]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/basic/socket-util.c
tree-wide: make sure our control buffers are properly aligned
[thirdparty/systemd.git] / src / basic / socket-util.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <arpa/inet.h>
4 #include <errno.h>
5 #include <limits.h>
6 #include <net/if.h>
7 #include <netdb.h>
8 #include <netinet/ip.h>
9 #include <poll.h>
10 #include <stddef.h>
11 #include <stdint.h>
12 #include <stdio.h>
13 #include <stdlib.h>
14 #include <sys/ioctl.h>
15 #include <unistd.h>
16 #include <linux/if.h>
17
18 #include "alloc-util.h"
19 #include "errno-util.h"
20 #include "escape.h"
21 #include "fd-util.h"
22 #include "fileio.h"
23 #include "format-util.h"
24 #include "log.h"
25 #include "macro.h"
26 #include "memory-util.h"
27 #include "missing_socket.h"
28 #include "parse-util.h"
29 #include "path-util.h"
30 #include "process-util.h"
31 #include "socket-util.h"
32 #include "string-table.h"
33 #include "string-util.h"
34 #include "strv.h"
35 #include "user-util.h"
36 #include "utf8.h"
37
38 #if ENABLE_IDN
39 # define IDN_FLAGS NI_IDN
40 #else
41 # define IDN_FLAGS 0
42 #endif
43
44 static const char* const socket_address_type_table[] = {
45 [SOCK_STREAM] = "Stream",
46 [SOCK_DGRAM] = "Datagram",
47 [SOCK_RAW] = "Raw",
48 [SOCK_RDM] = "ReliableDatagram",
49 [SOCK_SEQPACKET] = "SequentialPacket",
50 [SOCK_DCCP] = "DatagramCongestionControl",
51 };
52
53 DEFINE_STRING_TABLE_LOOKUP(socket_address_type, int);
54
55 int socket_address_verify(const SocketAddress *a, bool strict) {
56 assert(a);
57
58 /* With 'strict' we enforce additional sanity constraints which are not set by the standard,
59 * but should only apply to sockets we create ourselves. */
60
61 switch (socket_address_family(a)) {
62
63 case AF_INET:
64 if (a->size != sizeof(struct sockaddr_in))
65 return -EINVAL;
66
67 if (a->sockaddr.in.sin_port == 0)
68 return -EINVAL;
69
70 if (!IN_SET(a->type, SOCK_STREAM, SOCK_DGRAM))
71 return -EINVAL;
72
73 return 0;
74
75 case AF_INET6:
76 if (a->size != sizeof(struct sockaddr_in6))
77 return -EINVAL;
78
79 if (a->sockaddr.in6.sin6_port == 0)
80 return -EINVAL;
81
82 if (!IN_SET(a->type, SOCK_STREAM, SOCK_DGRAM))
83 return -EINVAL;
84
85 return 0;
86
87 case AF_UNIX:
88 if (a->size < offsetof(struct sockaddr_un, sun_path))
89 return -EINVAL;
90 if (a->size > sizeof(struct sockaddr_un) + !strict)
91 /* If !strict, allow one extra byte, since getsockname() on Linux will append
92 * a NUL byte if we have path sockets that are above sun_path's full size. */
93 return -EINVAL;
94
95 if (a->size > offsetof(struct sockaddr_un, sun_path) &&
96 a->sockaddr.un.sun_path[0] != 0 &&
97 strict) {
98 /* Only validate file system sockets here, and only in strict mode */
99 const char *e;
100
101 e = memchr(a->sockaddr.un.sun_path, 0, sizeof(a->sockaddr.un.sun_path));
102 if (e) {
103 /* If there's an embedded NUL byte, make sure the size of the socket address matches it */
104 if (a->size != offsetof(struct sockaddr_un, sun_path) + (e - a->sockaddr.un.sun_path) + 1)
105 return -EINVAL;
106 } else {
107 /* If there's no embedded NUL byte, then then the size needs to match the whole
108 * structure or the structure with one extra NUL byte suffixed. (Yeah, Linux is awful,
109 * and considers both equivalent: getsockname() even extends sockaddr_un beyond its
110 * size if the path is non NUL terminated.)*/
111 if (!IN_SET(a->size, sizeof(a->sockaddr.un.sun_path), sizeof(a->sockaddr.un.sun_path)+1))
112 return -EINVAL;
113 }
114 }
115
116 if (!IN_SET(a->type, SOCK_STREAM, SOCK_DGRAM, SOCK_SEQPACKET))
117 return -EINVAL;
118
119 return 0;
120
121 case AF_NETLINK:
122
123 if (a->size != sizeof(struct sockaddr_nl))
124 return -EINVAL;
125
126 if (!IN_SET(a->type, SOCK_RAW, SOCK_DGRAM))
127 return -EINVAL;
128
129 return 0;
130
131 case AF_VSOCK:
132 if (a->size != sizeof(struct sockaddr_vm))
