include "fs-util.h"
16 #include "locale-util.h"
17 #include "log.h"
18 #include "macro.h"
19 #include "missing_fs.h"
20 #include "missing_syscall.h"
21 #include "mkdir.h"
22 #include "parse-util.h"
23 #include "path-util.h"
24 #include "process-util.h"
25 #include "stat-util.h"
26 #include "stdio-util.h"
27 #include "string-util.h"
28 #include "strv.h"
29 #include "time-util.h"
30 #include "tmpfile-util.h"
31 #include "user-util.h"
32 #include "util.h"
33
34 int unlink_noerrno(const char *path) {
35 PROTECT_ERRNO;
36 int r;
37
38 r = unlink(path);
39 if (r < 0)
40 return -errno;
41
42 return 0;
43 }
44
45 int rmdir_parents(const char *path, const char *stop) {
46 size_t l;
47 int r = 0;
48
49 assert(path);
50 assert(stop);
51
52 l = strlen(path);
53
54 /* Skip trailing slashes */
55 while (l > 0 && path[l-1] == '/')
56 l--;
57
58 while (l > 0) {
59 char *t;
60
61 /* Skip last component */
62 while (l > 0 && path[l-1] != '/')
63 l--;
64
65 /* Skip trailing slashes */
66 while (l > 0 && path[l-1] == '/')
67 l--;
68
69 if (l <= 0)
70 break;
71
72 t = strndup(path, l);
73 if (!t)
74 return -ENOMEM;
75
76 if (path_startswith(stop, t)) {
77 free(t);
78 return 0;
79 }
80
81 r = rmdir(t);
82 free(t);
83
84 if (r < 0)
85 if (errno != ENOENT)
86 return -errno;
87 }
88
89 return 0;
90 }
91
92 int rename_noreplace(int olddirfd, const char *oldpath, int newdirfd, const char *newpath) {
93 int r;
94
95 /* Try the ideal approach first */
96 if (renameat2(olddirfd, oldpath, newdirfd, newpath, RENAME_NOREPLACE) >= 0)
97 return 0;
98
99 /* renameat2() exists since Linux 3.15, btrfs and FAT added support for it later. If it is not implemented,
100 * fall back to a different method. */
101 if (!IN_SET(errno, EINVAL, ENOSYS, ENOTTY))
102 return -errno;
103
104 /* Let's try to use linkat()+unlinkat() as fallback. This doesn't work on directories and on some file systems
105 * that do not support hard links (such as FAT, most prominently), but for files it's pretty close to what we
106 * want — though not atomic (i.e. for a short period both the new and the old filename will exist). */
107 if (linkat(olddirfd, oldpath, newdirfd, newpath, 0) >= 0) {
108
109 if (unlinkat(olddirfd, oldpath, 0) < 0) {
110 r = -errno; /* Backup errno before the following unlinkat() alters it */
111 (void) unlinkat(newdirfd, newpath, 0);
112 return r;
113 }
114
115 return 0;
116 }
117
118 if (!IN_SET(errno, EINVAL, ENOSYS, ENOTTY, EPERM)) /* FAT returns EPERM on link()â€Ļ */
119 return -errno;
120
121 /* OK, neither RENAME_NOREPLACE nor linkat()+unlinkat() worked. Let's then fallback to the racy TOCTOU
122 * vulnerable accessat(F_OK) check followed by classic, replacing renameat(), we have nothing better. */
123
124 if (faccessat(newdirfd, newpath, F_OK, AT_SYMLINK_NOFOLLOW) >= 0)
125 return -EEXIST;
126 if (errno != ENOENT)
127 return -errno;
128
129 if (renameat(olddirfd, oldpath, newdirfd, newpath) < 0)
130 return -errno;
131
132 return 0;
133 }
134
135 int readlinkat_malloc(int fd, const char *p, char **ret) {
136 size_t l = FILENAME_MAX+1;
137 int r;
138
139 assert(p);
140 assert(ret);
141
142 for (;;) {
143 char *c;
144 ssize_t n;
145
146 c = new(char, l);
147 if (!c)
148 return -ENOMEM;
149
150 n = readlinkat(fd, p, c, l-1);
151 if (n < 0) {
152 r = -errno;
153 free(c);
154 return r;
155 }
156
157 if ((size_t) n < l-1) {
158 c[n] = 0;
159 *ret = c;
160 return 0;
161 }
162
163 free(c);
164 l *= 2;
165 }
166 }
167
168 int readlink_malloc(const char *p, char **ret) {
169 return readlinkat_malloc(AT_FDCWD, p, ret);
170 }
171
172 int readlink_value(const char *p, char **ret) {
173 _cleanup_free_ char *link = NULL;
174 char *value;
175 int r;
176
177 r = readlink_malloc(p, &link);
178 if (r < 0)
179 return r;
180
181 value = basename(link);
182 if (!value)
183 return -ENOENT;
184
185 value = strdup(value);
186 if (!value)
187 return -ENOMEM;
188
189 *ret = value;
190
191 return 0;
192 }
193
194 int readlink_and_make_absolute(const char *p, char **r) {
195 _cleanup_free_ char *target = NULL;
196 char *k;
197 int j;
198
199 assert(p);
200 assert(r);
201
202 j = readlink_malloc(p, &target);
203 if (j < 0)
204 return j;
205
206 k = file_in_same_dir(p, target);
207 if (!k)
208 return -ENOMEM;
209
210 *r = k;
211 return 0;
212 }
213
214 int chmod_and_chown(const char *path, mode_t mode, uid_t uid, gid_t gid) {
215 _cleanup_close_ int fd = -1;
216
217 assert(path);
218
219 fd = open(path, O_PATH|O_CLOEXEC|O_NOFOLLOW); /* Let's acquire an O_PATH fd, as precaution to change
220 * mode/owner on the same file */
221 if (fd < 0)
222 return -errno;
223
224 return fchmod_and_chown(fd, mode, uid, gid);
225 }
226
227 int fchmod_and_chown(int fd, mode_t mode, uid_t uid, gid_t gid) {
228 bool do_chown, do_chmod;
229 struct stat st;
230
231 /* Change ownership and access mode of the specified fd. Tries to do so safely, ensuring that at no
232 * point in time the access mode is above the old access mode under the old ownership or the new
233 * access mode under the new ownership. Note: this call tries hard to leave the access mode
234 * unaffected if the uid/gid is changed, i.e. it undoes implicit suid/sgid dropping the kernel does
235 * on chown().
