]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/basic/process-util.c
4c05f16db5279a0c9093b278d6e7cf9cdcbfd3a3
[thirdparty/systemd.git] / src / basic / process-util.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <ctype.h>
4 #include <errno.h>
5 #include <limits.h>
6 #include <linux/oom.h>
7 #include <sched.h>
8 #include <signal.h>
9 #include <stdbool.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include <sys/mman.h>
14 #include <sys/mount.h>
15 #include <sys/personality.h>
16 #include <sys/prctl.h>
17 #include <sys/types.h>
18 #include <sys/wait.h>
19 #include <syslog.h>
20 #include <unistd.h>
21 #if HAVE_VALGRIND_VALGRIND_H
22 #include <valgrind/valgrind.h>
23 #endif
24
25 #include "alloc-util.h"
26 #include "architecture.h"
27 #include "escape.h"
28 #include "env-util.h"
29 #include "fd-util.h"
30 #include "fileio.h"
31 #include "fs-util.h"
32 #include "ioprio.h"
33 #include "log.h"
34 #include "macro.h"
35 #include "memory-util.h"
36 #include "missing.h"
37 #include "namespace-util.h"
38 #include "process-util.h"
39 #include "raw-clone.h"
40 #include "rlimit-util.h"
41 #include "signal-util.h"
42 #include "stat-util.h"
43 #include "string-table.h"
44 #include "string-util.h"
45 #include "terminal-util.h"
46 #include "user-util.h"
47 #include "utf8.h"
48
49 static int get_process_state(pid_t pid) {
50 const char *p;
51 char state;
52 int r;
53 _cleanup_free_ char *line = NULL;
54
55 assert(pid >= 0);
56
57 p = procfs_file_alloca(pid, "stat");
58
59 r = read_one_line_file(p, &line);
60 if (r == -ENOENT)
61 return -ESRCH;
62 if (r < 0)
63 return r;
64
65 p = strrchr(line, ')');
66 if (!p)
67 return -EIO;
68
69 p++;
70
71 if (sscanf(p, " %c", &state) != 1)
72 return -EIO;
73
74 return (unsigned char) state;
75 }
76
77 int get_process_comm(pid_t pid, char **ret) {
78 _cleanup_free_ char *escaped = NULL, *comm = NULL;
79 const char *p;
80 int r;
81
82 assert(ret);
83 assert(pid >= 0);
84
85 escaped = new(char, TASK_COMM_LEN);
86 if (!escaped)
87 return -ENOMEM;
88
89 p = procfs_file_alloca(pid, "comm");
90
91 r = read_one_line_file(p, &comm);
92 if (r == -ENOENT)
93 return -ESRCH;
94 if (r < 0)
95 return r;
96
97 /* Escape unprintable characters, just in case, but don't grow the string beyond the underlying size */
98 cellescape(escaped, TASK_COMM_LEN, comm);
99
100 *ret = TAKE_PTR(escaped);
101 return 0;
102 }
103
104 int get_process_cmdline(pid_t pid, size_t max_columns, bool comm_fallback, char **line) {
105 _cleanup_fclose_ FILE *f = NULL;
106 _cleanup_free_ char *t = NULL, *ans = NULL;
107 const char *p;
108 int r;
109 size_t k;
110
111 /* This is supposed to be a safety guard against runaway command lines. */
112 size_t max_length = sc_arg_max();
113
114 assert(line);
115 assert(pid >= 0);
116
117 /* Retrieves a process' command line. Replaces non-utf8 bytes by replacement character (�). If
118 * max_columns is != -1 will return a string of the specified console width at most, abbreviated with
119 * an ellipsis. If comm_fallback is true and the process has no command line set (the case for kernel
120 * threads), or has a command line that resolves to the empty string will return the "comm" name of
121 * the process instead. This will use at most _SC_ARG_MAX bytes of input data.
122 *
123 * Returns -ESRCH if the process doesn't exist, and -ENOENT if the process has no command line (and
124 * comm_fallback is false). Returns 0 and sets *line otherwise. */
125
126 p = procfs_file_alloca(pid, "cmdline");
127 r = fopen_unlocked(p, "re", &f);
128 if (r == -ENOENT)
129 return -ESRCH;
130 if (r < 0)
131 return r;
132
133 /* We assume that each four-byte character uses one or two columns. If we ever check for combining
134 * characters, this assumption will need to be adjusted. */
135 if ((size_t) 4 * max_columns + 1 < max_columns)
136 max_length = MIN(max_length, (size_t) 4 * max_columns + 1);
137
138 t = new(char, max_length);
139 if (!t)
140 return -ENOMEM;
141
142 k = fread(t, 1, max_length, f);
143 if (k > 0) {
144 /* Arguments are separated by NULs. Let's replace those with spaces. */
145 for (size_t i = 0; i < k - 1; i++)
146 if (t[i] == '\0')
147 t[i] = ' ';
148
149 t[k] = '\0'; /* Normally, t[k] is already NUL, so this is just a guard in case of short read */
150 } else {
151 /* We only treat getting nothing as an error. We *could* also get an error after reading some
152 * data, but we ignore that case, as such an error is rather unlikely and we prefer to get
153 * some data rather than none. */
154 if (ferror(f))
155 return -errno;
156
157 if (!comm_fallback)
158 return -ENOENT;
159
160 /* Kernel threads have no argv[] */
161 _cleanup_free_ char *t2 = NULL;
162
163 r = get_process_comm(pid, &t2);
164 if (r < 0)
165 return r;
166
167 mfree(t);
168 t = strjoin("[", t2, "]");
169 if (!t)
170 return -ENOMEM;
171 }
172
173 delete_trailing_chars(t, WHITESPACE);
174
175 ans = utf8_escape_non_printable_full(t, max_columns);
176 if (!ans)
177 return -ENOMEM;
178
179 (void) str_realloc(&ans);
180 *line = TAKE_PTR(ans);
181 return 0;
182 }
183
184 int rename_process(const char name[]) {
185 static size_t mm_size = 0;
186 static char *mm = NULL;
187 bool truncated = false;
188 size_t l;
189
190 /* This is a like a poor man's setproctitle(). It changes the comm field, argv[0], and also the glibc's
191 * internally used name of the process. For the first one a limit of 16 chars applies; to the second one in
192 * many cases one of 10 (i.e. length of "/sbin/init") — however if we have CAP_SYS_RESOURCES it is unbounded;
193 * to the third one 7 (i.e. the length of "systemd". If you pass a longer string it will likely be
194 * truncated.
