]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/cgroup.c
core: reduce the number of stalled PIDs from the watched processes list when possible
[thirdparty/systemd.git] / src / core / cgroup.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <fcntl.h>
4 #include <fnmatch.h>
5
6 #include "alloc-util.h"
7 #include "blockdev-util.h"
8 #include "bpf-devices.h"
9 #include "bpf-firewall.h"
10 #include "btrfs-util.h"
11 #include "bus-error.h"
12 #include "cgroup-util.h"
13 #include "cgroup.h"
14 #include "fd-util.h"
15 #include "fileio.h"
16 #include "fs-util.h"
17 #include "nulstr-util.h"
18 #include "parse-util.h"
19 #include "path-util.h"
20 #include "process-util.h"
21 #include "procfs-util.h"
22 #include "special.h"
23 #include "stat-util.h"
24 #include "stdio-util.h"
25 #include "string-table.h"
26 #include "string-util.h"
27 #include "virt.h"
28
29 #define CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC ((usec_t) 100 * USEC_PER_MSEC)
30
31 /* Returns the log level to use when cgroup attribute writes fail. When an attribute is missing or we have access
32 * problems we downgrade to LOG_DEBUG. This is supposed to be nice to container managers and kernels which want to mask
33 * out specific attributes from us. */
34 #define LOG_LEVEL_CGROUP_WRITE(r) (IN_SET(abs(r), ENOENT, EROFS, EACCES, EPERM) ? LOG_DEBUG : LOG_WARNING)
35
36 bool manager_owns_host_root_cgroup(Manager *m) {
37 assert(m);
38
39 /* Returns true if we are managing the root cgroup. Note that it isn't sufficient to just check whether the
40 * group root path equals "/" since that will also be the case if CLONE_NEWCGROUP is in the mix. Since there's
41 * appears to be no nice way to detect whether we are in a CLONE_NEWCGROUP namespace we instead just check if
42 * we run in any kind of container virtualization. */
43
44 if (MANAGER_IS_USER(m))
45 return false;
46
47 if (detect_container() > 0)
48 return false;
49
50 return empty_or_root(m->cgroup_root);
51 }
52
53 bool unit_has_host_root_cgroup(Unit *u) {
54 assert(u);
55
56 /* Returns whether this unit manages the root cgroup. This will return true if this unit is the root slice and
57 * the manager manages the root cgroup. */
58
59 if (!manager_owns_host_root_cgroup(u->manager))
60 return false;
61
62 return unit_has_name(u, SPECIAL_ROOT_SLICE);
63 }
64
65 static int set_attribute_and_warn(Unit *u, const char *controller, const char *attribute, const char *value) {
66 int r;
67
68 r = cg_set_attribute(controller, u->cgroup_path, attribute, value);
69 if (r < 0)
70 log_unit_full(u, LOG_LEVEL_CGROUP_WRITE(r), r, "Failed to set '%s' attribute on '%s' to '%.*s': %m",
71 strna(attribute), isempty(u->cgroup_path) ? "/" : u->cgroup_path, (int) strcspn(value, NEWLINE), value);
72
73 return r;
74 }
75
76 static void cgroup_compat_warn(void) {
77 static bool cgroup_compat_warned = false;
78
79 if (cgroup_compat_warned)
80 return;
81
82 log_warning("cgroup compatibility translation between legacy and unified hierarchy settings activated. "
83 "See cgroup-compat debug messages for details.");
84
85 cgroup_compat_warned = true;
86 }
87
88 #define log_cgroup_compat(unit, fmt, ...) do { \
89 cgroup_compat_warn(); \
90 log_unit_debug(unit, "cgroup-compat: " fmt, ##__VA_ARGS__); \
91 } while (false)
92
93 void cgroup_context_init(CGroupContext *c) {
94 assert(c);
95
96 /* Initialize everything to the kernel defaults. */
97
98 *c = (CGroupContext) {
99 .cpu_weight = CGROUP_WEIGHT_INVALID,
100 .startup_cpu_weight = CGROUP_WEIGHT_INVALID,
101 .cpu_quota_per_sec_usec = USEC_INFINITY,
102 .cpu_quota_period_usec = USEC_INFINITY,
103
104 .cpu_shares = CGROUP_CPU_SHARES_INVALID,
105 .startup_cpu_shares = CGROUP_CPU_SHARES_INVALID,
106
107 .memory_high = CGROUP_LIMIT_MAX,
108 .memory_max = CGROUP_LIMIT_MAX,
109 .memory_swap_max = CGROUP_LIMIT_MAX,
110
111 .memory_limit = CGROUP_LIMIT_MAX,
112
113 .io_weight = CGROUP_WEIGHT_INVALID,
114 .startup_io_weight = CGROUP_WEIGHT_INVALID,
115
116 .blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
117 .startup_blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
118
119 .tasks_max = CGROUP_LIMIT_MAX,
120 };
121 }
122
123 void cgroup_context_free_device_allow(CGroupContext *c, CGroupDeviceAllow *a) {
124 assert(c);
125 assert(a);
126
127 LIST_REMOVE(device_allow, c->device_allow, a);
128 free(a->path);
129 free(a);
130 }
131
132 void cgroup_context_free_io_device_weight(CGroupContext *c, CGroupIODeviceWeight *w) {
133 assert(c);
134 assert(w);
135
136 LIST_REMOVE(device_weights, c->io_device_weights, w);
137 free(w->path);
138 free(w);
139 }
140
141 void cgroup_context_free_io_device_latency(CGroupContext *c, CGroupIODeviceLatency *l) {
142 assert(c);
143 assert(l);
144
145 LIST_REMOVE(device_latencies, c->io_device_latencies, l);
146 free(l->path);
147 free(l);
148 }
149
150 void cgroup_context_free_io_device_limit(CGroupContext *c, CGroupIODeviceLimit *l) {
151 assert(c);
152 assert(l);
153
154 LIST_REMOVE(device_limits, c->io_device_limits, l);
155 free(l->path);
156 free(l);
157 }
158
159 void cgroup_context_free_blockio_device_weight(CGroupContext *c, CGroupBlockIODeviceWeight *w) {
160 assert(c);
161 assert(w);
162
163 LIST_REMOVE(device_weights, c->blockio_device_weights, w);
164 free(w->path);
165 free(w);
166 }
167
168 void cgroup_context_free_blockio_device_bandwidth(CGroupContext *c, CGroupBlockIODeviceBandwidth *b) {
169 assert(c);
170 assert(b);
171
172 LIST_REMOVE(device_bandwidths, c->blockio_device_bandwidths, b);
173 free(b->path);
174 free(b);
175 }
176
177 void cgroup_context_done(CGroupContext *c) {
178 assert(c);
179
180 while (c->io_device_weights)
181 cgroup_context_free_io_device_weight(c, c->io_device_weights);
182
183 while (c->io_device_latencies)
184 cgroup_context_free_io_device_latency(c, c->io_device_latencies);
185
186 while (c->io_device_limits)
187 cgroup_context_free_io_device_limit(c, c->io_device_limits);
188
189 while (c->blockio_device_weights)
190 cgroup_context_free_blockio_device_weight(c, c->blockio_device_weights);
191
192 while (c->blockio_device_bandwidths)
193 cgroup_context_free_blockio_device_bandwidth(c, c->blockio_device_bandwidths);
194
195 while (c->device_allow)
196 cgroup_context_free_device_allow(c, c->device_allow);
197
198 c->ip_address_allow = ip_address_access_free_all(c->ip_address_allow);
199 c->ip_address_deny = ip_address_access_free_all(c->ip_address_deny);
200 }
201
202 void cgroup_context_dump(CGroupContext *c, FILE* f, const char *prefix) {
203 CGroupIODeviceLimit *il;
204 CGroupIODeviceWeight *iw;
205 CGroupIODeviceLatency *l;
206 CGroupBlockIODeviceBandwidth *b;
207 CGroupBlockIODeviceWeight *w;
208 CGroupDeviceAllow *a;
209 IPAddressAccessItem *iaai;
210 char u[FORMAT_TIMESPAN_MAX];
211 char v[FORMAT_TIMESPAN_MAX];
212
213 assert(c);
214 assert(f);
215
216 prefix = strempty(prefix);
217
218 fprintf(f,
219 "%sCPUAccounting=%s\n"
220 "%sIOAccounting=%s\n"
221 "%sBlockIOAccounting=%s\n"
222 "%sMemoryAccounting=%s\n"
223 "%sTasksAccounting=%s\n"
224 "%sIPAccounting=%s\n"
225 "%sCPUWeight=%" PRIu64 "\n"
226 "%sStartupCPUWeight=%" PRIu64 "\n"
227 "%sCPUShares=%" PRIu64 "\n"
228 "%sStartupCPUShares=%" PRIu64 "\n"
229 "%sCPUQuotaPerSecSec=%s\n"
230 "%sCPUQuotaPeriodSec=%s\n"
231 "%sIOWeight=%" PRIu64 "\n"
232 "%sStartupIOWeight=%" PRIu64 "\n"
233 "%sBlockIOWeight=%" PRIu64 "\n"
234 "%sStartupBlockIOWeight=%" PRIu64 "\n"
235 "%sMemoryMin=%" PRIu64 "\n"
236 "%sMemoryLow=%" PRIu64 "\n"
237 "%sMemoryHigh=%" PRIu64 "\n"
238 "%sMemoryMax=%" PRIu64 "\n"
239 "%sMemorySwapMax=%" PRIu64 "\n"
240 "%sMemoryLimit=%" PRIu64 "\n"
241 "%sTasksMax=%" PRIu64 "\n"
242 "%sDevicePolicy=%s\n"
243 "%sDelegate=%s\n",
244 prefix, yes_no(c->cpu_accounting),
245 prefix, yes_no(c->io_accounting),
246 prefix, yes_no(c->blockio_accounting),
247 prefix, yes_no(c->memory_accounting),
248 prefix, yes_no(c->tasks_accounting),
249 prefix, yes_no(c->ip_accounting),
250 prefix, c->cpu_weight,
251 prefix, c->startup_cpu_weight,
252 prefix, c->cpu_shares,
253 prefix, c->startup_cpu_shares,
254 prefix, format_timespan(u, sizeof(u), c->cpu_quota_per_sec_usec, 1),
255 prefix, format_timespan(v, sizeof(v), c->cpu_quota_period_usec, 1),
256 prefix, c->io_weight,
257 prefix, c->startup_io_weight,
258 prefix, c->blockio_weight,
259 prefix, c->startup_blockio_weight,
260 prefix, c->memory_min,
261 prefix, c->memory_low,
262 prefix, c->memory_high,
263 prefix, c->memory_max,
264 prefix, c->memory_swap_max,
265 prefix, c->memory_limit,
266 prefix, c->tasks_max,
267 prefix, cgroup_device_policy_to_string(c->device_policy),
268 prefix, yes_no(c->delegate));
269
270 if (c->delegate) {
271 _cleanup_free_ char *t = NULL;
272
273 (void) cg_mask_to_string(c->delegate_controllers, &t);
274
275 fprintf(f, "%sDelegateControllers=%s\n",
276 prefix,
277 strempty(t));
278 }
279
280 LIST_FOREACH(device_allow, a, c->device_allow)
281 fprintf(f,
282 "%sDeviceAllow=%s %s%s%s\n",
283 prefix,
284 a->path,
285 a->r ? "r" : "", a->w ? "w" : "", a->m ? "m" : "");
286
287 LIST_FOREACH(device_weights, iw, c->io_device_weights)
288 fprintf(f,
289 "%sIODeviceWeight=%s %" PRIu64 "\n",
290 prefix,
291 iw->path,
292 iw->weight);
293
294 LIST_FOREACH(device_latencies, l, c->io_device_latencies)
295 fprintf(f,
296 "%sIODeviceLatencyTargetSec=%s %s\n",
297 prefix,
298 l->path,
299 format_timespan(u, sizeof(u), l->target_usec, 1));
300
301 LIST_FOREACH(device_limits, il, c->io_device_limits) {
302 char buf[FORMAT_BYTES_MAX];
303 CGroupIOLimitType type;
304
305 for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
306 if (il->limits[type] != cgroup_io_limit_defaults[type])
307 fprintf(f,
308 "%s%s=%s %s\n",
309 prefix,
310 cgroup_io_limit_type_to_string(type),
311 il->path,
312 format_bytes(buf, sizeof(buf), il->limits[type]));
313 }
314
315 LIST_FOREACH(device_weights, w, c->blockio_device_weights)
316 fprintf(f,
317 "%sBlockIODeviceWeight=%s %" PRIu64,
318 prefix,
319 w->path,
320 w->weight);
321
322 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