236 *
237 * This call is happy with O_PATH fds. */
238
239 if (fstat(fd, &st) < 0)
240 return -errno;
241
242 do_chown =
243 (uid != UID_INVALID && st.st_uid != uid) ||
244 (gid != GID_INVALID && st.st_gid != gid);
245
246 do_chmod =
247 !S_ISLNK(st.st_mode) && /* chmod is not defined on symlinks */
248 ((mode != MODE_INVALID && ((st.st_mode ^ mode) & 07777) != 0) ||
249 do_chown); /* If we change ownership, make sure we reset the mode afterwards, since chown()
250 * modifies the access mode too */
251
252 if (mode == MODE_INVALID)
253 mode = st.st_mode; /* If we only shall do a chown(), save original mode, since chown() might break it. */
254 else if ((mode & S_IFMT) != 0 && ((mode ^ st.st_mode) & S_IFMT) != 0)
255 return -EINVAL; /* insist on the right file type if it was specified */
256
257 if (do_chown && do_chmod) {
258 mode_t minimal = st.st_mode & mode; /* the subset of the old and the new mask */
259
260 if (((minimal ^ st.st_mode) & 07777) != 0)
261 if (fchmod_opath(fd, minimal & 07777) < 0)
262 return -errno;
263 }
264
265 if (do_chown)
266 if (fchownat(fd, "", uid, gid, AT_EMPTY_PATH) < 0)
267 return -errno;
268
269 if (do_chmod)
270 if (fchmod_opath(fd, mode & 07777) < 0)
271 return -errno;
272
273 return do_chown || do_chmod;
274 }
275
276 int fchmod_umask(int fd, mode_t m) {
277 mode_t u;
278 int r;
279
280 u = umask(0777);
281 r = fchmod(fd, m & (~u)) < 0 ? -errno : 0;
282 umask(u);
283
284 return r;
285 }
286
287 int fchmod_opath(int fd, mode_t m) {
288 char procfs_path[STRLEN("/proc/self/fd/") + DECIMAL_STR_MAX(int)];
289
290 /* This function operates also on fd that might have been opened with
291 * O_PATH. Indeed fchmodat() doesn't have the AT_EMPTY_PATH flag like
292 * fchownat() does. */
293
294 xsprintf(procfs_path, "/proc/self/fd/%i", fd);
295 if (chmod(procfs_path, m) < 0)
296 return -errno;
297
298 return 0;
299 }
300
301 int fd_warn_permissions(const char *path, int fd) {
302 struct stat st;
303
304 if (fstat(fd, &st) < 0)
305 return -errno;
306
307 /* Don't complain if we are reading something that is not a file, for example /dev/null */
308 if (!S_ISREG(st.st_mode))
309 return 0;
310
311 if (st.st_mode & 0111)
312 log_warning("Configuration file %s is marked executable. Please remove executable permission bits. Proceeding anyway.", path);
313
314 if (st.st_mode & 0002)
315 log_warning("Configuration file %s is marked world-writable. Please remove world writability permission bits. Proceeding anyway.", path);
316
317 if (getpid_cached() == 1 && (st.st_mode & 0044) != 0044)
318 log_warning("Configuration file %s is marked world-inaccessible. This has no effect as configuration data is accessible via APIs without restrictions. Proceeding anyway.", path);
319
320 return 0;
321 }
322
323 int touch_file(const char *path, bool parents, usec_t stamp, uid_t uid, gid_t gid, mode_t mode) {
324 char fdpath[STRLEN("/proc/self/fd/") + DECIMAL_STR_MAX(int)];
325 _cleanup_close_ int fd = -1;
326 int r, ret = 0;
327
328 assert(path);
329
330 /* Note that touch_file() does not follow symlinks: if invoked on an existing symlink, then it is the symlink
331 * itself which is updated, not its target
332 *
333 * Returns the first error we encounter, but tries to apply as much as possible. */
334
335 if (parents)
336 (void) mkdir_parents(path, 0755);
337
338 /* Initially, we try to open the node with O_PATH, so that we get a reference to the node. This is useful in
339 * case the path refers to an existing device or socket node, as we can open it successfully in all cases, and
340 * won't trigger any driver magic or so. */
341 fd = open(path, O_PATH|O_CLOEXEC|O_NOFOLLOW);
342 if (fd < 0) {
343 if (errno != ENOENT)
344 return -errno;
345
346 /* if the node doesn't exist yet, we create it, but with O_EXCL, so that we only create a regular file
347 * here, and nothing else */
348 fd = open(path, O_WRONLY|O_CREAT|O_EXCL|O_CLOEXEC, IN_SET(mode, 0, MODE_INVALID) ? 0644 : mode);
349 if (fd < 0)
350 return -errno;
351 }
352
353 /* Let's make a path from the fd, and operate on that. With this logic, we can adjust the access mode,
354 * ownership and time of the file node in all cases, even if the fd refers to an O_PATH object — which is
355 * something fchown(), fchmod(), futimensat() don't allow. */
356 xsprintf(fdpath, "/proc/self/fd/%i", fd);
357
358 ret = fchmod_and_chown(fd, mode, uid, gid);
359
360 if (stamp != USEC_INFINITY) {
361 struct timespec ts[2];
362
363 timespec_store(&ts[0], stamp);
364 ts[1] = ts[0];
365 r = utimensat(AT_FDCWD, fdpath, ts, 0);
366 } else
367 r = utimensat(AT_FDCWD, fdpath, NULL, 0);
368 if (r < 0 && ret >= 0)
369 return -errno;
370
371 return ret;
372 }
373
374 int touch(const char *path) {
375 return touch_file(path, false, USEC_INFINITY, UID_INVALID, GID_INVALID, MODE_INVALID);