195 *
196 * Returns 0 if a name was set but truncated, > 0 if it was set but not truncated. */
197
198 if (isempty(name))
199 return -EINVAL; /* let's not confuse users unnecessarily with an empty name */
200
201 if (!is_main_thread())
202 return -EPERM; /* Let's not allow setting the process name from other threads than the main one, as we
203 * cache things without locking, and we make assumptions that PR_SET_NAME sets the
204 * process name that isn't correct on any other threads */
205
206 l = strlen(name);
207
208 /* First step, change the comm field. The main thread's comm is identical to the process comm. This means we
209 * can use PR_SET_NAME, which sets the thread name for the calling thread. */
210 if (prctl(PR_SET_NAME, name) < 0)
211 log_debug_errno(errno, "PR_SET_NAME failed: %m");
212 if (l >= TASK_COMM_LEN) /* Linux process names can be 15 chars at max */
213 truncated = true;
214
215 /* Second step, change glibc's ID of the process name. */
216 if (program_invocation_name) {
217 size_t k;
218
219 k = strlen(program_invocation_name);
220 strncpy(program_invocation_name, name, k);
221 if (l > k)
222 truncated = true;
223 }
224
225 /* Third step, completely replace the argv[] array the kernel maintains for us. This requires privileges, but
226 * has the advantage that the argv[] array is exactly what we want it to be, and not filled up with zeros at
227 * the end. This is the best option for changing /proc/self/cmdline. */
228
229 /* Let's not bother with this if we don't have euid == 0. Strictly speaking we should check for the
230 * CAP_SYS_RESOURCE capability which is independent of the euid. In our own code the capability generally is
231 * present only for euid == 0, hence let's use this as quick bypass check, to avoid calling mmap() if
232 * PR_SET_MM_ARG_{START,END} fails with EPERM later on anyway. After all geteuid() is dead cheap to call, but
233 * mmap() is not. */
234 if (geteuid() != 0)
235 log_debug("Skipping PR_SET_MM, as we don't have privileges.");
236 else if (mm_size < l+1) {
237 size_t nn_size;
238 char *nn;
239
240 nn_size = PAGE_ALIGN(l+1);
241 nn = mmap(NULL, nn_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
242 if (nn == MAP_FAILED) {
243 log_debug_errno(errno, "mmap() failed: %m");
244 goto use_saved_argv;
245 }
246
247 strncpy(nn, name, nn_size);
248
249 /* Now, let's tell the kernel about this new memory */
250 if (prctl(PR_SET_MM, PR_SET_MM_ARG_START, (unsigned long) nn, 0, 0) < 0) {
251 /* HACK: prctl() API is kind of dumb on this point. The existing end address may already be
252 * below the desired start address, in which case the kernel may have kicked this back due
253 * to a range-check failure (see linux/kernel/sys.c:validate_prctl_map() to see this in
254 * action). The proper solution would be to have a prctl() API that could set both start+end
255 * simultaneously, or at least let us query the existing address to anticipate this condition
256 * and respond accordingly. For now, we can only guess at the cause of this failure and try
257 * a workaround--which will briefly expand the arg space to something potentially huge before
258 * resizing it to what we want. */
259 log_debug_errno(errno, "PR_SET_MM_ARG_START failed, attempting PR_SET_MM_ARG_END hack: %m");
260
261 if (prctl(PR_SET_MM, PR_SET_MM_ARG_END, (unsigned long) nn + l + 1, 0, 0) < 0) {
262 log_debug_errno(errno, "PR_SET_MM_ARG_END hack failed, proceeding without: %m");
263 (void) munmap(nn, nn_size);
264 goto use_saved_argv;
265 }
266
267 if (prctl(PR_SET_MM, PR_SET_MM_ARG_START, (unsigned long) nn, 0, 0) < 0) {
268 log_debug_errno(errno, "PR_SET_MM_ARG_START still failed, proceeding without: %m");
269 goto use_saved_argv;
270 }
271 } else {
272 /* And update the end pointer to the new end, too. If this fails, we don't really know what
273 * to do, it's pretty unlikely that we can rollback, hence we'll just accept the failure,
274 * and continue. */
275 if (prctl(PR_SET_MM, PR_SET_MM_ARG_END, (unsigned long) nn + l + 1, 0, 0) < 0)
276 log_debug_errno(errno, "PR_SET_MM_ARG_END failed, proceeding without: %m");
277 }
278
279 if (mm)
280 (void) munmap(mm, mm_size);
281
282 mm = nn;
283 mm_size = nn_size;
284 } else {
285 strncpy(mm, name, mm_size);
286
287 /* Update the end pointer, continuing regardless of any failure. */
288 if (prctl(PR_SET_MM, PR_SET_MM_ARG_END, (unsigned long) mm + l + 1, 0, 0) < 0)
289 log_debug_errno(errno, "PR_SET_MM_ARG_END failed, proceeding without: %m");
290 }
291
292 use_saved_argv:
293 /* Fourth step: in all cases we'll also update the original argv[], so that our own code gets it right too if
294 * it still looks here */
295
296 if (saved_argc > 0) {
297 int i;
298
299 if (saved_argv[0]) {
300 size_t k;
301
302 k = strlen(saved_argv[0]);
303 strncpy(saved_argv[0], name, k);
304 if (l > k)
305 truncated = true;
306 }
307
308 for (i = 1; i < saved_argc; i++) {
309 if (!saved_argv[i])
310 break;
311
312 memzero(saved_argv[i], strlen(saved_argv[i]));
313 }
314 }
315
316 return !truncated;
317 }
318
319 int is_kernel_thread(pid_t pid) {
320 _cleanup_free_ char *line = NULL;
321 unsigned long long flags;
322 size_t l, i;
323 const char *p;
324 char *q;
325 int r;
326
327 if (IN_SET(pid, 0, 1) || pid == getpid_cached()) /* pid 1, and we ourselves certainly aren't a kernel thread */
328 return 0;
329 if (!pid_is_valid(pid))
330 return -EINVAL;
331
332 p = procfs_file_alloca(pid, "stat");
333 r = read_one_line_file(p, &line);
334 if (r == -ENOENT)
335 return -ESRCH;
336 if (r < 0)
337 return r;
338
339 /* Skip past the comm field */
