]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/basic/process-util.c
pkgconfig: define variables relative to ${prefix}/${rootprefix}/${sysconfdir}
[thirdparty/systemd.git] / src / basic / process-util.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <ctype.h>
4 #include <errno.h>
5 #include <limits.h>
6 #include <linux/oom.h>
7 #include <sched.h>
8 #include <signal.h>
9 #include <stdbool.h>
10 #include <stdio.h>
11 #include <stdio_ext.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <sys/mman.h>
15 #include <sys/mount.h>
16 #include <sys/personality.h>
17 #include <sys/prctl.h>
18 #include <sys/types.h>
19 #include <sys/wait.h>
20 #include <syslog.h>
21 #include <unistd.h>
22 #if HAVE_VALGRIND_VALGRIND_H
23 #include <valgrind/valgrind.h>
24 #endif
25
26 #include "alloc-util.h"
27 #include "architecture.h"
28 #include "escape.h"
29 #include "fd-util.h"
30 #include "fileio.h"
31 #include "fs-util.h"
32 #include "ioprio.h"
33 #include "log.h"
34 #include "macro.h"
35 #include "missing.h"
36 #include "process-util.h"
37 #include "raw-clone.h"
38 #include "signal-util.h"
39 #include "stat-util.h"
40 #include "string-table.h"
41 #include "string-util.h"
42 #include "terminal-util.h"
43 #include "user-util.h"
44 #include "util.h"
45
46 int get_process_state(pid_t pid) {
47 const char *p;
48 char state;
49 int r;
50 _cleanup_free_ char *line = NULL;
51
52 assert(pid >= 0);
53
54 p = procfs_file_alloca(pid, "stat");
55
56 r = read_one_line_file(p, &line);
57 if (r == -ENOENT)
58 return -ESRCH;
59 if (r < 0)
60 return r;
61
62 p = strrchr(line, ')');
63 if (!p)
64 return -EIO;
65
66 p++;
67
68 if (sscanf(p, " %c", &state) != 1)
69 return -EIO;
70
71 return (unsigned char) state;
72 }
73
74 int get_process_comm(pid_t pid, char **ret) {
75 _cleanup_free_ char *escaped = NULL, *comm = NULL;
76 const char *p;
77 int r;
78
79 assert(ret);
80 assert(pid >= 0);
81
82 escaped = new(char, TASK_COMM_LEN);
83 if (!escaped)
84 return -ENOMEM;
85
86 p = procfs_file_alloca(pid, "comm");
87
88 r = read_one_line_file(p, &comm);
89 if (r == -ENOENT)
90 return -ESRCH;
91 if (r < 0)
92 return r;
93
94 /* Escape unprintable characters, just in case, but don't grow the string beyond the underlying size */
95 cellescape(escaped, TASK_COMM_LEN, comm);
96
97 *ret = TAKE_PTR(escaped);
98 return 0;
99 }
100
101 int get_process_cmdline(pid_t pid, size_t max_length, bool comm_fallback, char **line) {
102 _cleanup_fclose_ FILE *f = NULL;
103 bool space = false;
104 char *k, *ans = NULL;
105 const char *p;
106 int c;
107
108 assert(line);
109 assert(pid >= 0);
110
111 /* Retrieves a process' command line. Replaces unprintable characters while doing so by whitespace (coalescing
112 * multiple sequential ones into one). If max_length is != 0 will return a string of the specified size at most
113 * (the trailing NUL byte does count towards the length here!), abbreviated with a "..." ellipsis. If
114 * comm_fallback is true and the process has no command line set (the case for kernel threads), or has a
115 * command line that resolves to the empty string will return the "comm" name of the process instead.
116 *
117 * Returns -ESRCH if the process doesn't exist, and -ENOENT if the process has no command line (and
118 * comm_fallback is false). Returns 0 and sets *line otherwise. */
119
120 p = procfs_file_alloca(pid, "cmdline");
121
122 f = fopen(p, "re");
123 if (!f) {
124 if (errno == ENOENT)
125 return -ESRCH;
126 return -errno;
127 }
128
129 (void) __fsetlocking(f, FSETLOCKING_BYCALLER);
130
131 if (max_length == 1) {
132
133 /* If there's only room for one byte, return the empty string */
134 ans = new0(char, 1);
135 if (!ans)
136 return -ENOMEM;
137
138 *line = ans;
139 return 0;
140
141 } else if (max_length == 0) {
142 size_t len = 0, allocated = 0;
143
144 while ((c = getc(f)) != EOF) {
145
146 if (!GREEDY_REALLOC(ans, allocated, len+3)) {
147 free(ans);
148 return -ENOMEM;
149 }
150
151 if (isprint(c)) {
152 if (space) {
153 ans[len++] = ' ';
154 space = false;
155 }
156
157 ans[len++] = c;
158 } else if (len > 0)
159 space = true;
160 }
161
162 if (len > 0)
163 ans[len] = '\0';
164 else
165 ans = mfree(ans);
166
167 } else {
168 bool dotdotdot = false;
169 size_t left;
170
171 ans = new(char, max_length);
172 if (!ans)
173 return -ENOMEM;
174
175 k = ans;
176 left = max_length;
177 while ((c = getc(f)) != EOF) {
178
179 if (isprint(c)) {
180
181 if (space) {
182 if (left <= 2) {
183 dotdotdot = true;
184 break;
185 }
186
187 *(k++) = ' ';
188 left--;
189 space = false;
190 }
191
192 if (left <= 1) {
193 dotdotdot = true;
194 break;
195 }
196
197 *(k++) = (char) c;
198 left--;
199 } else if (k > ans)
200 space = true;
201 }
202
203 if (dotdotdot) {
204 if (max_length <= 4) {
205 k = ans;
206 left = max_length;
207 } else {
208 k = ans + max_length - 4;
209 left = 4;
210
211 /* Eat up final spaces */
212 while (k > ans && isspace(k[-1])) {
213 k--;
214 left++;
215 }
216 }
217
218 strncpy(k, "...", left-1);
219 k[left-1] = 0;
220 } else
221 *k = 0;
222 }
223
224 /* Kernel threads have no argv[] */
225 if (isempty(ans)) {
226 _cleanup_free_ char *t = NULL;
227 int h;
228
229 free(ans);
230
231 if (!comm_fallback)
232 return -ENOENT;
233
234 h = get_process_comm(pid, &t);
235 if (h < 0)
236 return h;
237
238 if (max_length == 0)
239 ans = strjoin("[", t, "]");
240 else {
241 size_t l;
242
243 l = strlen(t);
244
245 if (l + 3 <= max_length)
246 ans = strjoin("[", t, "]");
247 else if (max_length <= 6) {
248
249 ans = new(char, max_length);
250 if (!ans)
251 return -ENOMEM;
252
253 memcpy(ans, "[...]", max_length-1);
254 ans[max_length-1] = 0;
255 } else {
256 t[max_length - 6] = 0;
257
258 /* Chop off final spaces */
259 delete_trailing_chars(t, WHITESPACE);
260
261 ans = strjoin("[", t, "...]");
262 }
263 }
264 if (!ans)
265 return -ENOMEM;
266 }
267
268 *line = ans;
269 return 0;
270 }
271
272 int rename_process(const char name[]) {
273 static size_t mm_size = 0;
274 static char *mm = NULL;
275 bool truncated = false;
276 size_t l;
277
278 /* This is a like a poor man's setproctitle(). It changes the comm field, argv[0], and also the glibc's
279 * internally used name of the process. For the first one a limit of 16 chars applies; to the second one in
280 * many cases one of 10 (i.e. length of "/sbin/init") — however if we have CAP_SYS_RESOURCES it is unbounded;
281 * to the third one 7 (i.e. the length of "systemd". If you pass a longer string it will likely be
282 * truncated.