376 }
377
378 int symlink_idempotent(const char *from, const char *to, bool make_relative) {
379 _cleanup_free_ char *relpath = NULL;
380 int r;
381
382 assert(from);
383 assert(to);
384
385 if (make_relative) {
386 _cleanup_free_ char *parent = NULL;
387
388 parent = dirname_malloc(to);
389 if (!parent)
390 return -ENOMEM;
391
392 r = path_make_relative(parent, from, &relpath);
393 if (r < 0)
394 return r;
395
396 from = relpath;
397 }
398
399 if (symlink(from, to) < 0) {
400 _cleanup_free_ char *p = NULL;
401
402 if (errno != EEXIST)
403 return -errno;
404
405 r = readlink_malloc(to, &p);
406 if (r == -EINVAL) /* Not a symlink? In that case return the original error we encountered: -EEXIST */
407 return -EEXIST;
408 if (r < 0) /* Any other error? In that case propagate it as is */
409 return r;
410
411 if (!streq(p, from)) /* Not the symlink we want it to be? In that case, propagate the original -EEXIST */
412 return -EEXIST;
413 }
414
415 return 0;
416 }
417
418 int symlink_atomic(const char *from, const char *to) {
419 _cleanup_free_ char *t = NULL;
420 int r;
421
422 assert(from);
423 assert(to);
424
425 r = tempfn_random(to, NULL, &t);
426 if (r < 0)
427 return r;
428
429 if (symlink(from, t) < 0)
430 return -errno;
431
432 if (rename(t, to) < 0) {
433 unlink_noerrno(t);
434 return -errno;
435 }
436
437 return 0;
438 }
439
440 int mknod_atomic(const char *path, mode_t mode, dev_t dev) {
441 _cleanup_free_ char *t = NULL;
442 int r;
443
444 assert(path);
445
446 r = tempfn_random(path, NULL, &t);
447 if (r < 0)
448 return r;
449
450 if (mknod(t, mode, dev) < 0)
451 return -errno;
452
453 if (rename(t, path) < 0) {
454 unlink_noerrno(t);
455 return -errno;
456 }
457
458 return 0;
459 }
460
461 int mkfifo_atomic(const char *path, mode_t mode) {
462 _cleanup_free_ char *t = NULL;
463 int r;
464
465 assert(path);
466
467 r = tempfn_random(path, NULL, &t);
468 if (r < 0)
469 return r;
470
471 if (mkfifo(t, mode) < 0)
472 return -errno;
473
474 if (rename(t, path) < 0) {
475 unlink_noerrno(t);
476 return -errno;
477 }
478
479 return 0;
480 }
481
482 int mkfifoat_atomic(int dirfd, const char *path, mode_t mode) {
483 _cleanup_free_ char *t = NULL;
484 int r;
485
486 assert(path);
487
488 if (path_is_absolute(path))
489 return mkfifo_atomic(path, mode);
490
491 /* We're only interested in the (random) filename. */
492 r = tempfn_random_child("", NULL, &t);
493 if (r < 0)
494 return r;
495
496 if (mkfifoat(dirfd, t, mode) < 0)
497 return -errno;
498
499 if (renameat(dirfd, t, dirfd, path) < 0) {
500 unlink_noerrno(t);
501 return -errno;
502 }
503
504 return 0;
505 }
506
507 int get_files_in_directory(const char *path, char ***list) {
508 _cleanup_closedir_ DIR *d = NULL;
509 struct dirent *de;
510 size_t bufsize = 0, n = 0;
511 _cleanup_strv_free_ char **l = NULL;
512
513 assert(path);
514
515 /* Returns all files in a directory in *list, and the number
516 * of files as return value. If list is NULL returns only the
517 * number. */
518
519 d = opendir(path);
520 if (!d)
521 return -errno;
522
523 FOREACH_DIRENT_ALL(de, d, return -errno) {
524 dirent_ensure_type(d, de);
525
526 if (!dirent_is_file(de))
527 continue;
528
529 if (list) {
530 /* one extra slot is needed for the terminating NULL */
531 if (!GREEDY_REALLOC(l, bufsize, n + 2))
532 return -ENOMEM;
533
534 l[n] = strdup(de->d_name);
535 if (!l[n])
536 return -ENOMEM;
537
538 l[++n] = NULL;
539 } else
540 n++;
541 }
542
543 if (list)
544 *list = TAKE_PTR(l);
545
546 return n;
547 }
548
549 static int getenv_tmp_dir(const char **ret_path) {
550 const char *n;
551 int r, ret = 0;
552
553 assert(ret_path);
554
555 /* We use the same order of environment variables python uses in tempfile.gettempdir():
556 * https://docs.python.org/3/library/tempfile.html#tempfile.gettempdir */
557 FOREACH_STRING(n, "TMPDIR", "TEMP", "TMP") {
558 const char *e;
559
560 e = secure_getenv(n);
561 if (!e)
562 continue;
563 if (!path_is_absolute(e)) {
564 r = -ENOTDIR;
565 goto next;
566 }
567 if (!path_is_normalized(e)) {
568 r = -EPERM;
569 goto next;
570 }
571
572 r = is_dir(e, true);
573 if (r < 0)
574 goto next;
575 if (r == 0) {
576 r = -ENOTDIR;
577 goto next;
578 }
579
580 *ret_path = e;
581 return 1;
582
583 next:
584 /* Remember first error, to make this more debuggable */
585 if (ret >= 0)
586 ret = r;
587 }
588
589 if (ret < 0)
590 return ret;
591
592 *ret_path = NULL;
593 return ret;
594 }
595
596 static int tmp_dir_internal(const char *def, const char **ret) {
597 const char *e;
598 int r, k;
599
600 assert(def);
601 assert(ret);
602
603 r = getenv_tmp_dir(&e);
604 if (r > 0) {
605 *ret = e;
606 return 0;
607 }
608
609 k = is_dir(def, true);
610 if (k == 0)
611 k = -ENOTDIR;
612 if (k < 0)
613 return r < 0 ? r : k;
614
615 *ret = def;
616 return 0;