340 q = strrchr(line, ')');
341 if (!q)
342 return -EINVAL;
343 q++;
344
345 /* Skip 6 fields to reach the flags field */
346 for (i = 0; i < 6; i++) {
347 l = strspn(q, WHITESPACE);
348 if (l < 1)
349 return -EINVAL;
350 q += l;
351
352 l = strcspn(q, WHITESPACE);
353 if (l < 1)
354 return -EINVAL;
355 q += l;
356 }
357
358 /* Skip preceding whitespace */
359 l = strspn(q, WHITESPACE);
360 if (l < 1)
361 return -EINVAL;
362 q += l;
363
364 /* Truncate the rest */
365 l = strcspn(q, WHITESPACE);
366 if (l < 1)
367 return -EINVAL;
368 q[l] = 0;
369
370 r = safe_atollu(q, &flags);
371 if (r < 0)
372 return r;
373
374 return !!(flags & PF_KTHREAD);
375 }
376
377 int get_process_capeff(pid_t pid, char **capeff) {
378 const char *p;
379 int r;
380
381 assert(capeff);
382 assert(pid >= 0);
383
384 p = procfs_file_alloca(pid, "status");
385
386 r = get_proc_field(p, "CapEff", WHITESPACE, capeff);
387 if (r == -ENOENT)
388 return -ESRCH;
389
390 return r;
391 }
392
393 static int get_process_link_contents(const char *proc_file, char **name) {
394 int r;
395
396 assert(proc_file);
397 assert(name);
398
399 r = readlink_malloc(proc_file, name);
400 if (r == -ENOENT)
401 return -ESRCH;
402 if (r < 0)
403 return r;
404
405 return 0;
406 }
407
408 int get_process_exe(pid_t pid, char **name) {
409 const char *p;
410 char *d;
411 int r;
412
413 assert(pid >= 0);
414
415 p = procfs_file_alloca(pid, "exe");
416 r = get_process_link_contents(p, name);
417 if (r < 0)
418 return r;
419
420 d = endswith(*name, " (deleted)");
421 if (d)
422 *d = '\0';
423
424 return 0;
425 }
426
427 static int get_process_id(pid_t pid, const char *field, uid_t *uid) {
428 _cleanup_fclose_ FILE *f = NULL;
429 const char *p;
430 int r;
431
432 assert(field);
433 assert(uid);
434
435 if (pid < 0)
436 return -EINVAL;
437
438 p = procfs_file_alloca(pid, "status");
439 r = fopen_unlocked(p, "re", &f);
440 if (r == -ENOENT)
441 return -ESRCH;
442 if (r < 0)
443 return r;
444
445 for (;;) {
446 _cleanup_free_ char *line = NULL;
447 char *l;
448
449 r = read_line(f, LONG_LINE_MAX, &line);
450 if (r < 0)
451 return r;
452 if (r == 0)
453 break;
454
455 l = strstrip(line);
456
457 if (startswith(l, field)) {
458 l += strlen(field);
459 l += strspn(l, WHITESPACE);
460
461 l[strcspn(l, WHITESPACE)] = 0;
462
463 return parse_uid(l, uid);
464 }
465 }
466
467 return -EIO;
468 }
469
470 int get_process_uid(pid_t pid, uid_t *uid) {
471
472 if (pid == 0 || pid == getpid_cached()) {
473 *uid = getuid();
474 return 0;
475 }
476
477 return get_process_id(pid, "Uid:", uid);
478 }
479
480 int get_process_gid(pid_t pid, gid_t *gid) {
481
482 if (pid == 0 || pid == getpid_cached()) {
483 *gid = getgid();
484 return 0;
485 }
486
487 assert_cc(sizeof(uid_t) == sizeof(gid_t));
488 return get_process_id(pid, "Gid:", gid);
489 }
490
491 int get_process_cwd(pid_t pid, char **cwd) {
492 const char *p;
493
494 assert(pid >= 0);
495
496 p = procfs_file_alloca(pid, "cwd");
497
498 return get_process_link_contents(p, cwd);
499 }
500
501 int get_process_root(pid_t pid, char **root) {
502 const char *p;
503
504 assert(pid >= 0);
505
506 p = procfs_file_alloca(pid, "root");
507
508 return get_process_link_contents(p, root);
509 }
510
511 #define ENVIRONMENT_BLOCK_MAX (5U*1024U*1024U)
512
513 int get_process_environ(pid_t pid, char **env) {
514 _cleanup_fclose_ FILE *f = NULL;
515 _cleanup_free_ char *outcome = NULL;
516 size_t allocated = 0, sz = 0;
517 const char *p;
518 int r;
519
520 assert(pid >= 0);
521 assert(env);
522
523 p = procfs_file_alloca(pid, "environ");
524
525 r = fopen_unlocked(p, "re", &f);
526 if (r == -ENOENT)
527 return -ESRCH;
528 if (r < 0)
529 return r;
530
531 for (;;) {
532 char c;
533
534 if (sz >= ENVIRONMENT_BLOCK_MAX)
535 return -ENOBUFS;
536
537 if (!GREEDY_REALLOC(outcome, allocated, sz + 5))
538 return -ENOMEM;
539
540 r = safe_fgetc(f, &c);
541 if (r < 0)
542 return r;
543 if (r == 0)
544 break;
545
546 if (c == '\0')
547 outcome[sz++] = '\n';
548 else
549 sz += cescape_char(c, outcome + sz);
550 }
551
552 outcome[sz] = '\0';
553 *env = TAKE_PTR(outcome);
554
555 return 0;
556 }
557
558 int get_process_ppid(pid_t pid, pid_t *_ppid) {
559 int r;
560 _cleanup_free_ char *line = NULL;
561 long unsigned ppid;
562 const char *p;
563
564 assert(pid >= 0);
565 assert(_ppid);
566
567 if (pid == 0 || pid == getpid_cached()) {
568 *_ppid = getppid();
569 return 0;
570 }
571
572 p = procfs_file_alloca(pid, "stat");
573 r = read_one_line_file(p, &line);
574 if (r == -ENOENT)
575 return -ESRCH;
576 if (r < 0)
577 return r;
578
579 /* Let's skip the pid and comm fields. The latter is enclosed
580 * in () but does not escape any () in its value, so let's
581 * skip over it manually */
582
583 p = strrchr(line, ')');
584 if (!p)
585 return -EIO;
586
587 p++;
588
589 if (sscanf(p, " "
590 "%*c " /* state */
591 "%lu ", /* ppid */
592 &ppid) != 1)
593 return -EIO;
594
595 if ((long unsigned) (pid_t) ppid != ppid)
596 return -ERANGE;
597
598 *_ppid = (pid_t) ppid;
599
600 return 0;
601 }
602
603 int wait_for_terminate(pid_t pid, siginfo_t *status) {
604 siginfo_t dummy;
605
606 assert(pid >= 1);
607
608 if (!status)
609 status = &dummy;
610
611 for (;;) {
612 zero(*status);
613
614 if (waitid(P_PID, pid, status, WEXITED) < 0) {
615
616 if (errno == EINTR)
617 continue;
618
619 return negative_errno();
620 }
621
622 return 0;
623 }
624 }
625
626 /*
627 * Return values:
628 * < 0 : wait_for_terminate() failed to get the state of the
629 * process, the process was terminated by a signal, or
630 * failed for an unknown reason.
