]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/basic/linux/btrfs_tree.h
tree-wide: drop several missing_*.h and import relevant headers from kernel-5.0
[thirdparty/systemd.git] / src / basic / linux / btrfs_tree.h
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 #ifndef _BTRFS_CTREE_H_
3 #define _BTRFS_CTREE_H_
4
5 #include <linux/btrfs.h>
6 #include <linux/types.h>
7
8 /*
9 * This header contains the structure definitions and constants used
10 * by file system objects that can be retrieved using
11 * the BTRFS_IOC_SEARCH_TREE ioctl. That means basically anything that
12 * is needed to describe a leaf node's key or item contents.
13 */
14
15 /* holds pointers to all of the tree roots */
16 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
17
18 /* stores information about which extents are in use, and reference counts */
19 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
20
21 /*
22 * chunk tree stores translations from logical -> physical block numbering
23 * the super block points to the chunk tree
24 */
25 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
26
27 /*
28 * stores information about which areas of a given device are in use.
29 * one per device. The tree of tree roots points to the device tree
30 */
31 #define BTRFS_DEV_TREE_OBJECTID 4ULL
32
33 /* one per subvolume, storing files and directories */
34 #define BTRFS_FS_TREE_OBJECTID 5ULL
35
36 /* directory objectid inside the root tree */
37 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
38
39 /* holds checksums of all the data extents */
40 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
41
42 /* holds quota configuration and tracking */
43 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
44
45 /* for storing items that use the BTRFS_UUID_KEY* types */
46 #define BTRFS_UUID_TREE_OBJECTID 9ULL
47
48 /* tracks free space in block groups. */
49 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
50
51 /* device stats in the device tree */
52 #define BTRFS_DEV_STATS_OBJECTID 0ULL
53
54 /* for storing balance parameters in the root tree */
55 #define BTRFS_BALANCE_OBJECTID -4ULL
56
57 /* orhpan objectid for tracking unlinked/truncated files */
58 #define BTRFS_ORPHAN_OBJECTID -5ULL
59
60 /* does write ahead logging to speed up fsyncs */
61 #define BTRFS_TREE_LOG_OBJECTID -6ULL
62 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
63
64 /* for space balancing */
65 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
66 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
67
68 /*
69 * extent checksums all have this objectid
70 * this allows them to share the logging tree
71 * for fsyncs
72 */
73 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
74
75 /* For storing free space cache */
76 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
77
78 /*
79 * The inode number assigned to the special inode for storing
80 * free ino cache
81 */
82 #define BTRFS_FREE_INO_OBJECTID -12ULL
83
84 /* dummy objectid represents multiple objectids */
85 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
86
87 /*
88 * All files have objectids in this range.
89 */
90 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
91 #define BTRFS_LAST_FREE_OBJECTID -256ULL
92 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
93
94
95 /*
96 * the device items go into the chunk tree. The key is in the form
97 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
98 */
99 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
100
101 #define BTRFS_BTREE_INODE_OBJECTID 1
102
103 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
104
105 #define BTRFS_DEV_REPLACE_DEVID 0ULL
106
107 /*
108 * inode items have the data typically returned from stat and store other
109 * info about object characteristics. There is one for every file and dir in
110 * the FS
111 */
112 #define BTRFS_INODE_ITEM_KEY 1
113 #define BTRFS_INODE_REF_KEY 12
114 #define BTRFS_INODE_EXTREF_KEY 13
115 #define BTRFS_XATTR_ITEM_KEY 24
116 #define BTRFS_ORPHAN_ITEM_KEY 48
117 /* reserve 2-15 close to the inode for later flexibility */
118
119 /*
120 * dir items are the name -> inode pointers in a directory. There is one
121 * for every name in a directory.
122 */
123 #define BTRFS_DIR_LOG_ITEM_KEY 60
124 #define BTRFS_DIR_LOG_INDEX_KEY 72
125 #define BTRFS_DIR_ITEM_KEY 84
126 #define BTRFS_DIR_INDEX_KEY 96
127 /*
128 * extent data is for file data
129 */
130 #define BTRFS_EXTENT_DATA_KEY 108
131
132 /*
133 * extent csums are stored in a separate tree and hold csums for
134 * an entire extent on disk.