323 char buf[FORMAT_BYTES_MAX];
324
325 if (b->rbps != CGROUP_LIMIT_MAX)
326 fprintf(f,
327 "%sBlockIOReadBandwidth=%s %s\n",
328 prefix,
329 b->path,
330 format_bytes(buf, sizeof(buf), b->rbps));
331 if (b->wbps != CGROUP_LIMIT_MAX)
332 fprintf(f,
333 "%sBlockIOWriteBandwidth=%s %s\n",
334 prefix,
335 b->path,
336 format_bytes(buf, sizeof(buf), b->wbps));
337 }
338
339 LIST_FOREACH(items, iaai, c->ip_address_allow) {
340 _cleanup_free_ char *k = NULL;
341
342 (void) in_addr_to_string(iaai->family, &iaai->address, &k);
343 fprintf(f, "%sIPAddressAllow=%s/%u\n", prefix, strnull(k), iaai->prefixlen);
344 }
345
346 LIST_FOREACH(items, iaai, c->ip_address_deny) {
347 _cleanup_free_ char *k = NULL;
348
349 (void) in_addr_to_string(iaai->family, &iaai->address, &k);
350 fprintf(f, "%sIPAddressDeny=%s/%u\n", prefix, strnull(k), iaai->prefixlen);
351 }
352 }
353
354 int cgroup_add_device_allow(CGroupContext *c, const char *dev, const char *mode) {
355 _cleanup_free_ CGroupDeviceAllow *a = NULL;
356 _cleanup_free_ char *d = NULL;
357
358 assert(c);
359 assert(dev);
360 assert(isempty(mode) || in_charset(mode, "rwm"));
361
362 a = new(CGroupDeviceAllow, 1);
363 if (!a)
364 return -ENOMEM;
365
366 d = strdup(dev);
367 if (!d)
368 return -ENOMEM;
369
370 *a = (CGroupDeviceAllow) {
371 .path = TAKE_PTR(d),
372 .r = isempty(mode) || strchr(mode, 'r'),
373 .w = isempty(mode) || strchr(mode, 'w'),
374 .m = isempty(mode) || strchr(mode, 'm'),
375 };
376
377 LIST_PREPEND(device_allow, c->device_allow, a);
378 TAKE_PTR(a);
379
380 return 0;
381 }
382
383 static void cgroup_xattr_apply(Unit *u) {
384 char ids[SD_ID128_STRING_MAX];
385 int r;
386
387 assert(u);
388
389 if (!MANAGER_IS_SYSTEM(u->manager))
390 return;
391
392 if (sd_id128_is_null(u->invocation_id))
393 return;
394
395 r = cg_set_xattr(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path,
396 "trusted.invocation_id",
397 sd_id128_to_string(u->invocation_id, ids), 32,
398 0);
399 if (r < 0)
400 log_unit_debug_errno(u, r, "Failed to set invocation ID on control group %s, ignoring: %m", u->cgroup_path);
401 }
402
403 static int lookup_block_device(const char *p, dev_t *ret) {
404 dev_t rdev, dev = 0;
405 mode_t mode;
406 int r;
407
408 assert(p);
409 assert(ret);
410
411 r = device_path_parse_major_minor(p, &mode, &rdev);
412 if (r == -ENODEV) { /* not a parsable device node, need to go to disk */
413 struct stat st;
414 if (stat(p, &st) < 0)
415 return log_warning_errno(errno, "Couldn't stat device '%s': %m", p);
416 rdev = (dev_t)st.st_rdev;
417 dev = (dev_t)st.st_dev;
418 mode = st.st_mode;
419 } else if (r < 0)
420 return log_warning_errno(r, "Failed to parse major/minor from path '%s': %m", p);
421
422 if (S_ISCHR(mode)) {
423 log_warning("Device node '%s' is a character device, but block device needed.", p);
424 return -ENOTBLK;
425 } else if (S_ISBLK(mode))
426 *ret = rdev;
427 else if (major(dev) != 0)
428 *ret = dev; /* If this is not a device node then use the block device this file is stored on */
429 else {
430 /* If this is btrfs, getting the backing block device is a bit harder */
431 r = btrfs_get_block_device(p, ret);
432 if (r < 0 && r != -ENOTTY)
433 return log_warning_errno(r, "Failed to determine block device backing btrfs file system '%s': %m", p);
434 if (r == -ENOTTY) {
435 log_warning("'%s' is not a block device node, and file system block device cannot be determined or is not local.", p);
436 return -ENODEV;
437 }
438 }
439
440 /* If this is a LUKS device, try to get the originating block device */
441 (void) block_get_originating(*ret, ret);
442
443 /* If this is a partition, try to get the originating block device */
444 (void) block_get_whole_disk(*ret, ret);
445 return 0;
446 }
447
448 static int whitelist_device(BPFProgram *prog, const char *path, const char *node, const char *acc) {
449 dev_t rdev;
450 mode_t mode;
451 int r;
452
453 assert(path);
454 assert(acc);
455
456 /* Some special handling for /dev/block/%u:%u, /dev/char/%u:%u, /run/systemd/inaccessible/chr and
457 * /run/systemd/inaccessible/blk paths. Instead of stat()ing these we parse out the major/minor directly. This
458 * means clients can use these path without the device node actually around */
459 r = device_path_parse_major_minor(node, &mode, &rdev);
460 if (r < 0) {
461 if (r != -ENODEV)
462 return log_warning_errno(r, "Couldn't parse major/minor from device path '%s': %m", node);
463
464 struct stat st;
465 if (stat(node, &st) < 0)
466 return log_warning_errno(errno, "Couldn't stat device %s: %m", node);
467
468 if (!S_ISCHR(st.st_mode) && !S_ISBLK(st.st_mode)) {
469 log_warning("%s is not a device.", node);
470 return -ENODEV;
471 }
472 rdev = (dev_t) st.st_rdev;
473 mode = st.st_mode;
474 }
475
476 if (cg_all_unified() > 0) {
477 if (!prog)
478 return 0;
479
480 return cgroup_bpf_whitelist_device(prog, S_ISCHR(mode) ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK,
481 major(rdev), minor(rdev), acc);
482
483 } else {
484 char buf[2+DECIMAL_STR_MAX(dev_t)*2+2+4];
485
486 sprintf(buf,
487 "%c %u:%u %s",
488 S_ISCHR(mode) ? 'c' : 'b',
489 major(rdev), minor(rdev),
490 acc);
491
492 /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore EINVAL here. */
493
494 r = cg_set_attribute("devices", path, "devices.allow", buf);
495 if (r < 0)
496 return log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING,
497 r, "Failed to set devices.allow on %s: %m", path);
498
499 return 0;
500 }
501 }
502
503 static int whitelist_major(BPFProgram *prog, const char *path, const char *name, char type, const char *acc) {
504 _cleanup_fclose_ FILE *f = NULL;
505 char buf[2+DECIMAL_STR_MAX(unsigned)+3+4];
506 bool good = false;
507 unsigned maj;
508 int r;
509
510 assert(path);
511 assert(acc);
512 assert(IN_SET(type, 'b', 'c'));
513
514 if (streq(name, "*")) {
515 /* If the name is a wildcard, then apply this list to all devices of this type */
516
517 if (cg_all_unified() > 0) {
518 if (!prog)
519 return 0;
520
521 (void) cgroup_bpf_whitelist_class(prog, type == 'c' ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK, acc);
522 } else {
523 xsprintf(buf, "%c *:* %s", type, acc);
524
525 r = cg_set_attribute("devices", path, "devices.allow", buf);
526 if (r < 0)
527 log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
528 "Failed to set devices.allow on %s: %m", path);
529 return 0;
530 }
531 }
532
533 if (safe_atou(name, &maj) >= 0 && DEVICE_MAJOR_VALID(maj)) {
534 /* The name is numeric and suitable as major. In that case, let's take is major, and create the entry
535 * directly */
536
537 if (cg_all_unified() > 0) {
538 if (!prog)
539 return 0;
540
541 (void) cgroup_bpf_whitelist_major(prog,
542 type == 'c' ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK,
543 maj, acc);
544 } else {
545 xsprintf(buf, "%c %u:* %s", type, maj, acc);
546
547 r = cg_set_attribute("devices", path, "devices.allow", buf);
548 if (r < 0)
549 log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
550 "Failed to set devices.allow on %s: %m", path);
551 }
552
553 return 0;
554 }
555
556 f = fopen("/proc/devices", "re");
557 if (!f)
558 return log_warning_errno(errno, "Cannot open /proc/devices to resolve %s (%c): %m", name, type);
559
560 for (;;) {
561 _cleanup_free_ char *line = NULL;
562 char *w, *p;
563
564 r = read_line(f, LONG_LINE_MAX, &line);
565 if (r < 0)
566 return log_warning_errno(r, "Failed to read /proc/devices: %m");
567 if (r == 0)
568 break;
569
570 if (type == 'c' && streq(line, "Character devices:")) {
571 good = true;
572 continue;
573 }
574
575 if (type == 'b' && streq(line, "Block devices:")) {
576 good = true;
577 continue;
578 }
579
580 if (isempty(line)) {
581 good = false;
582 continue;
583 }
584
585 if (!good)
586 continue;
587
588 p = strstrip(line);
589
590 w = strpbrk(p, WHITESPACE);
591 if (!w)
592 continue;
593 *w = 0;
594
595 r = safe_atou(p, &maj);
596 if (r < 0)
597 continue;
598 if (maj <= 0)
599 continue;
600
601 w++;
602 w += strspn(w, WHITESPACE);
603
604 if (fnmatch(name, w, 0) != 0)
605 continue;
606
607 if (cg_all_unified() > 0) {
608 if (!prog)
609 continue;
610
611 (void) cgroup_bpf_whitelist_major(prog,
612 type == 'c' ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK,
613 maj, acc);
614 } else {
615 sprintf(buf,
616 "%c %u:* %s",
617 type,
618 maj,
619 acc);
620
621 /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore EINVAL
622 * here. */
623
624 r = cg_set_attribute("devices", path, "devices.allow", buf);
625 if (r < 0)
626 log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING,
627 r, "Failed to set devices.allow on %s: %m", path);
628 }
629 }
630
631 return 0;
632 }
633
634 static bool cgroup_context_has_cpu_weight(CGroupContext *c) {
635 return c->cpu_weight != CGROUP_WEIGHT_INVALID ||
636 c->startup_cpu_weight != CGROUP_WEIGHT_INVALID;
637 }
638
639 static bool cgroup_context_has_cpu_shares(CGroupContext *c) {
640 return c->cpu_shares != CGROUP_CPU_SHARES_INVALID ||
641 c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID;
642 }
643
644 static uint64_t cgroup_context_cpu_weight(CGroupContext *c, ManagerState state) {
645 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
646 c->startup_cpu_weight != CGROUP_WEIGHT_INVALID)
647 return c->startup_cpu_weight;
648 else if (c->cpu_weight != CGROUP_WEIGHT_INVALID)
649 return c->cpu_weight;
650 else
651 return CGROUP_WEIGHT_DEFAULT;
652 }
653
654 static uint64_t cgroup_context_cpu_shares(CGroupContext *c, ManagerState state) {
655 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
656 c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID)
657 return c->startup_cpu_shares;
658 else if (c->cpu_shares != CGROUP_CPU_SHARES_INVALID)
659 return c->cpu_shares;
660 else
661 return CGROUP_CPU_SHARES_DEFAULT;
662 }
663
664 usec_t cgroup_cpu_adjust_period(usec_t period, usec_t quota, usec_t resolution, usec_t max_period) {
665 /* kernel uses a minimum resolution of 1ms, so both period and (quota * period)
666 * need to be higher than that boundary. quota is specified in USecPerSec.