631 * >=0 : The process terminated normally, and its exit code is
632 * returned.
633 *
634 * That is, success is indicated by a return value of zero, and an
635 * error is indicated by a non-zero value.
636 *
637 * A warning is emitted if the process terminates abnormally,
638 * and also if it returns non-zero unless check_exit_code is true.
639 */
640 int wait_for_terminate_and_check(const char *name, pid_t pid, WaitFlags flags) {
641 _cleanup_free_ char *buffer = NULL;
642 siginfo_t status;
643 int r, prio;
644
645 assert(pid > 1);
646
647 if (!name) {
648 r = get_process_comm(pid, &buffer);
649 if (r < 0)
650 log_debug_errno(r, "Failed to acquire process name of " PID_FMT ", ignoring: %m", pid);
651 else
652 name = buffer;
653 }
654
655 prio = flags & WAIT_LOG_ABNORMAL ? LOG_ERR : LOG_DEBUG;
656
657 r = wait_for_terminate(pid, &status);
658 if (r < 0)
659 return log_full_errno(prio, r, "Failed to wait for %s: %m", strna(name));
660
661 if (status.si_code == CLD_EXITED) {
662 if (status.si_status != EXIT_SUCCESS)
663 log_full(flags & WAIT_LOG_NON_ZERO_EXIT_STATUS ? LOG_ERR : LOG_DEBUG,
664 "%s failed with exit status %i.", strna(name), status.si_status);
665 else
666 log_debug("%s succeeded.", name);
667
668 return status.si_status;
669
670 } else if (IN_SET(status.si_code, CLD_KILLED, CLD_DUMPED)) {
671
672 log_full(prio, "%s terminated by signal %s.", strna(name), signal_to_string(status.si_status));
673 return -EPROTO;
674 }
675
676 log_full(prio, "%s failed due to unknown reason.", strna(name));
677 return -EPROTO;
678 }
679
680 /*
681 * Return values:
682 *
683 * < 0 : wait_for_terminate_with_timeout() failed to get the state of the process, the process timed out, the process
684 * was terminated by a signal, or failed for an unknown reason.
685 *
686 * >=0 : The process terminated normally with no failures.
687 *
688 * Success is indicated by a return value of zero, a timeout is indicated by ETIMEDOUT, and all other child failure
689 * states are indicated by error is indicated by a non-zero value.
690 *
691 * This call assumes SIGCHLD has been blocked already, in particular before the child to wait for has been forked off
692 * to remain entirely race-free.
693 */
694 int wait_for_terminate_with_timeout(pid_t pid, usec_t timeout) {
695 sigset_t mask;
696 int r;
697 usec_t until;
698
699 assert_se(sigemptyset(&mask) == 0);
700 assert_se(sigaddset(&mask, SIGCHLD) == 0);
701
702 /* Drop into a sigtimewait-based timeout. Waiting for the
703 * pid to exit. */
704 until = now(CLOCK_MONOTONIC) + timeout;
705 for (;;) {
706 usec_t n;
707 siginfo_t status = {};
708 struct timespec ts;
709
710 n = now(CLOCK_MONOTONIC);
711 if (n >= until)
712 break;
713
714 r = sigtimedwait(&mask, NULL, timespec_store(&ts, until - n)) < 0 ? -errno : 0;
715 /* Assuming we woke due to the child exiting. */
716 if (waitid(P_PID, pid, &status, WEXITED|WNOHANG) == 0) {
717 if (status.si_pid == pid) {
718 /* This is the correct child.*/
719 if (status.si_code == CLD_EXITED)
720 return (status.si_status == 0) ? 0 : -EPROTO;
721 else
722 return -EPROTO;
723 }
724 }
725 /* Not the child, check for errors and proceed appropriately */
726 if (r < 0) {
727 switch (r) {
728 case -EAGAIN:
729 /* Timed out, child is likely hung. */
730 return -ETIMEDOUT;
731 case -EINTR:
732 /* Received a different signal and should retry */
733 continue;
734 default:
735 /* Return any unexpected errors */
736 return r;
737 }
738 }
739 }
740
741 return -EPROTO;
742 }
743
744 void sigkill_wait(pid_t pid) {
745 assert(pid > 1);
746
747 if (kill(pid, SIGKILL) >= 0)
748 (void) wait_for_terminate(pid, NULL);
749 }
750
751 void sigkill_waitp(pid_t *pid) {
752 PROTECT_ERRNO;
753
754 if (!pid)
755 return;
756 if (*pid <= 1)
757 return;
758
759 sigkill_wait(*pid);
760 }
761
762 void sigterm_wait(pid_t pid) {
763 assert(pid > 1);
764
765 if (kill_and_sigcont(pid, SIGTERM) >= 0)
766 (void) wait_for_terminate(pid, NULL);
767 }
768
769 int kill_and_sigcont(pid_t pid, int sig) {
770 int r;
771
772 r = kill(pid, sig) < 0 ? -errno : 0;
773
774 /* If this worked, also send SIGCONT, unless we already just sent a SIGCONT, or SIGKILL was sent which isn't
775 * affected by a process being suspended anyway. */
776 if (r >= 0 && !IN_SET(sig, SIGCONT, SIGKILL))
777 (void) kill(pid, SIGCONT);
778
779 return r;
780 }
781
782 int getenv_for_pid(pid_t pid, const char *field, char **ret) {
783 _cleanup_fclose_ FILE *f = NULL;
784 char *value = NULL;
785 const char *path;
786 size_t l, sum = 0;
787 int r;
788
789 assert(pid >= 0);
790 assert(field);
791 assert(ret);
792
793 if (pid == 0 || pid == getpid_cached()) {
794 const char *e;
795
796 e = getenv(field);
797 if (!e) {
798 *ret = NULL;
