]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/basic/hashmap.c
Merge pull request #1527 from keszybz/lz4
[thirdparty/systemd.git] / src / basic / hashmap.c
1 /*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/
2
3 /***
4 This file is part of systemd.
5
6 Copyright 2010 Lennart Poettering
7 Copyright 2014 Michal Schmidt
8
9 systemd is free software; you can redistribute it and/or modify it
10 under the terms of the GNU Lesser General Public License as published by
11 the Free Software Foundation; either version 2.1 of the License, or
12 (at your option) any later version.
13
14 systemd is distributed in the hope that it will be useful, but
15 WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 Lesser General Public License for more details.
18
19 You should have received a copy of the GNU Lesser General Public License
20 along with systemd; If not, see <http://www.gnu.org/licenses/>.
21 ***/
22
23 #include <stdlib.h>
24 #include <errno.h>
25 #include <pthread.h>
26
27 #include "util.h"
28 #include "hashmap.h"
29 #include "set.h"
30 #include "macro.h"
31 #include "siphash24.h"
32 #include "strv.h"
33 #include "mempool.h"
34 #include "random-util.h"
35
36 #ifdef ENABLE_DEBUG_HASHMAP
37 #include "list.h"
38 #endif
39
40 /*
41 * Implementation of hashmaps.
42 * Addressing: open
43 * - uses less RAM compared to closed addressing (chaining), because
44 * our entries are small (especially in Sets, which tend to contain
45 * the majority of entries in systemd).
46 * Collision resolution: Robin Hood
47 * - tends to equalize displacement of entries from their optimal buckets.
48 * Probe sequence: linear
49 * - though theoretically worse than random probing/uniform hashing/double
50 * hashing, it is good for cache locality.
51 *
52 * References:
53 * Celis, P. 1986. Robin Hood Hashing.
54 * Ph.D. Dissertation. University of Waterloo, Waterloo, Ont., Canada, Canada.
55 * https://cs.uwaterloo.ca/research/tr/1986/CS-86-14.pdf
56 * - The results are derived for random probing. Suggests deletion with
57 * tombstones and two mean-centered search methods. None of that works
58 * well for linear probing.
59 *
60 * Janson, S. 2005. Individual displacements for linear probing hashing with different insertion policies.
61 * ACM Trans. Algorithms 1, 2 (October 2005), 177-213.
62 * DOI=10.1145/1103963.1103964 http://doi.acm.org/10.1145/1103963.1103964
63 * http://www.math.uu.se/~svante/papers/sj157.pdf
64 * - Applies to Robin Hood with linear probing. Contains remarks on
65 * the unsuitability of mean-centered search with linear probing.
66 *
67 * Viola, A. 2005. Exact distribution of individual displacements in linear probing hashing.
68 * ACM Trans. Algorithms 1, 2 (October 2005), 214-242.
69 * DOI=10.1145/1103963.1103965 http://doi.acm.org/10.1145/1103963.1103965
70 * - Similar to Janson. Note that Viola writes about C_{m,n} (number of probes
71 * in a successful search), and Janson writes about displacement. C = d + 1.
72 *
73 * Goossaert, E. 2013. Robin Hood hashing: backward shift deletion.
74 * http://codecapsule.com/2013/11/17/robin-hood-hashing-backward-shift-deletion/
75 * - Explanation of backward shift deletion with pictures.
76 *
77 * Khuong, P. 2013. The Other Robin Hood Hashing.
78 * http://www.pvk.ca/Blog/2013/11/26/the-other-robin-hood-hashing/
79 * - Short summary of random vs. linear probing, and tombstones vs. backward shift.
80 */
81
82 /*
83 * XXX Ideas for improvement:
84 * For unordered hashmaps, randomize iteration order, similarly to Perl:
85 * http://blog.booking.com/hardening-perls-hash-function.html
86 */
87
88 /* INV_KEEP_FREE = 1 / (1 - max_load_factor)
89 * e.g. 1 / (1 - 0.8) = 5 ... keep one fifth of the buckets free. */
90 #define INV_KEEP_FREE 5U
91
92 /* Fields common to entries of all hashmap/set types */
93 struct hashmap_base_entry {
94 const void *key;
95 };
96
97 /* Entry types for specific hashmap/set types
98 * hashmap_base_entry must be at the beginning of each entry struct. */
99
100 struct plain_hashmap_entry {
101 struct hashmap_base_entry b;
102 void *value;
103 };
104
105 struct ordered_hashmap_entry {
106 struct plain_hashmap_entry p;
107 unsigned iterate_next, iterate_previous;
108 };
109
110 struct set_entry {
111 struct hashmap_base_entry b;
112 };
113
114 /* In several functions it is advantageous to have the hash table extended
115 * virtually by a couple of additional buckets. We reserve special index values
116 * for these "swap" buckets. */
117 #define _IDX_SWAP_BEGIN (UINT_MAX - 3)
118 #define IDX_PUT (_IDX_SWAP_BEGIN + 0)
119 #define IDX_TMP (_IDX_SWAP_BEGIN + 1)
120 #define _IDX_SWAP_END (_IDX_SWAP_BEGIN + 2)
121
122 #define IDX_FIRST (UINT_MAX - 1) /* special index for freshly initialized iterators */
123 #define IDX_NIL UINT_MAX /* special index value meaning "none" or "end" */
124
125 assert_cc(IDX_FIRST == _IDX_SWAP_END);
126 assert_cc(IDX_FIRST == _IDX_ITERATOR_FIRST);
127
128 /* Storage space for the "swap" buckets.
129 * All entry types can fit into a ordered_hashmap_entry. */
130 struct swap_entries {
131 struct ordered_hashmap_entry e[_IDX_SWAP_END - _IDX_SWAP_BEGIN];
132 };
133
134 /* Distance from Initial Bucket */
135 typedef uint8_t dib_raw_t;
136 #define DIB_RAW_OVERFLOW ((dib_raw_t)0xfdU) /* indicates DIB value is greater than representable */
137 #define DIB_RAW_REHASH ((dib_raw_t)0xfeU) /* entry yet to be rehashed during in-place resize */
138 #define DIB_RAW_FREE ((dib_raw_t)0xffU) /* a free bucket */
139 #define DIB_RAW_INIT ((char)DIB_RAW_FREE) /* a byte to memset a DIB store with when initializing */
140
141 #define DIB_FREE UINT_MAX
142
143 #ifdef ENABLE_DEBUG_HASHMAP
144 struct hashmap_debug_info {
145 LIST_FIELDS(struct hashmap_debug_info, debug_list);
146 unsigned max_entries; /* high watermark of n_entries */
147
148 /* who allocated this hashmap */
149 int line;
150 const char *file;
151 const char *func;
152
153 /* fields to detect modification while iterating */
154 unsigned put_count; /* counts puts into the hashmap */
155 unsigned rem_count; /* counts removals from hashmap */
156 unsigned last_rem_idx; /* remembers last removal index */
157 };
158
159 /* Tracks all existing hashmaps. Get at it from gdb. See sd_dump_hashmaps.py */
160 static LIST_HEAD(struct hashmap_debug_info, hashmap_debug_list);
161 static pthread_mutex_t hashmap_debug_list_mutex = PTHREAD_MUTEX_INITIALIZER;
162
163 #define HASHMAP_DEBUG_FIELDS struct hashmap_debug_info debug;
164
165 #else /* !ENABLE_DEBUG_HASHMAP */
166 #define HASHMAP_DEBUG_FIELDS
167 #endif /* ENABLE_DEBUG_HASHMAP */
168
169 enum HashmapType {
170 HASHMAP_TYPE_PLAIN,
171 HASHMAP_TYPE_ORDERED,
172 HASHMAP_TYPE_SET,
173 _HASHMAP_TYPE_MAX
174 };
175
176 struct _packed_ indirect_storage {
177 char *storage; /* where buckets and DIBs are stored */
178 uint8_t hash_key[HASH_KEY_SIZE]; /* hash key; changes during resize */
179
180 unsigned n_entries; /* number of stored entries */
181 unsigned n_buckets; /* number of buckets */
182
183 unsigned idx_lowest_entry; /* Index below which all buckets are free.
184 Makes "while(hashmap_steal_first())" loops
185 O(n) instead of O(n^2) for unordered hashmaps. */
186 uint8_t _pad[3]; /* padding for the whole HashmapBase */
187 /* The bitfields in HashmapBase complete the alignment of the whole thing. */
188 };
189
190 struct direct_storage {
191 /* This gives us 39 bytes on 64bit, or 35 bytes on 32bit.