617 }
618
619 int var_tmp_dir(const char **ret) {
620
621 /* Returns the location for "larger" temporary files, that is backed by physical storage if available, and thus
622 * even might survive a boot: /var/tmp. If $TMPDIR (or related environment variables) are set, its value is
623 * returned preferably however. Note that both this function and tmp_dir() below are affected by $TMPDIR,
624 * making it a variable that overrides all temporary file storage locations. */
625
626 return tmp_dir_internal("/var/tmp", ret);
627 }
628
629 int tmp_dir(const char **ret) {
630
631 /* Similar to var_tmp_dir() above, but returns the location for "smaller" temporary files, which is usually
632 * backed by an in-memory file system: /tmp. */
633
634 return tmp_dir_internal("/tmp", ret);
635 }
636
637 int unlink_or_warn(const char *filename) {
638 if (unlink(filename) < 0 && errno != ENOENT)
639 /* If the file doesn't exist and the fs simply was read-only (in which
640 * case unlink() returns EROFS even if the file doesn't exist), don't
641 * complain */
642 if (errno != EROFS || access(filename, F_OK) >= 0)
643 return log_error_errno(errno, "Failed to remove \"%s\": %m", filename);
644
645 return 0;
646 }
647
648 int inotify_add_watch_fd(int fd, int what, uint32_t mask) {
649 char path[STRLEN("/proc/self/fd/") + DECIMAL_STR_MAX(int) + 1];
650 int r;
651
652 /* This is like inotify_add_watch(), except that the file to watch is not referenced by a path, but by an fd */
653 xsprintf(path, "/proc/self/fd/%i", what);
654
655 r = inotify_add_watch(fd, path, mask);
656 if (r < 0)
657 return -errno;
658
659 return r;
660 }
661
662 int inotify_add_watch_and_warn(int fd, const char *pathname, uint32_t mask) {
663
664 if (inotify_add_watch(fd, pathname, mask) < 0) {
665 if (errno == ENOSPC)
666 return log_error_errno(errno, "Failed to add a watch for %s: inotify watch limit reached", pathname);
667
668 return log_error_errno(errno, "Failed to add a watch for %s: %m", pathname);
669 }
670
671 return 0;
672 }
673
674 static bool unsafe_transition(const struct stat *a, const struct stat *b) {
675 /* Returns true if the transition from a to b is safe, i.e. that we never transition from unprivileged to
676 * privileged files or directories. Why bother? So that unprivileged code can't symlink to privileged files
677 * making us believe we read something safe even though it isn't safe in the specific context we open it in. */
678
679 if (a->st_uid == 0) /* Transitioning from privileged to unprivileged is always fine */
680 return false;
681
682 return a->st_uid != b->st_uid; /* Otherwise we need to stay within the same UID */
683 }
684
685 static int log_unsafe_transition(int a, int b, const char *path, unsigned flags) {
686 _cleanup_free_ char *n1 = NULL, *n2 = NULL;
687
688 if (!FLAGS_SET(flags, CHASE_WARN))
689 return -ENOLINK;
690
691 (void) fd_get_path(a, &n1);
692 (void) fd_get_path(b, &n2);
693
694 return log_warning_errno(SYNTHETIC_ERRNO(ENOLINK),
695 "Detected unsafe path transition %s %s %s during canonicalization of %s.",
696 n1, special_glyph(SPECIAL_GLYPH_ARROW), n2, path);
697 }
698
699 static int log_autofs_mount_point(int fd, const char *path, unsigned flags) {
700 _cleanup_free_ char *n1 = NULL;
701
702 if (!FLAGS_SET(flags, CHASE_WARN))
703 return -EREMOTE;
704
705 (void) fd_get_path(fd, &n1);
706
707 return log_warning_errno(SYNTHETIC_ERRNO(EREMOTE),
708 "Detected autofs mount point %s during canonicalization of %s.",
709 n1, path);
710 }
711
712 int chase_symlinks(const char *path, const char *original_root, unsigned flags, char **ret_path, int *ret_fd) {
713 _cleanup_free_ char *buffer = NULL, *done = NULL, *root = NULL;
714 _cleanup_close_ int fd = -1;
715 unsigned max_follow = CHASE_SYMLINKS_MAX; /* how many symlinks to follow before giving up and returning ELOOP */
716 struct stat previous_stat;
717 bool exists = true;
718 char *todo;
719 int r;
720
721 assert(path);
722
723 /* Either the file may be missing, or we return an fd to the final object, but both make no sense */
724 if ((flags & CHASE_NONEXISTENT) && ret_fd)
725 return -EINVAL;
726
727 if ((flags & CHASE_STEP) && ret_fd)
728 return -EINVAL;
729
730 if (isempty(path))
731 return -EINVAL;
732
733 /* This is a lot like canonicalize_file_name(), but takes an additional "root" parameter, that allows following
734 * symlinks relative to a root directory, instead of the root of the host.
735 *
736 * Note that "root" primarily matters if we encounter an absolute symlink. It is also used when following
737 * relative symlinks to ensure they cannot be used to "escape" the root directory. The path parameter passed is
738 * assumed to be already prefixed by it, except if the CHASE_PREFIX_ROOT flag is set, in which case it is first
739 * prefixed accordingly.