133 return -EINVAL;
134
135 if (!IN_SET(a->type, SOCK_STREAM, SOCK_DGRAM))
136 return -EINVAL;
137
138 return 0;
139
140 default:
141 return -EAFNOSUPPORT;
142 }
143 }
144
145 int socket_address_print(const SocketAddress *a, char **ret) {
146 int r;
147
148 assert(a);
149 assert(ret);
150
151 r = socket_address_verify(a, false); /* We do non-strict validation, because we want to be
152 * able to pretty-print any socket the kernel considers
153 * valid. We still need to do validation to know if we
154 * can meaningfully print the address. */
155 if (r < 0)
156 return r;
157
158 if (socket_address_family(a) == AF_NETLINK) {
159 _cleanup_free_ char *sfamily = NULL;
160
161 r = netlink_family_to_string_alloc(a->protocol, &sfamily);
162 if (r < 0)
163 return r;
164
165 r = asprintf(ret, "%s %u", sfamily, a->sockaddr.nl.nl_groups);
166 if (r < 0)
167 return -ENOMEM;
168
169 return 0;
170 }
171
172 return sockaddr_pretty(&a->sockaddr.sa, a->size, false, true, ret);
173 }
174
175 bool socket_address_can_accept(const SocketAddress *a) {
176 assert(a);
177
178 return
179 IN_SET(a->type, SOCK_STREAM, SOCK_SEQPACKET);
180 }
181
182 bool socket_address_equal(const SocketAddress *a, const SocketAddress *b) {
183 assert(a);
184 assert(b);
185
186 /* Invalid addresses are unequal to all */
187 if (socket_address_verify(a, false) < 0 ||
188 socket_address_verify(b, false) < 0)
189 return false;
190
191 if (a->type != b->type)
192 return false;
193
194 if (socket_address_family(a) != socket_address_family(b))
195 return false;
196
197 switch (socket_address_family(a)) {
198
199 case AF_INET:
200 if (a->sockaddr.in.sin_addr.s_addr != b->sockaddr.in.sin_addr.s_addr)
201 return false;
202
203 if (a->sockaddr.in.sin_port != b->sockaddr.in.sin_port)
204 return false;
205
206 break;
207
208 case AF_INET6:
209 if (memcmp(&a->sockaddr.in6.sin6_addr, &b->sockaddr.in6.sin6_addr, sizeof(a->sockaddr.in6.sin6_addr)) != 0)
210 return false;
211
212 if (a->sockaddr.in6.sin6_port != b->sockaddr.in6.sin6_port)
213 return false;
214
215 break;
216
217 case AF_UNIX:
218 if (a->size <= offsetof(struct sockaddr_un, sun_path) ||
219 b->size <= offsetof(struct sockaddr_un, sun_path))
220 return false;
221
222 if ((a->sockaddr.un.sun_path[0] == 0) != (b->sockaddr.un.sun_path[0] == 0))
223 return false;
224
225 if (a->sockaddr.un.sun_path[0]) {
226 if (!path_equal_or_files_same(a->sockaddr.un.sun_path, b->sockaddr.un.sun_path, 0))
227 return false;
228 } else {
229 if (a->size != b->size)
230 return false;
231
232 if (memcmp(a->sockaddr.un.sun_path, b->sockaddr.un.sun_path, a->size) != 0)
233 return false;
234 }
235
236 break;
237
238 case AF_NETLINK:
239 if (a->protocol != b->protocol)
240 return false;
241
242 if (a->sockaddr.nl.nl_groups != b->sockaddr.nl.nl_groups)
243 return false;
244
245 break;
246
247 case AF_VSOCK:
248 if (a->sockaddr.vm.svm_cid != b->sockaddr.vm.svm_cid)
249 return false;
250
251 if (a->sockaddr.vm.svm_port != b->sockaddr.vm.svm_port)
252 return false;
253
254 break;
255
256 default:
257 /* Cannot compare, so we assume the addresses are different */
258 return false;
259 }
260
261 return true;
262 }
263
264 const char* socket_address_get_path(const SocketAddress *a) {
265 assert(a);
266
267 if (socket_address_family(a) != AF_UNIX)
268 return NULL;
269
270 if (a->sockaddr.un.sun_path[0] == 0)
271 return NULL;
272
273 /* Note that this is only safe because we know that there's an extra NUL byte after the sockaddr_un
274 * structure. On Linux AF_UNIX file system socket addresses don't have to be NUL terminated if they take up the
275 * full sun_path space. */
276 assert_cc(sizeof(union sockaddr_union) >= sizeof(struct sockaddr_un)+1);
277 return a->sockaddr.un.sun_path;
278 }
279
280 bool socket_ipv6_is_supported(void) {
281 if (access("/proc/net/if_inet6", F_OK) != 0)
282 return false;
283
284 return true;
285 }
286
