]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/basic/process-util.c
Add 8bit-version of get_process_cmdline() and use in cgroup-show.c
[thirdparty/systemd.git] / src / basic / process-util.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <ctype.h>
4 #include <errno.h>
5 #include <limits.h>
6 #include <linux/oom.h>
7 #include <sched.h>
8 #include <signal.h>
9 #include <stdbool.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include <sys/mman.h>
14 #include <sys/mount.h>
15 #include <sys/personality.h>
16 #include <sys/prctl.h>
17 #include <sys/types.h>
18 #include <sys/wait.h>
19 #include <syslog.h>
20 #include <unistd.h>
21 #if HAVE_VALGRIND_VALGRIND_H
22 #include <valgrind/valgrind.h>
23 #endif
24
25 #include "alloc-util.h"
26 #include "architecture.h"
27 #include "escape.h"
28 #include "env-util.h"
29 #include "fd-util.h"
30 #include "fileio.h"
31 #include "fs-util.h"
32 #include "ioprio.h"
33 #include "locale-util.h"
34 #include "log.h"
35 #include "macro.h"
36 #include "memory-util.h"
37 #include "missing.h"
38 #include "namespace-util.h"
39 #include "process-util.h"
40 #include "raw-clone.h"
41 #include "rlimit-util.h"
42 #include "signal-util.h"
43 #include "stat-util.h"
44 #include "string-table.h"
45 #include "string-util.h"
46 #include "terminal-util.h"
47 #include "user-util.h"
48 #include "utf8.h"
49
50 /* The kernel limits userspace processes to TASK_COMM_LEN (16 bytes), but allows higher values for its own
51 * workers, e.g. "kworker/u9:3-kcryptd/253:0". Let's pick a fixed smallish limit that will work for the kernel.
52 */
53 #define COMM_MAX_LEN 128
54
55 static int get_process_state(pid_t pid) {
56 const char *p;
57 char state;
58 int r;
59 _cleanup_free_ char *line = NULL;
60
61 assert(pid >= 0);
62
63 p = procfs_file_alloca(pid, "stat");
64
65 r = read_one_line_file(p, &line);
66 if (r == -ENOENT)
67 return -ESRCH;
68 if (r < 0)
69 return r;
70
71 p = strrchr(line, ')');
72 if (!p)
73 return -EIO;
74
75 p++;
76
77 if (sscanf(p, " %c", &state) != 1)
78 return -EIO;
79
80 return (unsigned char) state;
81 }
82
83 int get_process_comm(pid_t pid, char **ret) {
84 _cleanup_free_ char *escaped = NULL, *comm = NULL;
85 const char *p;
86 int r;
87
88 assert(ret);
89 assert(pid >= 0);
90
91 escaped = new(char, COMM_MAX_LEN);
92 if (!escaped)
93 return -ENOMEM;
94
95 p = procfs_file_alloca(pid, "comm");
96
97 r = read_one_line_file(p, &comm);
98 if (r == -ENOENT)
99 return -ESRCH;
100 if (r < 0)
101 return r;
102
103 /* Escape unprintable characters, just in case, but don't grow the string beyond the underlying size */
104 cellescape(escaped, COMM_MAX_LEN, comm);
105
106 *ret = TAKE_PTR(escaped);
107 return 0;
108 }
109
110 int get_process_cmdline(pid_t pid, size_t max_columns, ProcessCmdlineFlags flags, char **line) {
111 _cleanup_fclose_ FILE *f = NULL;
112 _cleanup_free_ char *t = NULL, *ans = NULL;
113 const char *p;
114 int r;
115 size_t k;
116
117 /* This is supposed to be a safety guard against runaway command lines. */
118 size_t max_length = sc_arg_max();
119
120 assert(line);
121 assert(pid >= 0);
122
123 /* Retrieves a process' command line. Replaces non-utf8 bytes by replacement character (�). If
124 * max_columns is != -1 will return a string of the specified console width at most, abbreviated with
125 * an ellipsis. If PROCESS_CMDLINE_COMM_FALLBACK is specified in flags and the process has no command
126 * line set (the case for kernel threads), or has a command line that resolves to the empty string
127 * will return the "comm" name of the process instead. This will use at most _SC_ARG_MAX bytes of
128 * input data.
129 *
130 * Returns -ESRCH if the process doesn't exist, and -ENOENT if the process has no command line (and
131 * comm_fallback is false). Returns 0 and sets *line otherwise. */
132
133 p = procfs_file_alloca(pid, "cmdline");
134 r = fopen_unlocked(p, "re", &f);
135 if (r == -ENOENT)
136 return -ESRCH;
137 if (r < 0)
138 return r;
139
140 /* We assume that each four-byte character uses one or two columns. If we ever check for combining
141 * characters, this assumption will need to be adjusted. */
142 if ((size_t) 4 * max_columns + 1 < max_columns)
143 max_length = MIN(max_length, (size_t) 4 * max_columns + 1);
144
145 t = new(char, max_length);
146 if (!t)
147 return -ENOMEM;
148
149 k = fread(t, 1, max_length, f);
150 if (k > 0) {
151 /* Arguments are separated by NULs. Let's replace those with spaces. */
152 for (size_t i = 0; i < k - 1; i++)
153 if (t[i] == '\0')
154 t[i] = ' ';
155
156 t[k] = '\0'; /* Normally, t[k] is already NUL, so this is just a guard in case of short read */
157 } else {
158 /* We only treat getting nothing as an error. We *could* also get an error after reading some
159 * data, but we ignore that case, as such an error is rather unlikely and we prefer to get
160 * some data rather than none. */
161 if (ferror(f))
162 return -errno;
163
164 if (!(flags & PROCESS_CMDLINE_COMM_FALLBACK))
165 return -ENOENT;
166
167 /* Kernel threads have no argv[] */
168 _cleanup_free_ char *t2 = NULL;
169
170 r = get_process_comm(pid, &t2);
171 if (r < 0)
172 return r;
173
174 mfree(t);
175 t = strjoin("[", t2, "]");
176 if (!t)
177 return -ENOMEM;
178 }
179
180 delete_trailing_chars(t, WHITESPACE);
181
182 bool eight_bit = (flags & PROCESS_CMDLINE_USE_LOCALE) && !is_locale_utf8();
183
184 ans = escape_non_printable_full(t, max_columns, eight_bit);
185 if (!ans)
186 return -ENOMEM;
187
188 (void) str_realloc(&ans);
189 *line = TAKE_PTR(ans);
190 return 0;
191 }
192
193 int rename_process(const char name[]) {
194 static size_t mm_size = 0;
195 static char *mm = NULL;
196 bool truncated = false;
197 size_t l;
198
199 /* This is a like a poor man's setproctitle(). It changes the comm field, argv[0], and also the glibc's
200 * internally used name of the process. For the first one a limit of 16 chars applies; to the second one in
201 * many cases one of 10 (i.e. length of "/sbin/init") — however if we have CAP_SYS_RESOURCES it is unbounded;
202 * to the third one 7 (i.e. the length of "systemd". If you pass a longer string it will likely be
203 * truncated.