192 * That's room for 4 set_entries + 4 DIB bytes + 3 unused bytes on 64bit,
193 * or 7 set_entries + 7 DIB bytes + 0 unused bytes on 32bit. */
194 char storage[sizeof(struct indirect_storage)];
195 };
196
197 #define DIRECT_BUCKETS(entry_t) \
198 (sizeof(struct direct_storage) / (sizeof(entry_t) + sizeof(dib_raw_t)))
199
200 /* We should be able to store at least one entry directly. */
201 assert_cc(DIRECT_BUCKETS(struct ordered_hashmap_entry) >= 1);
202
203 /* We have 3 bits for n_direct_entries. */
204 assert_cc(DIRECT_BUCKETS(struct set_entry) < (1 << 3));
205
206 /* Hashmaps with directly stored entries all use this shared hash key.
207 * It's no big deal if the key is guessed, because there can be only
208 * a handful of directly stored entries in a hashmap. When a hashmap
209 * outgrows direct storage, it gets its own key for indirect storage. */
210 static uint8_t shared_hash_key[HASH_KEY_SIZE];
211 static bool shared_hash_key_initialized;
212
213 /* Fields that all hashmap/set types must have */
214 struct HashmapBase {
215 const struct hash_ops *hash_ops; /* hash and compare ops to use */
216
217 union _packed_ {
218 struct indirect_storage indirect; /* if has_indirect */
219 struct direct_storage direct; /* if !has_indirect */
220 };
221
222 enum HashmapType type:2; /* HASHMAP_TYPE_* */
223 bool has_indirect:1; /* whether indirect storage is used */
224 unsigned n_direct_entries:3; /* Number of entries in direct storage.
225 * Only valid if !has_indirect. */
226 bool from_pool:1; /* whether was allocated from mempool */
227 HASHMAP_DEBUG_FIELDS /* optional hashmap_debug_info */
228 };
229
230 /* Specific hash types
231 * HashmapBase must be at the beginning of each hashmap struct. */
232
233 struct Hashmap {
234 struct HashmapBase b;
235 };
236
237 struct OrderedHashmap {
238 struct HashmapBase b;
239 unsigned iterate_list_head, iterate_list_tail;
240 };
241
242 struct Set {
243 struct HashmapBase b;
244 };
245
246 DEFINE_MEMPOOL(hashmap_pool, Hashmap, 8);
247 DEFINE_MEMPOOL(ordered_hashmap_pool, OrderedHashmap, 8);
248 /* No need for a separate Set pool */
249 assert_cc(sizeof(Hashmap) == sizeof(Set));
250
251 struct hashmap_type_info {
252 size_t head_size;
253 size_t entry_size;
254 struct mempool *mempool;
255 unsigned n_direct_buckets;
256 };
257
258 static const struct hashmap_type_info hashmap_type_info[_HASHMAP_TYPE_MAX] = {
259 [HASHMAP_TYPE_PLAIN] = {
260 .head_size = sizeof(Hashmap),
261 .entry_size = sizeof(struct plain_hashmap_entry),
262 .mempool = &hashmap_pool,
263 .n_direct_buckets = DIRECT_BUCKETS(struct plain_hashmap_entry),
264 },
265 [HASHMAP_TYPE_ORDERED] = {
266 .head_size = sizeof(OrderedHashmap),
267 .entry_size = sizeof(struct ordered_hashmap_entry),
268 .mempool = &ordered_hashmap_pool,
269 .n_direct_buckets = DIRECT_BUCKETS(struct ordered_hashmap_entry),
270 },
271 [HASHMAP_TYPE_SET] = {
272 .head_size = sizeof(Set),
273 .entry_size = sizeof(struct set_entry),
274 .mempool = &hashmap_pool,
275 .n_direct_buckets = DIRECT_BUCKETS(struct set_entry),
276 },
277 };
278
279 void string_hash_func(const void *p, struct siphash *state) {
280 siphash24_compress(p, strlen(p) + 1, state);
281 }
282
283 int string_compare_func(const void *a, const void *b) {
284 return strcmp(a, b);
285 }
286
287 const struct hash_ops string_hash_ops = {
288 .hash = string_hash_func,
289 .compare = string_compare_func
290 };
291
292 void trivial_hash_func(const void *p, struct siphash *state) {
293 siphash24_compress(&p, sizeof(p), state);
294 }
295
296 int trivial_compare_func(const void *a, const void *b) {
297 return a < b ? -1 : (a > b ? 1 : 0);
298 }
299
300 const struct hash_ops trivial_hash_ops = {
301 .hash = trivial_hash_func,
302 .compare = trivial_compare_func
303 };
304
305 void uint64_hash_func(const void *p, struct siphash *state) {
306 siphash24_compress(p, sizeof(uint64_t), state);
307 }
308
309 int uint64_compare_func(const void *_a, const void *_b) {
310 uint64_t a, b;
311 a = *(const uint64_t*) _a;
312 b = *(const uint64_t*) _b;
313 return a < b ? -1 : (a > b ? 1 : 0);
314 }
315
316 const struct hash_ops uint64_hash_ops = {
317 .hash = uint64_hash_func,
318 .compare = uint64_compare_func
319 };
320
321 #if SIZEOF_DEV_T != 8
322 void devt_hash_func(const void *p, struct siphash *state) {
323 siphash24_compress(p, sizeof(dev_t), state);
324 }
325
326 int devt_compare_func(const void *_a, const void *_b) {
327 dev_t a, b;
328 a = *(const dev_t*) _a;
329 b = *(const dev_t*) _b;
330 return a < b ? -1 : (a > b ? 1 : 0);
331 }
332
333 const struct hash_ops devt_hash_ops = {
334 .hash = devt_hash_func,
335 .compare = devt_compare_func
336 };
337 #endif
338
339 static unsigned n_buckets(HashmapBase *h) {
340 return h->has_indirect ? h->indirect.n_buckets
341 : hashmap_type_info[h->type].n_direct_buckets;
342 }
343
344 static unsigned n_entries(HashmapBase *h) {
345 return h->has_indirect ? h->indirect.n_entries
346 : h->n_direct_entries;
347 }
348
349 static void n_entries_inc(HashmapBase *h) {
350 if (h->has_indirect)
351 h->indirect.n_entries++;
352 else
353 h->n_direct_entries++;
354 }
355
356 static void n_entries_dec(HashmapBase *h) {
357 if (h->has_indirect)
358 h->indirect.n_entries--;
359 else
360 h->n_direct_entries--;
361 }
362
363 static char *storage_ptr(HashmapBase *h) {
364 return h->has_indirect ? h->indirect.storage
365 : h->direct.storage;
366 }
367
368 static uint8_t *hash_key(HashmapBase *h) {
369 return h->has_indirect ? h->indirect.hash_key
370 : shared_hash_key;
371 }
372
373 static unsigned base_bucket_hash(HashmapBase *h, const void *p) {
374 struct siphash state;
375 uint64_t hash;
376
377 siphash24_init(&state, hash_key(h));
378
379 h->hash_ops->hash(p, &state);
380
381 siphash24_finalize((uint8_t*)&hash, &state);
382
383 return (unsigned) (hash % n_buckets(h));
384 }
385 #define bucket_hash(h, p) base_bucket_hash(HASHMAP_BASE(h), p)
386
387 static void get_hash_key(uint8_t hash_key[HASH_KEY_SIZE], bool reuse_is_ok) {
388 static uint8_t current[HASH_KEY_SIZE];
389 static bool current_initialized = false;
390
391 /* Returns a hash function key to use. In order to keep things
392 * fast we will not generate a new key each time we allocate a
393 * new hash table. Instead, we'll just reuse the most recently
394 * generated one, except if we never generated one or when we
395 * are rehashing an entire hash table because we reached a
396 * fill level */
397
398 if (!current_initialized || !reuse_is_ok) {
399 random_bytes(current, sizeof(current));
400 current_initialized = true;
401 }
402
403 memcpy(hash_key, current, sizeof(current));
404 }
405
406 static struct hashmap_base_entry *bucket_at(HashmapBase *h, unsigned idx) {
407 return (struct hashmap_base_entry*)
408 (storage_ptr(h) + idx * hashmap_type_info[h->type].entry_size);
409 }
410
411 static struct plain_hashmap_entry *plain_bucket_at(Hashmap *h, unsigned idx) {
412 return (struct plain_hashmap_entry*) bucket_at(HASHMAP_BASE(h), idx);
413 }
414
415 static struct ordered_hashmap_entry *ordered_bucket_at(OrderedHashmap *h, unsigned idx) {
416 return (struct ordered_hashmap_entry*) bucket_at(HASHMAP_BASE(h), idx);
417 }
418
419 static struct set_entry *set_bucket_at(Set *h, unsigned idx) {
420 return (struct set_entry*) bucket_at(HASHMAP_BASE(h), idx);
421 }
422
423 static struct ordered_hashmap_entry *bucket_at_swap(struct swap_entries *swap, unsigned idx) {
424 return &swap->e[idx - _IDX_SWAP_BEGIN];
425 }
426
427 /* Returns a pointer to the bucket at index idx.