799 return 0;
800 }
801
802 value = strdup(e);
803 if (!value)
804 return -ENOMEM;
805
806 *ret = value;
807 return 1;
808 }
809
810 if (!pid_is_valid(pid))
811 return -EINVAL;
812
813 path = procfs_file_alloca(pid, "environ");
814
815 r = fopen_unlocked(path, "re", &f);
816 if (r == -ENOENT)
817 return -ESRCH;
818 if (r < 0)
819 return r;
820
821 l = strlen(field);
822 for (;;) {
823 _cleanup_free_ char *line = NULL;
824
825 if (sum > ENVIRONMENT_BLOCK_MAX) /* Give up searching eventually */
826 return -ENOBUFS;
827
828 r = read_nul_string(f, LONG_LINE_MAX, &line);
829 if (r < 0)
830 return r;
831 if (r == 0) /* EOF */
832 break;
833
834 sum += r;
835
836 if (strneq(line, field, l) && line[l] == '=') {
837 value = strdup(line + l + 1);
838 if (!value)
839 return -ENOMEM;
840
841 *ret = value;
842 return 1;
843 }
844 }
845
846 *ret = NULL;
847 return 0;
848 }
849
850 int pid_is_my_child(pid_t pid) {
851 pid_t ppid;
852 int r;
853
854 if (pid <= 1)
855 return false;
856
857 r = get_process_ppid(pid, &ppid);
858 if (r < 0)
859 return r;
860
861 return ppid == getpid_cached();
862 }
863
864 bool pid_is_unwaited(pid_t pid) {
865 /* Checks whether a PID is still valid at all, including a zombie */
866
867 if (pid < 0)
868 return false;
869
870 if (pid <= 1) /* If we or PID 1 would be dead and have been waited for, this code would not be running */
871 return true;
872
873 if (pid == getpid_cached())
874 return true;
875
876 if (kill(pid, 0) >= 0)
877 return true;
878
879 return errno != ESRCH;
880 }
881
882 bool pid_is_alive(pid_t pid) {
883 int r;
884
885 /* Checks whether a PID is still valid and not a zombie */
886
887 if (pid < 0)
888 return false;
889
890 if (pid <= 1) /* If we or PID 1 would be a zombie, this code would not be running */
891 return true;
892
893 if (pid == getpid_cached())
894 return true;
895
896 r = get_process_state(pid);
897 if (IN_SET(r, -ESRCH, 'Z'))
898 return false;
899
900 return true;
901 }
902
903 int pid_from_same_root_fs(pid_t pid) {
904 const char *root;
905
906 if (pid < 0)
907 return false;
908
909 if (pid == 0 || pid == getpid_cached())
910 return true;
911
912 root = procfs_file_alloca(pid, "root");
913
914 return files_same(root, "/proc/1/root", 0);
915 }
916
917 bool is_main_thread(void) {
918 static thread_local int cached = 0;
919
920 if (_unlikely_(cached == 0))
921 cached = getpid_cached() == gettid() ? 1 : -1;
922
923 return cached > 0;
924 }
925
926 _noreturn_ void freeze(void) {
927
928 log_close();
929
930 /* Make sure nobody waits for us on a socket anymore */
931 (void) close_all_fds(NULL, 0);
932
933 sync();
934
935 /* Let's not freeze right away, but keep reaping zombies. */
936 for (;;) {
937 int r;
938 siginfo_t si = {};
939
940 r = waitid(P_ALL, 0, &si, WEXITED);
941 if (r < 0 && errno != EINTR)
942 break;
943 }
944
945 /* waitid() failed with an unexpected error, things are really borked. Freeze now! */
946 for (;;)
947 pause();
948 }
949
950 bool oom_score_adjust_is_valid(int oa) {
951 return oa >= OOM_SCORE_ADJ_MIN && oa <= OOM_SCORE_ADJ_MAX;
952 }
953
954 unsigned long personality_from_string(const char *p) {
955 int architecture;
956
957 if (!p)
958 return PERSONALITY_INVALID;
959
960 /* Parse a personality specifier. We use our own identifiers that indicate specific ABIs, rather than just
961 * hints regarding the register size, since we want to keep things open for multiple locally supported ABIs for
962 * the same register size. */
963
964 architecture = architecture_from_string(p);
965 if (architecture < 0)
966 return PERSONALITY_INVALID;
967
968 if (architecture == native_architecture())
969 return PER_LINUX;
970 #ifdef SECONDARY_ARCHITECTURE
971 if (architecture == SECONDARY_ARCHITECTURE)
972 return PER_LINUX32;
973 #endif
974
975 return PERSONALITY_INVALID;
976 }
977
978 const char* personality_to_string(unsigned long p) {
979 int architecture = _ARCHITECTURE_INVALID;
980
981 if (p == PER_LINUX)
982 architecture = native_architecture();
983 #ifdef SECONDARY_ARCHITECTURE
984 else if (p == PER_LINUX32)
985 architecture = SECONDARY_ARCHITECTURE;
986 #endif
987
988 if (architecture < 0)
989 return NULL;
990
991 return architecture_to_string(architecture);
992 }
993
994 int safe_personality(unsigned long p) {
995 int ret;
996
997 /* So here's the deal, personality() is weirdly defined by glibc. In some cases it returns a failure via errno,
998 * and in others as negative return value containing an errno-like value. Let's work around this: this is a
999 * wrapper that uses errno if it is set, and uses the return value otherwise. And then it sets both errno and
1000 * the return value indicating the same issue, so that we are definitely on the safe side.