204 *
205 * Returns 0 if a name was set but truncated, > 0 if it was set but not truncated. */
206
207 if (isempty(name))
208 return -EINVAL; /* let's not confuse users unnecessarily with an empty name */
209
210 if (!is_main_thread())
211 return -EPERM; /* Let's not allow setting the process name from other threads than the main one, as we
212 * cache things without locking, and we make assumptions that PR_SET_NAME sets the
213 * process name that isn't correct on any other threads */
214
215 l = strlen(name);
216
217 /* First step, change the comm field. The main thread's comm is identical to the process comm. This means we
218 * can use PR_SET_NAME, which sets the thread name for the calling thread. */
219 if (prctl(PR_SET_NAME, name) < 0)
220 log_debug_errno(errno, "PR_SET_NAME failed: %m");
221 if (l >= TASK_COMM_LEN) /* Linux userspace process names can be 15 chars at max */
222 truncated = true;
223
224 /* Second step, change glibc's ID of the process name. */
225 if (program_invocation_name) {
226 size_t k;
227
228 k = strlen(program_invocation_name);
229 strncpy(program_invocation_name, name, k);
230 if (l > k)
231 truncated = true;
232 }
233
234 /* Third step, completely replace the argv[] array the kernel maintains for us. This requires privileges, but
235 * has the advantage that the argv[] array is exactly what we want it to be, and not filled up with zeros at
236 * the end. This is the best option for changing /proc/self/cmdline. */
237
238 /* Let's not bother with this if we don't have euid == 0. Strictly speaking we should check for the
239 * CAP_SYS_RESOURCE capability which is independent of the euid. In our own code the capability generally is
240 * present only for euid == 0, hence let's use this as quick bypass check, to avoid calling mmap() if
241 * PR_SET_MM_ARG_{START,END} fails with EPERM later on anyway. After all geteuid() is dead cheap to call, but
242 * mmap() is not. */
243 if (geteuid() != 0)
244 log_debug("Skipping PR_SET_MM, as we don't have privileges.");
245 else if (mm_size < l+1) {
246 size_t nn_size;
247 char *nn;
248
249 nn_size = PAGE_ALIGN(l+1);
250 nn = mmap(NULL, nn_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
251 if (nn == MAP_FAILED) {
252 log_debug_errno(errno, "mmap() failed: %m");
253 goto use_saved_argv;
254 }
255
256 strncpy(nn, name, nn_size);
257
258 /* Now, let's tell the kernel about this new memory */
259 if (prctl(PR_SET_MM, PR_SET_MM_ARG_START, (unsigned long) nn, 0, 0) < 0) {
260 /* HACK: prctl() API is kind of dumb on this point. The existing end address may already be
261 * below the desired start address, in which case the kernel may have kicked this back due
262 * to a range-check failure (see linux/kernel/sys.c:validate_prctl_map() to see this in
263 * action). The proper solution would be to have a prctl() API that could set both start+end
264 * simultaneously, or at least let us query the existing address to anticipate this condition
265 * and respond accordingly. For now, we can only guess at the cause of this failure and try
266 * a workaround--which will briefly expand the arg space to something potentially huge before
267 * resizing it to what we want. */
268 log_debug_errno(errno, "PR_SET_MM_ARG_START failed, attempting PR_SET_MM_ARG_END hack: %m");
269
270 if (prctl(PR_SET_MM, PR_SET_MM_ARG_END, (unsigned long) nn + l + 1, 0, 0) < 0) {
271 log_debug_errno(errno, "PR_SET_MM_ARG_END hack failed, proceeding without: %m");
272 (void) munmap(nn, nn_size);
273 goto use_saved_argv;
274 }
275
276 if (prctl(PR_SET_MM, PR_SET_MM_ARG_START, (unsigned long) nn, 0, 0) < 0) {
277 log_debug_errno(errno, "PR_SET_MM_ARG_START still failed, proceeding without: %m");
278 goto use_saved_argv;
279 }
280 } else {
281 /* And update the end pointer to the new end, too. If this fails, we don't really know what
282 * to do, it's pretty unlikely that we can rollback, hence we'll just accept the failure,
283 * and continue. */
284 if (prctl(PR_SET_MM, PR_SET_MM_ARG_END, (unsigned long) nn + l + 1, 0, 0) < 0)
285 log_debug_errno(errno, "PR_SET_MM_ARG_END failed, proceeding without: %m");
286 }
287
288 if (mm)
289 (void) munmap(mm, mm_size);
290
291 mm = nn;
292 mm_size = nn_size;
293 } else {
294 strncpy(mm, name, mm_size);
295
296 /* Update the end pointer, continuing regardless of any failure. */
297 if (prctl(PR_SET_MM, PR_SET_MM_ARG_END, (unsigned long) mm + l + 1, 0, 0) < 0)
298 log_debug_errno(errno, "PR_SET_MM_ARG_END failed, proceeding without: %m");
299 }
300
301 use_saved_argv:
302 /* Fourth step: in all cases we'll also update the original argv[], so that our own code gets it right too if
303 * it still looks here */
304
305 if (saved_argc > 0) {
306 int i;
307
308 if (saved_argv[0]) {
309 size_t k;
310
311 k = strlen(saved_argv[0]);
312 strncpy(saved_argv[0], name, k);
313 if (l > k)
314 truncated = true;
315 }
316
317 for (i = 1; i < saved_argc; i++) {
318 if (!saved_argv[i])
319 break;
320
321 memzero(saved_argv[i], strlen(saved_argv[i]));
322 }
323 }
324
325 return !truncated;
326 }
327
328 int is_kernel_thread(pid_t pid) {
329 _cleanup_free_ char *line = NULL;
330 unsigned long long flags;
331 size_t l, i;
332 const char *p;
333 char *q;
334 int r;
335
336 if (IN_SET(pid, 0, 1) || pid == getpid_cached()) /* pid 1, and we ourselves certainly aren't a kernel thread */
337 return 0;
338 if (!pid_is_valid(pid))
339 return -EINVAL;
340
341 p = procfs_file_alloca(pid, "stat");
342 r = read_one_line_file(p, &line);
343 if (r == -ENOENT)
344 return -ESRCH;
345 if (r < 0)
346 return r;
347
348 /* Skip past the comm field */