667 * Additionally, period must be at most max_period. */
668 assert(quota > 0);
669
670 return MIN(MAX3(period, resolution, resolution * USEC_PER_SEC / quota), max_period);
671 }
672
673 static usec_t cgroup_cpu_adjust_period_and_log(Unit *u, usec_t period, usec_t quota) {
674 usec_t new_period;
675
676 if (quota == USEC_INFINITY)
677 /* Always use default period for infinity quota. */
678 return CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC;
679
680 if (period == USEC_INFINITY)
681 /* Default period was requested. */
682 period = CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC;
683
684 /* Clamp to interval [1ms, 1s] */
685 new_period = cgroup_cpu_adjust_period(period, quota, USEC_PER_MSEC, USEC_PER_SEC);
686
687 if (new_period != period) {
688 char v[FORMAT_TIMESPAN_MAX];
689 log_unit_full(u, u->warned_clamping_cpu_quota_period ? LOG_DEBUG : LOG_WARNING, 0,
690 "Clamping CPU interval for cpu.max: period is now %s",
691 format_timespan(v, sizeof(v), new_period, 1));
692 u->warned_clamping_cpu_quota_period = true;
693 }
694
695 return new_period;
696 }
697
698 static void cgroup_apply_unified_cpu_weight(Unit *u, uint64_t weight) {
699 char buf[DECIMAL_STR_MAX(uint64_t) + 2];
700
701 xsprintf(buf, "%" PRIu64 "\n", weight);
702 (void) set_attribute_and_warn(u, "cpu", "cpu.weight", buf);
703 }
704
705 static void cgroup_apply_unified_cpu_quota(Unit *u, usec_t quota, usec_t period) {
706 char buf[(DECIMAL_STR_MAX(usec_t) + 1) * 2 + 1];
707
708 period = cgroup_cpu_adjust_period_and_log(u, period, quota);
709 if (quota != USEC_INFINITY)
710 xsprintf(buf, USEC_FMT " " USEC_FMT "\n",
711 MAX(quota * period / USEC_PER_SEC, USEC_PER_MSEC), period);
712 else
713 xsprintf(buf, "max " USEC_FMT "\n", period);
714 (void) set_attribute_and_warn(u, "cpu", "cpu.max", buf);
715 }
716
717 static void cgroup_apply_legacy_cpu_shares(Unit *u, uint64_t shares) {
718 char buf[DECIMAL_STR_MAX(uint64_t) + 2];
719
720 xsprintf(buf, "%" PRIu64 "\n", shares);
721 (void) set_attribute_and_warn(u, "cpu", "cpu.shares", buf);
722 }
723
724 static void cgroup_apply_legacy_cpu_quota(Unit *u, usec_t quota, usec_t period) {
725 char buf[DECIMAL_STR_MAX(usec_t) + 2];
726
727 period = cgroup_cpu_adjust_period_and_log(u, period, quota);
728
729 xsprintf(buf, USEC_FMT "\n", period);
730 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_period_us", buf);
731
732 if (quota != USEC_INFINITY) {
733 xsprintf(buf, USEC_FMT "\n", MAX(quota * period / USEC_PER_SEC, USEC_PER_MSEC));
734 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", buf);
735 } else
736 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", "-1\n");
737 }
738
739 static uint64_t cgroup_cpu_shares_to_weight(uint64_t shares) {
740 return CLAMP(shares * CGROUP_WEIGHT_DEFAULT / CGROUP_CPU_SHARES_DEFAULT,
741 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
742 }
743
744 static uint64_t cgroup_cpu_weight_to_shares(uint64_t weight) {
745 return CLAMP(weight * CGROUP_CPU_SHARES_DEFAULT / CGROUP_WEIGHT_DEFAULT,
746 CGROUP_CPU_SHARES_MIN, CGROUP_CPU_SHARES_MAX);
747 }
748
749 static bool cgroup_context_has_io_config(CGroupContext *c) {
750 return c->io_accounting ||
751 c->io_weight != CGROUP_WEIGHT_INVALID ||
752 c->startup_io_weight != CGROUP_WEIGHT_INVALID ||
753 c->io_device_weights ||
754 c->io_device_latencies ||
755 c->io_device_limits;
756 }
757
758 static bool cgroup_context_has_blockio_config(CGroupContext *c) {
759 return c->blockio_accounting ||
760 c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
761 c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
762 c->blockio_device_weights ||
763 c->blockio_device_bandwidths;
764 }
765
766 static uint64_t cgroup_context_io_weight(CGroupContext *c, ManagerState state) {
767 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
768 c->startup_io_weight != CGROUP_WEIGHT_INVALID)
769 return c->startup_io_weight;
770 else if (c->io_weight != CGROUP_WEIGHT_INVALID)
771 return c->io_weight;
772 else
773 return CGROUP_WEIGHT_DEFAULT;
774 }
775
776 static uint64_t cgroup_context_blkio_weight(CGroupContext *c, ManagerState state) {
777 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
778 c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
779 return c->startup_blockio_weight;
780 else if (c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
781 return c->blockio_weight;
782 else
783 return CGROUP_BLKIO_WEIGHT_DEFAULT;
784 }
785
786 static uint64_t cgroup_weight_blkio_to_io(uint64_t blkio_weight) {
787 return CLAMP(blkio_weight * CGROUP_WEIGHT_DEFAULT / CGROUP_BLKIO_WEIGHT_DEFAULT,
788 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
789 }
790
791 static uint64_t cgroup_weight_io_to_blkio(uint64_t io_weight) {
792 return CLAMP(io_weight * CGROUP_BLKIO_WEIGHT_DEFAULT / CGROUP_WEIGHT_DEFAULT,
793 CGROUP_BLKIO_WEIGHT_MIN, CGROUP_BLKIO_WEIGHT_MAX);
794 }
795
796 static void cgroup_apply_io_device_weight(Unit *u, const char *dev_path, uint64_t io_weight) {
797 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
798 dev_t dev;
799 int r;
800
801 r = lookup_block_device(dev_path, &dev);
802 if (r < 0)
803 return;
804
805 xsprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), io_weight);
806 (void) set_attribute_and_warn(u, "io", "io.weight", buf);
807 }
808
809 static void cgroup_apply_blkio_device_weight(Unit *u, const char *dev_path, uint64_t blkio_weight) {
810 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
811 dev_t dev;
812 int r;
813
814 r = lookup_block_device(dev_path, &dev);
815 if (r < 0)
816 return;
817
818 xsprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), blkio_weight);
819 (void) set_attribute_and_warn(u, "blkio", "blkio.weight_device", buf);
820 }
821
822 static void cgroup_apply_io_device_latency(Unit *u, const char *dev_path, usec_t target) {
823 char buf[DECIMAL_STR_MAX(dev_t)*2+2+7+DECIMAL_STR_MAX(uint64_t)+1];
824 dev_t dev;
825 int r;
826
827 r = lookup_block_device(dev_path, &dev);
828 if (r < 0)
829 return;
830
831 if (target != USEC_INFINITY)
832 xsprintf(buf, "%u:%u target=%" PRIu64 "\n", major(dev), minor(dev), target);
833 else
834 xsprintf(buf, "%u:%u target=max\n", major(dev), minor(dev));
835
836 (void) set_attribute_and_warn(u, "io", "io.latency", buf);
837 }
838
839 static void cgroup_apply_io_device_limit(Unit *u, const char *dev_path, uint64_t *limits) {
840 char limit_bufs[_CGROUP_IO_LIMIT_TYPE_MAX][DECIMAL_STR_MAX(uint64_t)];
841 char buf[DECIMAL_STR_MAX(dev_t)*2+2+(6+DECIMAL_STR_MAX(uint64_t)+1)*4];
842 CGroupIOLimitType type;
843 dev_t dev;
844 int r;
845
846 r = lookup_block_device(dev_path, &dev);
847 if (r < 0)
848 return;
849
850 for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
851 if (limits[type] != cgroup_io_limit_defaults[type])
852 xsprintf(limit_bufs[type], "%" PRIu64, limits[type]);
853 else
854 xsprintf(limit_bufs[type], "%s", limits[type] == CGROUP_LIMIT_MAX ? "max" : "0");
855
856 xsprintf(buf, "%u:%u rbps=%s wbps=%s riops=%s wiops=%s\n", major(dev), minor(dev),
857 limit_bufs[CGROUP_IO_RBPS_MAX], limit_bufs[CGROUP_IO_WBPS_MAX],
858 limit_bufs[CGROUP_IO_RIOPS_MAX], limit_bufs[CGROUP_IO_WIOPS_MAX]);
859 (void) set_attribute_and_warn(u, "io", "io.max", buf);
860 }
861
862 static void cgroup_apply_blkio_device_limit(Unit *u, const char *dev_path, uint64_t rbps, uint64_t wbps) {
863 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
864 dev_t dev;
865 int r;
866
867 r = lookup_block_device(dev_path, &dev);
868 if (r < 0)
869 return;
870
871 sprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), rbps);
872 (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.read_bps_device", buf);
873
874 sprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), wbps);
875 (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.write_bps_device", buf);
876 }
877
878 static bool cgroup_context_has_unified_memory_config(CGroupContext *c) {
879 return c->memory_min > 0 || c->memory_low > 0 || c->memory_high != CGROUP_LIMIT_MAX || c->memory_max != CGROUP_LIMIT_MAX || c->memory_swap_max != CGROUP_LIMIT_MAX;
880 }
881
882 static void cgroup_apply_unified_memory_limit(Unit *u, const char *file, uint64_t v) {
883 char buf[DECIMAL_STR_MAX(uint64_t) + 1] = "max\n";
884
885 if (v != CGROUP_LIMIT_MAX)
886 xsprintf(buf, "%" PRIu64 "\n", v);
887
888 (void) set_attribute_and_warn(u, "memory", file, buf);
889 }
890
891 static void cgroup_apply_firewall(Unit *u) {
892 assert(u);
893
894 /* Best-effort: let's apply IP firewalling and/or accounting if that's enabled */
895
896 if (bpf_firewall_compile(u) < 0)
897 return;
898
899 (void) bpf_firewall_install(u);
900 }
901
902 static void cgroup_context_apply(
903 Unit *u,
904 CGroupMask apply_mask,
905 ManagerState state) {
906
907 const char *path;
908 CGroupContext *c;
909 bool is_host_root, is_local_root;
910 int r;
911
912 assert(u);
913
914 /* Nothing to do? Exit early! */
915 if (apply_mask == 0)
916 return;
917
918 /* Some cgroup attributes are not supported on the host root cgroup, hence silently ignore them here. And other
919 * attributes should only be managed for cgroups further down the tree. */
920 is_local_root = unit_has_name(u, SPECIAL_ROOT_SLICE);
921 is_host_root = unit_has_host_root_cgroup(u);
922
923 assert_se(c = unit_get_cgroup_context(u));
924 assert_se(path = u->cgroup_path);
925
926 if (is_local_root) /* Make sure we don't try to display messages with an empty path. */
927 path = "/";
928
929 /* We generally ignore errors caused by read-only mounted cgroup trees (assuming we are running in a container
930 * then), and missing cgroups, i.e. EROFS and ENOENT. */
931
932 /* In fully unified mode these attributes don't exist on the host cgroup root. On legacy the weights exist, but
933 * setting the weight makes very little sense on the host root cgroup, as there are no other cgroups at this
934 * level. The quota exists there too, but any attempt to write to it is refused with EINVAL. Inside of
935 * containers we want to leave control of these to the container manager (and if cgroup v2 delegation is used
936 * we couldn't even write to them if we wanted to). */
937 if ((apply_mask & CGROUP_MASK_CPU) && !is_local_root) {
938
939 if (cg_all_unified() > 0) {
940 uint64_t weight;
941
942 if (cgroup_context_has_cpu_weight(c))
943 weight = cgroup_context_cpu_weight(c, state);
944 else if (cgroup_context_has_cpu_shares(c)) {
945 uint64_t shares;
946
947 shares = cgroup_context_cpu_shares(c, state);
948 weight = cgroup_cpu_shares_to_weight(shares);
949
950 log_cgroup_compat(u, "Applying [Startup]CPUShares=%" PRIu64 " as [Startup]CPUWeight=%" PRIu64 " on %s",
951 shares, weight, path);
952 } else
953 weight = CGROUP_WEIGHT_DEFAULT;
954
955 cgroup_apply_unified_cpu_weight(u, weight);
956 cgroup_apply_unified_cpu_quota(u, c->cpu_quota_per_sec_usec, c->cpu_quota_period_usec);
957
958 } else {
959 uint64_t shares;
960
961 if (cgroup_context_has_cpu_weight(c)) {
962 uint64_t weight;
963
964 weight = cgroup_context_cpu_weight(c, state);