283 *
284 * Returns 0 if a name was set but truncated, > 0 if it was set but not truncated. */
285
286 if (isempty(name))
287 return -EINVAL; /* let's not confuse users unnecessarily with an empty name */
288
289 if (!is_main_thread())
290 return -EPERM; /* Let's not allow setting the process name from other threads than the main one, as we
291 * cache things without locking, and we make assumptions that PR_SET_NAME sets the
292 * process name that isn't correct on any other threads */
293
294 l = strlen(name);
295
296 /* First step, change the comm field. The main thread's comm is identical to the process comm. This means we
297 * can use PR_SET_NAME, which sets the thread name for the calling thread. */
298 if (prctl(PR_SET_NAME, name) < 0)
299 log_debug_errno(errno, "PR_SET_NAME failed: %m");
300 if (l >= TASK_COMM_LEN) /* Linux process names can be 15 chars at max */
301 truncated = true;
302
303 /* Second step, change glibc's ID of the process name. */
304 if (program_invocation_name) {
305 size_t k;
306
307 k = strlen(program_invocation_name);
308 strncpy(program_invocation_name, name, k);
309 if (l > k)
310 truncated = true;
311 }
312
313 /* Third step, completely replace the argv[] array the kernel maintains for us. This requires privileges, but
314 * has the advantage that the argv[] array is exactly what we want it to be, and not filled up with zeros at
315 * the end. This is the best option for changing /proc/self/cmdline. */
316
317 /* Let's not bother with this if we don't have euid == 0. Strictly speaking we should check for the
318 * CAP_SYS_RESOURCE capability which is independent of the euid. In our own code the capability generally is
319 * present only for euid == 0, hence let's use this as quick bypass check, to avoid calling mmap() if
320 * PR_SET_MM_ARG_{START,END} fails with EPERM later on anyway. After all geteuid() is dead cheap to call, but
321 * mmap() is not. */
322 if (geteuid() != 0)
323 log_debug("Skipping PR_SET_MM, as we don't have privileges.");
324 else if (mm_size < l+1) {
325 size_t nn_size;
326 char *nn;
327
328 nn_size = PAGE_ALIGN(l+1);
329 nn = mmap(NULL, nn_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
330 if (nn == MAP_FAILED) {
331 log_debug_errno(errno, "mmap() failed: %m");
332 goto use_saved_argv;
333 }
334
335 strncpy(nn, name, nn_size);
336
337 /* Now, let's tell the kernel about this new memory */
338 if (prctl(PR_SET_MM, PR_SET_MM_ARG_START, (unsigned long) nn, 0, 0) < 0) {
339 /* HACK: prctl() API is kind of dumb on this point. The existing end address may already be
340 * below the desired start address, in which case the kernel may have kicked this back due
341 * to a range-check failure (see linux/kernel/sys.c:validate_prctl_map() to see this in
342 * action). The proper solution would be to have a prctl() API that could set both start+end
343 * simultaneously, or at least let us query the existing address to anticipate this condition
344 * and respond accordingly. For now, we can only guess at the cause of this failure and try
345 * a workaround--which will briefly expand the arg space to something potentially huge before
346 * resizing it to what we want. */
347 log_debug_errno(errno, "PR_SET_MM_ARG_START failed, attempting PR_SET_MM_ARG_END hack: %m");
348
349 if (prctl(PR_SET_MM, PR_SET_MM_ARG_END, (unsigned long) nn + l + 1, 0, 0) < 0) {
350 log_debug_errno(errno, "PR_SET_MM_ARG_END hack failed, proceeding without: %m");
351 (void) munmap(nn, nn_size);
352 goto use_saved_argv;
353 }
354
355 if (prctl(PR_SET_MM, PR_SET_MM_ARG_START, (unsigned long) nn, 0, 0) < 0) {
356 log_debug_errno(errno, "PR_SET_MM_ARG_START still failed, proceeding without: %m");
357 goto use_saved_argv;
358 }
359 } else {
360 /* And update the end pointer to the new end, too. If this fails, we don't really know what
361 * to do, it's pretty unlikely that we can rollback, hence we'll just accept the failure,
362 * and continue. */
363 if (prctl(PR_SET_MM, PR_SET_MM_ARG_END, (unsigned long) nn + l + 1, 0, 0) < 0)
364 log_debug_errno(errno, "PR_SET_MM_ARG_END failed, proceeding without: %m");
365 }
366
367 if (mm)
368 (void) munmap(mm, mm_size);
369
370 mm = nn;
371 mm_size = nn_size;
372 } else {
373 strncpy(mm, name, mm_size);
374
375 /* Update the end pointer, continuing regardless of any failure. */
376 if (prctl(PR_SET_MM, PR_SET_MM_ARG_END, (unsigned long) mm + l + 1, 0, 0) < 0)
377 log_debug_errno(errno, "PR_SET_MM_ARG_END failed, proceeding without: %m");
378 }
379
380 use_saved_argv:
381 /* Fourth step: in all cases we'll also update the original argv[], so that our own code gets it right too if
382 * it still looks here */
383
384 if (saved_argc > 0) {
385 int i;
386
387 if (saved_argv[0]) {
388 size_t k;
389
390 k = strlen(saved_argv[0]);
391 strncpy(saved_argv[0], name, k);
392 if (l > k)
393 truncated = true;
394 }
395
396 for (i = 1; i < saved_argc; i++) {
397 if (!saved_argv[i])
398 break;
399
400 memzero(saved_argv[i], strlen(saved_argv[i]));
401 }
402 }
403
404 return !truncated;
405 }
406
407 int is_kernel_thread(pid_t pid) {
408 _cleanup_free_ char *line = NULL;