349 q = strrchr(line, ')');
350 if (!q)
351 return -EINVAL;
352 q++;
353
354 /* Skip 6 fields to reach the flags field */
355 for (i = 0; i < 6; i++) {
356 l = strspn(q, WHITESPACE);
357 if (l < 1)
358 return -EINVAL;
359 q += l;
360
361 l = strcspn(q, WHITESPACE);
362 if (l < 1)
363 return -EINVAL;
364 q += l;
365 }
366
367 /* Skip preceding whitespace */
368 l = strspn(q, WHITESPACE);
369 if (l < 1)
370 return -EINVAL;
371 q += l;
372
373 /* Truncate the rest */
374 l = strcspn(q, WHITESPACE);
375 if (l < 1)
376 return -EINVAL;
377 q[l] = 0;
378
379 r = safe_atollu(q, &flags);
380 if (r < 0)
381 return r;
382
383 return !!(flags & PF_KTHREAD);
384 }
385
386 int get_process_capeff(pid_t pid, char **capeff) {
387 const char *p;
388 int r;
389
390 assert(capeff);
391 assert(pid >= 0);
392
393 p = procfs_file_alloca(pid, "status");
394
395 r = get_proc_field(p, "CapEff", WHITESPACE, capeff);
396 if (r == -ENOENT)
397 return -ESRCH;
398
399 return r;
400 }
401
402 static int get_process_link_contents(const char *proc_file, char **name) {
403 int r;
404
405 assert(proc_file);
406 assert(name);
407
408 r = readlink_malloc(proc_file, name);
409 if (r == -ENOENT)
410 return -ESRCH;
411 if (r < 0)
412 return r;
413
414 return 0;
415 }
416
417 int get_process_exe(pid_t pid, char **name) {
418 const char *p;
419 char *d;
420 int r;
421
422 assert(pid >= 0);
423
424 p = procfs_file_alloca(pid, "exe");
425 r = get_process_link_contents(p, name);
426 if (r < 0)
427 return r;
428
429 d = endswith(*name, " (deleted)");
430 if (d)
431 *d = '\0';
432
433 return 0;
434 }
435
436 static int get_process_id(pid_t pid, const char *field, uid_t *uid) {
437 _cleanup_fclose_ FILE *f = NULL;
438 const char *p;
439 int r;
440
441 assert(field);
442 assert(uid);
443
444 if (pid < 0)
445 return -EINVAL;
446
447 p = procfs_file_alloca(pid, "status");
448 r = fopen_unlocked(p, "re", &f);
449 if (r == -ENOENT)
450 return -ESRCH;
451 if (r < 0)
452 return r;
453
454 for (;;) {
455 _cleanup_free_ char *line = NULL;
456 char *l;
457
458 r = read_line(f, LONG_LINE_MAX, &line);
459 if (r < 0)
460 return r;
461 if (r == 0)
462 break;
463
464 l = strstrip(line);
465
466 if (startswith(l, field)) {
467 l += strlen(field);
468 l += strspn(l, WHITESPACE);
469
470 l[strcspn(l, WHITESPACE)] = 0;
471
472 return parse_uid(l, uid);
473 }
474 }
475
476 return -EIO;
477 }
478
479 int get_process_uid(pid_t pid, uid_t *uid) {
480
481 if (pid == 0 || pid == getpid_cached()) {
482 *uid = getuid();
483 return 0;
484 }
485
486 return get_process_id(pid, "Uid:", uid);
487 }
488
489 int get_process_gid(pid_t pid, gid_t *gid) {
490
491 if (pid == 0 || pid == getpid_cached()) {
492 *gid = getgid();
493 return 0;
494 }
495
496 assert_cc(sizeof(uid_t) == sizeof(gid_t));
497 return get_process_id(pid, "Gid:", gid);
498 }
499
500 int get_process_cwd(pid_t pid, char **cwd) {
501 const char *p;
502
503 assert(pid >= 0);
504
505 p = procfs_file_alloca(pid, "cwd");
506
507 return get_process_link_contents(p, cwd);
508 }
509
510 int get_process_root(pid_t pid, char **root) {
511 const char *p;
512
513 assert(pid >= 0);
514
515 p = procfs_file_alloca(pid, "root");
516
517 return get_process_link_contents(p, root);
518 }
519
520 #define ENVIRONMENT_BLOCK_MAX (5U*1024U*1024U)
521
522 int get_process_environ(pid_t pid, char **env) {
523 _cleanup_fclose_ FILE *f = NULL;
524 _cleanup_free_ char *outcome = NULL;
525 size_t allocated = 0, sz = 0;
526 const char *p;
527 int r;
528
529 assert(pid >= 0);
530 assert(env);
531
532 p = procfs_file_alloca(pid, "environ");
533
534 r = fopen_unlocked(p, "re", &f);
535 if (r == -ENOENT)
536 return -ESRCH;
537 if (r < 0)
538 return r;
539
540 for (;;) {
541 char c;
542
543 if (sz >= ENVIRONMENT_BLOCK_MAX)
544 return -ENOBUFS;
545
546 if (!GREEDY_REALLOC(outcome, allocated, sz + 5))
547 return -ENOMEM;
548
549 r = safe_fgetc(f, &c);
550 if (r < 0)
551 return r;
552 if (r == 0)
553 break;
554
555 if (c == '\0')
556 outcome[sz++] = '\n';
557 else
558 sz += cescape_char(c, outcome + sz);
559 }
560
561 outcome[sz] = '\0';
562 *env = TAKE_PTR(outcome);
563
564 return 0;
565 }
566
567 int get_process_ppid(pid_t pid, pid_t *_ppid) {
568 int r;
569 _cleanup_free_ char *line = NULL;
570 long unsigned ppid;
571 const char *p;
572
573 assert(pid >= 0);
574 assert(_ppid);
575
576 if (pid == 0 || pid == getpid_cached()) {
577 *_ppid = getppid();
578 return 0;
579 }
580
581 p = procfs_file_alloca(pid, "stat");
582 r = read_one_line_file(p, &line);
583 if (r == -ENOENT)
584 return -ESRCH;
585 if (r < 0)
586 return r;
587
588 /* Let's skip the pid and comm fields. The latter is enclosed
589 * in () but does not escape any () in its value, so let's
590 * skip over it manually */
591
592 p = strrchr(line, ')');
593 if (!p)
594 return -EIO;
595
596 p++;
597
598 if (sscanf(p, " "
599 "%*c " /* state */
600 "%lu ", /* ppid */
601 &ppid) != 1)
602 return -EIO;
603
604 if ((long unsigned) (pid_t) ppid != ppid)
605 return -ERANGE;
606
607 *_ppid = (pid_t) ppid;
608
609 return 0;
610 }
611
612 int wait_for_terminate(pid_t pid, siginfo_t *status) {
613 siginfo_t dummy;
614
615 assert(pid >= 1);
616
617 if (!status)
618 status = &dummy;
619
620 for (;;) {
621 zero(*status);
622
623 if (waitid(P_PID, pid, status, WEXITED) < 0) {
624
625 if (errno == EINTR)
626 continue;
627
628 return negative_errno();
629 }
630
631 return 0;
632 }
633 }
634
635 /*
636 * Return values:
637 * < 0 : wait_for_terminate() failed to get the state of the
638 * process, the process was terminated by a signal, or
639 * failed for an unknown reason.