965 shares = cgroup_cpu_weight_to_shares(weight);
966
967 log_cgroup_compat(u, "Applying [Startup]CPUWeight=%" PRIu64 " as [Startup]CPUShares=%" PRIu64 " on %s",
968 weight, shares, path);
969 } else if (cgroup_context_has_cpu_shares(c))
970 shares = cgroup_context_cpu_shares(c, state);
971 else
972 shares = CGROUP_CPU_SHARES_DEFAULT;
973
974 cgroup_apply_legacy_cpu_shares(u, shares);
975 cgroup_apply_legacy_cpu_quota(u, c->cpu_quota_per_sec_usec, c->cpu_quota_period_usec);
976 }
977 }
978
979 /* The 'io' controller attributes are not exported on the host's root cgroup (being a pure cgroup v2
980 * controller), and in case of containers we want to leave control of these attributes to the container manager
981 * (and we couldn't access that stuff anyway, even if we tried if proper delegation is used). */
982 if ((apply_mask & CGROUP_MASK_IO) && !is_local_root) {
983 char buf[8+DECIMAL_STR_MAX(uint64_t)+1];
984 bool has_io, has_blockio;
985 uint64_t weight;
986
987 has_io = cgroup_context_has_io_config(c);
988 has_blockio = cgroup_context_has_blockio_config(c);
989
990 if (has_io)
991 weight = cgroup_context_io_weight(c, state);
992 else if (has_blockio) {
993 uint64_t blkio_weight;
994
995 blkio_weight = cgroup_context_blkio_weight(c, state);
996 weight = cgroup_weight_blkio_to_io(blkio_weight);
997
998 log_cgroup_compat(u, "Applying [Startup]BlockIOWeight=%" PRIu64 " as [Startup]IOWeight=%" PRIu64,
999 blkio_weight, weight);
1000 } else
1001 weight = CGROUP_WEIGHT_DEFAULT;
1002
1003 xsprintf(buf, "default %" PRIu64 "\n", weight);
1004 (void) set_attribute_and_warn(u, "io", "io.weight", buf);
1005
1006 if (has_io) {
1007 CGroupIODeviceLatency *latency;
1008 CGroupIODeviceLimit *limit;
1009 CGroupIODeviceWeight *w;
1010
1011 LIST_FOREACH(device_weights, w, c->io_device_weights)
1012 cgroup_apply_io_device_weight(u, w->path, w->weight);
1013
1014 LIST_FOREACH(device_limits, limit, c->io_device_limits)
1015 cgroup_apply_io_device_limit(u, limit->path, limit->limits);
1016
1017 LIST_FOREACH(device_latencies, latency, c->io_device_latencies)
1018 cgroup_apply_io_device_latency(u, latency->path, latency->target_usec);
1019
1020 } else if (has_blockio) {
1021 CGroupBlockIODeviceWeight *w;
1022 CGroupBlockIODeviceBandwidth *b;
1023
1024 LIST_FOREACH(device_weights, w, c->blockio_device_weights) {
1025 weight = cgroup_weight_blkio_to_io(w->weight);
1026
1027 log_cgroup_compat(u, "Applying BlockIODeviceWeight=%" PRIu64 " as IODeviceWeight=%" PRIu64 " for %s",
1028 w->weight, weight, w->path);
1029
1030 cgroup_apply_io_device_weight(u, w->path, weight);
1031 }
1032
1033 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
1034 uint64_t limits[_CGROUP_IO_LIMIT_TYPE_MAX];
1035 CGroupIOLimitType type;
1036
1037 for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
1038 limits[type] = cgroup_io_limit_defaults[type];
1039
1040 limits[CGROUP_IO_RBPS_MAX] = b->rbps;
1041 limits[CGROUP_IO_WBPS_MAX] = b->wbps;
1042
1043 log_cgroup_compat(u, "Applying BlockIO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as IO{Read|Write}BandwidthMax= for %s",
1044 b->rbps, b->wbps, b->path);
1045
1046 cgroup_apply_io_device_limit(u, b->path, limits);
1047 }
1048 }
1049 }
1050
1051 if (apply_mask & CGROUP_MASK_BLKIO) {
1052 bool has_io, has_blockio;
1053
1054 has_io = cgroup_context_has_io_config(c);
1055 has_blockio = cgroup_context_has_blockio_config(c);
1056
1057 /* Applying a 'weight' never makes sense for the host root cgroup, and for containers this should be
1058 * left to our container manager, too. */
1059 if (!is_local_root) {
1060 char buf[DECIMAL_STR_MAX(uint64_t)+1];
1061 uint64_t weight;
1062
1063 if (has_io) {
1064 uint64_t io_weight;
1065
1066 io_weight = cgroup_context_io_weight(c, state);
1067 weight = cgroup_weight_io_to_blkio(cgroup_context_io_weight(c, state));
1068
1069 log_cgroup_compat(u, "Applying [Startup]IOWeight=%" PRIu64 " as [Startup]BlockIOWeight=%" PRIu64,
1070 io_weight, weight);
1071 } else if (has_blockio)
1072 weight = cgroup_context_blkio_weight(c, state);
1073 else
1074 weight = CGROUP_BLKIO_WEIGHT_DEFAULT;
1075
1076 xsprintf(buf, "%" PRIu64 "\n", weight);
1077 (void) set_attribute_and_warn(u, "blkio", "blkio.weight", buf);
1078
1079 if (has_io) {
1080 CGroupIODeviceWeight *w;
1081
1082 LIST_FOREACH(device_weights, w, c->io_device_weights) {
1083 weight = cgroup_weight_io_to_blkio(w->weight);
1084
1085 log_cgroup_compat(u, "Applying IODeviceWeight=%" PRIu64 " as BlockIODeviceWeight=%" PRIu64 " for %s",
1086 w->weight, weight, w->path);
1087
1088 cgroup_apply_blkio_device_weight(u, w->path, weight);
1089 }
1090 } else if (has_blockio) {
1091 CGroupBlockIODeviceWeight *w;
1092
1093 LIST_FOREACH(device_weights, w, c->blockio_device_weights)
1094 cgroup_apply_blkio_device_weight(u, w->path, w->weight);
1095 }
1096 }
1097
1098 /* The bandwith limits are something that make sense to be applied to the host's root but not container
1099 * roots, as there we want the container manager to handle it */
1100 if (is_host_root || !is_local_root) {
1101 if (has_io) {
1102 CGroupIODeviceLimit *l;
1103
1104 LIST_FOREACH(device_limits, l, c->io_device_limits) {
1105 log_cgroup_compat(u, "Applying IO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as BlockIO{Read|Write}BandwidthMax= for %s",
1106 l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX], l->path);
1107
1108 cgroup_apply_blkio_device_limit(u, l->path, l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX]);
1109 }
1110 } else if (has_blockio) {
1111 CGroupBlockIODeviceBandwidth *b;
1112
1113 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths)
1114 cgroup_apply_blkio_device_limit(u, b->path, b->rbps, b->wbps);
1115 }
1116 }
1117 }
1118
1119 /* In unified mode 'memory' attributes do not exist on the root cgroup. In legacy mode 'memory.limit_in_bytes'
1120 * exists on the root cgroup, but any writes to it are refused with EINVAL. And if we run in a container we
1121 * want to leave control to the container manager (and if proper cgroup v2 delegation is used we couldn't even
1122 * write to this if we wanted to.) */
1123 if ((apply_mask & CGROUP_MASK_MEMORY) && !is_local_root) {
1124
1125 if (cg_all_unified() > 0) {
1126 uint64_t max, swap_max = CGROUP_LIMIT_MAX;
1127
1128 if (cgroup_context_has_unified_memory_config(c)) {
1129 max = c->memory_max;
1130 swap_max = c->memory_swap_max;
1131 } else {
1132 max = c->memory_limit;
1133
1134 if (max != CGROUP_LIMIT_MAX)
1135 log_cgroup_compat(u, "Applying MemoryLimit=%" PRIu64 " as MemoryMax=", max);
1136 }
1137
1138 cgroup_apply_unified_memory_limit(u, "memory.min", c->memory_min);
1139 cgroup_apply_unified_memory_limit(u, "memory.low", c->memory_low);
1140 cgroup_apply_unified_memory_limit(u, "memory.high", c->memory_high);
1141 cgroup_apply_unified_memory_limit(u, "memory.max", max);
1142 cgroup_apply_unified_memory_limit(u, "memory.swap.max", swap_max);
1143
1144 } else {
1145 char buf[DECIMAL_STR_MAX(uint64_t) + 1];
1146 uint64_t val;
1147
1148 if (cgroup_context_has_unified_memory_config(c)) {
1149 val = c->memory_max;
1150 log_cgroup_compat(u, "Applying MemoryMax=%" PRIi64 " as MemoryLimit=", val);
1151 } else
1152 val = c->memory_limit;
1153
1154 if (val == CGROUP_LIMIT_MAX)
1155 strncpy(buf, "-1\n", sizeof(buf));
1156 else
1157 xsprintf(buf, "%" PRIu64 "\n", val);
1158
1159 (void) set_attribute_and_warn(u, "memory", "memory.limit_in_bytes", buf);
1160 }
1161 }
1162
1163 /* On cgroup v2 we can apply BPF everywhere. On cgroup v1 we apply it everywhere except for the root of
1164 * containers, where we leave this to the manager */
1165 if ((apply_mask & (CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES)) &&
1166 (is_host_root || cg_all_unified() > 0 || !is_local_root)) {
1167 _cleanup_(bpf_program_unrefp) BPFProgram *prog = NULL;
1168 CGroupDeviceAllow *a;
1169
1170 if (cg_all_unified() > 0) {
1171 r = cgroup_init_device_bpf(&prog, c->device_policy, c->device_allow);
1172 if (r < 0)
1173 log_unit_warning_errno(u, r, "Failed to initialize device control bpf program: %m");
1174 } else {
1175 /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore EINVAL
1176 * here. */
1177
1178 if (c->device_allow || c->device_policy != CGROUP_AUTO)
1179 r = cg_set_attribute("devices", path, "devices.deny", "a");
1180 else
1181 r = cg_set_attribute("devices", path, "devices.allow", "a");
1182 if (r < 0)
1183 log_unit_full(u, IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING, r,
1184 "Failed to reset devices.allow/devices.deny: %m");
1185 }
1186
1187 if (c->device_policy == CGROUP_CLOSED ||
1188 (c->device_policy == CGROUP_AUTO && c->device_allow)) {
1189 static const char auto_devices[] =
1190 "/dev/null\0" "rwm\0"
1191 "/dev/zero\0" "rwm\0"
1192 "/dev/full\0" "rwm\0"
1193 "/dev/random\0" "rwm\0"
1194 "/dev/urandom\0" "rwm\0"
1195 "/dev/tty\0" "rwm\0"
1196 "/dev/ptmx\0" "rwm\0"
1197 /* Allow /run/systemd/inaccessible/{chr,blk} devices for mapping InaccessiblePaths */
1198 "/run/systemd/inaccessible/chr\0" "rwm\0"
1199 "/run/systemd/inaccessible/blk\0" "rwm\0";
1200
1201 const char *x, *y;
1202
1203 NULSTR_FOREACH_PAIR(x, y, auto_devices)
1204 (void) whitelist_device(prog, path, x, y);
1205
1206 /* PTS (/dev/pts) devices may not be duplicated, but accessed */
1207 (void) whitelist_major(prog, path, "pts", 'c', "rw");
1208 }
1209
1210 LIST_FOREACH(device_allow, a, c->device_allow) {
1211 char acc[4], *val;
1212 unsigned k = 0;
1213
1214 if (a->r)
1215 acc[k++] = 'r';
1216 if (a->w)
1217 acc[k++] = 'w';
1218 if (a->m)
1219 acc[k++] = 'm';
1220
1221 if (k == 0)
1222 continue;
1223
1224 acc[k++] = 0;
1225
1226 if (path_startswith(a->path, "/dev/"))
1227 (void) whitelist_device(prog, path, a->path, acc);
1228 else if ((val = startswith(a->path, "block-")))
1229 (void) whitelist_major(prog, path, val, 'b', acc);
1230 else if ((val = startswith(a->path, "char-")))
1231 (void) whitelist_major(prog, path, val, 'c', acc);
1232 else
1233 log_unit_debug(u, "Ignoring device '%s' while writing cgroup attribute.", a->path);
1234 }
1235
1236 r = cgroup_apply_device_bpf(u, prog, c->device_policy, c->device_allow);
1237 if (r < 0) {
1238 static bool warned = false;
1239
1240 log_full_errno(warned ? LOG_DEBUG : LOG_WARNING, r,
1241 "Unit %s configures device ACL, but the local system doesn't seem to support the BPF-based device controller.\n"
1242 "Proceeding WITHOUT applying ACL (all devices will be accessible)!\n"
1243 "(This warning is only shown for the first loaded unit using device ACL.)", u->id);
1244
1245 warned = true;
1246 }
1247 }
1248
1249 if (apply_mask & CGROUP_MASK_PIDS) {
1250
1251 if (is_host_root) {
1252 /* So, the "pids" controller does not expose anything on the root cgroup, in order not to
1253 * replicate knobs exposed elsewhere needlessly. We abstract this away here however, and when
1254 * the knobs of the root cgroup are modified propagate this to the relevant sysctls. There's a
1255 * non-obvious asymmetry however: unlike the cgroup properties we don't really want to take