287 bool socket_address_matches_fd(const SocketAddress *a, int fd) {
288 SocketAddress b;
289 socklen_t solen;
290
291 assert(a);
292 assert(fd >= 0);
293
294 b.size = sizeof(b.sockaddr);
295 if (getsockname(fd, &b.sockaddr.sa, &b.size) < 0)
296 return false;
297
298 if (b.sockaddr.sa.sa_family != a->sockaddr.sa.sa_family)
299 return false;
300
301 solen = sizeof(b.type);
302 if (getsockopt(fd, SOL_SOCKET, SO_TYPE, &b.type, &solen) < 0)
303 return false;
304
305 if (b.type != a->type)
306 return false;
307
308 if (a->protocol != 0) {
309 solen = sizeof(b.protocol);
310 if (getsockopt(fd, SOL_SOCKET, SO_PROTOCOL, &b.protocol, &solen) < 0)
311 return false;
312
313 if (b.protocol != a->protocol)
314 return false;
315 }
316
317 return socket_address_equal(a, &b);
318 }
319
320 int sockaddr_port(const struct sockaddr *_sa, unsigned *ret_port) {
321 union sockaddr_union *sa = (union sockaddr_union*) _sa;
322
323 /* Note, this returns the port as 'unsigned' rather than 'uint16_t', as AF_VSOCK knows larger ports */
324
325 assert(sa);
326
327 switch (sa->sa.sa_family) {
328
329 case AF_INET:
330 *ret_port = be16toh(sa->in.sin_port);
331 return 0;
332
333 case AF_INET6:
334 *ret_port = be16toh(sa->in6.sin6_port);
335 return 0;
336
337 case AF_VSOCK:
338 *ret_port = sa->vm.svm_port;
339 return 0;
340
341 default:
342 return -EAFNOSUPPORT;
343 }
344 }
345
346 int sockaddr_pretty(
347 const struct sockaddr *_sa,
348 socklen_t salen,
349 bool translate_ipv6,
350 bool include_port,
351 char **ret) {
352
353 union sockaddr_union *sa = (union sockaddr_union*) _sa;
354 char *p;
355 int r;
356
357 assert(sa);
358 assert(salen >= sizeof(sa->sa.sa_family));
359
360 switch (sa->sa.sa_family) {
361
362 case AF_INET: {
363 uint32_t a;
364
365 a = be32toh(sa->in.sin_addr.s_addr);
366
367 if (include_port)
368 r = asprintf(&p,
369 "%u.%u.%u.%u:%u",
370 a >> 24, (a >> 16) & 0xFF, (a >> 8) & 0xFF, a & 0xFF,
371 be16toh(sa->in.sin_port));
372 else
373 r = asprintf(&p,
374 "%u.%u.%u.%u",
375 a >> 24, (a >> 16) & 0xFF, (a >> 8) & 0xFF, a & 0xFF);
376 if (r < 0)
377 return -ENOMEM;
378 break;
379 }
380
381 case AF_INET6: {
382 static const unsigned char ipv4_prefix[] = {
383 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF
384 };
385
386 if (translate_ipv6 &&
387 memcmp(&sa->in6.sin6_addr, ipv4_prefix, sizeof(ipv4_prefix)) == 0) {
388 const uint8_t *a = sa->in6.sin6_addr.s6_addr+12;
389 if (include_port)
390 r = asprintf(&p,
391 "%u.%u.%u.%u:%u",
392 a[0], a[1], a[2], a[3],
393 be16toh(sa->in6.sin6_port));
394 else
395 r = asprintf(&p,
396 "%u.%u.%u.%u",
397 a[0], a[1], a[2], a[3]);
398 if (r < 0)
399 return -ENOMEM;
400 } else {
401 char a[INET6_ADDRSTRLEN];
402
403 inet_ntop(AF_INET6, &sa->in6.sin6_addr, a, sizeof(a));
404
405 if (include_port) {
406 r = asprintf(&p,
407 "[%s]:%u",
408 a,
409 be16toh(sa->in6.sin6_port));
410 if (r < 0)
411 return -ENOMEM;
412 } else {
413 p = strdup(a);
414 if (!p)
415 return -ENOMEM;
416 }
417 }
418
419 break;
420 }
421
422 case AF_UNIX:
423 if (salen <= offsetof(struct sockaddr_un, sun_path) ||
424 (sa->un.sun_path[0] == 0 && salen == offsetof(struct sockaddr_un, sun_path) + 1))
425 /* The name must have at least one character (and the leading NUL does not count) */
426 p = strdup("<unnamed>");
427 else {
428 /* Note that we calculate the path pointer here through the .un_buffer[] field, in order to
429 * outtrick bounds checking tools such as ubsan, which are too smart for their own good: on
430 * Linux the kernel may return sun_path[] data one byte longer than the declared size of the
431 * field. */
432 char *path = (char*) sa->un_buffer + offsetof(struct sockaddr_un, sun_path);
433 size_t path_len = salen - offsetof(struct sockaddr_un, sun_path);
434
435 if (path[0] == 0) {
436 /* Abstract socket. When parsing address information from, we
437 * explicitly reject overly long paths and paths with embedded NULs.