640 * >=0 : The process terminated normally, and its exit code is
641 * returned.
642 *
643 * That is, success is indicated by a return value of zero, and an
644 * error is indicated by a non-zero value.
645 *
646 * A warning is emitted if the process terminates abnormally,
647 * and also if it returns non-zero unless check_exit_code is true.
648 */
649 int wait_for_terminate_and_check(const char *name, pid_t pid, WaitFlags flags) {
650 _cleanup_free_ char *buffer = NULL;
651 siginfo_t status;
652 int r, prio;
653
654 assert(pid > 1);
655
656 if (!name) {
657 r = get_process_comm(pid, &buffer);
658 if (r < 0)
659 log_debug_errno(r, "Failed to acquire process name of " PID_FMT ", ignoring: %m", pid);
660 else
661 name = buffer;
662 }
663
664 prio = flags & WAIT_LOG_ABNORMAL ? LOG_ERR : LOG_DEBUG;
665
666 r = wait_for_terminate(pid, &status);
667 if (r < 0)
668 return log_full_errno(prio, r, "Failed to wait for %s: %m", strna(name));
669
670 if (status.si_code == CLD_EXITED) {
671 if (status.si_status != EXIT_SUCCESS)
672 log_full(flags & WAIT_LOG_NON_ZERO_EXIT_STATUS ? LOG_ERR : LOG_DEBUG,
673 "%s failed with exit status %i.", strna(name), status.si_status);
674 else
675 log_debug("%s succeeded.", name);
676
677 return status.si_status;
678
679 } else if (IN_SET(status.si_code, CLD_KILLED, CLD_DUMPED)) {
680
681 log_full(prio, "%s terminated by signal %s.", strna(name), signal_to_string(status.si_status));
682 return -EPROTO;
683 }
684
685 log_full(prio, "%s failed due to unknown reason.", strna(name));
686 return -EPROTO;
687 }
688
689 /*
690 * Return values:
691 *
692 * < 0 : wait_for_terminate_with_timeout() failed to get the state of the process, the process timed out, the process
693 * was terminated by a signal, or failed for an unknown reason.
694 *
695 * >=0 : The process terminated normally with no failures.
696 *
697 * Success is indicated by a return value of zero, a timeout is indicated by ETIMEDOUT, and all other child failure
698 * states are indicated by error is indicated by a non-zero value.
699 *
700 * This call assumes SIGCHLD has been blocked already, in particular before the child to wait for has been forked off
701 * to remain entirely race-free.
702 */
703 int wait_for_terminate_with_timeout(pid_t pid, usec_t timeout) {
704 sigset_t mask;
705 int r;
706 usec_t until;
707
708 assert_se(sigemptyset(&mask) == 0);
709 assert_se(sigaddset(&mask, SIGCHLD) == 0);
710
711 /* Drop into a sigtimewait-based timeout. Waiting for the
712 * pid to exit. */
713 until = now(CLOCK_MONOTONIC) + timeout;
714 for (;;) {
715 usec_t n;
716 siginfo_t status = {};
717 struct timespec ts;
718
719 n = now(CLOCK_MONOTONIC);
720 if (n >= until)
721 break;
722
723 r = sigtimedwait(&mask, NULL, timespec_store(&ts, until - n)) < 0 ? -errno : 0;
724 /* Assuming we woke due to the child exiting. */
725 if (waitid(P_PID, pid, &status, WEXITED|WNOHANG) == 0) {
726 if (status.si_pid == pid) {
727 /* This is the correct child.*/
728 if (status.si_code == CLD_EXITED)
729 return (status.si_status == 0) ? 0 : -EPROTO;
730 else
731 return -EPROTO;
732 }
733 }
734 /* Not the child, check for errors and proceed appropriately */
735 if (r < 0) {
736 switch (r) {
737 case -EAGAIN:
738 /* Timed out, child is likely hung. */
739 return -ETIMEDOUT;
740 case -EINTR:
741 /* Received a different signal and should retry */
742 continue;
743 default:
744 /* Return any unexpected errors */
745 return r;
746 }
747 }
748 }
749
750 return -EPROTO;
751 }
752
753 void sigkill_wait(pid_t pid) {
754 assert(pid > 1);
755
756 if (kill(pid, SIGKILL) >= 0)
757 (void) wait_for_terminate(pid, NULL);
758 }
759
760 void sigkill_waitp(pid_t *pid) {
761 PROTECT_ERRNO;
762
763 if (!pid)
764 return;
765 if (*pid <= 1)
766 return;
767
768 sigkill_wait(*pid);
769 }
770
771 void sigterm_wait(pid_t pid) {
772 assert(pid > 1);
773
774 if (kill_and_sigcont(pid, SIGTERM) >= 0)
775 (void) wait_for_terminate(pid, NULL);
776 }
777
778 int kill_and_sigcont(pid_t pid, int sig) {
779 int r;
780
781 r = kill(pid, sig) < 0 ? -errno : 0;
782
783 /* If this worked, also send SIGCONT, unless we already just sent a SIGCONT, or SIGKILL was sent which isn't
784 * affected by a process being suspended anyway. */
785 if (r >= 0 && !IN_SET(sig, SIGCONT, SIGKILL))
786 (void) kill(pid, SIGCONT);
787
788 return r;
789 }
790
791 int getenv_for_pid(pid_t pid, const char *field, char **ret) {
792 _cleanup_fclose_ FILE *f = NULL;
793 char *value = NULL;
794 const char *path;
795 size_t l, sum = 0;
796 int r;
797
798 assert(pid >= 0);
799 assert(field);
800 assert(ret);
801
802 if (pid == 0 || pid == getpid_cached()) {
803 const char *e;
804
805 e = getenv(field);
806 if (!e) {
807 *ret = NULL;