409 unsigned long long flags;
410 size_t l, i;
411 const char *p;
412 char *q;
413 int r;
414
415 if (IN_SET(pid, 0, 1) || pid == getpid_cached()) /* pid 1, and we ourselves certainly aren't a kernel thread */
416 return 0;
417 if (!pid_is_valid(pid))
418 return -EINVAL;
419
420 p = procfs_file_alloca(pid, "stat");
421 r = read_one_line_file(p, &line);
422 if (r == -ENOENT)
423 return -ESRCH;
424 if (r < 0)
425 return r;
426
427 /* Skip past the comm field */
428 q = strrchr(line, ')');
429 if (!q)
430 return -EINVAL;
431 q++;
432
433 /* Skip 6 fields to reach the flags field */
434 for (i = 0; i < 6; i++) {
435 l = strspn(q, WHITESPACE);
436 if (l < 1)
437 return -EINVAL;
438 q += l;
439
440 l = strcspn(q, WHITESPACE);
441 if (l < 1)
442 return -EINVAL;
443 q += l;
444 }
445
446 /* Skip preceding whitespace */
447 l = strspn(q, WHITESPACE);
448 if (l < 1)
449 return -EINVAL;
450 q += l;
451
452 /* Truncate the rest */
453 l = strcspn(q, WHITESPACE);
454 if (l < 1)
455 return -EINVAL;
456 q[l] = 0;
457
458 r = safe_atollu(q, &flags);
459 if (r < 0)
460 return r;
461
462 return !!(flags & PF_KTHREAD);
463 }
464
465 int get_process_capeff(pid_t pid, char **capeff) {
466 const char *p;
467 int r;
468
469 assert(capeff);
470 assert(pid >= 0);
471
472 p = procfs_file_alloca(pid, "status");
473
474 r = get_proc_field(p, "CapEff", WHITESPACE, capeff);
475 if (r == -ENOENT)
476 return -ESRCH;
477
478 return r;
479 }
480
481 static int get_process_link_contents(const char *proc_file, char **name) {
482 int r;
483
484 assert(proc_file);
485 assert(name);
486
487 r = readlink_malloc(proc_file, name);
488 if (r == -ENOENT)
489 return -ESRCH;
490 if (r < 0)
491 return r;
492
493 return 0;
494 }
495
496 int get_process_exe(pid_t pid, char **name) {
497 const char *p;
498 char *d;
499 int r;
500
501 assert(pid >= 0);
502
503 p = procfs_file_alloca(pid, "exe");
504 r = get_process_link_contents(p, name);
505 if (r < 0)
506 return r;
507
508 d = endswith(*name, " (deleted)");
509 if (d)
510 *d = '\0';
511
512 return 0;
513 }
514
515 static int get_process_id(pid_t pid, const char *field, uid_t *uid) {
516 _cleanup_fclose_ FILE *f = NULL;
517 const char *p;
518 int r;
519
520 assert(field);
521 assert(uid);
522
523 if (pid < 0)
524 return -EINVAL;
525
526 p = procfs_file_alloca(pid, "status");
527 f = fopen(p, "re");
528 if (!f) {
529 if (errno == ENOENT)
530 return -ESRCH;
531 return -errno;
532 }
533
534 (void) __fsetlocking(f, FSETLOCKING_BYCALLER);
535
536 for (;;) {
537 _cleanup_free_ char *line = NULL;
538 char *l;
539
540 r = read_line(f, LONG_LINE_MAX, &line);
541 if (r < 0)
542 return r;
543 if (r == 0)
544 break;
545
546 l = strstrip(line);
547
548 if (startswith(l, field)) {
549 l += strlen(field);
550 l += strspn(l, WHITESPACE);
551
552 l[strcspn(l, WHITESPACE)] = 0;
553
554 return parse_uid(l, uid);
555 }
556 }
557
558 return -EIO;
559 }
560
561 int get_process_uid(pid_t pid, uid_t *uid) {
562
563 if (pid == 0 || pid == getpid_cached()) {
564 *uid = getuid();
565 return 0;
566 }
567
568 return get_process_id(pid, "Uid:", uid);
569 }
570
571 int get_process_gid(pid_t pid, gid_t *gid) {
572
573 if (pid == 0 || pid == getpid_cached()) {
574 *gid = getgid();
575 return 0;
576 }
577
578 assert_cc(sizeof(uid_t) == sizeof(gid_t));
579 return get_process_id(pid, "Gid:", gid);
580 }
581
582 int get_process_cwd(pid_t pid, char **cwd) {
583 const char *p;
584
585 assert(pid >= 0);
586
587 p = procfs_file_alloca(pid, "cwd");
588
589 return get_process_link_contents(p, cwd);
590 }
591
592 int get_process_root(pid_t pid, char **root) {
593 const char *p;
594
595 assert(pid >= 0);
596
597 p = procfs_file_alloca(pid, "root");
598
599 return get_process_link_contents(p, root);
600 }
601
602 int get_process_environ(pid_t pid, char **env) {
603 _cleanup_fclose_ FILE *f = NULL;
604 _cleanup_free_ char *outcome = NULL;
605 int c;
606 const char *p;
607 size_t allocated = 0, sz = 0;
608
609 assert(pid >= 0);
610 assert(env);
611
612 p = procfs_file_alloca(pid, "environ");
613
614 f = fopen(p, "re");
615 if (!f) {
616 if (errno == ENOENT)
617 return -ESRCH;
618 return -errno;
619 }
620
621 (void) __fsetlocking(f, FSETLOCKING_BYCALLER);
622
623 while ((c = fgetc(f)) != EOF) {
624 if (!GREEDY_REALLOC(outcome, allocated, sz + 5))
625 return -ENOMEM;
626
627 if (c == '\0')
628 outcome[sz++] = '\n';
629 else
630 sz += cescape_char(c, outcome + sz);
631 }
632
633 if (!outcome) {
634 outcome = strdup("");
635 if (!outcome)
636 return -ENOMEM;
637 } else
638 outcome[sz] = '\0';
639
640 *env = TAKE_PTR(outcome);
641
642 return 0;
643 }
644
645 int get_process_ppid(pid_t pid, pid_t *_ppid) {
646 int r;
647 _cleanup_free_ char *line = NULL;
648 long unsigned ppid;
649 const char *p;
650
651 assert(pid >= 0);
652 assert(_ppid);
653
654 if (pid == 0 || pid == getpid_cached()) {
655 *_ppid = getppid();
656 return 0;
657 }
658
659 p = procfs_file_alloca(pid, "stat");
660 r = read_one_line_file(p, &line);
661 if (r == -ENOENT)
662 return -ESRCH;
663 if (r < 0)
664 return r;
665
666 /* Let's skip the pid and comm fields. The latter is enclosed