1256 * exclusive ownership of the sysctls, but we still want to honour things if the user sets
1257 * limits. Hence we employ sort of a one-way strategy: when the user sets a bounded limit
1258 * through us it counts. When the user afterwards unsets it again (i.e. sets it to unbounded)
1259 * it also counts. But if the user never set a limit through us (i.e. we are the default of
1260 * "unbounded") we leave things unmodified. For this we manage a global boolean that we turn on
1261 * the first time we set a limit. Note that this boolean is flushed out on manager reload,
1262 * which is desirable so that there's an offical way to release control of the sysctl from
1263 * systemd: set the limit to unbounded and reload. */
1264
1265 if (c->tasks_max != CGROUP_LIMIT_MAX) {
1266 u->manager->sysctl_pid_max_changed = true;
1267 r = procfs_tasks_set_limit(c->tasks_max);
1268 } else if (u->manager->sysctl_pid_max_changed)
1269 r = procfs_tasks_set_limit(TASKS_MAX);
1270 else
1271 r = 0;
1272 if (r < 0)
1273 log_unit_full(u, LOG_LEVEL_CGROUP_WRITE(r), r,
1274 "Failed to write to tasks limit sysctls: %m");
1275 }
1276
1277 /* The attribute itself is not available on the host root cgroup, and in the container case we want to
1278 * leave it for the container manager. */
1279 if (!is_local_root) {
1280 if (c->tasks_max != CGROUP_LIMIT_MAX) {
1281 char buf[DECIMAL_STR_MAX(uint64_t) + 2];
1282
1283 sprintf(buf, "%" PRIu64 "\n", c->tasks_max);
1284 (void) set_attribute_and_warn(u, "pids", "pids.max", buf);
1285 } else
1286 (void) set_attribute_and_warn(u, "pids", "pids.max", "max\n");
1287 }
1288 }
1289
1290 if (apply_mask & CGROUP_MASK_BPF_FIREWALL)
1291 cgroup_apply_firewall(u);
1292 }
1293
1294 static bool unit_get_needs_bpf_firewall(Unit *u) {
1295 CGroupContext *c;
1296 Unit *p;
1297 assert(u);
1298
1299 c = unit_get_cgroup_context(u);
1300 if (!c)
1301 return false;
1302
1303 if (c->ip_accounting ||
1304 c->ip_address_allow ||
1305 c->ip_address_deny)
1306 return true;
1307
1308 /* If any parent slice has an IP access list defined, it applies too */
1309 for (p = UNIT_DEREF(u->slice); p; p = UNIT_DEREF(p->slice)) {
1310 c = unit_get_cgroup_context(p);
1311 if (!c)
1312 return false;
1313
1314 if (c->ip_address_allow ||
1315 c->ip_address_deny)
1316 return true;
1317 }
1318
1319 return false;
1320 }
1321
1322 static CGroupMask cgroup_context_get_mask(CGroupContext *c) {
1323 CGroupMask mask = 0;
1324
1325 /* Figure out which controllers we need, based on the cgroup context object */
1326
1327 if (c->cpu_accounting)
1328 mask |= get_cpu_accounting_mask();
1329
1330 if (cgroup_context_has_cpu_weight(c) ||
1331 cgroup_context_has_cpu_shares(c) ||
1332 c->cpu_quota_per_sec_usec != USEC_INFINITY)
1333 mask |= CGROUP_MASK_CPU;
1334
1335 if (cgroup_context_has_io_config(c) || cgroup_context_has_blockio_config(c))
1336 mask |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
1337
1338 if (c->memory_accounting ||
1339 c->memory_limit != CGROUP_LIMIT_MAX ||
1340 cgroup_context_has_unified_memory_config(c))
1341 mask |= CGROUP_MASK_MEMORY;
1342
1343 if (c->device_allow ||
1344 c->device_policy != CGROUP_AUTO)
1345 mask |= CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES;
1346
1347 if (c->tasks_accounting ||
1348 c->tasks_max != CGROUP_LIMIT_MAX)
1349 mask |= CGROUP_MASK_PIDS;
1350
1351 return CGROUP_MASK_EXTEND_JOINED(mask);
1352 }
1353
1354 static CGroupMask unit_get_bpf_mask(Unit *u) {
1355 CGroupMask mask = 0;
1356
1357 /* Figure out which controllers we need, based on the cgroup context, possibly taking into account children
1358 * too. */
1359
1360 if (unit_get_needs_bpf_firewall(u))
1361 mask |= CGROUP_MASK_BPF_FIREWALL;
1362
1363 return mask;
1364 }
1365
1366 CGroupMask unit_get_own_mask(Unit *u) {
1367 CGroupContext *c;
1368
1369 /* Returns the mask of controllers the unit needs for itself. If a unit is not properly loaded, return an empty
1370 * mask, as we shouldn't reflect it in the cgroup hierarchy then. */
1371
1372 if (u->load_state != UNIT_LOADED)
1373 return 0;
1374
1375 c = unit_get_cgroup_context(u);
1376 if (!c)
1377 return 0;
1378
1379 return (cgroup_context_get_mask(c) | unit_get_bpf_mask(u) | unit_get_delegate_mask(u)) & ~unit_get_ancestor_disable_mask(u);
1380 }
1381
1382 CGroupMask unit_get_delegate_mask(Unit *u) {
1383 CGroupContext *c;
1384
1385 /* If delegation is turned on, then turn on selected controllers, unless we are on the legacy hierarchy and the
1386 * process we fork into is known to drop privileges, and hence shouldn't get access to the controllers.
1387 *
1388 * Note that on the unified hierarchy it is safe to delegate controllers to unprivileged services. */
1389
1390 if (!unit_cgroup_delegate(u))
1391 return 0;
1392
1393 if (cg_all_unified() <= 0) {
1394 ExecContext *e;
1395
1396 e = unit_get_exec_context(u);
1397 if (e && !exec_context_maintains_privileges(e))
1398 return 0;
1399 }
1400
1401 assert_se(c = unit_get_cgroup_context(u));
1402 return CGROUP_MASK_EXTEND_JOINED(c->delegate_controllers);
1403 }
1404
1405 CGroupMask unit_get_members_mask(Unit *u) {
1406 assert(u);
1407
1408 /* Returns the mask of controllers all of the unit's children require, merged */
1409
1410 if (u->cgroup_members_mask_valid)
1411 return u->cgroup_members_mask; /* Use cached value if possible */
1412
1413 u->cgroup_members_mask = 0;
1414
1415 if (u->type == UNIT_SLICE) {
1416 void *v;
1417 Unit *member;
1418 Iterator i;
1419
1420 HASHMAP_FOREACH_KEY(v, member, u->dependencies[UNIT_BEFORE], i) {
1421 if (UNIT_DEREF(member->slice) == u)
1422 u->cgroup_members_mask |= unit_get_subtree_mask(member); /* note that this calls ourselves again, for the children */
1423 }
1424 }
1425
1426 u->cgroup_members_mask_valid = true;
1427 return u->cgroup_members_mask;
1428 }
1429
1430 CGroupMask unit_get_siblings_mask(Unit *u) {
1431 assert(u);
1432
1433 /* Returns the mask of controllers all of the unit's siblings
1434 * require, i.e. the members mask of the unit's parent slice
1435 * if there is one. */
1436
1437 if (UNIT_ISSET(u->slice))
1438 return unit_get_members_mask(UNIT_DEREF(u->slice));
1439
1440 return unit_get_subtree_mask(u); /* we are the top-level slice */
1441 }
1442
1443 CGroupMask unit_get_disable_mask(Unit *u) {
1444 CGroupContext *c;
1445
1446 c = unit_get_cgroup_context(u);
1447 if (!c)
1448 return 0;
1449
1450 return c->disable_controllers;
1451 }
1452
1453 CGroupMask unit_get_ancestor_disable_mask(Unit *u) {
1454 CGroupMask mask;
1455
1456 assert(u);
1457 mask = unit_get_disable_mask(u);
1458
1459 /* Returns the mask of controllers which are marked as forcibly
1460 * disabled in any ancestor unit or the unit in question. */
1461
1462 if (UNIT_ISSET(u->slice))
1463 mask |= unit_get_ancestor_disable_mask(UNIT_DEREF(u->slice));
1464
1465 return mask;
1466 }
1467
1468 CGroupMask unit_get_subtree_mask(Unit *u) {
1469
1470 /* Returns the mask of this subtree, meaning of the group
1471 * itself and its children. */
1472
1473 return unit_get_own_mask(u) | unit_get_members_mask(u);
1474 }
1475
1476 CGroupMask unit_get_target_mask(Unit *u) {
1477 CGroupMask mask;
1478
1479 /* This returns the cgroup mask of all controllers to enable
1480 * for a specific cgroup, i.e. everything it needs itself,
1481 * plus all that its children need, plus all that its siblings
1482 * need. This is primarily useful on the legacy cgroup
1483 * hierarchy, where we need to duplicate each cgroup in each
1484 * hierarchy that shall be enabled for it. */
1485
1486 mask = unit_get_own_mask(u) | unit_get_members_mask(u) | unit_get_siblings_mask(u);
1487 mask &= u->manager->cgroup_supported;
1488 mask &= ~unit_get_ancestor_disable_mask(u);
1489
1490 return mask;
1491 }
1492
1493 CGroupMask unit_get_enable_mask(Unit *u) {
1494 CGroupMask mask;
1495
1496 /* This returns the cgroup mask of all controllers to enable
1497 * for the children of a specific cgroup. This is primarily
1498 * useful for the unified cgroup hierarchy, where each cgroup
1499 * controls which controllers are enabled for its children. */
1500
1501 mask = unit_get_members_mask(u);
1502 mask &= u->manager->cgroup_supported;
1503 mask &= ~unit_get_ancestor_disable_mask(u);
1504
1505 return mask;
1506 }
1507
1508 void unit_invalidate_cgroup_members_masks(Unit *u) {
1509 assert(u);
1510
1511 /* Recurse invalidate the member masks cache all the way up the tree */
1512 u->cgroup_members_mask_valid = false;
1513
1514 if (UNIT_ISSET(u->slice))
1515 unit_invalidate_cgroup_members_masks(UNIT_DEREF(u->slice));
1516 }
1517
1518 const char *unit_get_realized_cgroup_path(Unit *u, CGroupMask mask) {
1519
1520 /* Returns the realized cgroup path of the specified unit where all specified controllers are available. */
1521
1522 while (u) {
1523
1524 if (u->cgroup_path &&
1525 u->cgroup_realized &&
1526 FLAGS_SET(u->cgroup_realized_mask, mask))
1527 return u->cgroup_path;
1528
1529 u = UNIT_DEREF(u->slice);
1530 }
1531
1532 return NULL;
1533 }
1534
1535 static const char *migrate_callback(CGroupMask mask, void *userdata) {
1536 return unit_get_realized_cgroup_path(userdata, mask);
1537 }
1538
1539 char *unit_default_cgroup_path(const Unit *u) {
1540 _cleanup_free_ char *escaped = NULL, *slice = NULL;
1541 int r;
1542
1543 assert(u);
1544
1545 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
1546 return strdup(u->manager->cgroup_root);
1547
1548 if (UNIT_ISSET(u->slice) && !unit_has_name(UNIT_DEREF(u->slice), SPECIAL_ROOT_SLICE)) {
1549 r = cg_slice_to_path(UNIT_DEREF(u->slice)->id, &slice);
1550 if (r < 0)
1551 return NULL;
1552 }
1553
1554 escaped = cg_escape(u->id);
1555 if (!escaped)
1556 return NULL;
1557
1558 if (slice)
1559 return strjoin(u->manager->cgroup_root, "/", slice, "/",
1560 escaped);
1561 else
1562 return strjoin(u->manager->cgroup_root, "/", escaped);
1563 }
1564
1565 int unit_set_cgroup_path(Unit *u, const char *path) {
1566 _cleanup_free_ char *p = NULL;
1567 int r;
1568
1569 assert(u);
1570
1571 if (path) {
1572 p = strdup(path);
1573 if (!p)
1574 return -ENOMEM;
1575 } else
1576 p = NULL;
1577
1578 if (streq_ptr(u->cgroup_path, p))
1579 return 0;
1580
1581 if (p) {
1582 r = hashmap_put(u->manager->cgroup_unit, p, u);
1583 if (r < 0)
1584 return r;
1585 }
1586
1587 unit_release_cgroup(u);
1588
1589 u->cgroup_path = TAKE_PTR(p);
1590
1591 return 1;
1592 }
1593
1594 int unit_watch_cgroup(Unit *u) {
1595 _cleanup_free_ char *events = NULL;
1596 int r;
1597
1598 assert(u);
1599
1600 if (!u->cgroup_path)
1601 return 0;
1602
1603 if (u->cgroup_inotify_wd >= 0)
1604 return 0;
1605
1606 /* Only applies to the unified hierarchy */
1607 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
1608 if (r < 0)
1609 return log_error_errno(r, "Failed to determine whether the name=systemd hierarchy is unified: %m");
1610 if (r == 0)
1611 return 0;
1612
1613 /* Don't watch the root slice, it's pointless. */
1614 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
1615 return 0;
1616