808 return 0;
809 }
810
811 value = strdup(e);
812 if (!value)
813 return -ENOMEM;
814
815 *ret = value;
816 return 1;
817 }
818
819 if (!pid_is_valid(pid))
820 return -EINVAL;
821
822 path = procfs_file_alloca(pid, "environ");
823
824 r = fopen_unlocked(path, "re", &f);
825 if (r == -ENOENT)
826 return -ESRCH;
827 if (r < 0)
828 return r;
829
830 l = strlen(field);
831 for (;;) {
832 _cleanup_free_ char *line = NULL;
833
834 if (sum > ENVIRONMENT_BLOCK_MAX) /* Give up searching eventually */
835 return -ENOBUFS;
836
837 r = read_nul_string(f, LONG_LINE_MAX, &line);
838 if (r < 0)
839 return r;
840 if (r == 0) /* EOF */
841 break;
842
843 sum += r;
844
845 if (strneq(line, field, l) && line[l] == '=') {
846 value = strdup(line + l + 1);
847 if (!value)
848 return -ENOMEM;
849
850 *ret = value;
851 return 1;
852 }
853 }
854
855 *ret = NULL;
856 return 0;
857 }
858
859 int pid_is_my_child(pid_t pid) {
860 pid_t ppid;
861 int r;
862
863 if (pid <= 1)
864 return false;
865
866 r = get_process_ppid(pid, &ppid);
867 if (r < 0)
868 return r;
869
870 return ppid == getpid_cached();
871 }
872
873 bool pid_is_unwaited(pid_t pid) {
874 /* Checks whether a PID is still valid at all, including a zombie */
875
876 if (pid < 0)
877 return false;
878
879 if (pid <= 1) /* If we or PID 1 would be dead and have been waited for, this code would not be running */
880 return true;
881
882 if (pid == getpid_cached())
883 return true;
884
885 if (kill(pid, 0) >= 0)
886 return true;
887
888 return errno != ESRCH;
889 }
890
891 bool pid_is_alive(pid_t pid) {
892 int r;
893
894 /* Checks whether a PID is still valid and not a zombie */
895
896 if (pid < 0)
897 return false;
898
899 if (pid <= 1) /* If we or PID 1 would be a zombie, this code would not be running */
900 return true;
901
902 if (pid == getpid_cached())
903 return true;
904
905 r = get_process_state(pid);
906 if (IN_SET(r, -ESRCH, 'Z'))
907 return false;
908
909 return true;
910 }
911
912 int pid_from_same_root_fs(pid_t pid) {
913 const char *root;
914
915 if (pid < 0)
916 return false;
917
918 if (pid == 0 || pid == getpid_cached())
919 return true;
920
921 root = procfs_file_alloca(pid, "root");
922
923 return files_same(root, "/proc/1/root", 0);
924 }
925
926 bool is_main_thread(void) {
927 static thread_local int cached = 0;
928
929 if (_unlikely_(cached == 0))
930 cached = getpid_cached() == gettid() ? 1 : -1;
931
932 return cached > 0;
933 }
934
935 _noreturn_ void freeze(void) {
936
937 log_close();
938
939 /* Make sure nobody waits for us on a socket anymore */
940 (void) close_all_fds(NULL, 0);
941
942 sync();
943
944 /* Let's not freeze right away, but keep reaping zombies. */
945 for (;;) {
946 int r;
947 siginfo_t si = {};
948
949 r = waitid(P_ALL, 0, &si, WEXITED);
950 if (r < 0 && errno != EINTR)
951 break;
952 }
953
954 /* waitid() failed with an unexpected error, things are really borked. Freeze now! */
955 for (;;)
956 pause();
957 }
958
959 bool oom_score_adjust_is_valid(int oa) {
960 return oa >= OOM_SCORE_ADJ_MIN && oa <= OOM_SCORE_ADJ_MAX;
961 }
962
963 unsigned long personality_from_string(const char *p) {
964 int architecture;
965
966 if (!p)
967 return PERSONALITY_INVALID;
968
969 /* Parse a personality specifier. We use our own identifiers that indicate specific ABIs, rather than just
970 * hints regarding the register size, since we want to keep things open for multiple locally supported ABIs for
971 * the same register size. */
972
973 architecture = architecture_from_string(p);
974 if (architecture < 0)
975 return PERSONALITY_INVALID;
976
977 if (architecture == native_architecture())
978 return PER_LINUX;
979 #ifdef SECONDARY_ARCHITECTURE
980 if (architecture == SECONDARY_ARCHITECTURE)
981 return PER_LINUX32;
982 #endif
983
984 return PERSONALITY_INVALID;
985 }
986
987 const char* personality_to_string(unsigned long p) {
988 int architecture = _ARCHITECTURE_INVALID;
989
990 if (p == PER_LINUX)
991 architecture = native_architecture();
992 #ifdef SECONDARY_ARCHITECTURE
993 else if (p == PER_LINUX32)
994 architecture = SECONDARY_ARCHITECTURE;
995 #endif
996
997 if (architecture < 0)
998 return NULL;
999
1000 return architecture_to_string(architecture);
1001 }
1002
1003 int safe_personality(unsigned long p) {
1004 int ret;
1005
1006 /* So here's the deal, personality() is weirdly defined by glibc. In some cases it returns a failure via errno,
1007 * and in others as negative return value containing an errno-like value. Let's work around this: this is a
1008 * wrapper that uses errno if it is set, and uses the return value otherwise. And then it sets both errno and
1009 * the return value indicating the same issue, so that we are definitely on the safe side.