667 * in () but does not escape any () in its value, so let's
668 * skip over it manually */
669
670 p = strrchr(line, ')');
671 if (!p)
672 return -EIO;
673
674 p++;
675
676 if (sscanf(p, " "
677 "%*c " /* state */
678 "%lu ", /* ppid */
679 &ppid) != 1)
680 return -EIO;
681
682 if ((long unsigned) (pid_t) ppid != ppid)
683 return -ERANGE;
684
685 *_ppid = (pid_t) ppid;
686
687 return 0;
688 }
689
690 int wait_for_terminate(pid_t pid, siginfo_t *status) {
691 siginfo_t dummy;
692
693 assert(pid >= 1);
694
695 if (!status)
696 status = &dummy;
697
698 for (;;) {
699 zero(*status);
700
701 if (waitid(P_PID, pid, status, WEXITED) < 0) {
702
703 if (errno == EINTR)
704 continue;
705
706 return negative_errno();
707 }
708
709 return 0;
710 }
711 }
712
713 /*
714 * Return values:
715 * < 0 : wait_for_terminate() failed to get the state of the
716 * process, the process was terminated by a signal, or
717 * failed for an unknown reason.
718 * >=0 : The process terminated normally, and its exit code is
719 * returned.
720 *
721 * That is, success is indicated by a return value of zero, and an
722 * error is indicated by a non-zero value.
723 *
724 * A warning is emitted if the process terminates abnormally,
725 * and also if it returns non-zero unless check_exit_code is true.
726 */
727 int wait_for_terminate_and_check(const char *name, pid_t pid, WaitFlags flags) {
728 _cleanup_free_ char *buffer = NULL;
729 siginfo_t status;
730 int r, prio;
731
732 assert(pid > 1);
733
734 if (!name) {
735 r = get_process_comm(pid, &buffer);
736 if (r < 0)
737 log_debug_errno(r, "Failed to acquire process name of " PID_FMT ", ignoring: %m", pid);
738 else
739 name = buffer;
740 }
741
742 prio = flags & WAIT_LOG_ABNORMAL ? LOG_ERR : LOG_DEBUG;
743
744 r = wait_for_terminate(pid, &status);
745 if (r < 0)
746 return log_full_errno(prio, r, "Failed to wait for %s: %m", strna(name));
747
748 if (status.si_code == CLD_EXITED) {
749 if (status.si_status != EXIT_SUCCESS)
750 log_full(flags & WAIT_LOG_NON_ZERO_EXIT_STATUS ? LOG_ERR : LOG_DEBUG,
751 "%s failed with exit status %i.", strna(name), status.si_status);
752 else
753 log_debug("%s succeeded.", name);
754
755 return status.si_status;
756
757 } else if (IN_SET(status.si_code, CLD_KILLED, CLD_DUMPED)) {
758
759 log_full(prio, "%s terminated by signal %s.", strna(name), signal_to_string(status.si_status));
760 return -EPROTO;
761 }
762
763 log_full(prio, "%s failed due to unknown reason.", strna(name));
764 return -EPROTO;
765 }
766
767 /*
768 * Return values:
769 *
770 * < 0 : wait_for_terminate_with_timeout() failed to get the state of the process, the process timed out, the process
771 * was terminated by a signal, or failed for an unknown reason.
772 *
773 * >=0 : The process terminated normally with no failures.
774 *
775 * Success is indicated by a return value of zero, a timeout is indicated by ETIMEDOUT, and all other child failure
776 * states are indicated by error is indicated by a non-zero value.
777 *
778 * This call assumes SIGCHLD has been blocked already, in particular before the child to wait for has been forked off
779 * to remain entirely race-free.
780 */
781 int wait_for_terminate_with_timeout(pid_t pid, usec_t timeout) {
782 sigset_t mask;
783 int r;
784 usec_t until;
785
786 assert_se(sigemptyset(&mask) == 0);
787 assert_se(sigaddset(&mask, SIGCHLD) == 0);
788
789 /* Drop into a sigtimewait-based timeout. Waiting for the
790 * pid to exit. */
791 until = now(CLOCK_MONOTONIC) + timeout;
792 for (;;) {
793 usec_t n;
794 siginfo_t status = {};
795 struct timespec ts;
796
797 n = now(CLOCK_MONOTONIC);
798 if (n >= until)
799 break;
800
801 r = sigtimedwait(&mask, NULL, timespec_store(&ts, until - n)) < 0 ? -errno : 0;
802 /* Assuming we woke due to the child exiting. */
803 if (waitid(P_PID, pid, &status, WEXITED|WNOHANG) == 0) {
804 if (status.si_pid == pid) {
805 /* This is the correct child.*/
806 if (status.si_code == CLD_EXITED)
807 return (status.si_status == 0) ? 0 : -EPROTO;
808 else
809 return -EPROTO;
810 }
811 }
812 /* Not the child, check for errors and proceed appropriately */
813 if (r < 0) {
814 switch (r) {
815 case -EAGAIN:
816 /* Timed out, child is likely hung. */
817 return -ETIMEDOUT;
818 case -EINTR:
819 /* Received a different signal and should retry */
820 continue;
821 default:
822 /* Return any unexpected errors */
823 return r;
824 }
825 }
826 }
827
828 return -EPROTO;
829 }
830
831 void sigkill_wait(pid_t pid) {
832 assert(pid > 1);
833
834 if (kill(pid, SIGKILL) > 0)
835 (void) wait_for_terminate(pid, NULL);
836 }
837
838 void sigkill_waitp(pid_t *pid) {
839 PROTECT_ERRNO;
840
841 if (!pid)
842 return;
843 if (*pid <= 1)
844 return;
845
846 sigkill_wait(*pid);
847 }
848
849 void sigterm_wait(pid_t pid) {
850 assert(pid > 1);
851
852 if (kill_and_sigcont(pid, SIGTERM) > 0)
853 (void) wait_for_terminate(pid, NULL);
854 }
855
856 int kill_and_sigcont(pid_t pid, int sig) {
857 int r;
858
859 r = kill(pid, sig) < 0 ? -errno : 0;
860
861 /* If this worked, also send SIGCONT, unless we already just sent a SIGCONT, or SIGKILL was sent which isn't