740 *
741 * Algorithmically this operates on two path buffers: "done" are the components of the path we already
742 * processed and resolved symlinks, "." and ".." of. "todo" are the components of the path we still need to
743 * process. On each iteration, we move one component from "todo" to "done", processing it's special meaning
744 * each time. The "todo" path always starts with at least one slash, the "done" path always ends in no
745 * slash. We always keep an O_PATH fd to the component we are currently processing, thus keeping lookup races
746 * to a minimum.
747 *
748 * Suggested usage: whenever you want to canonicalize a path, use this function. Pass the absolute path you got
749 * as-is: fully qualified and relative to your host's root. Optionally, specify the root parameter to tell this
750 * function what to do when encountering a symlink with an absolute path as directory: prefix it by the
751 * specified path.
752 *
753 * There are five ways to invoke this function:
754 *
755 * 1. Without CHASE_STEP or ret_fd: in this case the path is resolved and the normalized path is
756 * returned in `ret_path`. The return value is < 0 on error. If CHASE_NONEXISTENT is also set, 0
757 * is returned if the file doesn't exist, > 0 otherwise. If CHASE_NONEXISTENT is not set, >= 0 is
758 * returned if the destination was found, -ENOENT if it wasn't.
759 *
760 * 2. With ret_fd: in this case the destination is opened after chasing it as O_PATH and this file
761 * descriptor is returned as return value. This is useful to open files relative to some root
762 * directory. Note that the returned O_PATH file descriptors must be converted into a regular one (using
763 * fd_reopen() or such) before it can be used for reading/writing. ret_fd may not be combined with
764 * CHASE_NONEXISTENT.
765 *
766 * 3. With CHASE_STEP: in this case only a single step of the normalization is executed, i.e. only the first
767 * symlink or ".." component of the path is resolved, and the resulting path is returned. This is useful if
768 * a caller wants to trace the a path through the file system verbosely. Returns < 0 on error, > 0 if the
769 * path is fully normalized, and == 0 for each normalization step. This may be combined with
770 * CHASE_NONEXISTENT, in which case 1 is returned when a component is not found.
771 *
772 * 4. With CHASE_SAFE: in this case the path must not contain unsafe transitions, i.e. transitions from
773 * unprivileged to privileged files or directories. In such cases the return value is -ENOLINK. If
774 * CHASE_WARN is also set, a warning describing the unsafe transition is emitted.
775 *
776 * 5. With CHASE_NO_AUTOFS: in this case if an autofs mount point is encountered, path normalization
777 * is aborted and -EREMOTE is returned. If CHASE_WARN is also set, a warning showing the path of
778 * the mount point is emitted.
779 */
780
781 /* A root directory of "/" or "" is identical to none */
782 if (empty_or_root(original_root))
783 original_root = NULL;
784
785 if (!original_root && !ret_path && !(flags & (CHASE_NONEXISTENT|CHASE_NO_AUTOFS|CHASE_SAFE|CHASE_STEP)) && ret_fd) {
786 /* Shortcut the ret_fd case if the caller isn't interested in the actual path and has no root set
787 * and doesn't care about any of the other special features we provide either. */
788 r = open(path, O_PATH|O_CLOEXEC|((flags & CHASE_NOFOLLOW) ? O_NOFOLLOW : 0));
789 if (r < 0)
790 return -errno;
791
792 *ret_fd = r;
793 return 0;
794 }
795
796 if (original_root) {
797 r = path_make_absolute_cwd(original_root, &root);
798 if (r < 0)
799 return r;
800
801 if (flags & CHASE_PREFIX_ROOT) {
802 /* We don't support relative paths in combination with a root directory */
803 if (!path_is_absolute(path))
804 return -EINVAL;
805
806 path = prefix_roota(root, path);
807 }
808 }
809
810 r = path_make_absolute_cwd(path, &buffer);
811 if (r < 0)
812 return r;
813
814 fd = open("/", O_CLOEXEC|O_NOFOLLOW|O_PATH);
815 if (fd < 0)
816 return -errno;
817
818 if (flags & CHASE_SAFE) {
819 if (fstat(fd, &previous_stat) < 0)
820 return -errno;
821 }
822
823 todo = buffer;
824 for (;;) {
825 _cleanup_free_ char *first = NULL;
826 _cleanup_close_ int child = -1;
827 struct stat st;
828 size_t n, m;
829
830 /* Determine length of first component in the path */
831 n = strspn(todo, "/"); /* The slashes */
832 m = n + strcspn(todo + n, "/"); /* The entire length of the component */
833
834 /* Extract the first component. */
835 first = strndup(todo, m);
836 if (!first)
837 return -ENOMEM;
838
839 todo += m;
840
841 /* Empty? Then we reached the end. */
842 if (isempty(first))
843 break;
844
845 /* Just a single slash? Then we reached the end. */
846 if (path_equal(first, "/")) {
847 /* Preserve the trailing slash */
848
849 if (flags & CHASE_TRAIL_SLASH)
850 if (!strextend(&done, "/", NULL))
851 return -ENOMEM;
852
853 break;
854 }
855
856 /* Just a dot? Then let's eat this up. */
857 if (path_equal(first, "/."))