1010 *
1011 * See https://github.com/systemd/systemd/issues/6737 */
1012
1013 errno = 0;
1014 ret = personality(p);
1015 if (ret < 0) {
1016 if (errno != 0)
1017 return -errno;
1018
1019 errno = -ret;
1020 }
1021
1022 return ret;
1023 }
1024
1025 int opinionated_personality(unsigned long *ret) {
1026 int current;
1027
1028 /* Returns the current personality, or PERSONALITY_INVALID if we can't determine it. This function is a bit
1029 * opinionated though, and ignores all the finer-grained bits and exotic personalities, only distinguishing the
1030 * two most relevant personalities: PER_LINUX and PER_LINUX32. */
1031
1032 current = safe_personality(PERSONALITY_INVALID);
1033 if (current < 0)
1034 return current;
1035
1036 if (((unsigned long) current & 0xffff) == PER_LINUX32)
1037 *ret = PER_LINUX32;
1038 else
1039 *ret = PER_LINUX;
1040
1041 return 0;
1042 }
1043
1044 void valgrind_summary_hack(void) {
1045 #if HAVE_VALGRIND_VALGRIND_H
1046 if (getpid_cached() == 1 && RUNNING_ON_VALGRIND) {
1047 pid_t pid;
1048 pid = raw_clone(SIGCHLD);
1049 if (pid < 0)
1050 log_emergency_errno(errno, "Failed to fork off valgrind helper: %m");
1051 else if (pid == 0)
1052 exit(EXIT_SUCCESS);
1053 else {
1054 log_info("Spawned valgrind helper as PID "PID_FMT".", pid);
1055 (void) wait_for_terminate(pid, NULL);
1056 }
1057 }
1058 #endif
1059 }
1060
1061 int pid_compare_func(const pid_t *a, const pid_t *b) {
1062 /* Suitable for usage in qsort() */
1063 return CMP(*a, *b);
1064 }
1065
1066 int ioprio_parse_priority(const char *s, int *ret) {
1067 int i, r;
1068
1069 assert(s);
1070 assert(ret);
1071
1072 r = safe_atoi(s, &i);
1073 if (r < 0)
1074 return r;
1075
1076 if (!ioprio_priority_is_valid(i))
1077 return -EINVAL;
1078
1079 *ret = i;
1080 return 0;
1081 }
1082
1083 /* The cached PID, possible values:
1084 *
1085 * == UNSET [0] → cache not initialized yet
1086 * == BUSY [-1] → some thread is initializing it at the moment
1087 * any other → the cached PID
1088 */
1089
1090 #define CACHED_PID_UNSET ((pid_t) 0)
1091 #define CACHED_PID_BUSY ((pid_t) -1)
1092
1093 static pid_t cached_pid = CACHED_PID_UNSET;
1094
1095 void reset_cached_pid(void) {
1096 /* Invoked in the child after a fork(), i.e. at the first moment the PID changed */
1097 cached_pid = CACHED_PID_UNSET;
1098 }
1099
1100 /* We use glibc __register_atfork() + __dso_handle directly here, as they are not included in the glibc
1101 * headers. __register_atfork() is mostly equivalent to pthread_atfork(), but doesn't require us to link against
1102 * libpthread, as it is part of glibc anyway. */
1103 extern int __register_atfork(void (*prepare) (void), void (*parent) (void), void (*child) (void), void *dso_handle);
1104 extern void* __dso_handle _weak_;
1105
1106 pid_t getpid_cached(void) {
1107 static bool installed = false;
1108 pid_t current_value;
1109
1110 /* getpid_cached() is much like getpid(), but caches the value in local memory, to avoid having to invoke a
1111 * system call each time. This restores glibc behaviour from before 2.24, when getpid() was unconditionally
1112 * cached. Starting with 2.24 getpid() started to become prohibitively expensive when used for detecting when
1113 * objects were used across fork()s. With this caching the old behaviour is somewhat restored.
1114 *
1115 * https://bugzilla.redhat.com/show_bug.cgi?id=1443976
1116 * https://sourceware.org/git/gitweb.cgi?p=glibc.git;h=c579f48edba88380635ab98cb612030e3ed8691e
1117 */
1118
1119 current_value = __sync_val_compare_and_swap(&cached_pid, CACHED_PID_UNSET, CACHED_PID_BUSY);
1120
1121 switch (current_value) {
1122
1123 case CACHED_PID_UNSET: { /* Not initialized yet, then do so now */
1124 pid_t new_pid;
1125
1126 new_pid = raw_getpid();
1127
1128 if (!installed) {
1129 /* __register_atfork() either returns 0 or -ENOMEM, in its glibc implementation. Since it's
1130 * only half-documented (glibc doesn't document it but LSB does — though only superficially)
1131 * we'll check for errors only in the most generic fashion possible. */
1132
1133 if (__register_atfork(NULL, NULL, reset_cached_pid, __dso_handle) != 0) {
1134 /* OOM? Let's try again later */
1135 cached_pid = CACHED_PID_UNSET;
1136 return new_pid;
1137 }
1138
1139 installed = true;
1140 }
1141
1142 cached_pid = new_pid;
1143 return new_pid;
1144 }
1145
1146 case CACHED_PID_BUSY: /* Somebody else is currently initializing */
1147 return raw_getpid();
1148
1149 default: /* Properly initialized */
1150 return current_value;
1151 }
1152 }
1153
1154 int must_be_root(void) {
1155
1156 if (geteuid() == 0)
1157 return 0;
1158
1159 return log_error_errno(SYNTHETIC_ERRNO(EPERM), "Need to be root.");
1160 }
1161
1162 int safe_fork_full(
1163 const char *name,
1164 const int except_fds[],
1165 size_t n_except_fds,
1166 ForkFlags flags,
1167 pid_t *ret_pid) {
1168
1169 pid_t original_pid, pid;
1170 sigset_t saved_ss, ss;
1171 bool block_signals = false;
1172 int prio, r;
1173
1174 /* A wrapper around fork(), that does a couple of important initializations in addition to mere forking. Always
1175 * returns the child's PID in *ret_pid. Returns == 0 in the child, and > 0 in the parent. */
1176