862 * affected by a process being suspended anyway. */
863 if (r >= 0 && !IN_SET(sig, SIGCONT, SIGKILL))
864 (void) kill(pid, SIGCONT);
865
866 return r;
867 }
868
869 int getenv_for_pid(pid_t pid, const char *field, char **ret) {
870 _cleanup_fclose_ FILE *f = NULL;
871 char *value = NULL;
872 bool done = false;
873 const char *path;
874 size_t l;
875
876 assert(pid >= 0);
877 assert(field);
878 assert(ret);
879
880 if (pid == 0 || pid == getpid_cached()) {
881 const char *e;
882
883 e = getenv(field);
884 if (!e) {
885 *ret = NULL;
886 return 0;
887 }
888
889 value = strdup(e);
890 if (!value)
891 return -ENOMEM;
892
893 *ret = value;
894 return 1;
895 }
896
897 path = procfs_file_alloca(pid, "environ");
898
899 f = fopen(path, "re");
900 if (!f) {
901 if (errno == ENOENT)
902 return -ESRCH;
903
904 return -errno;
905 }
906
907 (void) __fsetlocking(f, FSETLOCKING_BYCALLER);
908
909 l = strlen(field);
910
911 do {
912 char line[LINE_MAX];
913 size_t i;
914
915 for (i = 0; i < sizeof(line)-1; i++) {
916 int c;
917
918 c = getc(f);
919 if (_unlikely_(c == EOF)) {
920 done = true;
921 break;
922 } else if (c == 0)
923 break;
924
925 line[i] = c;
926 }
927 line[i] = 0;
928
929 if (strneq(line, field, l) && line[l] == '=') {
930 value = strdup(line + l + 1);
931 if (!value)
932 return -ENOMEM;
933
934 *ret = value;
935 return 1;
936 }
937
938 } while (!done);
939
940 *ret = NULL;
941 return 0;
942 }
943
944 bool pid_is_unwaited(pid_t pid) {
945 /* Checks whether a PID is still valid at all, including a zombie */
946
947 if (pid < 0)
948 return false;
949
950 if (pid <= 1) /* If we or PID 1 would be dead and have been waited for, this code would not be running */
951 return true;
952
953 if (pid == getpid_cached())
954 return true;
955
956 if (kill(pid, 0) >= 0)
957 return true;
958
959 return errno != ESRCH;
960 }
961
962 bool pid_is_alive(pid_t pid) {
963 int r;
964
965 /* Checks whether a PID is still valid and not a zombie */
966
967 if (pid < 0)
968 return false;
969
970 if (pid <= 1) /* If we or PID 1 would be a zombie, this code would not be running */
971 return true;
972
973 if (pid == getpid_cached())
974 return true;
975
976 r = get_process_state(pid);
977 if (IN_SET(r, -ESRCH, 'Z'))
978 return false;
979
980 return true;
981 }
982
983 int pid_from_same_root_fs(pid_t pid) {
984 const char *root;
985
986 if (pid < 0)
987 return false;
988
989 if (pid == 0 || pid == getpid_cached())
990 return true;
991
992 root = procfs_file_alloca(pid, "root");
993
994 return files_same(root, "/proc/1/root", 0);
995 }
996
997 bool is_main_thread(void) {
998 static thread_local int cached = 0;
999
1000 if (_unlikely_(cached == 0))
1001 cached = getpid_cached() == gettid() ? 1 : -1;
1002
1003 return cached > 0;
1004 }
1005
1006 _noreturn_ void freeze(void) {
1007
1008 log_close();
1009
1010 /* Make sure nobody waits for us on a socket anymore */
1011 close_all_fds(NULL, 0);
1012
1013 sync();
1014
1015 /* Let's not freeze right away, but keep reaping zombies. */
1016 for (;;) {
1017 int r;
1018 siginfo_t si = {};
1019
1020 r = waitid(P_ALL, 0, &si, WEXITED);
1021 if (r < 0 && errno != EINTR)
1022 break;
1023 }
1024
1025 /* waitid() failed with an unexpected error, things are really borked. Freeze now! */
1026 for (;;)
1027 pause();
1028 }
1029
1030 bool oom_score_adjust_is_valid(int oa) {
1031 return oa >= OOM_SCORE_ADJ_MIN && oa <= OOM_SCORE_ADJ_MAX;
1032 }
1033
1034 unsigned long personality_from_string(const char *p) {
1035 int architecture;
1036
1037 if (!p)
1038 return PERSONALITY_INVALID;
1039
1040 /* Parse a personality specifier. We use our own identifiers that indicate specific ABIs, rather than just
1041 * hints regarding the register size, since we want to keep things open for multiple locally supported ABIs for
1042 * the same register size. */
1043
1044 architecture = architecture_from_string(p);
1045 if (architecture < 0)
1046 return PERSONALITY_INVALID;
1047
1048 if (architecture == native_architecture())
1049 return PER_LINUX;
1050 #ifdef SECONDARY_ARCHITECTURE
1051 if (architecture == SECONDARY_ARCHITECTURE)
1052 return PER_LINUX32;
1053 #endif
1054
1055 return PERSONALITY_INVALID;
1056 }
1057
1058 const char* personality_to_string(unsigned long p) {
1059 int architecture = _ARCHITECTURE_INVALID;
1060
1061 if (p == PER_LINUX)
1062 architecture = native_architecture();
1063 #ifdef SECONDARY_ARCHITECTURE
1064 else if (p == PER_LINUX32)
1065 architecture = SECONDARY_ARCHITECTURE;
1066 #endif
1067
1068 if (architecture < 0)
1069 return NULL;
1070
1071 return architecture_to_string(architecture);
1072 }
1073
1074 int safe_personality(unsigned long p) {
1075 int ret;
1076
1077 /* So here's the deal, personality() is weirdly defined by glibc. In some cases it returns a failure via errno,
1078 * and in others as negative return value containing an errno-like value. Let's work around this: this is a
1079 * wrapper that uses errno if it is set, and uses the return value otherwise. And then it sets both errno and
1080 * the return value indicating the same issue, so that we are definitely on the safe side.