438 * But we might get such a socket from the outside. Let's return
439 * something meaningful and printable in this case. */
440
441 _cleanup_free_ char *e = NULL;
442
443 e = cescape_length(path + 1, path_len - 1);
444 if (!e)
445 return -ENOMEM;
446
447 p = strjoin("@", e);
448 } else {
449 if (path[path_len - 1] == '\0')
450 /* We expect a terminating NUL and don't print it */
451 path_len --;
452
453 p = cescape_length(path, path_len);
454 }
455 }
456 if (!p)
457 return -ENOMEM;
458
459 break;
460
461 case AF_VSOCK:
462 if (include_port) {
463 if (sa->vm.svm_cid == VMADDR_CID_ANY)
464 r = asprintf(&p, "vsock::%u", sa->vm.svm_port);
465 else
466 r = asprintf(&p, "vsock:%u:%u", sa->vm.svm_cid, sa->vm.svm_port);
467 } else
468 r = asprintf(&p, "vsock:%u", sa->vm.svm_cid);
469 if (r < 0)
470 return -ENOMEM;
471 break;
472
473 default:
474 return -EOPNOTSUPP;
475 }
476
477 *ret = p;
478 return 0;
479 }
480
481 int getpeername_pretty(int fd, bool include_port, char **ret) {
482 union sockaddr_union sa;
483 socklen_t salen = sizeof(sa);
484 int r;
485
486 assert(fd >= 0);
487 assert(ret);
488
489 if (getpeername(fd, &sa.sa, &salen) < 0)
490 return -errno;
491
492 if (sa.sa.sa_family == AF_UNIX) {
493 struct ucred ucred = {};
494
495 /* UNIX connection sockets are anonymous, so let's use
496 * PID/UID as pretty credentials instead */
497
498 r = getpeercred(fd, &ucred);
499 if (r < 0)
500 return r;
501
502 if (asprintf(ret, "PID "PID_FMT"/UID "UID_FMT, ucred.pid, ucred.uid) < 0)
503 return -ENOMEM;
504
505 return 0;
506 }
507
508 /* For remote sockets we translate IPv6 addresses back to IPv4
509 * if applicable, since that's nicer. */
510
511 return sockaddr_pretty(&sa.sa, salen, true, include_port, ret);
512 }
513
514 int getsockname_pretty(int fd, char **ret) {
515 union sockaddr_union sa;
516 socklen_t salen = sizeof(sa);
517
518 assert(fd >= 0);
519 assert(ret);
520
521 if (getsockname(fd, &sa.sa, &salen) < 0)
522 return -errno;
523
524 /* For local sockets we do not translate IPv6 addresses back
525 * to IPv6 if applicable, since this is usually used for
526 * listening sockets where the difference between IPv4 and
527 * IPv6 matters. */
528
529 return sockaddr_pretty(&sa.sa, salen, false, true, ret);
530 }
531
532 int socknameinfo_pretty(union sockaddr_union *sa, socklen_t salen, char **_ret) {
533 int r;
534 char host[NI_MAXHOST], *ret;
535
536 assert(_ret);
537
538 r = getnameinfo(&sa->sa, salen, host, sizeof(host), NULL, 0, IDN_FLAGS);
539 if (r != 0) {
540 int saved_errno = errno;
541
542 r = sockaddr_pretty(&sa->sa, salen, true, true, &ret);
543 if (r < 0)
544 return r;
545
546 log_debug_errno(saved_errno, "getnameinfo(%s) failed: %m", ret);
547 } else {
548 ret = strdup(host);
549 if (!ret)
550 return -ENOMEM;
551 }
552
553 *_ret = ret;
554 return 0;
555 }
556
557 static const char* const netlink_family_table[] = {
558 [NETLINK_ROUTE] = "route",
559 [NETLINK_FIREWALL] = "firewall",
560 [NETLINK_INET_DIAG] = "inet-diag",
561 [NETLINK_NFLOG] = "nflog",
562 [NETLINK_XFRM] = "xfrm",
563 [NETLINK_SELINUX] = "selinux",
564 [NETLINK_ISCSI] = "iscsi",
565 [NETLINK_AUDIT] = "audit",
566 [NETLINK_FIB_LOOKUP] = "fib-lookup",
567 [NETLINK_CONNECTOR] = "connector",
568 [NETLINK_NETFILTER] = "netfilter",
569 [NETLINK_IP6_FW] = "ip6-fw",
570 [NETLINK_DNRTMSG] = "dnrtmsg",
571 [NETLINK_KOBJECT_UEVENT] = "kobject-uevent",
572 [NETLINK_GENERIC] = "generic",
573 [NETLINK_SCSITRANSPORT] = "scsitransport",
574 [NETLINK_ECRYPTFS] = "ecryptfs",
575 [NETLINK_RDMA] = "rdma",
576 };
577
578 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(netlink_family, int, INT_MAX);
579
580 static const char* const socket_address_bind_ipv6_only_table[_SOCKET_ADDRESS_BIND_IPV6_ONLY_MAX] = {