858 continue;
859
860 /* Two dots? Then chop off the last bit of what we already found out. */
861 if (path_equal(first, "/..")) {
862 _cleanup_free_ char *parent = NULL;
863 _cleanup_close_ int fd_parent = -1;
864
865 /* If we already are at the top, then going up will not change anything. This is in-line with
866 * how the kernel handles this. */
867 if (empty_or_root(done))
868 continue;
869
870 parent = dirname_malloc(done);
871 if (!parent)
872 return -ENOMEM;
873
874 /* Don't allow this to leave the root dir. */
875 if (root &&
876 path_startswith(done, root) &&
877 !path_startswith(parent, root))
878 continue;
879
880 free_and_replace(done, parent);
881
882 if (flags & CHASE_STEP)
883 goto chased_one;
884
885 fd_parent = openat(fd, "..", O_CLOEXEC|O_NOFOLLOW|O_PATH);
886 if (fd_parent < 0)
887 return -errno;
888
889 if (flags & CHASE_SAFE) {
890 if (fstat(fd_parent, &st) < 0)
891 return -errno;
892
893 if (unsafe_transition(&previous_stat, &st))
894 return log_unsafe_transition(fd, fd_parent, path, flags);
895
896 previous_stat = st;
897 }
898
899 safe_close(fd);
900 fd = TAKE_FD(fd_parent);
901
902 continue;
903 }
904
905 /* Otherwise let's see what this is. */
906 child = openat(fd, first + n, O_CLOEXEC|O_NOFOLLOW|O_PATH);
907 if (child < 0) {
908
909 if (errno == ENOENT &&
910 (flags & CHASE_NONEXISTENT) &&
911 (isempty(todo) || path_is_normalized(todo))) {
912
913 /* If CHASE_NONEXISTENT is set, and the path does not exist, then that's OK, return
914 * what we got so far. But don't allow this if the remaining path contains "../ or "./"
915 * or something else weird. */
916
917 /* If done is "/", as first also contains slash at the head, then remove this redundant slash. */
918 if (streq_ptr(done, "/"))
919 *done = '\0';
920
921 if (!strextend(&done, first, todo, NULL))
922 return -ENOMEM;
923
924 exists = false;
925 break;
926 }
927
928 return -errno;
929 }
930
931 if (fstat(child, &st) < 0)
932 return -errno;
933 if ((flags & CHASE_SAFE) &&
934 (empty_or_root(root) || (size_t)(todo - buffer) > strlen(root)) &&
935 unsafe_transition(&previous_stat, &st))
936 return log_unsafe_transition(fd, child, path, flags);
937
938 previous_stat = st;
939
940 if ((flags & CHASE_NO_AUTOFS) &&
941 fd_is_fs_type(child, AUTOFS_SUPER_MAGIC) > 0)
942 return log_autofs_mount_point(child, path, flags);
943
944 if (S_ISLNK(st.st_mode) && !((flags & CHASE_NOFOLLOW) && isempty(todo))) {
945 char *joined;
946 _cleanup_free_ char *destination = NULL;
947
948 /* This is a symlink, in this case read the destination. But let's make sure we don't follow
949 * symlinks without bounds. */
950 if (--max_follow <= 0)
951 return -ELOOP;
952
953 r = readlinkat_malloc(fd, first + n, &destination);
954 if (r < 0)
955 return r;
956 if (isempty(destination))
957 return -EINVAL;
958
959 if (path_is_absolute(destination)) {
960
961 /* An absolute destination. Start the loop from the beginning, but use the root
962 * directory as base. */
963
964 safe_close(fd);
965 fd = open(root ?: "/", O_CLOEXEC|O_NOFOLLOW|O_PATH);
966 if (fd < 0)
967 return -errno;
968
969 if (flags & CHASE_SAFE) {
970 if (fstat(fd, &st) < 0)
971 return -errno;
972
973 if (unsafe_transition(&previous_stat, &st))
974 return log_unsafe_transition(child, fd, path, flags);
975
976 previous_stat = st;
977 }
978
979 free(done);
980
981 /* Note that we do not revalidate the root, we take it as is. */
982 if (isempty(root))
983 done = NULL;
984 else {
985 done = strdup(root);
986 if (!done)
987 return -ENOMEM;
988 }
989
990 /* Prefix what's left to do with what we just read, and start the loop again, but
991 * remain in the current directory. */
992 joined = path_join(destination, todo);
993 } else
994 joined = path_join("/", destination, todo);
995 if (!joined)
996 return -ENOMEM;
997
998 free(buffer);
999 todo = buffer = joined;
1000
1001 if (flags & CHASE_STEP)
1002 goto chased_one;
1003
1004 continue;
1005 }
1006
1007 /* If this is not a symlink, then let's just add the name we read to what we already verified. */
1008 if (!done)
1009 done = TAKE_PTR(first);
1010 else {
1011 /* If done is "/", as first also contains slash at the head, then remove this redundant slash. */
1012 if (streq(done, "/"))
1013 *done = '\0';
1014
1015 if (!strextend(&done, first, NULL))
1016 return -ENOMEM;
1017 }
1018
1019 /* And iterate again, but go one directory further down. */
1020 safe_close(fd);
1021 fd = TAKE_FD(child);
1022 }
1023
1024 if (!done) {
1025 /* Special case, turn the empty string into "/", to indicate the root directory. */
1026 done = strdup("/");
1027 if (!done)
1028 return -ENOMEM;
1029 }
1030
1031 if (ret_path)
1032 *ret_path = TAKE_PTR(done);
1033
1034 if (ret_fd) {
1035 /* Return the O_PATH fd we currently are looking to the caller. It can translate it to a
1036 * proper fd by opening /proc/self/fd/xyz. */
1037
1038 assert(fd >= 0);
1039 *ret_fd = TAKE_FD(fd);
1040 }
1041
1042 if (flags & CHASE_STEP)
1043 return 1;
1044
1045 return exists;
1046
1047 chased_one:
1048 if (ret_path) {
1049 char *c;
1050
1051 c = strjoin(strempty(done), todo);
1052 if (!c)
1053 return -ENOMEM;
1054