1001 *
1002 * See https://github.com/systemd/systemd/issues/6737 */
1003
1004 errno = 0;
1005 ret = personality(p);
1006 if (ret < 0) {
1007 if (errno != 0)
1008 return -errno;
1009
1010 errno = -ret;
1011 }
1012
1013 return ret;
1014 }
1015
1016 int opinionated_personality(unsigned long *ret) {
1017 int current;
1018
1019 /* Returns the current personality, or PERSONALITY_INVALID if we can't determine it. This function is a bit
1020 * opinionated though, and ignores all the finer-grained bits and exotic personalities, only distinguishing the
1021 * two most relevant personalities: PER_LINUX and PER_LINUX32. */
1022
1023 current = safe_personality(PERSONALITY_INVALID);
1024 if (current < 0)
1025 return current;
1026
1027 if (((unsigned long) current & 0xffff) == PER_LINUX32)
1028 *ret = PER_LINUX32;
1029 else
1030 *ret = PER_LINUX;
1031
1032 return 0;
1033 }
1034
1035 void valgrind_summary_hack(void) {
1036 #if HAVE_VALGRIND_VALGRIND_H
1037 if (getpid_cached() == 1 && RUNNING_ON_VALGRIND) {
1038 pid_t pid;
1039 pid = raw_clone(SIGCHLD);
1040 if (pid < 0)
1041 log_emergency_errno(errno, "Failed to fork off valgrind helper: %m");
1042 else if (pid == 0)
1043 exit(EXIT_SUCCESS);
1044 else {
1045 log_info("Spawned valgrind helper as PID "PID_FMT".", pid);
1046 (void) wait_for_terminate(pid, NULL);
1047 }
1048 }
1049 #endif
1050 }
1051
1052 int pid_compare_func(const pid_t *a, const pid_t *b) {
1053 /* Suitable for usage in qsort() */
1054 return CMP(*a, *b);
1055 }
1056
1057 int ioprio_parse_priority(const char *s, int *ret) {
1058 int i, r;
1059
1060 assert(s);
1061 assert(ret);
1062
1063 r = safe_atoi(s, &i);
1064 if (r < 0)
1065 return r;
1066
1067 if (!ioprio_priority_is_valid(i))
1068 return -EINVAL;
1069
1070 *ret = i;
1071 return 0;
1072 }
1073
1074 /* The cached PID, possible values:
1075 *
1076 * == UNSET [0] → cache not initialized yet
1077 * == BUSY [-1] → some thread is initializing it at the moment
1078 * any other → the cached PID
1079 */
1080
1081 #define CACHED_PID_UNSET ((pid_t) 0)
1082 #define CACHED_PID_BUSY ((pid_t) -1)
1083
1084 static pid_t cached_pid = CACHED_PID_UNSET;
1085
1086 void reset_cached_pid(void) {
1087 /* Invoked in the child after a fork(), i.e. at the first moment the PID changed */
1088 cached_pid = CACHED_PID_UNSET;
1089 }
1090
1091 /* We use glibc __register_atfork() + __dso_handle directly here, as they are not included in the glibc
1092 * headers. __register_atfork() is mostly equivalent to pthread_atfork(), but doesn't require us to link against
1093 * libpthread, as it is part of glibc anyway. */
1094 extern int __register_atfork(void (*prepare) (void), void (*parent) (void), void (*child) (void), void *dso_handle);
1095 extern void* __dso_handle _weak_;
1096
1097 pid_t getpid_cached(void) {
1098 static bool installed = false;
1099 pid_t current_value;
1100
1101 /* getpid_cached() is much like getpid(), but caches the value in local memory, to avoid having to invoke a
1102 * system call each time. This restores glibc behaviour from before 2.24, when getpid() was unconditionally
1103 * cached. Starting with 2.24 getpid() started to become prohibitively expensive when used for detecting when
1104 * objects were used across fork()s. With this caching the old behaviour is somewhat restored.
1105 *
1106 * https://bugzilla.redhat.com/show_bug.cgi?id=1443976
1107 * https://sourceware.org/git/gitweb.cgi?p=glibc.git;h=c579f48edba88380635ab98cb612030e3ed8691e
1108 */
1109
1110 current_value = __sync_val_compare_and_swap(&cached_pid, CACHED_PID_UNSET, CACHED_PID_BUSY);
1111
1112 switch (current_value) {
1113
1114 case CACHED_PID_UNSET: { /* Not initialized yet, then do so now */
1115 pid_t new_pid;
1116
1117 new_pid = raw_getpid();
1118
1119 if (!installed) {
1120 /* __register_atfork() either returns 0 or -ENOMEM, in its glibc implementation. Since it's
1121 * only half-documented (glibc doesn't document it but LSB does — though only superficially)
1122 * we'll check for errors only in the most generic fashion possible. */
1123
1124 if (__register_atfork(NULL, NULL, reset_cached_pid, __dso_handle) != 0) {
1125 /* OOM? Let's try again later */
1126 cached_pid = CACHED_PID_UNSET;
1127 return new_pid;
1128 }
1129
1130 installed = true;
1131 }
1132
1133 cached_pid = new_pid;
1134 return new_pid;
1135 }
1136
1137 case CACHED_PID_BUSY: /* Somebody else is currently initializing */
1138 return raw_getpid();
1139
1140 default: /* Properly initialized */
1141 return current_value;
1142 }
1143 }
1144
1145 int must_be_root(void) {
1146
1147 if (geteuid() == 0)
1148 return 0;
1149
1150 return log_error_errno(SYNTHETIC_ERRNO(EPERM), "Need to be root.");
1151 }
1152
1153 int safe_fork_full(
1154 const char *name,
1155 const int except_fds[],
1156 size_t n_except_fds,
1157 ForkFlags flags,
1158 pid_t *ret_pid) {
1159
1160 pid_t original_pid, pid;
1161 sigset_t saved_ss, ss;
1162 bool block_signals = false;
1163 int prio, r;
1164
1165 /* A wrapper around fork(), that does a couple of important initializations in addition to mere forking. Always
1166 * returns the child's PID in *ret_pid. Returns == 0 in the child, and > 0 in the parent. */
1167