1177 prio = flags & FORK_LOG ? LOG_ERR : LOG_DEBUG;
1178
1179 original_pid = getpid_cached();
1180
1181 if (flags & (FORK_RESET_SIGNALS|FORK_DEATHSIG)) {
1182 /* We temporarily block all signals, so that the new child has them blocked initially. This way, we can
1183 * be sure that SIGTERMs are not lost we might send to the child. */
1184
1185 assert_se(sigfillset(&ss) >= 0);
1186 block_signals = true;
1187
1188 } else if (flags & FORK_WAIT) {
1189 /* Let's block SIGCHLD at least, so that we can safely watch for the child process */
1190
1191 assert_se(sigemptyset(&ss) >= 0);
1192 assert_se(sigaddset(&ss, SIGCHLD) >= 0);
1193 block_signals = true;
1194 }
1195
1196 if (block_signals)
1197 if (sigprocmask(SIG_SETMASK, &ss, &saved_ss) < 0)
1198 return log_full_errno(prio, errno, "Failed to set signal mask: %m");
1199
1200 if (flags & FORK_NEW_MOUNTNS)
1201 pid = raw_clone(SIGCHLD|CLONE_NEWNS);
1202 else
1203 pid = fork();
1204 if (pid < 0) {
1205 r = -errno;
1206
1207 if (block_signals) /* undo what we did above */
1208 (void) sigprocmask(SIG_SETMASK, &saved_ss, NULL);
1209
1210 return log_full_errno(prio, r, "Failed to fork: %m");
1211 }
1212 if (pid > 0) {
1213 /* We are in the parent process */
1214
1215 log_debug("Successfully forked off '%s' as PID " PID_FMT ".", strna(name), pid);
1216
1217 if (flags & FORK_WAIT) {
1218 r = wait_for_terminate_and_check(name, pid, (flags & FORK_LOG ? WAIT_LOG : 0));
1219 if (r < 0)
1220 return r;
1221 if (r != EXIT_SUCCESS) /* exit status > 0 should be treated as failure, too */
1222 return -EPROTO;
1223 }
1224
1225 if (block_signals) /* undo what we did above */
1226 (void) sigprocmask(SIG_SETMASK, &saved_ss, NULL);
1227
1228 if (ret_pid)
1229 *ret_pid = pid;
1230
1231 return 1;
1232 }
1233
1234 /* We are in the child process */
1235
1236 if (flags & FORK_REOPEN_LOG) {
1237 /* Close the logs if requested, before we log anything. And make sure we reopen it if needed. */
1238 log_close();
1239 log_set_open_when_needed(true);
1240 }
1241
1242 if (name) {
1243 r = rename_process(name);
1244 if (r < 0)
1245 log_full_errno(flags & FORK_LOG ? LOG_WARNING : LOG_DEBUG,
1246 r, "Failed to rename process, ignoring: %m");
1247 }
1248
1249 if (flags & FORK_DEATHSIG)
1250 if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0) {
1251 log_full_errno(prio, errno, "Failed to set death signal: %m");
1252 _exit(EXIT_FAILURE);
1253 }
1254
1255 if (flags & FORK_RESET_SIGNALS) {
1256 r = reset_all_signal_handlers();
1257 if (r < 0) {
1258 log_full_errno(prio, r, "Failed to reset signal handlers: %m");
1259 _exit(EXIT_FAILURE);
1260 }
1261
1262 /* This implicitly undoes the signal mask stuff we did before the fork()ing above */
1263 r = reset_signal_mask();
1264 if (r < 0) {
1265 log_full_errno(prio, r, "Failed to reset signal mask: %m");
1266 _exit(EXIT_FAILURE);
1267 }
1268 } else if (block_signals) { /* undo what we did above */
1269 if (sigprocmask(SIG_SETMASK, &saved_ss, NULL) < 0) {
1270 log_full_errno(prio, errno, "Failed to restore signal mask: %m");
1271 _exit(EXIT_FAILURE);
1272 }
1273 }
1274
1275 if (flags & FORK_DEATHSIG) {
1276 pid_t ppid;
1277 /* Let's see if the parent PID is still the one we started from? If not, then the parent
1278 * already died by the time we set PR_SET_PDEATHSIG, hence let's emulate the effect */
1279
1280 ppid = getppid();
1281 if (ppid == 0)
1282 /* Parent is in a differn't PID namespace. */;
1283 else if (ppid != original_pid) {
1284 log_debug("Parent died early, raising SIGTERM.");
1285 (void) raise(SIGTERM);
1286 _exit(EXIT_FAILURE);
1287 }
1288 }
1289
1290 if (FLAGS_SET(flags, FORK_NEW_MOUNTNS | FORK_MOUNTNS_SLAVE)) {
1291
1292 /* Optionally, make sure we never propagate mounts to the host. */
1293
1294 if (mount(NULL, "/", NULL, MS_SLAVE | MS_REC, NULL) < 0) {
1295 log_full_errno(prio, errno, "Failed to remount root directory as MS_SLAVE: %m");
1296 _exit(EXIT_FAILURE);
1297 }
1298 }
1299
1300 if (flags & FORK_CLOSE_ALL_FDS) {
1301 /* Close the logs here in case it got reopened above, as close_all_fds() would close them for us */
1302 log_close();
1303
1304 r = close_all_fds(except_fds, n_except_fds);
1305 if (r < 0) {
1306 log_full_errno(prio, r, "Failed to close all file descriptors: %m");
1307 _exit(EXIT_FAILURE);
1308 }
1309 }
1310
1311 /* When we were asked to reopen the logs, do so again now */
1312 if (flags & FORK_REOPEN_LOG) {
1313 log_open();
1314 log_set_open_when_needed(false);
1315 }
1316
1317 if (flags & FORK_NULL_STDIO) {
1318 r = make_null_stdio();
1319 if (r < 0) {
1320 log_full_errno(prio, r, "Failed to connect stdin/stdout to /dev/null: %m");
1321 _exit(EXIT_FAILURE);
1322 }
1323 }
1324
1325 if (flags & FORK_RLIMIT_NOFILE_SAFE) {
1326 r = rlimit_nofile_safe();
1327 if (r < 0) {
1328 log_full_errno(prio, r, "Failed to lower RLIMIT_NOFILE's soft limit to 1K: %m");
1329 _exit(EXIT_FAILURE);
1330 }
1331 }
1332
1333 if (ret_pid)
1334 *ret_pid = getpid_cached();
1335
1336 return 0;
1337 }
1338
1339 int namespace_fork(
1340 const char *outer_name,
1341 const char *inner_name,
1342 const int except_fds[],
1343 size_t n_except_fds,
1344 ForkFlags flags,
1345 int pidns_fd,
1346 int mntns_fd,