1055 *ret_path = c;
1056 }
1057
1058 return 0;
1059 }
1060
1061 int chase_symlinks_and_open(
1062 const char *path,
1063 const char *root,
1064 unsigned chase_flags,
1065 int open_flags,
1066 char **ret_path) {
1067
1068 _cleanup_close_ int path_fd = -1;
1069 _cleanup_free_ char *p = NULL;
1070 int r;
1071
1072 if (chase_flags & CHASE_NONEXISTENT)
1073 return -EINVAL;
1074
1075 if (empty_or_root(root) && !ret_path && (chase_flags & (CHASE_NO_AUTOFS|CHASE_SAFE)) == 0) {
1076 /* Shortcut this call if none of the special features of this call are requested */
1077 r = open(path, open_flags);
1078 if (r < 0)
1079 return -errno;
1080
1081 return r;
1082 }
1083
1084 r = chase_symlinks(path, root, chase_flags, ret_path ? &p : NULL, &path_fd);
1085 if (r < 0)
1086 return r;
1087 assert(path_fd >= 0);
1088
1089 r = fd_reopen(path_fd, open_flags);
1090 if (r < 0)
1091 return r;
1092
1093 if (ret_path)
1094 *ret_path = TAKE_PTR(p);
1095
1096 return r;
1097 }
1098
1099 int chase_symlinks_and_opendir(
1100 const char *path,
1101 const char *root,
1102 unsigned chase_flags,
1103 char **ret_path,
1104 DIR **ret_dir) {
1105
1106 char procfs_path[STRLEN("/proc/self/fd/") + DECIMAL_STR_MAX(int)];
1107 _cleanup_close_ int path_fd = -1;
1108 _cleanup_free_ char *p = NULL;
1109 DIR *d;
1110 int r;
1111
1112 if (!ret_dir)
1113 return -EINVAL;
1114 if (chase_flags & CHASE_NONEXISTENT)
1115 return -EINVAL;
1116
1117 if (empty_or_root(root) && !ret_path && (chase_flags & (CHASE_NO_AUTOFS|CHASE_SAFE)) == 0) {
1118 /* Shortcut this call if none of the special features of this call are requested */
1119 d = opendir(path);
1120 if (!d)
1121 return -errno;
1122
1123 *ret_dir = d;
1124 return 0;
1125 }
1126
1127 r = chase_symlinks(path, root, chase_flags, ret_path ? &p : NULL, &path_fd);
1128 if (r < 0)
1129 return r;
1130 assert(path_fd >= 0);
1131
1132 xsprintf(procfs_path, "/proc/self/fd/%i", path_fd);
1133 d = opendir(procfs_path);
1134 if (!d)
1135 return -errno;
1136
1137 if (ret_path)
1138 *ret_path = TAKE_PTR(p);
1139
1140 *ret_dir = d;
1141 return 0;
1142 }
1143
1144 int chase_symlinks_and_stat(
1145 const char *path,
1146 const char *root,
1147 unsigned chase_flags,
1148 char **ret_path,
1149 struct stat *ret_stat,
1150 int *ret_fd) {
1151
1152 _cleanup_close_ int path_fd = -1;
1153 _cleanup_free_ char *p = NULL;
1154 int r;
1155
1156 assert(path);
1157 assert(ret_stat);
1158
1159 if (chase_flags & CHASE_NONEXISTENT)
1160 return -EINVAL;
1161
1162 if (empty_or_root(root) && !ret_path && (chase_flags & (CHASE_NO_AUTOFS|CHASE_SAFE)) == 0) {
1163 /* Shortcut this call if none of the special features of this call are requested */
1164 if (stat(path, ret_stat) < 0)
1165 return -errno;
1166
1167 return 1;
1168 }
1169
1170 r = chase_symlinks(path, root, chase_flags, ret_path ? &p : NULL, &path_fd);
1171 if (r < 0)
1172 return r;
1173 assert(path_fd >= 0);
1174
1175 if (fstat(path_fd, ret_stat) < 0)
1176 return -errno;
1177
1178 if (ret_path)
1179 *ret_path = TAKE_PTR(p);
1180 if (ret_fd)
1181 *ret_fd = TAKE_FD(path_fd);
1182
1183 return 1;
1184 }
1185
1186 int access_fd(int fd, int mode) {
1187 char p[STRLEN("/proc/self/fd/") + DECIMAL_STR_MAX(fd) + 1];
1188 int r;
1189
1190 /* Like access() but operates on an already open fd */
1191
1192 xsprintf(p, "/proc/self/fd/%i", fd);
1193 r = access(p, mode);
1194 if (r < 0)
1195 return -errno;
1196
1197 return r;
1198 }
1199
1200 void unlink_tempfilep(char (*p)[]) {
1201 /* If the file is created with mkstemp(), it will (almost always)
1202 * change the suffix. Treat this as a sign that the file was
1203 * successfully created. We ignore both the rare case where the
1204 * original suffix is used and unlink failures. */
1205 if (!endswith(*p, ".XXXXXX"))
1206 (void) unlink_noerrno(*p);
1207 }
1208
1209 int unlinkat_deallocate(int fd, const char *name, int flags) {
1210 _cleanup_close_ int truncate_fd = -1;
1211 struct stat st;
1212 off_t l, bs;
1213
1214 /* Operates like unlinkat() but also deallocates the file contents if it is a regular file and there's no other
1215 * link to it. This is useful to ensure that other processes that might have the file open for reading won't be
1216 * able to keep the data pinned on disk forever. This call is particular useful whenever we execute clean-up
1217 * jobs ("vacuuming"), where we want to make sure the data is really gone and the disk space released and
1218 * returned to the free pool.
1219 *
1220 * Deallocation is preferably done by FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE (👊) if supported, which means
1221 * the file won't change size. That's a good thing since we shouldn't needlessly trigger SIGBUS in other
1222 * programs that have mmap()ed the file. (The assumption here is that changing file contents to all zeroes
1223 * underneath those programs is the better choice than simply triggering SIGBUS in them which truncation does.)
1224 * However if hole punching is not implemented in the kernel or file system we'll fall back to normal file
1225 * truncation (đŸ”Ē), as our goal of deallocating the data space trumps our goal of being nice to readers (💐).