581 [SOCKET_ADDRESS_DEFAULT] = "default",
582 [SOCKET_ADDRESS_BOTH] = "both",
583 [SOCKET_ADDRESS_IPV6_ONLY] = "ipv6-only"
584 };
585
586 DEFINE_STRING_TABLE_LOOKUP(socket_address_bind_ipv6_only, SocketAddressBindIPv6Only);
587
588 SocketAddressBindIPv6Only socket_address_bind_ipv6_only_or_bool_from_string(const char *n) {
589 int r;
590
591 r = parse_boolean(n);
592 if (r > 0)
593 return SOCKET_ADDRESS_IPV6_ONLY;
594 if (r == 0)
595 return SOCKET_ADDRESS_BOTH;
596
597 return socket_address_bind_ipv6_only_from_string(n);
598 }
599
600 bool sockaddr_equal(const union sockaddr_union *a, const union sockaddr_union *b) {
601 assert(a);
602 assert(b);
603
604 if (a->sa.sa_family != b->sa.sa_family)
605 return false;
606
607 if (a->sa.sa_family == AF_INET)
608 return a->in.sin_addr.s_addr == b->in.sin_addr.s_addr;
609
610 if (a->sa.sa_family == AF_INET6)
611 return memcmp(&a->in6.sin6_addr, &b->in6.sin6_addr, sizeof(a->in6.sin6_addr)) == 0;
612
613 if (a->sa.sa_family == AF_VSOCK)
614 return a->vm.svm_cid == b->vm.svm_cid;
615
616 return false;
617 }
618
619 int fd_inc_sndbuf(int fd, size_t n) {
620 int r, value;
621 socklen_t l = sizeof(value);
622
623 r = getsockopt(fd, SOL_SOCKET, SO_SNDBUF, &value, &l);
624 if (r >= 0 && l == sizeof(value) && (size_t) value >= n*2)
625 return 0;
626
627 /* If we have the privileges we will ignore the kernel limit. */
628
629 if (setsockopt_int(fd, SOL_SOCKET, SO_SNDBUF, n) < 0) {
630 r = setsockopt_int(fd, SOL_SOCKET, SO_SNDBUFFORCE, n);
631 if (r < 0)
632 return r;
633 }
634
635 return 1;
636 }
637
638 int fd_inc_rcvbuf(int fd, size_t n) {
639 int r, value;
640 socklen_t l = sizeof(value);
641
642 r = getsockopt(fd, SOL_SOCKET, SO_RCVBUF, &value, &l);
643 if (r >= 0 && l == sizeof(value) && (size_t) value >= n*2)
644 return 0;
645
646 /* If we have the privileges we will ignore the kernel limit. */
647
648 if (setsockopt_int(fd, SOL_SOCKET, SO_RCVBUF, n) < 0) {
649 r = setsockopt_int(fd, SOL_SOCKET, SO_RCVBUFFORCE, n);
650 if (r < 0)
651 return r;
652 }
653
654 return 1;
655 }
656
657 static const char* const ip_tos_table[] = {
658 [IPTOS_LOWDELAY] = "low-delay",
659 [IPTOS_THROUGHPUT] = "throughput",
660 [IPTOS_RELIABILITY] = "reliability",
661 [IPTOS_LOWCOST] = "low-cost",
662 };
663
664 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(ip_tos, int, 0xff);
665
666 bool ifname_valid_full(const char *p, bool alternative) {
667 bool numeric = true;
668
669 /* Checks whether a network interface name is valid. This is inspired by dev_valid_name() in the kernel sources
670 * but slightly stricter, as we only allow non-control, non-space ASCII characters in the interface name. We
671 * also don't permit names that only container numbers, to avoid confusion with numeric interface indexes. */
672
673 if (isempty(p))
674 return false;
675
676 if (alternative) {
677 if (strlen(p) >= ALTIFNAMSIZ)
678 return false;
679 } else {
680 if (strlen(p) >= IFNAMSIZ)
681 return false;
682 }
683
684 if (dot_or_dot_dot(p))
685 return false;
686
687 while (*p) {
688 if ((unsigned char) *p >= 127U)
689 return false;
690
691 if ((unsigned char) *p <= 32U)
692 return false;
693
694 if (IN_SET(*p, ':', '/'))
695 return false;
696
697 numeric = numeric && (*p >= '0' && *p <= '9');
698 p++;
699 }
700
701 if (numeric)
702 return false;
703
704 return true;
705 }
706
707 bool address_label_valid(const char *p) {
708
709 if (isempty(p))
710 return false;
711
712 if (strlen(p) >= IFNAMSIZ)
713 return false;
714
715 while (*p) {
716 if ((uint8_t) *p >= 127U)
717 return false;
718
719 if ((uint8_t) *p <= 31U)
720 return false;
721 p++;
722 }
723
724 return true;
725 }
726