135 */
136 #define BTRFS_EXTENT_CSUM_KEY 128
137
138 /*
139 * root items point to tree roots. They are typically in the root
140 * tree used by the super block to find all the other trees
141 */
142 #define BTRFS_ROOT_ITEM_KEY 132
143
144 /*
145 * root backrefs tie subvols and snapshots to the directory entries that
146 * reference them
147 */
148 #define BTRFS_ROOT_BACKREF_KEY 144
149
150 /*
151 * root refs make a fast index for listing all of the snapshots and
152 * subvolumes referenced by a given root. They point directly to the
153 * directory item in the root that references the subvol
154 */
155 #define BTRFS_ROOT_REF_KEY 156
156
157 /*
158 * extent items are in the extent map tree. These record which blocks
159 * are used, and how many references there are to each block
160 */
161 #define BTRFS_EXTENT_ITEM_KEY 168
162
163 /*
164 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
165 * the length, so we save the level in key->offset instead of the length.
166 */
167 #define BTRFS_METADATA_ITEM_KEY 169
168
169 #define BTRFS_TREE_BLOCK_REF_KEY 176
170
171 #define BTRFS_EXTENT_DATA_REF_KEY 178
172
173 #define BTRFS_EXTENT_REF_V0_KEY 180
174
175 #define BTRFS_SHARED_BLOCK_REF_KEY 182
176
177 #define BTRFS_SHARED_DATA_REF_KEY 184
178
179 /*
180 * block groups give us hints into the extent allocation trees. Which
181 * blocks are free etc etc
182 */
183 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
184
185 /*
186 * Every block group is represented in the free space tree by a free space info
187 * item, which stores some accounting information. It is keyed on
188 * (block_group_start, FREE_SPACE_INFO, block_group_length).
189 */
190 #define BTRFS_FREE_SPACE_INFO_KEY 198
191
192 /*
193 * A free space extent tracks an extent of space that is free in a block group.
194 * It is keyed on (start, FREE_SPACE_EXTENT, length).
195 */
196 #define BTRFS_FREE_SPACE_EXTENT_KEY 199
197
198 /*
199 * When a block group becomes very fragmented, we convert it to use bitmaps
200 * instead of extents. A free space bitmap is keyed on
201 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
202 * (length / sectorsize) bits.
203 */
204 #define BTRFS_FREE_SPACE_BITMAP_KEY 200
205
206 #define BTRFS_DEV_EXTENT_KEY 204
207 #define BTRFS_DEV_ITEM_KEY 216
208 #define BTRFS_CHUNK_ITEM_KEY 228
209
210 /*
211 * Records the overall state of the qgroups.
212 * There's only one instance of this key present,
213 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
214 */
215 #define BTRFS_QGROUP_STATUS_KEY 240
216 /*
217 * Records the currently used space of the qgroup.
218 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
219 */
220 #define BTRFS_QGROUP_INFO_KEY 242
221 /*
222 * Contains the user configured limits for the qgroup.
223 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
224 */
225 #define BTRFS_QGROUP_LIMIT_KEY 244
226 /*
227 * Records the child-parent relationship of qgroups. For
228 * each relation, 2 keys are present:
229 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
230 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
231 */
232 #define BTRFS_QGROUP_RELATION_KEY 246
233
234 /*
235 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
236 */
237 #define BTRFS_BALANCE_ITEM_KEY 248
238
239 /*
240 * The key type for tree items that are stored persistently, but do not need to
241 * exist for extended period of time. The items can exist in any tree.
242 *
243 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
244 *
245 * Existing items:
246 *
247 * - balance status item
248 * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
249 */
250 #define BTRFS_TEMPORARY_ITEM_KEY 248
251
252 /*
253 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
254 */
255 #define BTRFS_DEV_STATS_KEY 249
256
257 /*
258 * The key type for tree items that are stored persistently and usually exist
259 * for a long period, eg. filesystem lifetime. The item kinds can be status
260 * information, stats or preference values. The item can exist in any tree.