428 * Understands real indexes and swap indexes, hence "_virtual". */
429 static struct hashmap_base_entry *bucket_at_virtual(HashmapBase *h, struct swap_entries *swap,
430 unsigned idx) {
431 if (idx < _IDX_SWAP_BEGIN)
432 return bucket_at(h, idx);
433
434 if (idx < _IDX_SWAP_END)
435 return &bucket_at_swap(swap, idx)->p.b;
436
437 assert_not_reached("Invalid index");
438 }
439
440 static dib_raw_t *dib_raw_ptr(HashmapBase *h) {
441 return (dib_raw_t*)
442 (storage_ptr(h) + hashmap_type_info[h->type].entry_size * n_buckets(h));
443 }
444
445 static unsigned bucket_distance(HashmapBase *h, unsigned idx, unsigned from) {
446 return idx >= from ? idx - from
447 : n_buckets(h) + idx - from;
448 }
449
450 static unsigned bucket_calculate_dib(HashmapBase *h, unsigned idx, dib_raw_t raw_dib) {
451 unsigned initial_bucket;
452
453 if (raw_dib == DIB_RAW_FREE)
454 return DIB_FREE;
455
456 if (_likely_(raw_dib < DIB_RAW_OVERFLOW))
457 return raw_dib;
458
459 /*
460 * Having an overflow DIB value is very unlikely. The hash function
461 * would have to be bad. For example, in a table of size 2^24 filled
462 * to load factor 0.9 the maximum observed DIB is only about 60.
463 * In theory (assuming I used Maxima correctly), for an infinite size
464 * hash table with load factor 0.8 the probability of a given entry
465 * having DIB > 40 is 1.9e-8.
466 * This returns the correct DIB value by recomputing the hash value in
467 * the unlikely case. XXX Hitting this case could be a hint to rehash.
468 */
469 initial_bucket = bucket_hash(h, bucket_at(h, idx)->key);
470 return bucket_distance(h, idx, initial_bucket);
471 }
472
473 static void bucket_set_dib(HashmapBase *h, unsigned idx, unsigned dib) {
474 dib_raw_ptr(h)[idx] = dib != DIB_FREE ? MIN(dib, DIB_RAW_OVERFLOW) : DIB_RAW_FREE;
475 }
476
477 static unsigned skip_free_buckets(HashmapBase *h, unsigned idx) {
478 dib_raw_t *dibs;
479
480 dibs = dib_raw_ptr(h);
481
482 for ( ; idx < n_buckets(h); idx++)
483 if (dibs[idx] != DIB_RAW_FREE)
484 return idx;
485
486 return IDX_NIL;
487 }
488
489 static void bucket_mark_free(HashmapBase *h, unsigned idx) {
490 memzero(bucket_at(h, idx), hashmap_type_info[h->type].entry_size);
491 bucket_set_dib(h, idx, DIB_FREE);
492 }
493
494 static void bucket_move_entry(HashmapBase *h, struct swap_entries *swap,
495 unsigned from, unsigned to) {
496 struct hashmap_base_entry *e_from, *e_to;
497
498 assert(from != to);
499
500 e_from = bucket_at_virtual(h, swap, from);
501 e_to = bucket_at_virtual(h, swap, to);
502
503 memcpy(e_to, e_from, hashmap_type_info[h->type].entry_size);
504
505 if (h->type == HASHMAP_TYPE_ORDERED) {
506 OrderedHashmap *lh = (OrderedHashmap*) h;
507 struct ordered_hashmap_entry *le, *le_to;
508
509 le_to = (struct ordered_hashmap_entry*) e_to;
510
511 if (le_to->iterate_next != IDX_NIL) {
512 le = (struct ordered_hashmap_entry*)
513 bucket_at_virtual(h, swap, le_to->iterate_next);
514 le->iterate_previous = to;
515 }
516
517 if (le_to->iterate_previous != IDX_NIL) {
518 le = (struct ordered_hashmap_entry*)
519 bucket_at_virtual(h, swap, le_to->iterate_previous);
520 le->iterate_next = to;
521 }
522
523 if (lh->iterate_list_head == from)
524 lh->iterate_list_head = to;
525 if (lh->iterate_list_tail == from)
526 lh->iterate_list_tail = to;
527 }
528 }
529
530 static unsigned next_idx(HashmapBase *h, unsigned idx) {
531 return (idx + 1U) % n_buckets(h);
532 }
533
534 static unsigned prev_idx(HashmapBase *h, unsigned idx) {
535 return (n_buckets(h) + idx - 1U) % n_buckets(h);
536 }
537
538 static void *entry_value(HashmapBase *h, struct hashmap_base_entry *e) {
539 switch (h->type) {
540
541 case HASHMAP_TYPE_PLAIN:
542 case HASHMAP_TYPE_ORDERED:
543 return ((struct plain_hashmap_entry*)e)->value;
544
545 case HASHMAP_TYPE_SET:
546 return (void*) e->key;
547
548 default:
549 assert_not_reached("Unknown hashmap type");
550 }
551 }
552
553 static void base_remove_entry(HashmapBase *h, unsigned idx) {
554 unsigned left, right, prev, dib;
555 dib_raw_t raw_dib, *dibs;
556
557 dibs = dib_raw_ptr(h);
558 assert(dibs[idx] != DIB_RAW_FREE);
559
560 #ifdef ENABLE_DEBUG_HASHMAP
561 h->debug.rem_count++;
562 h->debug.last_rem_idx = idx;
563 #endif
564
565 left = idx;
566 /* Find the stop bucket ("right"). It is either free or has DIB == 0. */
567 for (right = next_idx(h, left); ; right = next_idx(h, right)) {
568 raw_dib = dibs[right];
569 if (raw_dib == 0 || raw_dib == DIB_RAW_FREE)
570 break;
571
572 /* The buckets are not supposed to be all occupied and with DIB > 0.
573 * That would mean we could make everyone better off by shifting them
574 * backward. This scenario is impossible. */
575 assert(left != right);
576 }
577
578 if (h->type == HASHMAP_TYPE_ORDERED) {
579 OrderedHashmap *lh = (OrderedHashmap*) h;
580 struct ordered_hashmap_entry *le = ordered_bucket_at(lh, idx);
581
582 if (le->iterate_next != IDX_NIL)
583 ordered_bucket_at(lh, le->iterate_next)->iterate_previous = le->iterate_previous;
584 else
585 lh->iterate_list_tail = le->iterate_previous;
586
587 if (le->iterate_previous != IDX_NIL)
588 ordered_bucket_at(lh, le->iterate_previous)->iterate_next = le->iterate_next;
589 else
590 lh->iterate_list_head = le->iterate_next;
591 }
592
593 /* Now shift all buckets in the interval (left, right) one step backwards */
594 for (prev = left, left = next_idx(h, left); left != right;
595 prev = left, left = next_idx(h, left)) {
596 dib = bucket_calculate_dib(h, left, dibs[left]);
597 assert(dib != 0);
598 bucket_move_entry(h, NULL, left, prev);
599 bucket_set_dib(h, prev, dib - 1);
600 }
601
602 bucket_mark_free(h, prev);
603 n_entries_dec(h);
604 }
605 #define remove_entry(h, idx) base_remove_entry(HASHMAP_BASE(h), idx)
606
607 static unsigned hashmap_iterate_in_insertion_order(OrderedHashmap *h, Iterator *i) {
608 struct ordered_hashmap_entry *e;
609 unsigned idx;
610
611 assert(h);
612 assert(i);
613
614 if (i->idx == IDX_NIL)
615 goto at_end;
616
617 if (i->idx == IDX_FIRST && h->iterate_list_head == IDX_NIL)
618 goto at_end;
619
620 if (i->idx == IDX_FIRST) {
621 idx = h->iterate_list_head;
622 e = ordered_bucket_at(h, idx);
623 } else {
624 idx = i->idx;
625 e = ordered_bucket_at(h, idx);
626 /*
627 * We allow removing the current entry while iterating, but removal may cause
628 * a backward shift. The next entry may thus move one bucket to the left.
629 * To detect when it happens, we remember the key pointer of the entry we were
630 * going to iterate next. If it does not match, there was a backward shift.