727 int getpeercred(int fd, struct ucred *ucred) {
728 socklen_t n = sizeof(struct ucred);
729 struct ucred u;
730 int r;
731
732 assert(fd >= 0);
733 assert(ucred);
734
735 r = getsockopt(fd, SOL_SOCKET, SO_PEERCRED, &u, &n);
736 if (r < 0)
737 return -errno;
738
739 if (n != sizeof(struct ucred))
740 return -EIO;
741
742 /* Check if the data is actually useful and not suppressed due to namespacing issues */
743 if (!pid_is_valid(u.pid))
744 return -ENODATA;
745
746 /* Note that we don't check UID/GID here, as namespace translation works differently there: instead of
747 * receiving in "invalid" user/group we get the overflow UID/GID. */
748
749 *ucred = u;
750 return 0;
751 }
752
753 int getpeersec(int fd, char **ret) {
754 _cleanup_free_ char *s = NULL;
755 socklen_t n = 64;
756
757 assert(fd >= 0);
758 assert(ret);
759
760 for (;;) {
761 s = new0(char, n+1);
762 if (!s)
763 return -ENOMEM;
764
765 if (getsockopt(fd, SOL_SOCKET, SO_PEERSEC, s, &n) >= 0)
766 break;
767
768 if (errno != ERANGE)
769 return -errno;
770
771 s = mfree(s);
772 }
773
774 if (isempty(s))
775 return -EOPNOTSUPP;
776
777 *ret = TAKE_PTR(s);
778
779 return 0;
780 }
781
782 int getpeergroups(int fd, gid_t **ret) {
783 socklen_t n = sizeof(gid_t) * 64;
784 _cleanup_free_ gid_t *d = NULL;
785
786 assert(fd >= 0);
787 assert(ret);
788
789 for (;;) {
790 d = malloc(n);
791 if (!d)
792 return -ENOMEM;
793
794 if (getsockopt(fd, SOL_SOCKET, SO_PEERGROUPS, d, &n) >= 0)
795 break;
796
797 if (errno != ERANGE)
798 return -errno;
799
800 d = mfree(d);
801 }
802
803 assert_se(n % sizeof(gid_t) == 0);
804 n /= sizeof(gid_t);
805
806 if ((socklen_t) (int) n != n)
807 return -E2BIG;
808
809 *ret = TAKE_PTR(d);
810
811 return (int) n;
812 }
813
814 ssize_t send_one_fd_iov_sa(
815 int transport_fd,
816 int fd,
817 struct iovec *iov, size_t iovlen,
818 const struct sockaddr *sa, socklen_t len,
819 int flags) {
820
821 CMSG_BUFFER_TYPE(CMSG_SPACE(sizeof(int))) control = {};
822 struct msghdr mh = {
823 .msg_name = (struct sockaddr*) sa,
824 .msg_namelen = len,
825 .msg_iov = iov,
826 .msg_iovlen = iovlen,
827 };
828 ssize_t k;
829
830 assert(transport_fd >= 0);
831
832 /*
833 * We need either an FD or data to send.
834 * If there's nothing, return an error.
835 */
836 if (fd < 0 && !iov)
837 return -EINVAL;
838
839 if (fd >= 0) {
840 struct cmsghdr *cmsg;
841
842 mh.msg_control = &control;
843 mh.msg_controllen = sizeof(control);
844
845 cmsg = CMSG_FIRSTHDR(&mh);
846 cmsg->cmsg_level = SOL_SOCKET;
847 cmsg->cmsg_type = SCM_RIGHTS;
848 cmsg->cmsg_len = CMSG_LEN(sizeof(int));
849 memcpy(CMSG_DATA(cmsg), &fd, sizeof(int));
850 }
851 k = sendmsg(transport_fd, &mh, MSG_NOSIGNAL | flags);
852 if (k < 0)
853 return (ssize_t) -errno;
854
855 return k;
856 }
857
858 int send_one_fd_sa(
859 int transport_fd,
860 int fd,
861 const struct sockaddr *sa, socklen_t len,
862 int flags) {
863
864 assert(fd >= 0);
865
866 return (int) send_one_fd_iov_sa(transport_fd, fd, NULL, 0, sa, len, flags);
867 }
868
869 ssize_t receive_one_fd_iov(
870 int transport_fd,
871 struct iovec *iov, size_t iovlen,
872 int flags,
873 int *ret_fd) {
874
875 CMSG_BUFFER_TYPE(CMSG_SPACE(sizeof(int))) control;
876 struct msghdr mh = {
877 .msg_control = &control,
878 .msg_controllen = sizeof(control),
879 .msg_iov = iov,
880 .msg_iovlen = iovlen,
881 };
882 struct cmsghdr *found;
883 ssize_t k;
884
885 assert(transport_fd >= 0);
886 assert(ret_fd);
887
888 /*
889 * Receive a single FD via @transport_fd. We don't care for
890 * the transport-type. We retrieve a single FD at most, so for
891 * packet-based transports, the caller must ensure to send
892 * only a single FD per packet. This is best used in
893 * combination with send_one_fd().