261 *
262 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
263 *
264 * Existing items:
265 *
266 * - device statistics, store IO stats in the device tree, one key for all
267 * stats
268 * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
269 */
270 #define BTRFS_PERSISTENT_ITEM_KEY 249
271
272 /*
273 * Persistantly stores the device replace state in the device tree.
274 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
275 */
276 #define BTRFS_DEV_REPLACE_KEY 250
277
278 /*
279 * Stores items that allow to quickly map UUIDs to something else.
280 * These items are part of the filesystem UUID tree.
281 * The key is built like this:
282 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
283 */
284 #if BTRFS_UUID_SIZE != 16
285 #error "UUID items require BTRFS_UUID_SIZE == 16!"
286 #endif
287 #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
288 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
289 * received subvols */
290
291 /*
292 * string items are for debugging. They just store a short string of
293 * data in the FS
294 */
295 #define BTRFS_STRING_ITEM_KEY 253
296
297
298
299 /* 32 bytes in various csum fields */
300 #define BTRFS_CSUM_SIZE 32
301
302 /* csum types */
303 #define BTRFS_CSUM_TYPE_CRC32 0
304
305 /*
306 * flags definitions for directory entry item type
307 *
308 * Used by:
309 * struct btrfs_dir_item.type
310 */
311 #define BTRFS_FT_UNKNOWN 0
312 #define BTRFS_FT_REG_FILE 1
313 #define BTRFS_FT_DIR 2
314 #define BTRFS_FT_CHRDEV 3
315 #define BTRFS_FT_BLKDEV 4
316 #define BTRFS_FT_FIFO 5
317 #define BTRFS_FT_SOCK 6
318 #define BTRFS_FT_SYMLINK 7
319 #define BTRFS_FT_XATTR 8
320 #define BTRFS_FT_MAX 9
321
322 /*
323 * The key defines the order in the tree, and so it also defines (optimal)
324 * block layout.
325 *
326 * objectid corresponds to the inode number.
327 *
328 * type tells us things about the object, and is a kind of stream selector.
329 * so for a given inode, keys with type of 1 might refer to the inode data,
330 * type of 2 may point to file data in the btree and type == 3 may point to
331 * extents.
332 *
333 * offset is the starting byte offset for this key in the stream.
334 *
335 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
336 * in cpu native order. Otherwise they are identical and their sizes
337 * should be the same (ie both packed)
338 */
339 struct btrfs_disk_key {
340 __le64 objectid;
341 __u8 type;
342 __le64 offset;
343 } __attribute__ ((__packed__));
344
345 struct btrfs_key {
346 __u64 objectid;
347 __u8 type;
348 __u64 offset;
349 } __attribute__ ((__packed__));
350
351 struct btrfs_dev_item {
352 /* the internal btrfs device id */
353 __le64 devid;
354
355 /* size of the device */
356 __le64 total_bytes;
357
358 /* bytes used */
359 __le64 bytes_used;
360
361 /* optimal io alignment for this device */
362 __le32 io_align;
363
364 /* optimal io width for this device */
365 __le32 io_width;
366
367 /* minimal io size for this device */
368 __le32 sector_size;
369
370 /* type and info about this device */
371 __le64 type;
372
373 /* expected generation for this device */
374 __le64 generation;
375
376 /*
377 * starting byte of this partition on the device,
378 * to allow for stripe alignment in the future
379 */
380 __le64 start_offset;
381
382 /* grouping information for allocation decisions */
383 __le32 dev_group;
384
385 /* seek speed 0-100 where 100 is fastest */
386 __u8 seek_speed;
387
388 /* bandwidth 0-100 where 100 is fastest */
389 __u8 bandwidth;
390
391 /* btrfs generated uuid for this device */
392 __u8 uuid[BTRFS_UUID_SIZE];
393
394 /* uuid of FS who owns this device */