631 */
632 if (e->p.b.key != i->next_key) {
633 idx = prev_idx(HASHMAP_BASE(h), idx);
634 e = ordered_bucket_at(h, idx);
635 }
636 assert(e->p.b.key == i->next_key);
637 }
638
639 #ifdef ENABLE_DEBUG_HASHMAP
640 i->prev_idx = idx;
641 #endif
642
643 if (e->iterate_next != IDX_NIL) {
644 struct ordered_hashmap_entry *n;
645 i->idx = e->iterate_next;
646 n = ordered_bucket_at(h, i->idx);
647 i->next_key = n->p.b.key;
648 } else
649 i->idx = IDX_NIL;
650
651 return idx;
652
653 at_end:
654 i->idx = IDX_NIL;
655 return IDX_NIL;
656 }
657
658 static unsigned hashmap_iterate_in_internal_order(HashmapBase *h, Iterator *i) {
659 unsigned idx;
660
661 assert(h);
662 assert(i);
663
664 if (i->idx == IDX_NIL)
665 goto at_end;
666
667 if (i->idx == IDX_FIRST) {
668 /* fast forward to the first occupied bucket */
669 if (h->has_indirect) {
670 i->idx = skip_free_buckets(h, h->indirect.idx_lowest_entry);
671 h->indirect.idx_lowest_entry = i->idx;
672 } else
673 i->idx = skip_free_buckets(h, 0);
674
675 if (i->idx == IDX_NIL)
676 goto at_end;
677 } else {
678 struct hashmap_base_entry *e;
679
680 assert(i->idx > 0);
681
682 e = bucket_at(h, i->idx);
683 /*
684 * We allow removing the current entry while iterating, but removal may cause
685 * a backward shift. The next entry may thus move one bucket to the left.
686 * To detect when it happens, we remember the key pointer of the entry we were
687 * going to iterate next. If it does not match, there was a backward shift.
688 */
689 if (e->key != i->next_key)
690 e = bucket_at(h, --i->idx);
691
692 assert(e->key == i->next_key);
693 }
694
695 idx = i->idx;
696 #ifdef ENABLE_DEBUG_HASHMAP
697 i->prev_idx = idx;
698 #endif
699
700 i->idx = skip_free_buckets(h, i->idx + 1);
701 if (i->idx != IDX_NIL)
702 i->next_key = bucket_at(h, i->idx)->key;
703 else
704 i->idx = IDX_NIL;
705
706 return idx;
707
708 at_end:
709 i->idx = IDX_NIL;
710 return IDX_NIL;
711 }
712
713 static unsigned hashmap_iterate_entry(HashmapBase *h, Iterator *i) {
714 if (!h) {
715 i->idx = IDX_NIL;
716 return IDX_NIL;
717 }
718
719 #ifdef ENABLE_DEBUG_HASHMAP
720 if (i->idx == IDX_FIRST) {
721 i->put_count = h->debug.put_count;
722 i->rem_count = h->debug.rem_count;
723 } else {
724 /* While iterating, must not add any new entries */
725 assert(i->put_count == h->debug.put_count);
726 /* ... or remove entries other than the current one */
727 assert(i->rem_count == h->debug.rem_count ||
728 (i->rem_count == h->debug.rem_count - 1 &&
729 i->prev_idx == h->debug.last_rem_idx));
730 /* Reset our removals counter */
731 i->rem_count = h->debug.rem_count;
732 }
733 #endif
734
735 return h->type == HASHMAP_TYPE_ORDERED ? hashmap_iterate_in_insertion_order((OrderedHashmap*) h, i)
736 : hashmap_iterate_in_internal_order(h, i);
737 }
738
739 bool internal_hashmap_iterate(HashmapBase *h, Iterator *i, void **value, const void **key) {
740 struct hashmap_base_entry *e;
741 void *data;
742 unsigned idx;
743
744 idx = hashmap_iterate_entry(h, i);
745 if (idx == IDX_NIL) {
746 if (value)
747 *value = NULL;
748 if (key)
749 *key = NULL;
750
751 return false;
752 }
753
754 e = bucket_at(h, idx);
755 data = entry_value(h, e);
756 if (value)
757 *value = data;
758 if (key)
759 *key = e->key;
760
761 return true;
762 }
763
764 bool set_iterate(Set *s, Iterator *i, void **value) {
765 return internal_hashmap_iterate(HASHMAP_BASE(s), i, value, NULL);
766 }
767
768 #define HASHMAP_FOREACH_IDX(idx, h, i) \
769 for ((i) = ITERATOR_FIRST, (idx) = hashmap_iterate_entry((h), &(i)); \
770 (idx != IDX_NIL); \
771 (idx) = hashmap_iterate_entry((h), &(i)))
772
773 static void reset_direct_storage(HashmapBase *h) {
774 const struct hashmap_type_info *hi = &hashmap_type_info[h->type];
775 void *p;
776
777 assert(!h->has_indirect);
778
779 p = mempset(h->direct.storage, 0, hi->entry_size * hi->n_direct_buckets);
780 memset(p, DIB_RAW_INIT, sizeof(dib_raw_t) * hi->n_direct_buckets);
781 }
782
783 static struct HashmapBase *hashmap_base_new(const struct hash_ops *hash_ops, enum HashmapType type HASHMAP_DEBUG_PARAMS) {
784 HashmapBase *h;
785 const struct hashmap_type_info *hi = &hashmap_type_info[type];
786 bool use_pool;
787
788 use_pool = is_main_thread();
789
790 h = use_pool ? mempool_alloc0_tile(hi->mempool) : malloc0(hi->head_size);
791
792 if (!h)
793 return NULL;
794
795 h->type = type;
796 h->from_pool = use_pool;
797 h->hash_ops = hash_ops ? hash_ops : &trivial_hash_ops;
798
799 if (type == HASHMAP_TYPE_ORDERED) {
800 OrderedHashmap *lh = (OrderedHashmap*)h;
801 lh->iterate_list_head = lh->iterate_list_tail = IDX_NIL;
802 }
803
804 reset_direct_storage(h);
805
806 if (!shared_hash_key_initialized) {
807 random_bytes(shared_hash_key, sizeof(shared_hash_key));
808 shared_hash_key_initialized= true;
809 }
810
811 #ifdef ENABLE_DEBUG_HASHMAP
812 h->debug.func = func;
813 h->debug.file = file;
814 h->debug.line = line;
815 assert_se(pthread_mutex_lock(&hashmap_debug_list_mutex) == 0);
816 LIST_PREPEND(debug_list, hashmap_debug_list, &h->debug);
817 assert_se(pthread_mutex_unlock(&hashmap_debug_list_mutex) == 0);
818 #endif
819
820 return h;
821 }
822
823 Hashmap *internal_hashmap_new(const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
824 return (Hashmap*) hashmap_base_new(hash_ops, HASHMAP_TYPE_PLAIN HASHMAP_DEBUG_PASS_ARGS);
825 }
826
827 OrderedHashmap *internal_ordered_hashmap_new(const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
828 return (OrderedHashmap*) hashmap_base_new(hash_ops, HASHMAP_TYPE_ORDERED HASHMAP_DEBUG_PASS_ARGS);
829 }
830
831 Set *internal_set_new(const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
832 return (Set*) hashmap_base_new(hash_ops, HASHMAP_TYPE_SET HASHMAP_DEBUG_PASS_ARGS);
833 }
834
835 static int hashmap_base_ensure_allocated(HashmapBase **h, const struct hash_ops *hash_ops,
836 enum HashmapType type HASHMAP_DEBUG_PARAMS) {
837 HashmapBase *q;
838
839 assert(h);
840
841 if (*h)
842 return 0;
843
844 q = hashmap_base_new(hash_ops, type HASHMAP_DEBUG_PASS_ARGS);
845 if (!q)
846 return -ENOMEM;
847
848 *h = q;
849 return 0;
850 }
851
852 int internal_hashmap_ensure_allocated(Hashmap **h, const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
853 return hashmap_base_ensure_allocated((HashmapBase**)h, hash_ops, HASHMAP_TYPE_PLAIN HASHMAP_DEBUG_PASS_ARGS);
854 }
855
856 int internal_ordered_hashmap_ensure_allocated(OrderedHashmap **h, const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