1226 *
1227 * Note that we attempt deallocation, but failure to succeed with that is not considered fatal, as long as the
1228 * primary job – to delete the file – is accomplished. */
1229
1230 if ((flags & AT_REMOVEDIR) == 0) {
1231 truncate_fd = openat(fd, name, O_WRONLY|O_CLOEXEC|O_NOCTTY|O_NOFOLLOW|O_NONBLOCK);
1232 if (truncate_fd < 0) {
1233
1234 /* If this failed because the file doesn't exist propagate the error right-away. Also,
1235 * AT_REMOVEDIR wasn't set, and we tried to open the file for writing, which means EISDIR is
1236 * returned when this is a directory but we are not supposed to delete those, hence propagate
1237 * the error right-away too. */
1238 if (IN_SET(errno, ENOENT, EISDIR))
1239 return -errno;
1240
1241 if (errno != ELOOP) /* don't complain if this is a symlink */
1242 log_debug_errno(errno, "Failed to open file '%s' for deallocation, ignoring: %m", name);
1243 }
1244 }
1245
1246 if (unlinkat(fd, name, flags) < 0)
1247 return -errno;
1248
1249 if (truncate_fd < 0) /* Don't have a file handle, can't do more ☚ī¸ */
1250 return 0;
1251
1252 if (fstat(truncate_fd, &st) < 0) {
1253 log_debug_errno(errno, "Failed to stat file '%s' for deallocation, ignoring: %m", name);
1254 return 0;
1255 }
1256
1257 if (!S_ISREG(st.st_mode) || st.st_blocks == 0 || st.st_nlink > 0)
1258 return 0;
1259
1260 /* If this is a regular file, it actually took up space on disk and there are no other links it's time to
1261 * punch-hole/truncate this to release the disk space. */
1262
1263 bs = MAX(st.st_blksize, 512);
1264 l = DIV_ROUND_UP(st.st_size, bs) * bs; /* Round up to next block size */
1265
1266 if (fallocate(truncate_fd, FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE, 0, l) >= 0)
1267 return 0; /* Successfully punched a hole! 😊 */
1268
1269 /* Fall back to truncation */
1270 if (ftruncate(truncate_fd, 0) < 0) {
1271 log_debug_errno(errno, "Failed to truncate file to 0, ignoring: %m");
1272 return 0;
1273 }
1274
1275 return 0;
1276 }
1277
1278 int fsync_directory_of_file(int fd) {
1279 _cleanup_free_ char *path = NULL;
1280 _cleanup_close_ int dfd = -1;
1281 int r;
1282
1283 r = fd_verify_regular(fd);
1284 if (r < 0)
1285 return r;
1286
1287 r = fd_get_path(fd, &path);
1288 if (r < 0) {
1289 log_debug_errno(r, "Failed to query /proc/self/fd/%d%s: %m",
1290 fd,
1291 r == -EOPNOTSUPP ? ", ignoring" : "");
1292
1293 if (r == -EOPNOTSUPP)
1294 /* If /proc is not available, we're most likely running in some
1295 * chroot environment, and syncing the directory is not very
1296 * important in that case. Let's just silently do nothing. */
1297 return 0;
1298
1299 return r;
1300 }
1301
1302 if (!path_is_absolute(path))
1303 return -EINVAL;
1304
1305 dfd = open_parent(path, O_CLOEXEC, 0);
1306 if (dfd < 0)
1307 return dfd;
1308
1309 if (fsync(dfd) < 0)
1310 return -errno;
1311
1312 return 0;
1313 }
1314
1315 int fsync_full(int fd) {
1316 int r, q;
1317
1318 /* Sync both the file and the directory */
1319
1320 r = fsync(fd) < 0 ? -errno : 0;
1321 q = fsync_directory_of_file(fd);
1322
1323 return r < 0 ? r : q;
1324 }
1325
1326 int fsync_path_at(int at_fd, const char *path) {
1327 _cleanup_close_ int opened_fd = -1;
1328 int fd;
1329
1330 if (isempty(path)) {
1331 if (at_fd == AT_FDCWD) {
1332 opened_fd = open(".", O_RDONLY|O_DIRECTORY|O_CLOEXEC);
1333 if (opened_fd < 0)
1334 return -errno;
1335
1336 fd = opened_fd;
1337 } else
1338 fd = at_fd;
1339 } else {
1340
1341 opened_fd = openat(at_fd, path, O_RDONLY|O_CLOEXEC);
1342 if (opened_fd < 0)
1343 return -errno;
1344
1345 fd = opened_fd;
1346 }
1347
1348 if (fsync(fd) < 0)
1349 return -errno;
1350
1351 return 0;
1352 }
1353
1354 int syncfs_path(int atfd, const char *path) {
1355 _cleanup_close_ int fd = -1;
1356
1357 assert(path);
1358
1359 fd = openat(atfd, path, O_CLOEXEC|O_RDONLY|O_NONBLOCK);
1360 if (fd < 0)
1361 return -errno;
1362
1363 if (syncfs(fd) < 0)
1364 return -errno;
1365
1366 return 0;
1367 }
1368
1369 int open_parent(const char *path, int flags, mode_t mode) {
1370 _cleanup_free_ char *parent = NULL;
1371 int fd;
1372
1373 if (isempty(path))
1374 return -EINVAL;
1375 if (path_equal(path, "/")) /* requesting the parent of the root dir is fishy, let's prohibit that */
1376 return -EINVAL;
1377
1378 parent = dirname_malloc(path);
1379 if (!parent)
1380 return -ENOMEM;
1381
1382 /* Let's insist on O_DIRECTORY since the parent of a file or directory is a directory. Except if we open an
1383 * O_TMPFILE file, because in that case we are actually create a regular file below the parent directory. */
1384
1385 if (FLAGS_SET(flags, O_PATH))
1386 flags |= O_DIRECTORY;
1387 else if (!FLAGS_SET(flags, O_TMPFILE))
1388 flags |= O_DIRECTORY|O_RDONLY;
1389
1390 fd = open(parent, flags, mode);
1391 if (fd < 0)
1392 return -errno;
1393
1394 return fd;
1395 }