1081 *
1082 * See https://github.com/systemd/systemd/issues/6737 */
1083
1084 errno = 0;
1085 ret = personality(p);
1086 if (ret < 0) {
1087 if (errno != 0)
1088 return -errno;
1089
1090 errno = -ret;
1091 }
1092
1093 return ret;
1094 }
1095
1096 int opinionated_personality(unsigned long *ret) {
1097 int current;
1098
1099 /* Returns the current personality, or PERSONALITY_INVALID if we can't determine it. This function is a bit
1100 * opinionated though, and ignores all the finer-grained bits and exotic personalities, only distinguishing the
1101 * two most relevant personalities: PER_LINUX and PER_LINUX32. */
1102
1103 current = safe_personality(PERSONALITY_INVALID);
1104 if (current < 0)
1105 return current;
1106
1107 if (((unsigned long) current & 0xffff) == PER_LINUX32)
1108 *ret = PER_LINUX32;
1109 else
1110 *ret = PER_LINUX;
1111
1112 return 0;
1113 }
1114
1115 void valgrind_summary_hack(void) {
1116 #if HAVE_VALGRIND_VALGRIND_H
1117 if (getpid_cached() == 1 && RUNNING_ON_VALGRIND) {
1118 pid_t pid;
1119 pid = raw_clone(SIGCHLD);
1120 if (pid < 0)
1121 log_emergency_errno(errno, "Failed to fork off valgrind helper: %m");
1122 else if (pid == 0)
1123 exit(EXIT_SUCCESS);
1124 else {
1125 log_info("Spawned valgrind helper as PID "PID_FMT".", pid);
1126 (void) wait_for_terminate(pid, NULL);
1127 }
1128 }
1129 #endif
1130 }
1131
1132 int pid_compare_func(const pid_t *a, const pid_t *b) {
1133 /* Suitable for usage in qsort() */
1134 return CMP(*a, *b);
1135 }
1136
1137 int ioprio_parse_priority(const char *s, int *ret) {
1138 int i, r;
1139
1140 assert(s);
1141 assert(ret);
1142
1143 r = safe_atoi(s, &i);
1144 if (r < 0)
1145 return r;
1146
1147 if (!ioprio_priority_is_valid(i))
1148 return -EINVAL;
1149
1150 *ret = i;
1151 return 0;
1152 }
1153
1154 /* The cached PID, possible values:
1155 *
1156 * == UNSET [0] → cache not initialized yet
1157 * == BUSY [-1] → some thread is initializing it at the moment
1158 * any other → the cached PID
1159 */
1160
1161 #define CACHED_PID_UNSET ((pid_t) 0)
1162 #define CACHED_PID_BUSY ((pid_t) -1)
1163
1164 static pid_t cached_pid = CACHED_PID_UNSET;
1165
1166 void reset_cached_pid(void) {
1167 /* Invoked in the child after a fork(), i.e. at the first moment the PID changed */
1168 cached_pid = CACHED_PID_UNSET;
1169 }
1170
1171 /* We use glibc __register_atfork() + __dso_handle directly here, as they are not included in the glibc
1172 * headers. __register_atfork() is mostly equivalent to pthread_atfork(), but doesn't require us to link against
1173 * libpthread, as it is part of glibc anyway. */
1174 extern int __register_atfork(void (*prepare) (void), void (*parent) (void), void (*child) (void), void *dso_handle);
1175 extern void* __dso_handle __attribute__ ((__weak__));
1176
1177 pid_t getpid_cached(void) {
1178 static bool installed = false;
1179 pid_t current_value;
1180
1181 /* getpid_cached() is much like getpid(), but caches the value in local memory, to avoid having to invoke a
1182 * system call each time. This restores glibc behaviour from before 2.24, when getpid() was unconditionally
1183 * cached. Starting with 2.24 getpid() started to become prohibitively expensive when used for detecting when
1184 * objects were used across fork()s. With this caching the old behaviour is somewhat restored.
1185 *
1186 * https://bugzilla.redhat.com/show_bug.cgi?id=1443976
1187 * https://sourceware.org/git/gitweb.cgi?p=glibc.git;h=c579f48edba88380635ab98cb612030e3ed8691e
1188 */
1189
1190 current_value = __sync_val_compare_and_swap(&cached_pid, CACHED_PID_UNSET, CACHED_PID_BUSY);
1191
1192 switch (current_value) {
1193
1194 case CACHED_PID_UNSET: { /* Not initialized yet, then do so now */
1195 pid_t new_pid;
1196
1197 new_pid = raw_getpid();
1198
1199 if (!installed) {
1200 /* __register_atfork() either returns 0 or -ENOMEM, in its glibc implementation. Since it's
1201 * only half-documented (glibc doesn't document it but LSB does — though only superficially)
1202 * we'll check for errors only in the most generic fashion possible. */
1203
1204 if (__register_atfork(NULL, NULL, reset_cached_pid, __dso_handle) != 0) {
1205 /* OOM? Let's try again later */
1206 cached_pid = CACHED_PID_UNSET;
1207 return new_pid;
1208 }
1209
1210 installed = true;
1211 }
1212
1213 cached_pid = new_pid;
1214 return new_pid;
1215 }
1216
1217 case CACHED_PID_BUSY: /* Somebody else is currently initializing */
1218 return raw_getpid();
1219
1220 default: /* Properly initialized */
1221 return current_value;
1222 }
1223 }
1224
1225 int must_be_root(void) {
1226
1227 if (geteuid() == 0)
1228 return 0;
1229
1230 log_error("Need to be root.");
1231 return -EPERM;
1232 }
1233
1234 int safe_fork_full(
1235 const char *name,
1236 const int except_fds[],
1237 size_t n_except_fds,
1238 ForkFlags flags,
1239 pid_t *ret_pid) {
1240
1241 pid_t original_pid, pid;
1242 sigset_t saved_ss, ss;
1243 bool block_signals = false;
1244 int prio, r;
1245