857 return hashmap_base_ensure_allocated((HashmapBase**)h, hash_ops, HASHMAP_TYPE_ORDERED HASHMAP_DEBUG_PASS_ARGS);
858 }
859
860 int internal_set_ensure_allocated(Set **s, const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
861 return hashmap_base_ensure_allocated((HashmapBase**)s, hash_ops, HASHMAP_TYPE_SET HASHMAP_DEBUG_PASS_ARGS);
862 }
863
864 static void hashmap_free_no_clear(HashmapBase *h) {
865 assert(!h->has_indirect);
866 assert(!h->n_direct_entries);
867
868 #ifdef ENABLE_DEBUG_HASHMAP
869 assert_se(pthread_mutex_lock(&hashmap_debug_list_mutex) == 0);
870 LIST_REMOVE(debug_list, hashmap_debug_list, &h->debug);
871 assert_se(pthread_mutex_unlock(&hashmap_debug_list_mutex) == 0);
872 #endif
873
874 if (h->from_pool)
875 mempool_free_tile(hashmap_type_info[h->type].mempool, h);
876 else
877 free(h);
878 }
879
880 HashmapBase *internal_hashmap_free(HashmapBase *h) {
881
882 /* Free the hashmap, but nothing in it */
883
884 if (h) {
885 internal_hashmap_clear(h);
886 hashmap_free_no_clear(h);
887 }
888
889 return NULL;
890 }
891
892 HashmapBase *internal_hashmap_free_free(HashmapBase *h) {
893
894 /* Free the hashmap and all data objects in it, but not the
895 * keys */
896
897 if (h) {
898 internal_hashmap_clear_free(h);
899 hashmap_free_no_clear(h);
900 }
901
902 return NULL;
903 }
904
905 Hashmap *hashmap_free_free_free(Hashmap *h) {
906
907 /* Free the hashmap and all data and key objects in it */
908
909 if (h) {
910 hashmap_clear_free_free(h);
911 hashmap_free_no_clear(HASHMAP_BASE(h));
912 }
913
914 return NULL;
915 }
916
917 void internal_hashmap_clear(HashmapBase *h) {
918 if (!h)
919 return;
920
921 if (h->has_indirect) {
922 free(h->indirect.storage);
923 h->has_indirect = false;
924 }
925
926 h->n_direct_entries = 0;
927 reset_direct_storage(h);
928
929 if (h->type == HASHMAP_TYPE_ORDERED) {
930 OrderedHashmap *lh = (OrderedHashmap*) h;
931 lh->iterate_list_head = lh->iterate_list_tail = IDX_NIL;
932 }
933 }
934
935 void internal_hashmap_clear_free(HashmapBase *h) {
936 unsigned idx;
937
938 if (!h)
939 return;
940
941 for (idx = skip_free_buckets(h, 0); idx != IDX_NIL;
942 idx = skip_free_buckets(h, idx + 1))
943 free(entry_value(h, bucket_at(h, idx)));
944
945 internal_hashmap_clear(h);
946 }
947
948 void hashmap_clear_free_free(Hashmap *h) {
949 unsigned idx;
950
951 if (!h)
952 return;
953
954 for (idx = skip_free_buckets(HASHMAP_BASE(h), 0); idx != IDX_NIL;
955 idx = skip_free_buckets(HASHMAP_BASE(h), idx + 1)) {
956 struct plain_hashmap_entry *e = plain_bucket_at(h, idx);
957 free((void*)e->b.key);
958 free(e->value);
959 }
960
961 internal_hashmap_clear(HASHMAP_BASE(h));
962 }
963
964 static int resize_buckets(HashmapBase *h, unsigned entries_add);
965
966 /*
967 * Finds an empty bucket to put an entry into, starting the scan at 'idx'.
968 * Performs Robin Hood swaps as it goes. The entry to put must be placed
969 * by the caller into swap slot IDX_PUT.
970 * If used for in-place resizing, may leave a displaced entry in swap slot
971 * IDX_PUT. Caller must rehash it next.
972 * Returns: true if it left a displaced entry to rehash next in IDX_PUT,
973 * false otherwise.
974 */
975 static bool hashmap_put_robin_hood(HashmapBase *h, unsigned idx,
976 struct swap_entries *swap) {
977 dib_raw_t raw_dib, *dibs;
978 unsigned dib, distance;
979
980 #ifdef ENABLE_DEBUG_HASHMAP
981 h->debug.put_count++;
982 #endif
983
984 dibs = dib_raw_ptr(h);
985
986 for (distance = 0; ; distance++) {
987 raw_dib = dibs[idx];
988 if (raw_dib == DIB_RAW_FREE || raw_dib == DIB_RAW_REHASH) {
989 if (raw_dib == DIB_RAW_REHASH)
990 bucket_move_entry(h, swap, idx, IDX_TMP);
991
992 if (h->has_indirect && h->indirect.idx_lowest_entry > idx)
993 h->indirect.idx_lowest_entry = idx;
994
995 bucket_set_dib(h, idx, distance);
996 bucket_move_entry(h, swap, IDX_PUT, idx);
997 if (raw_dib == DIB_RAW_REHASH) {
998 bucket_move_entry(h, swap, IDX_TMP, IDX_PUT);
999 return true;
1000 }
1001
1002 return false;
1003 }
1004
1005 dib = bucket_calculate_dib(h, idx, raw_dib);
1006
1007 if (dib < distance) {
1008 /* Found a wealthier entry. Go Robin Hood! */
1009 bucket_set_dib(h, idx, distance);
1010
1011 /* swap the entries */
1012 bucket_move_entry(h, swap, idx, IDX_TMP);
1013 bucket_move_entry(h, swap, IDX_PUT, idx);
1014 bucket_move_entry(h, swap, IDX_TMP, IDX_PUT);
1015
1016 distance = dib;
1017 }
1018
1019 idx = next_idx(h, idx);
1020 }
1021 }
1022
1023 /*
1024 * Puts an entry into a hashmap, boldly - no check whether key already exists.
1025 * The caller must place the entry (only its key and value, not link indexes)
1026 * in swap slot IDX_PUT.
1027 * Caller must ensure: the key does not exist yet in the hashmap.
1028 * that resize is not needed if !may_resize.
1029 * Returns: 1 if entry was put successfully.
1030 * -ENOMEM if may_resize==true and resize failed with -ENOMEM.
1031 * Cannot return -ENOMEM if !may_resize.
1032 */
1033 static int hashmap_base_put_boldly(HashmapBase *h, unsigned idx,
1034 struct swap_entries *swap, bool may_resize) {
1035 struct ordered_hashmap_entry *new_entry;
1036 int r;
1037
1038 assert(idx < n_buckets(h));
1039
1040 new_entry = bucket_at_swap(swap, IDX_PUT);
1041
1042 if (may_resize) {
1043 r = resize_buckets(h, 1);
1044 if (r < 0)
1045 return r;
1046 if (r > 0)
1047 idx = bucket_hash(h, new_entry->p.b.key);
1048 }
1049 assert(n_entries(h) < n_buckets(h));
1050
1051 if (h->type == HASHMAP_TYPE_ORDERED) {
1052 OrderedHashmap *lh = (OrderedHashmap*) h;
1053
1054 new_entry->iterate_next = IDX_NIL;
1055 new_entry->iterate_previous = lh->iterate_list_tail;
1056
1057 if (lh->iterate_list_tail != IDX_NIL) {
1058 struct ordered_hashmap_entry *old_tail;
1059
1060 old_tail = ordered_bucket_at(lh, lh->iterate_list_tail);
1061 assert(old_tail->iterate_next == IDX_NIL);
1062 old_tail->iterate_next = IDX_PUT;
1063 }
1064
1065 lh->iterate_list_tail = IDX_PUT;
1066 if (lh->iterate_list_head == IDX_NIL)
1067 lh->iterate_list_head = IDX_PUT;
1068 }
1069
1070 assert_se(hashmap_put_robin_hood(h, idx, swap) == false);
1071
1072 n_entries_inc(h);
1073 #ifdef ENABLE_DEBUG_HASHMAP
1074 h->debug.max_entries = MAX(h->debug.max_entries, n_entries(h));
1075 #endif
1076
1077 return 1;
1078 }
1079 #define hashmap_put_boldly(h, idx, swap, may_resize) \
1080 hashmap_base_put_boldly(HASHMAP_BASE(h), idx, swap, may_resize)
1081
1082 /*
1083 * Returns 0 if resize is not needed.
1084 * 1 if successfully resized.
1085 * -ENOMEM on allocation failure.