1617 r = hashmap_ensure_allocated(&u->manager->cgroup_inotify_wd_unit, &trivial_hash_ops);
1618 if (r < 0)
1619 return log_oom();
1620
1621 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.events", &events);
1622 if (r < 0)
1623 return log_oom();
1624
1625 u->cgroup_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
1626 if (u->cgroup_inotify_wd < 0) {
1627
1628 if (errno == ENOENT) /* If the directory is already
1629 * gone we don't need to track
1630 * it, so this is not an error */
1631 return 0;
1632
1633 return log_unit_error_errno(u, errno, "Failed to add inotify watch descriptor for control group %s: %m", u->cgroup_path);
1634 }
1635
1636 r = hashmap_put(u->manager->cgroup_inotify_wd_unit, INT_TO_PTR(u->cgroup_inotify_wd), u);
1637 if (r < 0)
1638 return log_unit_error_errno(u, r, "Failed to add inotify watch descriptor to hash map: %m");
1639
1640 return 0;
1641 }
1642
1643 int unit_pick_cgroup_path(Unit *u) {
1644 _cleanup_free_ char *path = NULL;
1645 int r;
1646
1647 assert(u);
1648
1649 if (u->cgroup_path)
1650 return 0;
1651
1652 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1653 return -EINVAL;
1654
1655 path = unit_default_cgroup_path(u);
1656 if (!path)
1657 return log_oom();
1658
1659 r = unit_set_cgroup_path(u, path);
1660 if (r == -EEXIST)
1661 return log_unit_error_errno(u, r, "Control group %s exists already.", path);
1662 if (r < 0)
1663 return log_unit_error_errno(u, r, "Failed to set unit's control group path to %s: %m", path);
1664
1665 return 0;
1666 }
1667
1668 static int unit_create_cgroup(
1669 Unit *u,
1670 CGroupMask target_mask,
1671 CGroupMask enable_mask,
1672 ManagerState state) {
1673
1674 bool created;
1675 int r;
1676
1677 assert(u);
1678
1679 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1680 return 0;
1681
1682 /* Figure out our cgroup path */
1683 r = unit_pick_cgroup_path(u);
1684 if (r < 0)
1685 return r;
1686
1687 /* First, create our own group */
1688 r = cg_create_everywhere(u->manager->cgroup_supported, target_mask, u->cgroup_path);
1689 if (r < 0)
1690 return log_unit_error_errno(u, r, "Failed to create cgroup %s: %m", u->cgroup_path);
1691 created = r;
1692
1693 /* Start watching it */
1694 (void) unit_watch_cgroup(u);
1695
1696 /* Preserve enabled controllers in delegated units, adjust others. */
1697 if (created || !u->cgroup_realized || !unit_cgroup_delegate(u)) {
1698 CGroupMask result_mask = 0;
1699
1700 /* Enable all controllers we need */
1701 r = cg_enable_everywhere(u->manager->cgroup_supported, enable_mask, u->cgroup_path, &result_mask);
1702 if (r < 0)
1703 log_unit_warning_errno(u, r, "Failed to enable/disable controllers on cgroup %s, ignoring: %m", u->cgroup_path);
1704
1705 /* If we just turned off a controller, this might release the controller for our parent too, let's
1706 * enqueue the parent for re-realization in that case again. */
1707 if (UNIT_ISSET(u->slice)) {
1708 CGroupMask turned_off;
1709
1710 turned_off = (u->cgroup_realized ? u->cgroup_enabled_mask & ~result_mask : 0);
1711 if (turned_off != 0) {
1712 Unit *parent;
1713
1714 /* Force the parent to propagate the enable mask to the kernel again, by invalidating
1715 * the controller we just turned off. */
1716
1717 for (parent = UNIT_DEREF(u->slice); parent; parent = UNIT_DEREF(parent->slice))
1718 unit_invalidate_cgroup(parent, turned_off);
1719 }
1720 }
1721
1722 /* Remember what's actually enabled now */
1723 u->cgroup_enabled_mask = result_mask;
1724 }
1725
1726 /* Keep track that this is now realized */
1727 u->cgroup_realized = true;
1728 u->cgroup_realized_mask = target_mask;
1729
1730 if (u->type != UNIT_SLICE && !unit_cgroup_delegate(u)) {
1731
1732 /* Then, possibly move things over, but not if
1733 * subgroups may contain processes, which is the case
1734 * for slice and delegation units. */
1735 r = cg_migrate_everywhere(u->manager->cgroup_supported, u->cgroup_path, u->cgroup_path, migrate_callback, u);
1736 if (r < 0)
1737 log_unit_warning_errno(u, r, "Failed to migrate cgroup from to %s, ignoring: %m", u->cgroup_path);
1738 }
1739
1740 /* Set attributes */
1741 cgroup_context_apply(u, target_mask, state);
1742 cgroup_xattr_apply(u);
1743
1744 return 0;
1745 }
1746
1747 static int unit_attach_pid_to_cgroup_via_bus(Unit *u, pid_t pid, const char *suffix_path) {
1748 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
1749 char *pp;
1750 int r;
1751
1752 assert(u);
1753
1754 if (MANAGER_IS_SYSTEM(u->manager))
1755 return -EINVAL;
1756
1757 if (!u->manager->system_bus)
1758 return -EIO;
1759
1760 if (!u->cgroup_path)
1761 return -EINVAL;
1762
1763 /* Determine this unit's cgroup path relative to our cgroup root */
1764 pp = path_startswith(u->cgroup_path, u->manager->cgroup_root);
1765 if (!pp)
1766 return -EINVAL;
1767
1768 pp = strjoina("/", pp, suffix_path);
1769 path_simplify(pp, false);
1770
1771 r = sd_bus_call_method(u->manager->system_bus,
1772 "org.freedesktop.systemd1",
1773 "/org/freedesktop/systemd1",
1774 "org.freedesktop.systemd1.Manager",
1775 "AttachProcessesToUnit",
1776 &error, NULL,
1777 "ssau",
1778 NULL /* empty unit name means client's unit, i.e. us */, pp, 1, (uint32_t) pid);
1779 if (r < 0)
1780 return log_unit_debug_errno(u, r, "Failed to attach unit process " PID_FMT " via the bus: %s", pid, bus_error_message(&error, r));
1781
1782 return 0;
1783 }
1784
1785 int unit_attach_pids_to_cgroup(Unit *u, Set *pids, const char *suffix_path) {
1786 CGroupMask delegated_mask;
1787 const char *p;
1788 Iterator i;
1789 void *pidp;
1790 int r, q;
1791
1792 assert(u);
1793
1794 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1795 return -EINVAL;
1796
1797 if (set_isempty(pids))
1798 return 0;
1799
1800 r = unit_realize_cgroup(u);
1801 if (r < 0)
1802 return r;
1803
1804 if (isempty(suffix_path))
1805 p = u->cgroup_path;
1806 else
1807 p = strjoina(u->cgroup_path, "/", suffix_path);
1808
1809 delegated_mask = unit_get_delegate_mask(u);
1810
1811 r = 0;
1812 SET_FOREACH(pidp, pids, i) {
1813 pid_t pid = PTR_TO_PID(pidp);
1814 CGroupController c;
1815
1816 /* First, attach the PID to the main cgroup hierarchy */
1817 q = cg_attach(SYSTEMD_CGROUP_CONTROLLER, p, pid);
1818 if (q < 0) {
1819 log_unit_debug_errno(u, q, "Couldn't move process " PID_FMT " to requested cgroup '%s': %m", pid, p);
1820
1821 if (MANAGER_IS_USER(u->manager) && IN_SET(q, -EPERM, -EACCES)) {
1822 int z;
1823
1824 /* If we are in a user instance, and we can't move the process ourselves due to
1825 * permission problems, let's ask the system instance about it instead. Since it's more
1826 * privileged it might be able to move the process across the leaves of a subtree who's
1827 * top node is not owned by us. */
1828
1829 z = unit_attach_pid_to_cgroup_via_bus(u, pid, suffix_path);
1830 if (z < 0)
1831 log_unit_debug_errno(u, z, "Couldn't move process " PID_FMT " to requested cgroup '%s' via the system bus either: %m", pid, p);
1832 else
1833 continue; /* When the bus thing worked via the bus we are fully done for this PID. */
1834 }
1835
1836 if (r >= 0)
1837 r = q; /* Remember first error */
1838
1839 continue;
1840 }
1841
1842 q = cg_all_unified();
1843 if (q < 0)
1844 return q;
1845 if (q > 0)
1846 continue;
1847
1848 /* In the legacy hierarchy, attach the process to the request cgroup if possible, and if not to the
1849 * innermost realized one */
1850
1851 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
1852 CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c);
1853 const char *realized;
1854
1855 if (!(u->manager->cgroup_supported & bit))
1856 continue;
1857
1858 /* If this controller is delegated and realized, honour the caller's request for the cgroup suffix. */
1859 if (delegated_mask & u->cgroup_realized_mask & bit) {
1860 q = cg_attach(cgroup_controller_to_string(c), p, pid);
1861 if (q >= 0)
1862 continue; /* Success! */
1863
1864 log_unit_debug_errno(u, q, "Failed to attach PID " PID_FMT " to requested cgroup %s in controller %s, falling back to unit's cgroup: %m",
1865 pid, p, cgroup_controller_to_string(c));
1866 }
1867
1868 /* So this controller is either not delegate or realized, or something else weird happened. In
1869 * that case let's attach the PID at least to the closest cgroup up the tree that is
1870 * realized. */
1871 realized = unit_get_realized_cgroup_path(u, bit);
1872 if (!realized)
1873 continue; /* Not even realized in the root slice? Then let's not bother */
1874
1875 q = cg_attach(cgroup_controller_to_string(c), realized, pid);
1876 if (q < 0)
1877 log_unit_debug_errno(u, q, "Failed to attach PID " PID_FMT " to realized cgroup %s in controller %s, ignoring: %m",
1878 pid, realized, cgroup_controller_to_string(c));
1879 }
1880 }
1881
1882 return r;
1883 }
1884
1885 static bool unit_has_mask_realized(
1886 Unit *u,
1887 CGroupMask target_mask,
1888 CGroupMask enable_mask) {
1889
1890 assert(u);
1891
1892 /* Returns true if this unit is fully realized. We check four things:
1893 *
1894 * 1. Whether the cgroup was created at all
1895 * 2. Whether the cgroup was created in all the hierarchies we need it to be created in (in case of cgroup v1)
1896 * 3. Whether the cgroup has all the right controllers enabled (in case of cgroup v2)
1897 * 4. Whether the invalidation mask is currently zero
1898 *
1899 * If you wonder why we mask the target realization and enable mask with CGROUP_MASK_V1/CGROUP_MASK_V2: note
1900 * that there are three sets of bitmasks: CGROUP_MASK_V1 (for real cgroup v1 controllers), CGROUP_MASK_V2 (for
1901 * real cgroup v2 controllers) and CGROUP_MASK_BPF (for BPF-based pseudo-controllers). Now, cgroup_realized_mask
1902 * is only matters for cgroup v1 controllers, and cgroup_enabled_mask only used for cgroup v2, and if they
1903 * differ in the others, we don't really care. (After all, the cgroup_enabled_mask tracks with controllers are
1904 * enabled through cgroup.subtree_control, and since the BPF pseudo-controllers don't show up there, they
1905 * simply don't matter. */
1906
1907 return u->cgroup_realized &&
1908 ((u->cgroup_realized_mask ^ target_mask) & CGROUP_MASK_V1) == 0 &&
1909 ((u->cgroup_enabled_mask ^ enable_mask) & CGROUP_MASK_V2) == 0 &&
1910 u->cgroup_invalidated_mask == 0;
1911 }
1912
1913 static bool unit_has_mask_disables_realized(
1914 Unit *u,
1915 CGroupMask target_mask,
1916 CGroupMask enable_mask) {
1917
1918 assert(u);
1919
1920 /* Returns true if all controllers which should be disabled are indeed disabled.
1921 *
1922 * Unlike unit_has_mask_realized, we don't care what was enabled, only that anything we want to remove is
1923 * already removed. */
1924
1925 return !u->cgroup_realized ||
1926 (FLAGS_SET(u->cgroup_realized_mask, target_mask & CGROUP_MASK_V1) &&
1927 FLAGS_SET(u->cgroup_enabled_mask, enable_mask & CGROUP_MASK_V2));
1928 }
1929
1930 static bool unit_has_mask_enables_realized(
1931 Unit *u,
1932 CGroupMask target_mask,
1933 CGroupMask enable_mask) {
1934
1935 assert(u);
1936
1937 /* Returns true if all controllers which should be enabled are indeed enabled.