1168 prio = flags & FORK_LOG ? LOG_ERR : LOG_DEBUG;
1169
1170 original_pid = getpid_cached();
1171
1172 if (flags & (FORK_RESET_SIGNALS|FORK_DEATHSIG)) {
1173 /* We temporarily block all signals, so that the new child has them blocked initially. This way, we can
1174 * be sure that SIGTERMs are not lost we might send to the child. */
1175
1176 assert_se(sigfillset(&ss) >= 0);
1177 block_signals = true;
1178
1179 } else if (flags & FORK_WAIT) {
1180 /* Let's block SIGCHLD at least, so that we can safely watch for the child process */
1181
1182 assert_se(sigemptyset(&ss) >= 0);
1183 assert_se(sigaddset(&ss, SIGCHLD) >= 0);
1184 block_signals = true;
1185 }
1186
1187 if (block_signals)
1188 if (sigprocmask(SIG_SETMASK, &ss, &saved_ss) < 0)
1189 return log_full_errno(prio, errno, "Failed to set signal mask: %m");
1190
1191 if (flags & FORK_NEW_MOUNTNS)
1192 pid = raw_clone(SIGCHLD|CLONE_NEWNS);
1193 else
1194 pid = fork();
1195 if (pid < 0) {
1196 r = -errno;
1197
1198 if (block_signals) /* undo what we did above */
1199 (void) sigprocmask(SIG_SETMASK, &saved_ss, NULL);
1200
1201 return log_full_errno(prio, r, "Failed to fork: %m");
1202 }
1203 if (pid > 0) {
1204 /* We are in the parent process */
1205
1206 log_debug("Successfully forked off '%s' as PID " PID_FMT ".", strna(name), pid);
1207
1208 if (flags & FORK_WAIT) {
1209 r = wait_for_terminate_and_check(name, pid, (flags & FORK_LOG ? WAIT_LOG : 0));
1210 if (r < 0)
1211 return r;
1212 if (r != EXIT_SUCCESS) /* exit status > 0 should be treated as failure, too */
1213 return -EPROTO;
1214 }
1215
1216 if (block_signals) /* undo what we did above */
1217 (void) sigprocmask(SIG_SETMASK, &saved_ss, NULL);
1218
1219 if (ret_pid)
1220 *ret_pid = pid;
1221
1222 return 1;
1223 }
1224
1225 /* We are in the child process */
1226
1227 if (flags & FORK_REOPEN_LOG) {
1228 /* Close the logs if requested, before we log anything. And make sure we reopen it if needed. */
1229 log_close();
1230 log_set_open_when_needed(true);
1231 }
1232
1233 if (name) {
1234 r = rename_process(name);
1235 if (r < 0)
1236 log_full_errno(flags & FORK_LOG ? LOG_WARNING : LOG_DEBUG,
1237 r, "Failed to rename process, ignoring: %m");
1238 }
1239
1240 if (flags & FORK_DEATHSIG)
1241 if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0) {
1242 log_full_errno(prio, errno, "Failed to set death signal: %m");
1243 _exit(EXIT_FAILURE);
1244 }
1245
1246 if (flags & FORK_RESET_SIGNALS) {
1247 r = reset_all_signal_handlers();
1248 if (r < 0) {
1249 log_full_errno(prio, r, "Failed to reset signal handlers: %m");
1250 _exit(EXIT_FAILURE);
1251 }
1252
1253 /* This implicitly undoes the signal mask stuff we did before the fork()ing above */
1254 r = reset_signal_mask();
1255 if (r < 0) {
1256 log_full_errno(prio, r, "Failed to reset signal mask: %m");
1257 _exit(EXIT_FAILURE);
1258 }
1259 } else if (block_signals) { /* undo what we did above */
1260 if (sigprocmask(SIG_SETMASK, &saved_ss, NULL) < 0) {
1261 log_full_errno(prio, errno, "Failed to restore signal mask: %m");
1262 _exit(EXIT_FAILURE);
1263 }
1264 }
1265
1266 if (flags & FORK_DEATHSIG) {
1267 pid_t ppid;
1268 /* Let's see if the parent PID is still the one we started from? If not, then the parent
1269 * already died by the time we set PR_SET_PDEATHSIG, hence let's emulate the effect */
1270
1271 ppid = getppid();
1272 if (ppid == 0)
1273 /* Parent is in a differn't PID namespace. */;
1274 else if (ppid != original_pid) {
1275 log_debug("Parent died early, raising SIGTERM.");
1276 (void) raise(SIGTERM);
1277 _exit(EXIT_FAILURE);
1278 }
1279 }
1280
1281 if (FLAGS_SET(flags, FORK_NEW_MOUNTNS | FORK_MOUNTNS_SLAVE)) {
1282
1283 /* Optionally, make sure we never propagate mounts to the host. */
1284
1285 if (mount(NULL, "/", NULL, MS_SLAVE | MS_REC, NULL) < 0) {
1286 log_full_errno(prio, errno, "Failed to remount root directory as MS_SLAVE: %m");
1287 _exit(EXIT_FAILURE);
1288 }
1289 }
1290
1291 if (flags & FORK_CLOSE_ALL_FDS) {
1292 /* Close the logs here in case it got reopened above, as close_all_fds() would close them for us */
1293 log_close();
1294
1295 r = close_all_fds(except_fds, n_except_fds);
1296 if (r < 0) {
1297 log_full_errno(prio, r, "Failed to close all file descriptors: %m");
1298 _exit(EXIT_FAILURE);
1299 }
1300 }
1301
1302 /* When we were asked to reopen the logs, do so again now */
1303 if (flags & FORK_REOPEN_LOG) {
1304 log_open();
1305 log_set_open_when_needed(false);
1306 }
1307
1308 if (flags & FORK_NULL_STDIO) {
1309 r = make_null_stdio();
1310 if (r < 0) {
1311 log_full_errno(prio, r, "Failed to connect stdin/stdout to /dev/null: %m");
1312 _exit(EXIT_FAILURE);
1313 }
1314 }
1315
1316 if (flags & FORK_RLIMIT_NOFILE_SAFE) {
1317 r = rlimit_nofile_safe();
1318 if (r < 0) {
1319 log_full_errno(prio, r, "Failed to lower RLIMIT_NOFILE's soft limit to 1K: %m");
1320 _exit(EXIT_FAILURE);
1321 }
1322 }
1323
1324 if (ret_pid)
1325 *ret_pid = getpid_cached();
1326
1327 return 0;
1328 }
1329
1330 int namespace_fork(
1331 const char *outer_name,
1332 const char *inner_name,
1333 const int except_fds[],
1334 size_t n_except_fds,
1335 ForkFlags flags,
1336 int pidns_fd,
1337 int mntns_fd,