1246 /* A wrapper around fork(), that does a couple of important initializations in addition to mere forking. Always
1247 * returns the child's PID in *ret_pid. Returns == 0 in the child, and > 0 in the parent. */
1248
1249 prio = flags & FORK_LOG ? LOG_ERR : LOG_DEBUG;
1250
1251 original_pid = getpid_cached();
1252
1253 if (flags & (FORK_RESET_SIGNALS|FORK_DEATHSIG)) {
1254
1255 /* We temporarily block all signals, so that the new child has them blocked initially. This way, we can
1256 * be sure that SIGTERMs are not lost we might send to the child. */
1257
1258 if (sigfillset(&ss) < 0)
1259 return log_full_errno(prio, errno, "Failed to reset signal set: %m");
1260
1261 block_signals = true;
1262
1263 } else if (flags & FORK_WAIT) {
1264
1265 /* Let's block SIGCHLD at least, so that we can safely watch for the child process */
1266
1267 if (sigemptyset(&ss) < 0)
1268 return log_full_errno(prio, errno, "Failed to clear signal set: %m");
1269
1270 if (sigaddset(&ss, SIGCHLD) < 0)
1271 return log_full_errno(prio, errno, "Failed to add SIGCHLD to signal set: %m");
1272
1273 block_signals = true;
1274 }
1275
1276 if (block_signals)
1277 if (sigprocmask(SIG_SETMASK, &ss, &saved_ss) < 0)
1278 return log_full_errno(prio, errno, "Failed to set signal mask: %m");
1279
1280 if (flags & FORK_NEW_MOUNTNS)
1281 pid = raw_clone(SIGCHLD|CLONE_NEWNS);
1282 else
1283 pid = fork();
1284 if (pid < 0) {
1285 r = -errno;
1286
1287 if (block_signals) /* undo what we did above */
1288 (void) sigprocmask(SIG_SETMASK, &saved_ss, NULL);
1289
1290 return log_full_errno(prio, r, "Failed to fork: %m");
1291 }
1292 if (pid > 0) {
1293 /* We are in the parent process */
1294
1295 log_debug("Successfully forked off '%s' as PID " PID_FMT ".", strna(name), pid);
1296
1297 if (flags & FORK_WAIT) {
1298 r = wait_for_terminate_and_check(name, pid, (flags & FORK_LOG ? WAIT_LOG : 0));
1299 if (r < 0)
1300 return r;
1301 if (r != EXIT_SUCCESS) /* exit status > 0 should be treated as failure, too */
1302 return -EPROTO;
1303 }
1304
1305 if (block_signals) /* undo what we did above */
1306 (void) sigprocmask(SIG_SETMASK, &saved_ss, NULL);
1307
1308 if (ret_pid)
1309 *ret_pid = pid;
1310
1311 return 1;
1312 }
1313
1314 /* We are in the child process */
1315
1316 if (flags & FORK_REOPEN_LOG) {
1317 /* Close the logs if requested, before we log anything. And make sure we reopen it if needed. */
1318 log_close();
1319 log_set_open_when_needed(true);
1320 }
1321
1322 if (name) {
1323 r = rename_process(name);
1324 if (r < 0)
1325 log_full_errno(flags & FORK_LOG ? LOG_WARNING : LOG_DEBUG,
1326 r, "Failed to rename process, ignoring: %m");
1327 }
1328
1329 if (flags & FORK_DEATHSIG)
1330 if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0) {
1331 log_full_errno(prio, errno, "Failed to set death signal: %m");
1332 _exit(EXIT_FAILURE);
1333 }
1334
1335 if (flags & FORK_RESET_SIGNALS) {
1336 r = reset_all_signal_handlers();
1337 if (r < 0) {
1338 log_full_errno(prio, r, "Failed to reset signal handlers: %m");
1339 _exit(EXIT_FAILURE);
1340 }
1341
1342 /* This implicitly undoes the signal mask stuff we did before the fork()ing above */
1343 r = reset_signal_mask();
1344 if (r < 0) {
1345 log_full_errno(prio, r, "Failed to reset signal mask: %m");
1346 _exit(EXIT_FAILURE);
1347 }
1348 } else if (block_signals) { /* undo what we did above */
1349 if (sigprocmask(SIG_SETMASK, &saved_ss, NULL) < 0) {
1350 log_full_errno(prio, errno, "Failed to restore signal mask: %m");
1351 _exit(EXIT_FAILURE);
1352 }
1353 }
1354
1355 if (flags & FORK_DEATHSIG) {
1356 pid_t ppid;
1357 /* Let's see if the parent PID is still the one we started from? If not, then the parent
1358 * already died by the time we set PR_SET_PDEATHSIG, hence let's emulate the effect */
1359
1360 ppid = getppid();
1361 if (ppid == 0)
1362 /* Parent is in a differn't PID namespace. */;
1363 else if (ppid != original_pid) {
1364 log_debug("Parent died early, raising SIGTERM.");
1365 (void) raise(SIGTERM);
1366 _exit(EXIT_FAILURE);
1367 }
1368 }
1369
1370 if (FLAGS_SET(flags, FORK_NEW_MOUNTNS | FORK_MOUNTNS_SLAVE)) {
1371
1372 /* Optionally, make sure we never propagate mounts to the host. */
1373
1374 if (mount(NULL, "/", NULL, MS_SLAVE | MS_REC, NULL) < 0) {
1375 log_full_errno(prio, errno, "Failed to remount root directory as MS_SLAVE: %m");
1376 _exit(EXIT_FAILURE);
1377 }
1378 }
1379
1380 if (flags & FORK_CLOSE_ALL_FDS) {
1381 /* Close the logs here in case it got reopened above, as close_all_fds() would close them for us */
1382 log_close();
1383
1384 r = close_all_fds(except_fds, n_except_fds);
1385 if (r < 0) {
1386 log_full_errno(prio, r, "Failed to close all file descriptors: %m");
1387 _exit(EXIT_FAILURE);
1388 }
1389 }
1390
1391 /* When we were asked to reopen the logs, do so again now */
1392 if (flags & FORK_REOPEN_LOG) {
1393 log_open();
1394 log_set_open_when_needed(false);
1395 }
1396
1397 if (flags & FORK_NULL_STDIO) {
1398 r = make_null_stdio();
1399 if (r < 0) {