395 __u8 fsid[BTRFS_UUID_SIZE];
396 } __attribute__ ((__packed__));
397
398 struct btrfs_stripe {
399 __le64 devid;
400 __le64 offset;
401 __u8 dev_uuid[BTRFS_UUID_SIZE];
402 } __attribute__ ((__packed__));
403
404 struct btrfs_chunk {
405 /* size of this chunk in bytes */
406 __le64 length;
407
408 /* objectid of the root referencing this chunk */
409 __le64 owner;
410
411 __le64 stripe_len;
412 __le64 type;
413
414 /* optimal io alignment for this chunk */
415 __le32 io_align;
416
417 /* optimal io width for this chunk */
418 __le32 io_width;
419
420 /* minimal io size for this chunk */
421 __le32 sector_size;
422
423 /* 2^16 stripes is quite a lot, a second limit is the size of a single
424 * item in the btree
425 */
426 __le16 num_stripes;
427
428 /* sub stripes only matter for raid10 */
429 __le16 sub_stripes;
430 struct btrfs_stripe stripe;
431 /* additional stripes go here */
432 } __attribute__ ((__packed__));
433
434 #define BTRFS_FREE_SPACE_EXTENT 1
435 #define BTRFS_FREE_SPACE_BITMAP 2
436
437 struct btrfs_free_space_entry {
438 __le64 offset;
439 __le64 bytes;
440 __u8 type;
441 } __attribute__ ((__packed__));
442
443 struct btrfs_free_space_header {
444 struct btrfs_disk_key location;
445 __le64 generation;
446 __le64 num_entries;
447 __le64 num_bitmaps;
448 } __attribute__ ((__packed__));
449
450 #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
451 #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
452
453 /* Super block flags */
454 /* Errors detected */
455 #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
456
457 #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
458 #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
459 #define BTRFS_SUPER_FLAG_METADUMP_V2 (1ULL << 34)
460 #define BTRFS_SUPER_FLAG_CHANGING_FSID (1ULL << 35)
461 #define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
462
463
464 /*
465 * items in the extent btree are used to record the objectid of the
466 * owner of the block and the number of references
467 */
468
469 struct btrfs_extent_item {
470 __le64 refs;
471 __le64 generation;
472 __le64 flags;
473 } __attribute__ ((__packed__));
474
475 struct btrfs_extent_item_v0 {
476 __le32 refs;
477 } __attribute__ ((__packed__));
478
479
480 #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
481 #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
482
483 /* following flags only apply to tree blocks */
484
485 /* use full backrefs for extent pointers in the block */
486 #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
487
488 /*
489 * this flag is only used internally by scrub and may be changed at any time
490 * it is only declared here to avoid collisions
491 */
492 #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
493
494 struct btrfs_tree_block_info {
495 struct btrfs_disk_key key;
496 __u8 level;
497 } __attribute__ ((__packed__));
498
499 struct btrfs_extent_data_ref {
500 __le64 root;
501 __le64 objectid;
502 __le64 offset;
503 __le32 count;
504 } __attribute__ ((__packed__));
505
506 struct btrfs_shared_data_ref {
507 __le32 count;
508 } __attribute__ ((__packed__));
509
510 struct btrfs_extent_inline_ref {
511 __u8 type;
512 __le64 offset;
513 } __attribute__ ((__packed__));
514
515 /* old style backrefs item */
516 struct btrfs_extent_ref_v0 {
517 __le64 root;
518 __le64 generation;
519 __le64 objectid;
520 __le32 count;
521 } __attribute__ ((__packed__));
522
523
524 /* dev extents record free space on individual devices. The owner
525 * field points back to the chunk allocation mapping tree that allocated