1347 int netns_fd,
1348 int userns_fd,
1349 int root_fd,
1350 pid_t *ret_pid) {
1351
1352 int r;
1353
1354 /* This is much like safe_fork(), but forks twice, and joins the specified namespaces in the middle
1355 * process. This ensures that we are fully a member of the destination namespace, with pidns an all, so that
1356 * /proc/self/fd works correctly. */
1357
1358 r = safe_fork_full(outer_name, except_fds, n_except_fds, (flags|FORK_DEATHSIG) & ~(FORK_REOPEN_LOG|FORK_NEW_MOUNTNS|FORK_MOUNTNS_SLAVE), ret_pid);
1359 if (r < 0)
1360 return r;
1361 if (r == 0) {
1362 pid_t pid;
1363
1364 /* Child */
1365
1366 r = namespace_enter(pidns_fd, mntns_fd, netns_fd, userns_fd, root_fd);
1367 if (r < 0) {
1368 log_full_errno(FLAGS_SET(flags, FORK_LOG) ? LOG_ERR : LOG_DEBUG, r, "Failed to join namespace: %m");
1369 _exit(EXIT_FAILURE);
1370 }
1371
1372 /* We mask a few flags here that either make no sense for the grandchild, or that we don't have to do again */
1373 r = safe_fork_full(inner_name, except_fds, n_except_fds, flags & ~(FORK_WAIT|FORK_RESET_SIGNALS|FORK_CLOSE_ALL_FDS|FORK_NULL_STDIO), &pid);
1374 if (r < 0)
1375 _exit(EXIT_FAILURE);
1376 if (r == 0) {
1377 /* Child */
1378 if (ret_pid)
1379 *ret_pid = pid;
1380 return 0;
1381 }
1382
1383 r = wait_for_terminate_and_check(inner_name, pid, FLAGS_SET(flags, FORK_LOG) ? WAIT_LOG : 0);
1384 if (r < 0)
1385 _exit(EXIT_FAILURE);
1386
1387 _exit(r);
1388 }
1389
1390 return 1;
1391 }
1392
1393 int fork_agent(const char *name, const int except[], size_t n_except, pid_t *ret_pid, const char *path, ...) {
1394 bool stdout_is_tty, stderr_is_tty;
1395 size_t n, i;
1396 va_list ap;
1397 char **l;
1398 int r;
1399
1400 assert(path);
1401
1402 /* Spawns a temporary TTY agent, making sure it goes away when we go away */
1403
1404 r = safe_fork_full(name, except, n_except, FORK_RESET_SIGNALS|FORK_DEATHSIG|FORK_CLOSE_ALL_FDS, ret_pid);
1405 if (r < 0)
1406 return r;
1407 if (r > 0)
1408 return 0;
1409
1410 /* In the child: */
1411
1412 stdout_is_tty = isatty(STDOUT_FILENO);
1413 stderr_is_tty = isatty(STDERR_FILENO);
1414
1415 if (!stdout_is_tty || !stderr_is_tty) {
1416 int fd;
1417
1418 /* Detach from stdout/stderr. and reopen
1419 * /dev/tty for them. This is important to
1420 * ensure that when systemctl is started via
1421 * popen() or a similar call that expects to
1422 * read EOF we actually do generate EOF and
1423 * not delay this indefinitely by because we
1424 * keep an unused copy of stdin around. */
1425 fd = open("/dev/tty", O_WRONLY);
1426 if (fd < 0) {
1427 log_error_errno(errno, "Failed to open /dev/tty: %m");
1428 _exit(EXIT_FAILURE);
1429 }
1430
1431 if (!stdout_is_tty && dup2(fd, STDOUT_FILENO) < 0) {
1432 log_error_errno(errno, "Failed to dup2 /dev/tty: %m");
1433 _exit(EXIT_FAILURE);
1434 }
1435
1436 if (!stderr_is_tty && dup2(fd, STDERR_FILENO) < 0) {
1437 log_error_errno(errno, "Failed to dup2 /dev/tty: %m");
1438 _exit(EXIT_FAILURE);
1439 }
1440
1441 safe_close_above_stdio(fd);
1442 }
1443
1444 (void) rlimit_nofile_safe();
1445
1446 /* Count arguments */
1447 va_start(ap, path);
1448 for (n = 0; va_arg(ap, char*); n++)
1449 ;
1450 va_end(ap);
1451
1452 /* Allocate strv */
1453 l = newa(char*, n + 1);
1454
1455 /* Fill in arguments */
1456 va_start(ap, path);
1457 for (i = 0; i <= n; i++)
1458 l[i] = va_arg(ap, char*);
1459 va_end(ap);
1460
1461 execv(path, l);
1462 _exit(EXIT_FAILURE);
1463 }
1464
1465 int set_oom_score_adjust(int value) {
1466 char t[DECIMAL_STR_MAX(int)];
1467
1468 sprintf(t, "%i", value);
1469
1470 return write_string_file("/proc/self/oom_score_adj", t,
1471 WRITE_STRING_FILE_VERIFY_ON_FAILURE|WRITE_STRING_FILE_DISABLE_BUFFER);
1472 }
1473
1474 int cpus_in_affinity_mask(void) {
1475 size_t n = 16;
1476 int r;
1477
1478 for (;;) {
1479 cpu_set_t *c;
1480
1481 c = CPU_ALLOC(n);
1482 if (!c)
1483 return -ENOMEM;
1484
1485 if (sched_getaffinity(0, CPU_ALLOC_SIZE(n), c) >= 0) {
1486 int k;
1487
1488 k = CPU_COUNT_S(CPU_ALLOC_SIZE(n), c);
1489 CPU_FREE(c);
1490
1491 if (k <= 0)
1492 return -EINVAL;
1493
1494 return k;
1495 }
1496
1497 r = -errno;
1498 CPU_FREE(c);
1499
1500 if (r != -EINVAL)
1501 return r;
1502 if (n > SIZE_MAX/2)
1503 return -ENOMEM;
1504 n *= 2;
1505 }
1506 }
1507
1508 static const char *const ioprio_class_table[] = {
1509 [IOPRIO_CLASS_NONE] = "none",
1510 [IOPRIO_CLASS_RT] = "realtime",
1511 [IOPRIO_CLASS_BE] = "best-effort",
1512 [IOPRIO_CLASS_IDLE] = "idle"
1513 };
1514
1515 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(ioprio_class, int, IOPRIO_N_CLASSES);
1516
1517 static const char *const sigchld_code_table[] = {
1518 [CLD_EXITED] = "exited",
1519 [CLD_KILLED] = "killed",
1520 [CLD_DUMPED] = "dumped",
1521 [CLD_TRAPPED] = "trapped",
1522 [CLD_STOPPED] = "stopped",
1523 [CLD_CONTINUED] = "continued",
1524 };
1525
1526 DEFINE_STRING_TABLE_LOOKUP(sigchld_code, int);
1527
1528 static const char* const sched_policy_table[] = {
1529 [SCHED_OTHER] = "other",
1530 [SCHED_BATCH] = "batch",
1531 [SCHED_IDLE] = "idle",
1532 [SCHED_FIFO] = "fifo",
1533 [SCHED_RR] = "rr"
1534 };
1535
1536 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(sched_policy, int, INT_MAX);