1086 */
1087 static int resize_buckets(HashmapBase *h, unsigned entries_add) {
1088 struct swap_entries swap;
1089 char *new_storage;
1090 dib_raw_t *old_dibs, *new_dibs;
1091 const struct hashmap_type_info *hi;
1092 unsigned idx, optimal_idx;
1093 unsigned old_n_buckets, new_n_buckets, n_rehashed, new_n_entries;
1094 uint8_t new_shift;
1095 bool rehash_next;
1096
1097 assert(h);
1098
1099 hi = &hashmap_type_info[h->type];
1100 new_n_entries = n_entries(h) + entries_add;
1101
1102 /* overflow? */
1103 if (_unlikely_(new_n_entries < entries_add))
1104 return -ENOMEM;
1105
1106 /* For direct storage we allow 100% load, because it's tiny. */
1107 if (!h->has_indirect && new_n_entries <= hi->n_direct_buckets)
1108 return 0;
1109
1110 /*
1111 * Load factor = n/m = 1 - (1/INV_KEEP_FREE).
1112 * From it follows: m = n + n/(INV_KEEP_FREE - 1)
1113 */
1114 new_n_buckets = new_n_entries + new_n_entries / (INV_KEEP_FREE - 1);
1115 /* overflow? */
1116 if (_unlikely_(new_n_buckets < new_n_entries))
1117 return -ENOMEM;
1118
1119 if (_unlikely_(new_n_buckets > UINT_MAX / (hi->entry_size + sizeof(dib_raw_t))))
1120 return -ENOMEM;
1121
1122 old_n_buckets = n_buckets(h);
1123
1124 if (_likely_(new_n_buckets <= old_n_buckets))
1125 return 0;
1126
1127 new_shift = log2u_round_up(MAX(
1128 new_n_buckets * (hi->entry_size + sizeof(dib_raw_t)),
1129 2 * sizeof(struct direct_storage)));
1130
1131 /* Realloc storage (buckets and DIB array). */
1132 new_storage = realloc(h->has_indirect ? h->indirect.storage : NULL,
1133 1U << new_shift);
1134 if (!new_storage)
1135 return -ENOMEM;
1136
1137 /* Must upgrade direct to indirect storage. */
1138 if (!h->has_indirect) {
1139 memcpy(new_storage, h->direct.storage,
1140 old_n_buckets * (hi->entry_size + sizeof(dib_raw_t)));
1141 h->indirect.n_entries = h->n_direct_entries;
1142 h->indirect.idx_lowest_entry = 0;
1143 h->n_direct_entries = 0;
1144 }
1145
1146 /* Get a new hash key. If we've just upgraded to indirect storage,
1147 * allow reusing a previously generated key. It's still a different key
1148 * from the shared one that we used for direct storage. */
1149 get_hash_key(h->indirect.hash_key, !h->has_indirect);
1150
1151 h->has_indirect = true;
1152 h->indirect.storage = new_storage;
1153 h->indirect.n_buckets = (1U << new_shift) /
1154 (hi->entry_size + sizeof(dib_raw_t));
1155
1156 old_dibs = (dib_raw_t*)(new_storage + hi->entry_size * old_n_buckets);
1157 new_dibs = dib_raw_ptr(h);
1158
1159 /*
1160 * Move the DIB array to the new place, replacing valid DIB values with
1161 * DIB_RAW_REHASH to indicate all of the used buckets need rehashing.
1162 * Note: Overlap is not possible, because we have at least doubled the
1163 * number of buckets and dib_raw_t is smaller than any entry type.
1164 */
1165 for (idx = 0; idx < old_n_buckets; idx++) {
1166 assert(old_dibs[idx] != DIB_RAW_REHASH);
1167 new_dibs[idx] = old_dibs[idx] == DIB_RAW_FREE ? DIB_RAW_FREE
1168 : DIB_RAW_REHASH;
1169 }
1170
1171 /* Zero the area of newly added entries (including the old DIB area) */
1172 memzero(bucket_at(h, old_n_buckets),
1173 (n_buckets(h) - old_n_buckets) * hi->entry_size);
1174
1175 /* The upper half of the new DIB array needs initialization */
1176 memset(&new_dibs[old_n_buckets], DIB_RAW_INIT,
1177 (n_buckets(h) - old_n_buckets) * sizeof(dib_raw_t));
1178
1179 /* Rehash entries that need it */
1180 n_rehashed = 0;
1181 for (idx = 0; idx < old_n_buckets; idx++) {
1182 if (new_dibs[idx] != DIB_RAW_REHASH)
1183 continue;
1184
1185 optimal_idx = bucket_hash(h, bucket_at(h, idx)->key);
1186
1187 /*
1188 * Not much to do if by luck the entry hashes to its current
1189 * location. Just set its DIB.
1190 */
1191 if (optimal_idx == idx) {
1192 new_dibs[idx] = 0;
1193 n_rehashed++;
1194 continue;
1195 }
1196
1197 new_dibs[idx] = DIB_RAW_FREE;
1198 bucket_move_entry(h, &swap, idx, IDX_PUT);
1199 /* bucket_move_entry does not clear the source */
1200 memzero(bucket_at(h, idx), hi->entry_size);
1201
1202 do {
1203 /*
1204 * Find the new bucket for the current entry. This may make
1205 * another entry homeless and load it into IDX_PUT.
1206 */
1207 rehash_next = hashmap_put_robin_hood(h, optimal_idx, &swap);
1208 n_rehashed++;
1209
1210 /* Did the current entry displace another one? */
1211 if (rehash_next)
1212 optimal_idx = bucket_hash(h, bucket_at_swap(&swap, IDX_PUT)->p.b.key);
1213 } while (rehash_next);
1214 }
1215
1216 assert(n_rehashed == n_entries(h));
1217
1218 return 1;
1219 }
1220
1221 /*
1222 * Finds an entry with a matching key
1223 * Returns: index of the found entry, or IDX_NIL if not found.
1224 */
1225 static unsigned base_bucket_scan(HashmapBase *h, unsigned idx, const void *key) {
1226 struct hashmap_base_entry *e;
1227 unsigned dib, distance;
1228 dib_raw_t *dibs = dib_raw_ptr(h);
1229
1230 assert(idx < n_buckets(h));
1231
1232 for (distance = 0; ; distance++) {
1233 if (dibs[idx] == DIB_RAW_FREE)
1234 return IDX_NIL;
1235
1236 dib = bucket_calculate_dib(h, idx, dibs[idx]);
1237
1238 if (dib < distance)
1239 return IDX_NIL;
1240 if (dib == distance) {
1241 e = bucket_at(h, idx);
1242 if (h->hash_ops->compare(e->key, key) == 0)
1243 return idx;
1244 }
1245
1246 idx = next_idx(h, idx);
1247 }
1248 }
1249 #define bucket_scan(h, idx, key) base_bucket_scan(HASHMAP_BASE(h), idx, key)
1250
1251 int hashmap_put(Hashmap *h, const void *key, void *value) {
1252 struct swap_entries swap;
1253 struct plain_hashmap_entry *e;
1254 unsigned hash, idx;
1255
1256 assert(h);
1257
1258 hash = bucket_hash(h, key);
1259 idx = bucket_scan(h, hash, key);
1260 if (idx != IDX_NIL) {
1261 e = plain_bucket_at(h, idx);
1262 if (e->value == value)
1263 return 0;
1264 return -EEXIST;
1265 }
1266
1267 e = &bucket_at_swap(&swap, IDX_PUT)->p;
1268 e->b.key = key;
1269 e->value = value;
1270 return hashmap_put_boldly(h, hash, &swap, true);
1271 }
1272
1273 int set_put(Set *s, const void *key) {
1274 struct swap_entries swap;
1275 struct hashmap_base_entry *e;
1276 unsigned hash, idx;
1277
1278 assert(s);
1279
1280 hash = bucket_hash(s, key);
1281 idx = bucket_scan(s, hash, key);
1282 if (idx != IDX_NIL)
1283 return 0;
1284
1285 e = &bucket_at_swap(&swap, IDX_PUT)->p.b;
1286 e->key = key;
1287 return hashmap_put_boldly(s, hash, &swap, true);
1288 }
1289
1290 int hashmap_replace(Hashmap *h, const void *key, void *value) {
1291 struct swap_entries swap;
1292 struct plain_hashmap_entry *e;
1293 unsigned hash, idx;
1294
1295 assert(h);
1296
1297 hash = bucket_hash(h, key);
1298 idx = bucket_scan(h, hash, key);
1299 if (idx != IDX_NIL) {