526 * the extent. The chunk tree uuid field is a way to double check the owner
527 */
528 struct btrfs_dev_extent {
529 __le64 chunk_tree;
530 __le64 chunk_objectid;
531 __le64 chunk_offset;
532 __le64 length;
533 __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
534 } __attribute__ ((__packed__));
535
536 struct btrfs_inode_ref {
537 __le64 index;
538 __le16 name_len;
539 /* name goes here */
540 } __attribute__ ((__packed__));
541
542 struct btrfs_inode_extref {
543 __le64 parent_objectid;
544 __le64 index;
545 __le16 name_len;
546 __u8 name[0];
547 /* name goes here */
548 } __attribute__ ((__packed__));
549
550 struct btrfs_timespec {
551 __le64 sec;
552 __le32 nsec;
553 } __attribute__ ((__packed__));
554
555 struct btrfs_inode_item {
556 /* nfs style generation number */
557 __le64 generation;
558 /* transid that last touched this inode */
559 __le64 transid;
560 __le64 size;
561 __le64 nbytes;
562 __le64 block_group;
563 __le32 nlink;
564 __le32 uid;
565 __le32 gid;
566 __le32 mode;
567 __le64 rdev;
568 __le64 flags;
569
570 /* modification sequence number for NFS */
571 __le64 sequence;
572
573 /*
574 * a little future expansion, for more than this we can
575 * just grow the inode item and version it
576 */
577 __le64 reserved[4];
578 struct btrfs_timespec atime;
579 struct btrfs_timespec ctime;
580 struct btrfs_timespec mtime;
581 struct btrfs_timespec otime;
582 } __attribute__ ((__packed__));
583
584 struct btrfs_dir_log_item {
585 __le64 end;
586 } __attribute__ ((__packed__));
587
588 struct btrfs_dir_item {
589 struct btrfs_disk_key location;
590 __le64 transid;
591 __le16 data_len;
592 __le16 name_len;
593 __u8 type;
594 } __attribute__ ((__packed__));
595
596 #define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
597
598 /*
599 * Internal in-memory flag that a subvolume has been marked for deletion but
600 * still visible as a directory
601 */
602 #define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48)
603
604 struct btrfs_root_item {
605 struct btrfs_inode_item inode;
606 __le64 generation;
607 __le64 root_dirid;
608 __le64 bytenr;
609 __le64 byte_limit;
610 __le64 bytes_used;
611 __le64 last_snapshot;
612 __le64 flags;
613 __le32 refs;
614 struct btrfs_disk_key drop_progress;
615 __u8 drop_level;
616 __u8 level;
617
618 /*
619 * The following fields appear after subvol_uuids+subvol_times
620 * were introduced.
621 */
622
623 /*
624 * This generation number is used to test if the new fields are valid
625 * and up to date while reading the root item. Every time the root item
626 * is written out, the "generation" field is copied into this field. If
627 * anyone ever mounted the fs with an older kernel, we will have
628 * mismatching generation values here and thus must invalidate the
629 * new fields. See btrfs_update_root and btrfs_find_last_root for
630 * details.
631 * the offset of generation_v2 is also used as the start for the memset
632 * when invalidating the fields.
633 */
634 __le64 generation_v2;
635 __u8 uuid[BTRFS_UUID_SIZE];
636 __u8 parent_uuid[BTRFS_UUID_SIZE];
637 __u8 received_uuid[BTRFS_UUID_SIZE];
638 __le64 ctransid; /* updated when an inode changes */
639 __le64 otransid; /* trans when created */
640 __le64 stransid; /* trans when sent. non-zero for received subvol */
641 __le64 rtransid; /* trans when received. non-zero for received subvol */
642 struct btrfs_timespec ctime;
643 struct btrfs_timespec otime;
644 struct btrfs_timespec stime;
645 struct btrfs_timespec rtime;
646 __le64 reserved[8]; /* for future */
647 } __attribute__ ((__packed__));
648
649 /*
650 * this is used for both forward and backward root refs
651 */