1938 *
1939 * Unlike unit_has_mask_realized, we don't care about the controllers that are not present, only that anything
1940 * we want to add is already added. */
1941
1942 return u->cgroup_realized &&
1943 ((u->cgroup_realized_mask | target_mask) & CGROUP_MASK_V1) == (u->cgroup_realized_mask & CGROUP_MASK_V1) &&
1944 ((u->cgroup_enabled_mask | enable_mask) & CGROUP_MASK_V2) == (u->cgroup_enabled_mask & CGROUP_MASK_V2);
1945 }
1946
1947 void unit_add_to_cgroup_realize_queue(Unit *u) {
1948 assert(u);
1949
1950 if (u->in_cgroup_realize_queue)
1951 return;
1952
1953 LIST_PREPEND(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
1954 u->in_cgroup_realize_queue = true;
1955 }
1956
1957 static void unit_remove_from_cgroup_realize_queue(Unit *u) {
1958 assert(u);
1959
1960 if (!u->in_cgroup_realize_queue)
1961 return;
1962
1963 LIST_REMOVE(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
1964 u->in_cgroup_realize_queue = false;
1965 }
1966
1967 /* Controllers can only be enabled breadth-first, from the root of the
1968 * hierarchy downwards to the unit in question. */
1969 static int unit_realize_cgroup_now_enable(Unit *u, ManagerState state) {
1970 CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
1971 int r;
1972
1973 assert(u);
1974
1975 /* First go deal with this unit's parent, or we won't be able to enable
1976 * any new controllers at this layer. */
1977 if (UNIT_ISSET(u->slice)) {
1978 r = unit_realize_cgroup_now_enable(UNIT_DEREF(u->slice), state);
1979 if (r < 0)
1980 return r;
1981 }
1982
1983 target_mask = unit_get_target_mask(u);
1984 enable_mask = unit_get_enable_mask(u);
1985
1986 /* We can only enable in this direction, don't try to disable anything.
1987 */
1988 if (unit_has_mask_enables_realized(u, target_mask, enable_mask))
1989 return 0;
1990
1991 new_target_mask = u->cgroup_realized_mask | target_mask;
1992 new_enable_mask = u->cgroup_enabled_mask | enable_mask;
1993
1994 return unit_create_cgroup(u, new_target_mask, new_enable_mask, state);
1995 }
1996
1997 /* Controllers can only be disabled depth-first, from the leaves of the
1998 * hierarchy upwards to the unit in question. */
1999 static int unit_realize_cgroup_now_disable(Unit *u, ManagerState state) {
2000 Iterator i;
2001 Unit *m;
2002 void *v;
2003
2004 assert(u);
2005
2006 if (u->type != UNIT_SLICE)
2007 return 0;
2008
2009 HASHMAP_FOREACH_KEY(v, m, u->dependencies[UNIT_BEFORE], i) {
2010 CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
2011 int r;
2012
2013 if (UNIT_DEREF(m->slice) != u)
2014 continue;
2015
2016 /* The cgroup for this unit might not actually be fully
2017 * realised yet, in which case it isn't holding any controllers
2018 * open anyway. */
2019 if (!m->cgroup_path)
2020 continue;
2021
2022 /* We must disable those below us first in order to release the
2023 * controller. */
2024 if (m->type == UNIT_SLICE)
2025 (void) unit_realize_cgroup_now_disable(m, state);
2026
2027 target_mask = unit_get_target_mask(m);
2028 enable_mask = unit_get_enable_mask(m);
2029
2030 /* We can only disable in this direction, don't try to enable
2031 * anything. */
2032 if (unit_has_mask_disables_realized(m, target_mask, enable_mask))
2033 continue;
2034
2035 new_target_mask = m->cgroup_realized_mask & target_mask;
2036 new_enable_mask = m->cgroup_enabled_mask & enable_mask;
2037
2038 r = unit_create_cgroup(m, new_target_mask, new_enable_mask, state);
2039 if (r < 0)
2040 return r;
2041 }
2042
2043 return 0;
2044 }
2045
2046 /* Check if necessary controllers and attributes for a unit are in place.
2047 *
2048 * - If so, do nothing.
2049 * - If not, create paths, move processes over, and set attributes.
2050 *
2051 * Controllers can only be *enabled* in a breadth-first way, and *disabled* in
2052 * a depth-first way. As such the process looks like this:
2053 *
2054 * Suppose we have a cgroup hierarchy which looks like this:
2055 *
2056 * root
2057 * / \
2058 * / \
2059 * / \
2060 * a b
2061 * / \ / \
2062 * / \ / \
2063 * c d e f
2064 * / \ / \ / \ / \
2065 * h i j k l m n o
2066 *
2067 * 1. We want to realise cgroup "d" now.
2068 * 2. cgroup "a" has DisableControllers=cpu in the associated unit.
2069 * 3. cgroup "k" just started requesting the memory controller.
2070 *
2071 * To make this work we must do the following in order:
2072 *
2073 * 1. Disable CPU controller in k, j
2074 * 2. Disable CPU controller in d
2075 * 3. Enable memory controller in root
2076 * 4. Enable memory controller in a
2077 * 5. Enable memory controller in d
2078 * 6. Enable memory controller in k
2079 *
2080 * Notice that we need to touch j in one direction, but not the other. We also
2081 * don't go beyond d when disabling -- it's up to "a" to get realized if it
2082 * wants to disable further. The basic rules are therefore:
2083 *
2084 * - If you're disabling something, you need to realise all of the cgroups from
2085 * your recursive descendants to the root. This starts from the leaves.
2086 * - If you're enabling something, you need to realise from the root cgroup
2087 * downwards, but you don't need to iterate your recursive descendants.
2088 *
2089 * Returns 0 on success and < 0 on failure. */
2090 static int unit_realize_cgroup_now(Unit *u, ManagerState state) {
2091 CGroupMask target_mask, enable_mask;
2092 int r;
2093
2094 assert(u);
2095
2096 unit_remove_from_cgroup_realize_queue(u);
2097
2098 target_mask = unit_get_target_mask(u);
2099 enable_mask = unit_get_enable_mask(u);
2100
2101 if (unit_has_mask_realized(u, target_mask, enable_mask))
2102 return 0;
2103
2104 /* Disable controllers below us, if there are any */
2105 r = unit_realize_cgroup_now_disable(u, state);
2106 if (r < 0)
2107 return r;
2108
2109 /* Enable controllers above us, if there are any */
2110 if (UNIT_ISSET(u->slice)) {
2111 r = unit_realize_cgroup_now_enable(UNIT_DEREF(u->slice), state);
2112 if (r < 0)
2113 return r;
2114 }
2115
2116 /* Now actually deal with the cgroup we were trying to realise and set attributes */
2117 r = unit_create_cgroup(u, target_mask, enable_mask, state);
2118 if (r < 0)
2119 return r;
2120
2121 /* Now, reset the invalidation mask */
2122 u->cgroup_invalidated_mask = 0;
2123 return 0;
2124 }
2125
2126 unsigned manager_dispatch_cgroup_realize_queue(Manager *m) {
2127 ManagerState state;
2128 unsigned n = 0;
2129 Unit *i;
2130 int r;
2131
2132 assert(m);
2133
2134 state = manager_state(m);
2135
2136 while ((i = m->cgroup_realize_queue)) {
2137 assert(i->in_cgroup_realize_queue);
2138
2139 if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(i))) {
2140 /* Maybe things changed, and the unit is not actually active anymore? */
2141 unit_remove_from_cgroup_realize_queue(i);
2142 continue;
2143 }
2144
2145 r = unit_realize_cgroup_now(i, state);
2146 if (r < 0)
2147 log_warning_errno(r, "Failed to realize cgroups for queued unit %s, ignoring: %m", i->id);
2148
2149 n++;
2150 }
2151
2152 return n;
2153 }
2154
2155 static void unit_add_siblings_to_cgroup_realize_queue(Unit *u) {
2156 Unit *slice;
2157
2158 /* This adds the siblings of the specified unit and the
2159 * siblings of all parent units to the cgroup queue. (But
2160 * neither the specified unit itself nor the parents.) */
2161
2162 while ((slice = UNIT_DEREF(u->slice))) {
2163 Iterator i;
2164 Unit *m;
2165 void *v;
2166
2167 HASHMAP_FOREACH_KEY(v, m, u->dependencies[UNIT_BEFORE], i) {
2168 /* Skip units that have a dependency on the slice
2169 * but aren't actually in it. */
2170 if (UNIT_DEREF(m->slice) != slice)
2171 continue;
2172
2173 /* No point in doing cgroup application for units
2174 * without active processes. */
2175 if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(m)))
2176 continue;
2177
2178 /* If the unit doesn't need any new controllers
2179 * and has current ones realized, it doesn't need
2180 * any changes. */
2181 if (unit_has_mask_realized(m,
2182 unit_get_target_mask(m),
2183 unit_get_enable_mask(m)))
2184 continue;
2185
2186 unit_add_to_cgroup_realize_queue(m);
2187 }
2188
2189 u = slice;
2190 }
2191 }
2192
2193 int unit_realize_cgroup(Unit *u) {
2194 assert(u);
2195
2196 if (!UNIT_HAS_CGROUP_CONTEXT(u))
2197 return 0;
2198
2199 /* So, here's the deal: when realizing the cgroups for this
2200 * unit, we need to first create all parents, but there's more
2201 * actually: for the weight-based controllers we also need to
2202 * make sure that all our siblings (i.e. units that are in the
2203 * same slice as we are) have cgroups, too. Otherwise, things
2204 * would become very uneven as each of their processes would
2205 * get as much resources as all our group together. This call
2206 * will synchronously create the parent cgroups, but will
2207 * defer work on the siblings to the next event loop
2208 * iteration. */
2209
2210 /* Add all sibling slices to the cgroup queue. */
2211 unit_add_siblings_to_cgroup_realize_queue(u);
2212
2213 /* And realize this one now (and apply the values) */
2214 return unit_realize_cgroup_now(u, manager_state(u->manager));
2215 }
2216
2217 void unit_release_cgroup(Unit *u) {
2218 assert(u);
2219
2220 /* Forgets all cgroup details for this cgroup — but does *not* destroy the cgroup. This is hence OK to call
2221 * when we close down everything for reexecution, where we really want to leave the cgroup in place. */
2222
2223 if (u->cgroup_path) {
2224 (void) hashmap_remove(u->manager->cgroup_unit, u->cgroup_path);
2225 u->cgroup_path = mfree(u->cgroup_path);
2226 }
2227
2228 if (u->cgroup_inotify_wd >= 0) {
2229 if (inotify_rm_watch(u->manager->cgroup_inotify_fd, u->cgroup_inotify_wd) < 0)
2230 log_unit_debug_errno(u, errno, "Failed to remove cgroup inotify watch %i for %s, ignoring: %m", u->cgroup_inotify_wd, u->id);
2231
2232 (void) hashmap_remove(u->manager->cgroup_inotify_wd_unit, INT_TO_PTR(u->cgroup_inotify_wd));
2233 u->cgroup_inotify_wd = -1;
2234 }
2235 }
2236
2237 void unit_prune_cgroup(Unit *u) {
2238 int r;
2239 bool is_root_slice;
2240
2241 assert(u);
2242
2243 /* Removes the cgroup, if empty and possible, and stops watching it. */
2244
2245 if (!u->cgroup_path)
2246 return;
2247
2248 (void) unit_get_cpu_usage(u, NULL); /* Cache the last CPU usage value before we destroy the cgroup */
2249
2250 is_root_slice = unit_has_name(u, SPECIAL_ROOT_SLICE);
2251
2252 r = cg_trim_everywhere(u->manager->cgroup_supported, u->cgroup_path, !is_root_slice);
2253 if (r < 0) {
2254 log_unit_debug_errno(u, r, "Failed to destroy cgroup %s, ignoring: %m", u->cgroup_path);
2255 return;
2256 }
2257
2258 if (is_root_slice)
2259 return;
2260
2261 unit_release_cgroup(u);
2262
2263 u->cgroup_realized = false;
2264 u->cgroup_realized_mask = 0;
2265 u->cgroup_enabled_mask = 0;
2266
2267 u->bpf_device_control_installed = bpf_program_unref(u->bpf_device_control_installed);
2268 }
2269
2270 int unit_search_main_pid(Unit *u, pid_t *ret) {
2271 _cleanup_fclose_ FILE *f = NULL;
2272 pid_t pid = 0, npid;
2273 int r;
2274
2275 assert(u);
2276 assert(ret);
2277
2278 if (!u->cgroup_path)
2279 return -ENXIO;
2280
2281 r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, &f);
2282 if (r < 0)
2283 return r;
2284
2285 while (cg_read_pid(f, &npid) > 0) {
2286
2287 if (npid == pid)
2288 continue;
2289