1300 e = plain_bucket_at(h, idx);
1301 #ifdef ENABLE_DEBUG_HASHMAP
1302 /* Although the key is equal, the key pointer may have changed,
1303 * and this would break our assumption for iterating. So count
1304 * this operation as incompatible with iteration. */
1305 if (e->b.key != key) {
1306 h->b.debug.put_count++;
1307 h->b.debug.rem_count++;
1308 h->b.debug.last_rem_idx = idx;
1309 }
1310 #endif
1311 e->b.key = key;
1312 e->value = value;
1313 return 0;
1314 }
1315
1316 e = &bucket_at_swap(&swap, IDX_PUT)->p;
1317 e->b.key = key;
1318 e->value = value;
1319 return hashmap_put_boldly(h, hash, &swap, true);
1320 }
1321
1322 int hashmap_update(Hashmap *h, const void *key, void *value) {
1323 struct plain_hashmap_entry *e;
1324 unsigned hash, idx;
1325
1326 assert(h);
1327
1328 hash = bucket_hash(h, key);
1329 idx = bucket_scan(h, hash, key);
1330 if (idx == IDX_NIL)
1331 return -ENOENT;
1332
1333 e = plain_bucket_at(h, idx);
1334 e->value = value;
1335 return 0;
1336 }
1337
1338 void *internal_hashmap_get(HashmapBase *h, const void *key) {
1339 struct hashmap_base_entry *e;
1340 unsigned hash, idx;
1341
1342 if (!h)
1343 return NULL;
1344
1345 hash = bucket_hash(h, key);
1346 idx = bucket_scan(h, hash, key);
1347 if (idx == IDX_NIL)
1348 return NULL;
1349
1350 e = bucket_at(h, idx);
1351 return entry_value(h, e);
1352 }
1353
1354 void *hashmap_get2(Hashmap *h, const void *key, void **key2) {
1355 struct plain_hashmap_entry *e;
1356 unsigned hash, idx;
1357
1358 if (!h)
1359 return NULL;
1360
1361 hash = bucket_hash(h, key);
1362 idx = bucket_scan(h, hash, key);
1363 if (idx == IDX_NIL)
1364 return NULL;
1365
1366 e = plain_bucket_at(h, idx);
1367 if (key2)
1368 *key2 = (void*) e->b.key;
1369
1370 return e->value;
1371 }
1372
1373 bool internal_hashmap_contains(HashmapBase *h, const void *key) {
1374 unsigned hash;
1375
1376 if (!h)
1377 return false;
1378
1379 hash = bucket_hash(h, key);
1380 return bucket_scan(h, hash, key) != IDX_NIL;
1381 }
1382
1383 void *internal_hashmap_remove(HashmapBase *h, const void *key) {
1384 struct hashmap_base_entry *e;
1385 unsigned hash, idx;
1386 void *data;
1387
1388 if (!h)
1389 return NULL;
1390
1391 hash = bucket_hash(h, key);
1392 idx = bucket_scan(h, hash, key);
1393 if (idx == IDX_NIL)
1394 return NULL;
1395
1396 e = bucket_at(h, idx);
1397 data = entry_value(h, e);
1398 remove_entry(h, idx);
1399
1400 return data;
1401 }
1402
1403 void *hashmap_remove2(Hashmap *h, const void *key, void **rkey) {
1404 struct plain_hashmap_entry *e;
1405 unsigned hash, idx;
1406 void *data;
1407
1408 if (!h) {
1409 if (rkey)
1410 *rkey = NULL;
1411 return NULL;
1412 }
1413
1414 hash = bucket_hash(h, key);
1415 idx = bucket_scan(h, hash, key);
1416 if (idx == IDX_NIL) {
1417 if (rkey)
1418 *rkey = NULL;
1419 return NULL;
1420 }
1421
1422 e = plain_bucket_at(h, idx);
1423 data = e->value;
1424 if (rkey)
1425 *rkey = (void*) e->b.key;
1426
1427 remove_entry(h, idx);
1428
1429 return data;
1430 }
1431
1432 int hashmap_remove_and_put(Hashmap *h, const void *old_key, const void *new_key, void *value) {
1433 struct swap_entries swap;
1434 struct plain_hashmap_entry *e;
1435 unsigned old_hash, new_hash, idx;
1436
1437 if (!h)
1438 return -ENOENT;
1439
1440 old_hash = bucket_hash(h, old_key);
1441 idx = bucket_scan(h, old_hash, old_key);
1442 if (idx == IDX_NIL)
1443 return -ENOENT;
1444
1445 new_hash = bucket_hash(h, new_key);
1446 if (bucket_scan(h, new_hash, new_key) != IDX_NIL)
1447 return -EEXIST;
1448
1449 remove_entry(h, idx);
1450
1451 e = &bucket_at_swap(&swap, IDX_PUT)->p;
1452 e->b.key = new_key;
1453 e->value = value;
1454 assert_se(hashmap_put_boldly(h, new_hash, &swap, false) == 1);
1455
1456 return 0;
1457 }
1458
1459 int set_remove_and_put(Set *s, const void *old_key, const void *new_key) {
1460 struct swap_entries swap;
1461 struct hashmap_base_entry *e;
1462 unsigned old_hash, new_hash, idx;
1463
1464 if (!s)
1465 return -ENOENT;
1466
1467 old_hash = bucket_hash(s, old_key);
1468 idx = bucket_scan(s, old_hash, old_key);
1469 if (idx == IDX_NIL)
1470 return -ENOENT;
1471
1472 new_hash = bucket_hash(s, new_key);
1473 if (bucket_scan(s, new_hash, new_key) != IDX_NIL)
1474 return -EEXIST;
1475
1476 remove_entry(s, idx);
1477
1478 e = &bucket_at_swap(&swap, IDX_PUT)->p.b;
1479 e->key = new_key;
1480 assert_se(hashmap_put_boldly(s, new_hash, &swap, false) == 1);
1481
1482 return 0;
1483 }
1484
1485 int hashmap_remove_and_replace(Hashmap *h, const void *old_key, const void *new_key, void *value) {
1486 struct swap_entries swap;
1487 struct plain_hashmap_entry *e;
1488 unsigned old_hash, new_hash, idx_old, idx_new;
1489
1490 if (!h)
1491 return -ENOENT;
1492
1493 old_hash = bucket_hash(h, old_key);
1494 idx_old = bucket_scan(h, old_hash, old_key);
1495 if (idx_old == IDX_NIL)
1496 return -ENOENT;
1497
1498 old_key = bucket_at(HASHMAP_BASE(h), idx_old)->key;
1499
1500 new_hash = bucket_hash(h, new_key);
1501 idx_new = bucket_scan(h, new_hash, new_key);
1502 if (idx_new != IDX_NIL)
1503 if (idx_old != idx_new) {
1504 remove_entry(h, idx_new);
1505 /* Compensate for a possible backward shift. */
1506 if (old_key != bucket_at(HASHMAP_BASE(h), idx_old)->key)
1507 idx_old = prev_idx(HASHMAP_BASE(h), idx_old);
1508 assert(old_key == bucket_at(HASHMAP_BASE(h), idx_old)->key);
1509 }
1510
1511 remove_entry(h, idx_old);
1512
1513 e = &bucket_at_swap(&swap, IDX_PUT)->p;
1514 e->b.key = new_key;
1515 e->value = value;
1516 assert_se(hashmap_put_boldly(h, new_hash, &swap, false) == 1);
1517
1518 return 0;
1519 }
1520
1521 void *hashmap_remove_value(Hashmap *h, const void *key, void *value) {
1522 struct plain_hashmap_entry *e;
1523 unsigned hash, idx;
1524
1525 if (!h)
1526 return NULL;
1527
1528 hash = bucket_hash(h, key);
1529 idx = bucket_scan(h, hash, key);
1530 if (idx == IDX_NIL)
1531 return NULL;
1532
1533 e = plain_bucket_at(h, idx);
1534 if (e->value != value)
1535 return NULL;
1536
1537 remove_entry(h, idx);
1538
1539 return value;
1540 }
1541
1542 static unsigned find_first_entry(HashmapBase *h) {
1543 Iterator i = ITERATOR_FIRST;
1544
1545 if (!h || !n_entries(h))
1546 return IDX_NIL;
1547
1548 return hashmap_iterate_entry(h, &i);
1549 }
1550
1551 void *internal_hashmap_first(HashmapBase *h) {
1552 unsigned idx;
1553
1554 idx = find_first_entry(h);
1555 if (idx == IDX_NIL)
1556 return NULL;
1557
1558 return entry_value(h, bucket_at(h, idx));
1559 }
1560
1561 void *internal_hashmap_first_key(HashmapBase *h) {
1562 struct hashmap_base_entry *e;
1563 unsigned idx;
1564