652 struct btrfs_root_ref {
653 __le64 dirid;
654 __le64 sequence;
655 __le16 name_len;
656 } __attribute__ ((__packed__));
657
658 struct btrfs_disk_balance_args {
659 /*
660 * profiles to operate on, single is denoted by
661 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
662 */
663 __le64 profiles;
664
665 /*
666 * usage filter
667 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
668 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
669 */
670 union {
671 __le64 usage;
672 struct {
673 __le32 usage_min;
674 __le32 usage_max;
675 };
676 };
677
678 /* devid filter */
679 __le64 devid;
680
681 /* devid subset filter [pstart..pend) */
682 __le64 pstart;
683 __le64 pend;
684
685 /* btrfs virtual address space subset filter [vstart..vend) */
686 __le64 vstart;
687 __le64 vend;
688
689 /*
690 * profile to convert to, single is denoted by
691 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
692 */
693 __le64 target;
694
695 /* BTRFS_BALANCE_ARGS_* */
696 __le64 flags;
697
698 /*
699 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
700 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
701 * and maximum
702 */
703 union {
704 __le64 limit;
705 struct {
706 __le32 limit_min;
707 __le32 limit_max;
708 };
709 };
710
711 /*
712 * Process chunks that cross stripes_min..stripes_max devices,
713 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
714 */
715 __le32 stripes_min;
716 __le32 stripes_max;
717
718 __le64 unused[6];
719 } __attribute__ ((__packed__));
720
721 /*
722 * store balance parameters to disk so that balance can be properly
723 * resumed after crash or unmount
724 */
725 struct btrfs_balance_item {
726 /* BTRFS_BALANCE_* */
727 __le64 flags;
728
729 struct btrfs_disk_balance_args data;
730 struct btrfs_disk_balance_args meta;
731 struct btrfs_disk_balance_args sys;
732
733 __le64 unused[4];
734 } __attribute__ ((__packed__));
735
736 #define BTRFS_FILE_EXTENT_INLINE 0
737 #define BTRFS_FILE_EXTENT_REG 1
738 #define BTRFS_FILE_EXTENT_PREALLOC 2
739 #define BTRFS_FILE_EXTENT_TYPES 2
740
741 struct btrfs_file_extent_item {
742 /*
743 * transaction id that created this extent
744 */
745 __le64 generation;
746 /*
747 * max number of bytes to hold this extent in ram
748 * when we split a compressed extent we can't know how big
749 * each of the resulting pieces will be. So, this is
750 * an upper limit on the size of the extent in ram instead of
751 * an exact limit.
752 */
753 __le64 ram_bytes;
754
755 /*
756 * 32 bits for the various ways we might encode the data,
757 * including compression and encryption. If any of these
758 * are set to something a given disk format doesn't understand
759 * it is treated like an incompat flag for reading and writing,
760 * but not for stat.
761 */
762 __u8 compression;
763 __u8 encryption;
764 __le16 other_encoding; /* spare for later use */
765
766 /* are we inline data or a real extent? */
767 __u8 type;
768
769 /*
770 * disk space consumed by the extent, checksum blocks are included
771 * in these numbers
772 *
773 * At this offset in the structure, the inline extent data start.
774 */
775 __le64 disk_bytenr;
776 __le64 disk_num_bytes;
777 /*
778 * the logical offset in file blocks (no csums)
779 * this extent record is for. This allows a file extent to point
780 * into the middle of an existing extent on disk, sharing it
781 * between two snapshots (useful if some bytes in the middle of the
782 * extent have changed
783 */
784 __le64 offset;
785 /*
786 * the logical number of file blocks (no csums included). This
787 * always reflects the size uncompressed and without encoding.