894 */
895
896 k = recvmsg_safe(transport_fd, &mh, MSG_CMSG_CLOEXEC | flags);
897 if (k < 0)
898 return k;
899
900 found = cmsg_find(&mh, SOL_SOCKET, SCM_RIGHTS, CMSG_LEN(sizeof(int)));
901 if (!found) {
902 cmsg_close_all(&mh);
903
904 /* If didn't receive an FD or any data, return an error. */
905 if (k == 0)
906 return -EIO;
907 }
908
909 if (found)
910 *ret_fd = *(int*) CMSG_DATA(found);
911 else
912 *ret_fd = -1;
913
914 return k;
915 }
916
917 int receive_one_fd(int transport_fd, int flags) {
918 int fd;
919 ssize_t k;
920
921 k = receive_one_fd_iov(transport_fd, NULL, 0, flags, &fd);
922 if (k == 0)
923 return fd;
924
925 /* k must be negative, since receive_one_fd_iov() only returns
926 * a positive value if data was received through the iov. */
927 assert(k < 0);
928 return (int) k;
929 }
930
931 ssize_t next_datagram_size_fd(int fd) {
932 ssize_t l;
933 int k;
934
935 /* This is a bit like FIONREAD/SIOCINQ, however a bit more powerful. The difference being: recv(MSG_PEEK) will
936 * actually cause the next datagram in the queue to be validated regarding checksums, which FIONREAD doesn't
937 * do. This difference is actually of major importance as we need to be sure that the size returned here
938 * actually matches what we will read with recvmsg() next, as otherwise we might end up allocating a buffer of
939 * the wrong size. */
940
941 l = recv(fd, NULL, 0, MSG_PEEK|MSG_TRUNC);
942 if (l < 0) {
943 if (IN_SET(errno, EOPNOTSUPP, EFAULT))
944 goto fallback;
945
946 return -errno;
947 }
948 if (l == 0)
949 goto fallback;
950
951 return l;
952
953 fallback:
954 k = 0;
955
956 /* Some sockets (AF_PACKET) do not support null-sized recv() with MSG_TRUNC set, let's fall back to FIONREAD
957 * for them. Checksums don't matter for raw sockets anyway, hence this should be fine. */
958
959 if (ioctl(fd, FIONREAD, &k) < 0)
960 return -errno;
961
962 return (ssize_t) k;
963 }
964
965 /* Put a limit on how many times will attempt to call accept4(). We loop
966 * only on "transient" errors, but let's make sure we don't loop forever. */
967 #define MAX_FLUSH_ITERATIONS 1024
968
969 int flush_accept(int fd) {
970
971 struct pollfd pollfd = {
972 .fd = fd,
973 .events = POLLIN,
974 };
975 int r, b;
976 socklen_t l = sizeof(b);
977
978 /* Similar to flush_fd() but flushes all incoming connections by accepting and immediately closing
979 * them. */
980
981 if (getsockopt(fd, SOL_SOCKET, SO_ACCEPTCONN, &b, &l) < 0)
982 return -errno;
983
984 assert(l == sizeof(b));
985 if (!b) /* Let's check if this socket accepts connections before calling accept(). accept4() can
986 * return EOPNOTSUPP if the fd is not a listening socket, which we should treat as a fatal
987 * error, or in case the incoming TCP connection triggered a network issue, which we want to
988 * treat as a transient error. Thus, let's rule out the first reason for EOPNOTSUPP early, so
989 * we can loop safely on transient errors below. */
990 return -ENOTTY;
991
992 for (unsigned iteration = 0;; iteration++) {
993 int cfd;
994
995 r = poll(&pollfd, 1, 0);
996 if (r < 0) {
997 if (errno == EINTR)
998 continue;
999
1000 return -errno;
1001 }
1002 if (r == 0)
1003 return 0;
1004
1005 if (iteration >= MAX_FLUSH_ITERATIONS)
1006 return log_debug_errno(SYNTHETIC_ERRNO(EBUSY),
1007 "Failed to flush connections within " STRINGIFY(MAX_FLUSH_ITERATIONS) " iterations.");
1008
1009 cfd = accept4(fd, NULL, NULL, SOCK_NONBLOCK|SOCK_CLOEXEC);
1010 if (cfd < 0) {
1011 if (errno == EAGAIN)
1012 return 0;
1013
1014 if (ERRNO_IS_ACCEPT_AGAIN(errno))
1015 continue;
1016
1017 return -errno;
1018 }
1019
1020 safe_close(cfd);
1021 }
1022 }
1023
1024 struct cmsghdr* cmsg_find(struct msghdr *mh, int level, int type, socklen_t length) {
1025 struct cmsghdr *cmsg;
1026
1027 assert(mh);
1028
1029 CMSG_FOREACH(cmsg, mh)
1030 if (cmsg->cmsg_level == level &&
1031 cmsg->cmsg_type == type &&
1032 (length == (socklen_t) -1 || length == cmsg->cmsg_len))
1033 return cmsg;
1034
1035 return NULL;
1036 }
1037
1038 int socket_ioctl_fd(void) {
1039 int fd;
1040
1041 /* Create a socket to invoke the various network interface ioctl()s on. Traditionally only AF_INET was good for
1042 * that. Since kernel 4.6 AF_NETLINK works for this too. We first try to use AF_INET hence, but if that's not