1400 log_full_errno(prio, r, "Failed to connect stdin/stdout to /dev/null: %m");
1401 _exit(EXIT_FAILURE);
1402 }
1403 }
1404
1405 if (ret_pid)
1406 *ret_pid = getpid_cached();
1407
1408 return 0;
1409 }
1410
1411 int namespace_fork(
1412 const char *outer_name,
1413 const char *inner_name,
1414 const int except_fds[],
1415 size_t n_except_fds,
1416 ForkFlags flags,
1417 int pidns_fd,
1418 int mntns_fd,
1419 int netns_fd,
1420 int userns_fd,
1421 int root_fd,
1422 pid_t *ret_pid) {
1423
1424 int r;
1425
1426 /* This is much like safe_fork(), but forks twice, and joins the specified namespaces in the middle
1427 * process. This ensures that we are fully a member of the destination namespace, with pidns an all, so that
1428 * /proc/self/fd works correctly. */
1429
1430 r = safe_fork_full(outer_name, except_fds, n_except_fds, (flags|FORK_DEATHSIG) & ~(FORK_REOPEN_LOG|FORK_NEW_MOUNTNS|FORK_MOUNTNS_SLAVE), ret_pid);
1431 if (r < 0)
1432 return r;
1433 if (r == 0) {
1434 pid_t pid;
1435
1436 /* Child */
1437
1438 r = namespace_enter(pidns_fd, mntns_fd, netns_fd, userns_fd, root_fd);
1439 if (r < 0) {
1440 log_full_errno(FLAGS_SET(flags, FORK_LOG) ? LOG_ERR : LOG_DEBUG, r, "Failed to join namespace: %m");
1441 _exit(EXIT_FAILURE);
1442 }
1443
1444 /* We mask a few flags here that either make no sense for the grandchild, or that we don't have to do again */
1445 r = safe_fork_full(inner_name, except_fds, n_except_fds, flags & ~(FORK_WAIT|FORK_RESET_SIGNALS|FORK_CLOSE_ALL_FDS|FORK_NULL_STDIO), &pid);
1446 if (r < 0)
1447 _exit(EXIT_FAILURE);
1448 if (r == 0) {
1449 /* Child */
1450 if (ret_pid)
1451 *ret_pid = pid;
1452 return 0;
1453 }
1454
1455 r = wait_for_terminate_and_check(inner_name, pid, FLAGS_SET(flags, FORK_LOG) ? WAIT_LOG : 0);
1456 if (r < 0)
1457 _exit(EXIT_FAILURE);
1458
1459 _exit(r);
1460 }
1461
1462 return 1;
1463 }
1464
1465 int fork_agent(const char *name, const int except[], size_t n_except, pid_t *ret_pid, const char *path, ...) {
1466 bool stdout_is_tty, stderr_is_tty;
1467 size_t n, i;
1468 va_list ap;
1469 char **l;
1470 int r;
1471
1472 assert(path);
1473
1474 /* Spawns a temporary TTY agent, making sure it goes away when we go away */
1475
1476 r = safe_fork_full(name, except, n_except, FORK_RESET_SIGNALS|FORK_DEATHSIG|FORK_CLOSE_ALL_FDS, ret_pid);
1477 if (r < 0)
1478 return r;
1479 if (r > 0)
1480 return 0;
1481
1482 /* In the child: */
1483
1484 stdout_is_tty = isatty(STDOUT_FILENO);
1485 stderr_is_tty = isatty(STDERR_FILENO);
1486
1487 if (!stdout_is_tty || !stderr_is_tty) {
1488 int fd;
1489
1490 /* Detach from stdout/stderr. and reopen
1491 * /dev/tty for them. This is important to
1492 * ensure that when systemctl is started via
1493 * popen() or a similar call that expects to
1494 * read EOF we actually do generate EOF and
1495 * not delay this indefinitely by because we
1496 * keep an unused copy of stdin around. */
1497 fd = open("/dev/tty", O_WRONLY);
1498 if (fd < 0) {
1499 log_error_errno(errno, "Failed to open /dev/tty: %m");
1500 _exit(EXIT_FAILURE);
1501 }
1502
1503 if (!stdout_is_tty && dup2(fd, STDOUT_FILENO) < 0) {
1504 log_error_errno(errno, "Failed to dup2 /dev/tty: %m");
1505 _exit(EXIT_FAILURE);
1506 }
1507
1508 if (!stderr_is_tty && dup2(fd, STDERR_FILENO) < 0) {
1509 log_error_errno(errno, "Failed to dup2 /dev/tty: %m");
1510 _exit(EXIT_FAILURE);
1511 }
1512
1513 safe_close_above_stdio(fd);
1514 }
1515
1516 /* Count arguments */
1517 va_start(ap, path);
1518 for (n = 0; va_arg(ap, char*); n++)
1519 ;
1520 va_end(ap);
1521
1522 /* Allocate strv */
1523 l = newa(char*, n + 1);
1524
1525 /* Fill in arguments */
1526 va_start(ap, path);
1527 for (i = 0; i <= n; i++)
1528 l[i] = va_arg(ap, char*);
1529 va_end(ap);
1530
1531 execv(path, l);
1532 _exit(EXIT_FAILURE);
1533 }
1534
1535 int set_oom_score_adjust(int value) {
1536 char t[DECIMAL_STR_MAX(int)];
1537
1538 sprintf(t, "%i", value);
1539
1540 return write_string_file("/proc/self/oom_score_adj", t,
1541 WRITE_STRING_FILE_VERIFY_ON_FAILURE|WRITE_STRING_FILE_DISABLE_BUFFER);
1542 }
1543
1544 static const char *const ioprio_class_table[] = {
1545 [IOPRIO_CLASS_NONE] = "none",
1546 [IOPRIO_CLASS_RT] = "realtime",
1547 [IOPRIO_CLASS_BE] = "best-effort",
1548 [IOPRIO_CLASS_IDLE] = "idle"
1549 };
1550
1551 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(ioprio_class, int, IOPRIO_N_CLASSES);
1552
1553 static const char *const sigchld_code_table[] = {
1554 [CLD_EXITED] = "exited",
1555 [CLD_KILLED] = "killed",
1556 [CLD_DUMPED] = "dumped",
1557 [CLD_TRAPPED] = "trapped",
1558 [CLD_STOPPED] = "stopped",
1559 [CLD_CONTINUED] = "continued",
1560 };
1561
1562 DEFINE_STRING_TABLE_LOOKUP(sigchld_code, int);
1563
1564 static const char* const sched_policy_table[] = {
1565 [SCHED_OTHER] = "other",
1566 [SCHED_BATCH] = "batch",
1567 [SCHED_IDLE] = "idle",
1568 [SCHED_FIFO] = "fifo",
1569 [SCHED_RR] = "rr"
1570 };
1571
1572 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(sched_policy, int, INT_MAX);