1565 idx = find_first_entry(h);
1566 if (idx == IDX_NIL)
1567 return NULL;
1568
1569 e = bucket_at(h, idx);
1570 return (void*) e->key;
1571 }
1572
1573 void *internal_hashmap_steal_first(HashmapBase *h) {
1574 struct hashmap_base_entry *e;
1575 void *data;
1576 unsigned idx;
1577
1578 idx = find_first_entry(h);
1579 if (idx == IDX_NIL)
1580 return NULL;
1581
1582 e = bucket_at(h, idx);
1583 data = entry_value(h, e);
1584 remove_entry(h, idx);
1585
1586 return data;
1587 }
1588
1589 void *internal_hashmap_steal_first_key(HashmapBase *h) {
1590 struct hashmap_base_entry *e;
1591 void *key;
1592 unsigned idx;
1593
1594 idx = find_first_entry(h);
1595 if (idx == IDX_NIL)
1596 return NULL;
1597
1598 e = bucket_at(h, idx);
1599 key = (void*) e->key;
1600 remove_entry(h, idx);
1601
1602 return key;
1603 }
1604
1605 unsigned internal_hashmap_size(HashmapBase *h) {
1606
1607 if (!h)
1608 return 0;
1609
1610 return n_entries(h);
1611 }
1612
1613 unsigned internal_hashmap_buckets(HashmapBase *h) {
1614
1615 if (!h)
1616 return 0;
1617
1618 return n_buckets(h);
1619 }
1620
1621 int internal_hashmap_merge(Hashmap *h, Hashmap *other) {
1622 Iterator i;
1623 unsigned idx;
1624
1625 assert(h);
1626
1627 HASHMAP_FOREACH_IDX(idx, HASHMAP_BASE(other), i) {
1628 struct plain_hashmap_entry *pe = plain_bucket_at(other, idx);
1629 int r;
1630
1631 r = hashmap_put(h, pe->b.key, pe->value);
1632 if (r < 0 && r != -EEXIST)
1633 return r;
1634 }
1635
1636 return 0;
1637 }
1638
1639 int set_merge(Set *s, Set *other) {
1640 Iterator i;
1641 unsigned idx;
1642
1643 assert(s);
1644
1645 HASHMAP_FOREACH_IDX(idx, HASHMAP_BASE(other), i) {
1646 struct set_entry *se = set_bucket_at(other, idx);
1647 int r;
1648
1649 r = set_put(s, se->b.key);
1650 if (r < 0)
1651 return r;
1652 }
1653
1654 return 0;
1655 }
1656
1657 int internal_hashmap_reserve(HashmapBase *h, unsigned entries_add) {
1658 int r;
1659
1660 assert(h);
1661
1662 r = resize_buckets(h, entries_add);
1663 if (r < 0)
1664 return r;
1665
1666 return 0;
1667 }
1668
1669 /*
1670 * The same as hashmap_merge(), but every new item from other is moved to h.
1671 * Keys already in h are skipped and stay in other.
1672 * Returns: 0 on success.
1673 * -ENOMEM on alloc failure, in which case no move has been done.
1674 */
1675 int internal_hashmap_move(HashmapBase *h, HashmapBase *other) {
1676 struct swap_entries swap;
1677 struct hashmap_base_entry *e, *n;
1678 Iterator i;
1679 unsigned idx;
1680 int r;
1681
1682 assert(h);
1683
1684 if (!other)
1685 return 0;
1686
1687 assert(other->type == h->type);
1688
1689 /*
1690 * This reserves buckets for the worst case, where none of other's
1691 * entries are yet present in h. This is preferable to risking
1692 * an allocation failure in the middle of the moving and having to
1693 * rollback or return a partial result.
1694 */
1695 r = resize_buckets(h, n_entries(other));
1696 if (r < 0)
1697 return r;
1698
1699 HASHMAP_FOREACH_IDX(idx, other, i) {
1700 unsigned h_hash;
1701
1702 e = bucket_at(other, idx);
1703 h_hash = bucket_hash(h, e->key);
1704 if (bucket_scan(h, h_hash, e->key) != IDX_NIL)
1705 continue;
1706
1707 n = &bucket_at_swap(&swap, IDX_PUT)->p.b;
1708 n->key = e->key;
1709 if (h->type != HASHMAP_TYPE_SET)
1710 ((struct plain_hashmap_entry*) n)->value =
1711 ((struct plain_hashmap_entry*) e)->value;
1712 assert_se(hashmap_put_boldly(h, h_hash, &swap, false) == 1);
1713
1714 remove_entry(other, idx);
1715 }
1716
1717 return 0;
1718 }
1719
1720 int internal_hashmap_move_one(HashmapBase *h, HashmapBase *other, const void *key) {
1721 struct swap_entries swap;
1722 unsigned h_hash, other_hash, idx;
1723 struct hashmap_base_entry *e, *n;
1724 int r;
1725
1726 assert(h);
1727
1728 h_hash = bucket_hash(h, key);
1729 if (bucket_scan(h, h_hash, key) != IDX_NIL)
1730 return -EEXIST;
1731
1732 if (!other)
1733 return -ENOENT;
1734
1735 assert(other->type == h->type);
1736
1737 other_hash = bucket_hash(other, key);
1738 idx = bucket_scan(other, other_hash, key);
1739 if (idx == IDX_NIL)
1740 return -ENOENT;
1741
1742 e = bucket_at(other, idx);
1743
1744 n = &bucket_at_swap(&swap, IDX_PUT)->p.b;
1745 n->key = e->key;
1746 if (h->type != HASHMAP_TYPE_SET)
1747 ((struct plain_hashmap_entry*) n)->value =
1748 ((struct plain_hashmap_entry*) e)->value;
1749 r = hashmap_put_boldly(h, h_hash, &swap, true);
1750 if (r < 0)
1751 return r;
1752
1753 remove_entry(other, idx);
1754 return 0;
1755 }
1756
1757 HashmapBase *internal_hashmap_copy(HashmapBase *h) {
1758 HashmapBase *copy;
1759 int r;
1760
1761 assert(h);
1762
1763 copy = hashmap_base_new(h->hash_ops, h->type HASHMAP_DEBUG_SRC_ARGS);
1764 if (!copy)
1765 return NULL;
1766
1767 switch (h->type) {
1768 case HASHMAP_TYPE_PLAIN:
1769 case HASHMAP_TYPE_ORDERED:
1770 r = hashmap_merge((Hashmap*)copy, (Hashmap*)h);
1771 break;
1772 case HASHMAP_TYPE_SET:
1773 r = set_merge((Set*)copy, (Set*)h);
1774 break;
1775 default:
1776 assert_not_reached("Unknown hashmap type");
1777 }
1778
1779 if (r < 0) {
1780 internal_hashmap_free(copy);
1781 return NULL;
1782 }
1783
1784 return copy;
1785 }
1786
1787 char **internal_hashmap_get_strv(HashmapBase *h) {
1788 char **sv;
1789 Iterator i;
1790 unsigned idx, n;
1791
1792 sv = new(char*, n_entries(h)+1);
1793 if (!sv)
1794 return NULL;
1795
1796 n = 0;
1797 HASHMAP_FOREACH_IDX(idx, h, i)
1798 sv[n++] = entry_value(h, bucket_at(h, idx));
1799 sv[n] = NULL;
1800
1801 return sv;
1802 }
1803
1804 void *ordered_hashmap_next(OrderedHashmap *h, const void *key) {
1805 struct ordered_hashmap_entry *e;
1806 unsigned hash, idx;
1807
1808 if (!h)
1809 return NULL;
1810
1811 hash = bucket_hash(h, key);
1812 idx = bucket_scan(h, hash, key);
1813 if (idx == IDX_NIL)
1814 return NULL;
1815
1816 e = ordered_bucket_at(h, idx);
1817 if (e->iterate_next == IDX_NIL)
1818 return NULL;
1819 return ordered_bucket_at(h, e->iterate_next)->p.value;
1820 }
1821
1822 int set_consume(Set *s, void *value) {
1823 int r;
1824
1825 r = set_put(s, value);
1826 if (r <= 0)
1827 free(value);
1828
1829 return r;
1830 }
1831
1832 int set_put_strdup(Set *s, const char *p) {
1833 char *c;
1834 int r;
1835
1836 assert(s);
1837 assert(p);
1838
1839 c = strdup(p);
1840 if (!c)
1841 return -ENOMEM;
1842
1843 r = set_consume(s, c);
1844 if (r == -EEXIST)
1845 return 0;
1846
1847 return r;
1848 }
1849
1850 int set_put_strdupv(Set *s, char **l) {
1851 int n = 0, r;
1852 char **i;
1853
1854 STRV_FOREACH(i, l) {
1855 r = set_put_strdup(s, *i);
1856 if (r < 0)
1857 return r;
1858
1859 n += r;
1860 }
1861
1862 return n;
1863 }