788 */
789 __le64 num_bytes;
790
791 } __attribute__ ((__packed__));
792
793 struct btrfs_csum_item {
794 __u8 csum;
795 } __attribute__ ((__packed__));
796
797 struct btrfs_dev_stats_item {
798 /*
799 * grow this item struct at the end for future enhancements and keep
800 * the existing values unchanged
801 */
802 __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
803 } __attribute__ ((__packed__));
804
805 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
806 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
807 #define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED 0
808 #define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED 1
809 #define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED 2
810 #define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED 3
811 #define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED 4
812
813 struct btrfs_dev_replace_item {
814 /*
815 * grow this item struct at the end for future enhancements and keep
816 * the existing values unchanged
817 */
818 __le64 src_devid;
819 __le64 cursor_left;
820 __le64 cursor_right;
821 __le64 cont_reading_from_srcdev_mode;
822
823 __le64 replace_state;
824 __le64 time_started;
825 __le64 time_stopped;
826 __le64 num_write_errors;
827 __le64 num_uncorrectable_read_errors;
828 } __attribute__ ((__packed__));
829
830 /* different types of block groups (and chunks) */
831 #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
832 #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
833 #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
834 #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
835 #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
836 #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
837 #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
838 #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
839 #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
840 #define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
841 BTRFS_SPACE_INFO_GLOBAL_RSV)
842
843 enum btrfs_raid_types {
844 BTRFS_RAID_RAID10,
845 BTRFS_RAID_RAID1,
846 BTRFS_RAID_DUP,
847 BTRFS_RAID_RAID0,
848 BTRFS_RAID_SINGLE,
849 BTRFS_RAID_RAID5,
850 BTRFS_RAID_RAID6,
851 BTRFS_NR_RAID_TYPES
852 };
853
854 #define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
855 BTRFS_BLOCK_GROUP_SYSTEM | \
856 BTRFS_BLOCK_GROUP_METADATA)
857
858 #define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
859 BTRFS_BLOCK_GROUP_RAID1 | \
860 BTRFS_BLOCK_GROUP_RAID5 | \
861 BTRFS_BLOCK_GROUP_RAID6 | \
862 BTRFS_BLOCK_GROUP_DUP | \
863 BTRFS_BLOCK_GROUP_RAID10)
864 #define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \
865 BTRFS_BLOCK_GROUP_RAID6)
866
867 /*
868 * We need a bit for restriper to be able to tell when chunks of type
869 * SINGLE are available. This "extended" profile format is used in
870 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
871 * (on-disk). The corresponding on-disk bit in chunk.type is reserved
872 * to avoid remappings between two formats in future.
873 */
874 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
875
876 /*
877 * A fake block group type that is used to communicate global block reserve
878 * size to userspace via the SPACE_INFO ioctl.
879 */
880 #define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
881
882 #define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
883 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
884
885 static inline __u64 chunk_to_extended(__u64 flags)
886 {
887 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
888 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
889
890 return flags;
891 }
892 static inline __u64 extended_to_chunk(__u64 flags)
893 {
894 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
895 }
896
897 struct btrfs_block_group_item {
898 __le64 used;
899 __le64 chunk_objectid;
900 __le64 flags;
901 } __attribute__ ((__packed__));
902
903 struct btrfs_free_space_info {
904 __le32 extent_count;
905 __le32 flags;
906 } __attribute__ ((__packed__));
907
908 #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
909
910 #define BTRFS_QGROUP_LEVEL_SHIFT 48
911 static inline __u64 btrfs_qgroup_level(__u64 qgroupid)
912 {
913 return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
914 }
915
916 /*
917 * is subvolume quota turned on?
918 */
919 #define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
920 /*
921 * RESCAN is set during the initialization phase
922 */
923 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
924 /*
925 * Some qgroup entries are known to be out of date,
926 * either because the configuration has changed in a way that
927 * makes a rescan necessary, or because the fs has been mounted
928 * with a non-qgroup-aware version.
929 * Turning qouta off and on again makes it inconsistent, too.
930 */
931 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
932
933 #define BTRFS_QGROUP_STATUS_VERSION 1
934
935 struct btrfs_qgroup_status_item {
936 __le64 version;
937 /*
938 * the generation is updated during every commit. As older
939 * versions of btrfs are not aware of qgroups, it will be
940 * possible to detect inconsistencies by checking the
941 * generation on mount time
942 */
943 __le64 generation;
944
945 /* flag definitions see above */
946 __le64 flags;
947
948 /*
949 * only used during scanning to record the progress
950 * of the scan. It contains a logical address
951 */
952 __le64 rescan;
953 } __attribute__ ((__packed__));
954
955 struct btrfs_qgroup_info_item {
956 __le64 generation;
957 __le64 rfer;
958 __le64 rfer_cmpr;
959 __le64 excl;
960 __le64 excl_cmpr;
961 } __attribute__ ((__packed__));
962
963 struct btrfs_qgroup_limit_item {
964 /*
965 * only updated when any of the other values change
966 */
967 __le64 flags;
968 __le64 max_rfer;
969 __le64 max_excl;
970 __le64 rsv_rfer;
971 __le64 rsv_excl;
972 } __attribute__ ((__packed__));
973
974 #endif /* _BTRFS_CTREE_H_ */