1338 int netns_fd,
1339 int userns_fd,
1340 int root_fd,
1341 pid_t *ret_pid) {
1342
1343 int r;
1344
1345 /* This is much like safe_fork(), but forks twice, and joins the specified namespaces in the middle
1346 * process. This ensures that we are fully a member of the destination namespace, with pidns an all, so that
1347 * /proc/self/fd works correctly. */
1348
1349 r = safe_fork_full(outer_name, except_fds, n_except_fds, (flags|FORK_DEATHSIG) & ~(FORK_REOPEN_LOG|FORK_NEW_MOUNTNS|FORK_MOUNTNS_SLAVE), ret_pid);
1350 if (r < 0)
1351 return r;
1352 if (r == 0) {
1353 pid_t pid;
1354
1355 /* Child */
1356
1357 r = namespace_enter(pidns_fd, mntns_fd, netns_fd, userns_fd, root_fd);
1358 if (r < 0) {
1359 log_full_errno(FLAGS_SET(flags, FORK_LOG) ? LOG_ERR : LOG_DEBUG, r, "Failed to join namespace: %m");
1360 _exit(EXIT_FAILURE);
1361 }
1362
1363 /* We mask a few flags here that either make no sense for the grandchild, or that we don't have to do again */
1364 r = safe_fork_full(inner_name, except_fds, n_except_fds, flags & ~(FORK_WAIT|FORK_RESET_SIGNALS|FORK_CLOSE_ALL_FDS|FORK_NULL_STDIO), &pid);
1365 if (r < 0)
1366 _exit(EXIT_FAILURE);
1367 if (r == 0) {
1368 /* Child */
1369 if (ret_pid)
1370 *ret_pid = pid;
1371 return 0;
1372 }
1373
1374 r = wait_for_terminate_and_check(inner_name, pid, FLAGS_SET(flags, FORK_LOG) ? WAIT_LOG : 0);
1375 if (r < 0)
1376 _exit(EXIT_FAILURE);
1377
1378 _exit(r);
1379 }
1380
1381 return 1;
1382 }
1383
1384 int fork_agent(const char *name, const int except[], size_t n_except, pid_t *ret_pid, const char *path, ...) {
1385 bool stdout_is_tty, stderr_is_tty;
1386 size_t n, i;
1387 va_list ap;
1388 char **l;
1389 int r;
1390
1391 assert(path);
1392
1393 /* Spawns a temporary TTY agent, making sure it goes away when we go away */
1394
1395 r = safe_fork_full(name, except, n_except, FORK_RESET_SIGNALS|FORK_DEATHSIG|FORK_CLOSE_ALL_FDS, ret_pid);
1396 if (r < 0)
1397 return r;
1398 if (r > 0)
1399 return 0;
1400
1401 /* In the child: */
1402
1403 stdout_is_tty = isatty(STDOUT_FILENO);
1404 stderr_is_tty = isatty(STDERR_FILENO);
1405
1406 if (!stdout_is_tty || !stderr_is_tty) {
1407 int fd;
1408
1409 /* Detach from stdout/stderr. and reopen
1410 * /dev/tty for them. This is important to
1411 * ensure that when systemctl is started via
1412 * popen() or a similar call that expects to
1413 * read EOF we actually do generate EOF and
1414 * not delay this indefinitely by because we
1415 * keep an unused copy of stdin around. */
1416 fd = open("/dev/tty", O_WRONLY);
1417 if (fd < 0) {
1418 log_error_errno(errno, "Failed to open /dev/tty: %m");
1419 _exit(EXIT_FAILURE);
1420 }
1421
1422 if (!stdout_is_tty && dup2(fd, STDOUT_FILENO) < 0) {
1423 log_error_errno(errno, "Failed to dup2 /dev/tty: %m");
1424 _exit(EXIT_FAILURE);
1425 }
1426
1427 if (!stderr_is_tty && dup2(fd, STDERR_FILENO) < 0) {
1428 log_error_errno(errno, "Failed to dup2 /dev/tty: %m");
1429 _exit(EXIT_FAILURE);
1430 }
1431
1432 safe_close_above_stdio(fd);
1433 }
1434
1435 (void) rlimit_nofile_safe();
1436
1437 /* Count arguments */
1438 va_start(ap, path);
1439 for (n = 0; va_arg(ap, char*); n++)
1440 ;
1441 va_end(ap);
1442
1443 /* Allocate strv */
1444 l = newa(char*, n + 1);
1445
1446 /* Fill in arguments */
1447 va_start(ap, path);
1448 for (i = 0; i <= n; i++)
1449 l[i] = va_arg(ap, char*);
1450 va_end(ap);
1451
1452 execv(path, l);
1453 _exit(EXIT_FAILURE);
1454 }
1455
1456 int set_oom_score_adjust(int value) {
1457 char t[DECIMAL_STR_MAX(int)];
1458
1459 sprintf(t, "%i", value);
1460
1461 return write_string_file("/proc/self/oom_score_adj", t,
1462 WRITE_STRING_FILE_VERIFY_ON_FAILURE|WRITE_STRING_FILE_DISABLE_BUFFER);
1463 }
1464
1465 int cpus_in_affinity_mask(void) {
1466 size_t n = 16;
1467 int r;
1468
1469 for (;;) {
1470 cpu_set_t *c;
1471
1472 c = CPU_ALLOC(n);
1473 if (!c)
1474 return -ENOMEM;
1475
1476 if (sched_getaffinity(0, CPU_ALLOC_SIZE(n), c) >= 0) {
1477 int k;
1478
1479 k = CPU_COUNT_S(CPU_ALLOC_SIZE(n), c);
1480 CPU_FREE(c);
1481
1482 if (k <= 0)
1483 return -EINVAL;
1484
1485 return k;
1486 }
1487
1488 r = -errno;
1489 CPU_FREE(c);
1490
1491 if (r != -EINVAL)
1492 return r;
1493 if (n > SIZE_MAX/2)
1494 return -ENOMEM;
1495 n *= 2;
1496 }
1497 }
1498
1499 static const char *const ioprio_class_table[] = {
1500 [IOPRIO_CLASS_NONE] = "none",
1501 [IOPRIO_CLASS_RT] = "realtime",
1502 [IOPRIO_CLASS_BE] = "best-effort",
1503 [IOPRIO_CLASS_IDLE] = "idle"
1504 };
1505
1506 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(ioprio_class, int, IOPRIO_N_CLASSES);
1507
1508 static const char *const sigchld_code_table[] = {
1509 [CLD_EXITED] = "exited",
1510 [CLD_KILLED] = "killed",
1511 [CLD_DUMPED] = "dumped",
1512 [CLD_TRAPPED] = "trapped",
1513 [CLD_STOPPED] = "stopped",
1514 [CLD_CONTINUED] = "continued",
1515 };
1516
1517 DEFINE_STRING_TABLE_LOOKUP(sigchld_code, int);
1518
1519 static const char* const sched_policy_table[] = {
1520 [SCHED_OTHER] = "other",
1521 [SCHED_BATCH] = "batch",
1522 [SCHED_IDLE] = "idle",
1523 [SCHED_FIFO] = "fifo",
1524 [SCHED_RR] = "rr"
1525 };
1526
1527 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(sched_policy, int, INT_MAX);