1043 * available (for example, because it is made unavailable via SECCOMP or such), we'll fall back to the more
1044 * generic AF_NETLINK. */
1045
1046 fd = socket(AF_INET, SOCK_DGRAM|SOCK_CLOEXEC, 0);
1047 if (fd < 0)
1048 fd = socket(AF_NETLINK, SOCK_RAW|SOCK_CLOEXEC, NETLINK_GENERIC);
1049 if (fd < 0)
1050 return -errno;
1051
1052 return fd;
1053 }
1054
1055 int sockaddr_un_unlink(const struct sockaddr_un *sa) {
1056 const char *p, * nul;
1057
1058 assert(sa);
1059
1060 if (sa->sun_family != AF_UNIX)
1061 return -EPROTOTYPE;
1062
1063 if (sa->sun_path[0] == 0) /* Nothing to do for abstract sockets */
1064 return 0;
1065
1066 /* The path in .sun_path is not necessarily NUL terminated. Let's fix that. */
1067 nul = memchr(sa->sun_path, 0, sizeof(sa->sun_path));
1068 if (nul)
1069 p = sa->sun_path;
1070 else
1071 p = memdupa_suffix0(sa->sun_path, sizeof(sa->sun_path));
1072
1073 if (unlink(p) < 0)
1074 return -errno;
1075
1076 return 1;
1077 }
1078
1079 int sockaddr_un_set_path(struct sockaddr_un *ret, const char *path) {
1080 size_t l;
1081
1082 assert(ret);
1083 assert(path);
1084
1085 /* Initialize ret->sun_path from the specified argument. This will interpret paths starting with '@' as
1086 * abstract namespace sockets, and those starting with '/' as regular filesystem sockets. It won't accept
1087 * anything else (i.e. no relative paths), to avoid ambiguities. Note that this function cannot be used to
1088 * reference paths in the abstract namespace that include NUL bytes in the name. */
1089
1090 l = strlen(path);
1091 if (l == 0)
1092 return -EINVAL;
1093 if (!IN_SET(path[0], '/', '@'))
1094 return -EINVAL;
1095 if (path[1] == 0)
1096 return -EINVAL;
1097
1098 /* Don't allow paths larger than the space in sockaddr_un. Note that we are a tiny bit more restrictive than
1099 * the kernel is: we insist on NUL termination (both for abstract namespace and regular file system socket
1100 * addresses!), which the kernel doesn't. We do this to reduce chance of incompatibility with other apps that
1101 * do not expect non-NUL terminated file system path*/
1102 if (l+1 > sizeof(ret->sun_path))
1103 return -EINVAL;
1104
1105 *ret = (struct sockaddr_un) {
1106 .sun_family = AF_UNIX,
1107 };
1108
1109 if (path[0] == '@') {
1110 /* Abstract namespace socket */
1111 memcpy(ret->sun_path + 1, path + 1, l); /* copy *with* trailing NUL byte */
1112 return (int) (offsetof(struct sockaddr_un, sun_path) + l); /* 🔥 *don't* 🔥 include trailing NUL in size */
1113
1114 } else {
1115 assert(path[0] == '/');
1116
1117 /* File system socket */
1118 memcpy(ret->sun_path, path, l + 1); /* copy *with* trailing NUL byte */
1119 return (int) (offsetof(struct sockaddr_un, sun_path) + l + 1); /* include trailing NUL in size */
1120 }
1121 }
1122
1123 int socket_bind_to_ifname(int fd, const char *ifname) {
1124 assert(fd >= 0);
1125
1126 /* Call with NULL to drop binding */
1127
1128 if (setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, ifname, strlen_ptr(ifname)) < 0)
1129 return -errno;
1130
1131 return 0;
1132 }
1133
1134 int socket_bind_to_ifindex(int fd, int ifindex) {
1135 char ifname[IF_NAMESIZE + 1];
1136
1137 assert(fd >= 0);
1138
1139 if (ifindex <= 0) {
1140 /* Drop binding */
1141 if (setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, NULL, 0) < 0)
1142 return -errno;
1143
1144 return 0;
1145 }
1146
1147 if (setsockopt(fd, SOL_SOCKET, SO_BINDTOIFINDEX, &ifindex, sizeof(ifindex)) >= 0)
1148 return 0;
1149 if (errno != ENOPROTOOPT)
1150 return -errno;
1151
1152 /* Fall back to SO_BINDTODEVICE on kernels < 5.0 which didn't have SO_BINDTOIFINDEX */
1153 if (!format_ifname(ifindex, ifname))
1154 return -errno;
1155
1156 return socket_bind_to_ifname(fd, ifname);
1157 }
1158
1159 ssize_t recvmsg_safe(int sockfd, struct msghdr *msg, int flags) {
1160 ssize_t n;
1161
1162 /* A wrapper around recvmsg() that checks for MSG_CTRUNC, and turns it into an error, in a reasonably
1163 * safe way, closing any SCM_RIGHTS fds in the error path.
1164 *
1165 * Note that unlike our usual coding style this might modify *msg on failure. */
1166
1167 n = recvmsg(sockfd, msg, flags);
1168 if (n < 0)
1169 return -errno;
1170
1171 if (FLAGS_SET(msg->msg_flags, MSG_CTRUNC)) {
1172 cmsg_close_all(msg);
1173 return -EXFULL; /* a recognizable error code */
1174 }
1175
1176 return n;
1177
1178 }