2290 if (pid_is_my_child(npid) == 0)
2291 continue;
2292
2293 if (pid != 0)
2294 /* Dang, there's more than one daemonized PID
2295 in this group, so we don't know what process
2296 is the main process. */
2297
2298 return -ENODATA;
2299
2300 pid = npid;
2301 }
2302
2303 *ret = pid;
2304 return 0;
2305 }
2306
2307 static int unit_watch_pids_in_path(Unit *u, const char *path) {
2308 _cleanup_closedir_ DIR *d = NULL;
2309 _cleanup_fclose_ FILE *f = NULL;
2310 int ret = 0, r;
2311
2312 assert(u);
2313 assert(path);
2314
2315 r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, path, &f);
2316 if (r < 0)
2317 ret = r;
2318 else {
2319 pid_t pid;
2320
2321 while ((r = cg_read_pid(f, &pid)) > 0) {
2322 r = unit_watch_pid(u, pid, false);
2323 if (r < 0 && ret >= 0)
2324 ret = r;
2325 }
2326
2327 if (r < 0 && ret >= 0)
2328 ret = r;
2329 }
2330
2331 r = cg_enumerate_subgroups(SYSTEMD_CGROUP_CONTROLLER, path, &d);
2332 if (r < 0) {
2333 if (ret >= 0)
2334 ret = r;
2335 } else {
2336 char *fn;
2337
2338 while ((r = cg_read_subgroup(d, &fn)) > 0) {
2339 _cleanup_free_ char *p = NULL;
2340
2341 p = strjoin(path, "/", fn);
2342 free(fn);
2343
2344 if (!p)
2345 return -ENOMEM;
2346
2347 r = unit_watch_pids_in_path(u, p);
2348 if (r < 0 && ret >= 0)
2349 ret = r;
2350 }
2351
2352 if (r < 0 && ret >= 0)
2353 ret = r;
2354 }
2355
2356 return ret;
2357 }
2358
2359 int unit_synthesize_cgroup_empty_event(Unit *u) {
2360 int r;
2361
2362 assert(u);
2363
2364 /* Enqueue a synthetic cgroup empty event if this unit doesn't watch any PIDs anymore. This is compatibility
2365 * support for non-unified systems where notifications aren't reliable, and hence need to take whatever we can
2366 * get as notification source as soon as we stopped having any useful PIDs to watch for. */
2367
2368 if (!u->cgroup_path)
2369 return -ENOENT;
2370
2371 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2372 if (r < 0)
2373 return r;
2374 if (r > 0) /* On unified we have reliable notifications, and don't need this */
2375 return 0;
2376
2377 if (!set_isempty(u->pids))
2378 return 0;
2379
2380 unit_add_to_cgroup_empty_queue(u);
2381 return 0;
2382 }
2383
2384 int unit_watch_all_pids(Unit *u) {
2385 int r;
2386
2387 assert(u);
2388
2389 /* Adds all PIDs from our cgroup to the set of PIDs we
2390 * watch. This is a fallback logic for cases where we do not
2391 * get reliable cgroup empty notifications: we try to use
2392 * SIGCHLD as replacement. */
2393
2394 if (!u->cgroup_path)
2395 return -ENOENT;
2396
2397 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2398 if (r < 0)
2399 return r;
2400 if (r > 0) /* On unified we can use proper notifications */
2401 return 0;
2402
2403 return unit_watch_pids_in_path(u, u->cgroup_path);
2404 }
2405
2406 static int on_cgroup_empty_event(sd_event_source *s, void *userdata) {
2407 Manager *m = userdata;
2408 Unit *u;
2409 int r;
2410
2411 assert(s);
2412 assert(m);
2413
2414 u = m->cgroup_empty_queue;
2415 if (!u)
2416 return 0;
2417
2418 assert(u->in_cgroup_empty_queue);
2419 u->in_cgroup_empty_queue = false;
2420 LIST_REMOVE(cgroup_empty_queue, m->cgroup_empty_queue, u);
2421
2422 if (m->cgroup_empty_queue) {
2423 /* More stuff queued, let's make sure we remain enabled */
2424 r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
2425 if (r < 0)
2426 log_debug_errno(r, "Failed to reenable cgroup empty event source, ignoring: %m");
2427 }
2428
2429 unit_add_to_gc_queue(u);
2430
2431 if (UNIT_VTABLE(u)->notify_cgroup_empty)
2432 UNIT_VTABLE(u)->notify_cgroup_empty(u);
2433
2434 return 0;
2435 }
2436
2437 void unit_add_to_cgroup_empty_queue(Unit *u) {
2438 int r;
2439
2440 assert(u);
2441
2442 /* Note that there are four different ways how cgroup empty events reach us:
2443 *
2444 * 1. On the unified hierarchy we get an inotify event on the cgroup
2445 *
2446 * 2. On the legacy hierarchy, when running in system mode, we get a datagram on the cgroup agent socket
2447 *
2448 * 3. On the legacy hierarchy, when running in user mode, we get a D-Bus signal on the system bus
2449 *
2450 * 4. On the legacy hierarchy, in service units we start watching all processes of the cgroup for SIGCHLD as
2451 * soon as we get one SIGCHLD, to deal with unreliable cgroup notifications.
2452 *
2453 * Regardless which way we got the notification, we'll verify it here, and then add it to a separate
2454 * queue. This queue will be dispatched at a lower priority than the SIGCHLD handler, so that we always use
2455 * SIGCHLD if we can get it first, and only use the cgroup empty notifications if there's no SIGCHLD pending
2456 * (which might happen if the cgroup doesn't contain processes that are our own child, which is typically the
2457 * case for scope units). */
2458
2459 if (u->in_cgroup_empty_queue)
2460 return;
2461
2462 /* Let's verify that the cgroup is really empty */
2463 if (!u->cgroup_path)
2464 return;
2465 r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
2466 if (r < 0) {
2467 log_unit_debug_errno(u, r, "Failed to determine whether cgroup %s is empty: %m", u->cgroup_path);
2468 return;
2469 }
2470 if (r == 0)
2471 return;
2472
2473 LIST_PREPEND(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
2474 u->in_cgroup_empty_queue = true;
2475
2476 /* Trigger the defer event */
2477 r = sd_event_source_set_enabled(u->manager->cgroup_empty_event_source, SD_EVENT_ONESHOT);
2478 if (r < 0)
2479 log_debug_errno(r, "Failed to enable cgroup empty event source: %m");
2480 }
2481
2482 static int on_cgroup_inotify_event(sd_event_source *s, int fd, uint32_t revents, void *userdata) {
2483 Manager *m = userdata;
2484
2485 assert(s);
2486 assert(fd >= 0);
2487 assert(m);
2488
2489 for (;;) {
2490 union inotify_event_buffer buffer;
2491 struct inotify_event *e;
2492 ssize_t l;
2493
2494 l = read(fd, &buffer, sizeof(buffer));
2495 if (l < 0) {
2496 if (IN_SET(errno, EINTR, EAGAIN))
2497 return 0;
2498
2499 return log_error_errno(errno, "Failed to read control group inotify events: %m");
2500 }
2501
2502 FOREACH_INOTIFY_EVENT(e, buffer, l) {
2503 Unit *u;
2504
2505 if (e->wd < 0)
2506 /* Queue overflow has no watch descriptor */
2507 continue;
2508
2509 if (e->mask & IN_IGNORED)
2510 /* The watch was just removed */
2511 continue;
2512
2513 u = hashmap_get(m->cgroup_inotify_wd_unit, INT_TO_PTR(e->wd));
2514 if (!u) /* Not that inotify might deliver
2515 * events for a watch even after it
2516 * was removed, because it was queued
2517 * before the removal. Let's ignore
2518 * this here safely. */
2519 continue;
2520
2521 unit_add_to_cgroup_empty_queue(u);
2522 }
2523 }
2524 }
2525
2526 static int cg_bpf_mask_supported(CGroupMask *ret) {
2527 CGroupMask mask = 0;
2528 int r;
2529
2530 /* BPF-based firewall */
2531 r = bpf_firewall_supported();
2532 if (r > 0)
2533 mask |= CGROUP_MASK_BPF_FIREWALL;
2534
2535 /* BPF-based device access control */
2536 r = bpf_devices_supported();
2537 if (r > 0)
2538 mask |= CGROUP_MASK_BPF_DEVICES;
2539
2540 *ret = mask;
2541 return 0;
2542 }
2543
2544 int manager_setup_cgroup(Manager *m) {
2545 _cleanup_free_ char *path = NULL;
2546 const char *scope_path;
2547 CGroupController c;
2548 int r, all_unified;
2549 CGroupMask mask;
2550 char *e;
2551
2552 assert(m);
2553
2554 /* 1. Determine hierarchy */
2555 m->cgroup_root = mfree(m->cgroup_root);
2556 r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, 0, &m->cgroup_root);
2557 if (r < 0)
2558 return log_error_errno(r, "Cannot determine cgroup we are running in: %m");
2559
2560 /* Chop off the init scope, if we are already located in it */
2561 e = endswith(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
2562
2563 /* LEGACY: Also chop off the system slice if we are in
2564 * it. This is to support live upgrades from older systemd
2565 * versions where PID 1 was moved there. Also see
2566 * cg_get_root_path(). */
2567 if (!e && MANAGER_IS_SYSTEM(m)) {
2568 e = endswith(m->cgroup_root, "/" SPECIAL_SYSTEM_SLICE);
2569 if (!e)
2570 e = endswith(m->cgroup_root, "/system"); /* even more legacy */
2571 }
2572 if (e)
2573 *e = 0;
2574
2575 /* And make sure to store away the root value without trailing slash, even for the root dir, so that we can
2576 * easily prepend it everywhere. */
2577 delete_trailing_chars(m->cgroup_root, "/");
2578
2579 /* 2. Show data */
2580 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, NULL, &path);
2581 if (r < 0)
2582 return log_error_errno(r, "Cannot find cgroup mount point: %m");
2583
2584 r = cg_unified_flush();
2585 if (r < 0)
2586 return log_error_errno(r, "Couldn't determine if we are running in the unified hierarchy: %m");
2587
2588 all_unified = cg_all_unified();
2589 if (all_unified < 0)
2590 return log_error_errno(all_unified, "Couldn't determine whether we are in all unified mode: %m");
2591 if (all_unified > 0)
2592 log_debug("Unified cgroup hierarchy is located at %s.", path);
2593 else {
2594 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2595 if (r < 0)
2596 return log_error_errno(r, "Failed to determine whether systemd's own controller is in unified mode: %m");
2597 if (r > 0)
2598 log_debug("Unified cgroup hierarchy is located at %s. Controllers are on legacy hierarchies.", path);
2599 else
2600 log_debug("Using cgroup controller " SYSTEMD_CGROUP_CONTROLLER_LEGACY ". File system hierarchy is at %s.", path);
2601 }
2602
2603 /* 3. Allocate cgroup empty defer event source */
2604 m->cgroup_empty_event_source = sd_event_source_unref(m->cgroup_empty_event_source);
2605 r = sd_event_add_defer(m->event, &m->cgroup_empty_event_source, on_cgroup_empty_event, m);
2606 if (r < 0)
2607 return log_error_errno(r, "Failed to create cgroup empty event source: %m");
2608
2609 r = sd_event_source_set_priority(m->cgroup_empty_event_source, SD_EVENT_PRIORITY_NORMAL-5);
2610 if (r < 0)
2611 return log_error_errno(r, "Failed to set priority of cgroup empty event source: %m");
2612
2613 r = sd_event_source_set_enabled(m->cgroup_empty_event_source, SD_EVENT_OFF);
2614 if (r < 0)
2615 return log_error_errno(r, "Failed to disable cgroup empty event source: %m");
2616
2617 (void) sd_event_source_set_description(m->cgroup_empty_event_source, "cgroup-empty");
2618
2619 /* 4. Install notifier inotify object, or agent */
2620 if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0) {
2621
2622 /* In the unified hierarchy we can get cgroup empty notifications via inotify. */
2623
2624 m->cgroup_inotify_event_source = sd_event_source_unref(m->cgroup_inotify_event_source);
2625 safe_close(m->cgroup_inotify_fd);
2626
2627 m->cgroup_inotify_fd = inotify_init1(IN_NONBLOCK|IN_CLOEXEC);
2628 if (m->cgroup_inotify_fd < 0)
2629 return log_error_errno(errno, "Failed to create control group inotify object: %m");
2630
2631 r = sd_event_add_io(m->event, &m->cgroup_inotify_event_source, m->cgroup_inotify_fd, EPOLLIN, on_cgroup_inotify_event, m);
2632 if (r < 0)
2633 return log_error_errno(r, "Failed to watch control group inotify object: %m");
2634
2635 /* Process cgroup empty notifications early, but after service notifications and SIGCHLD. Also
2636 * see handling of cgroup agent notifications, for the classic cgroup hierarchy support. */
2637 r = sd_event_source_set_priority(m->cgroup_inotify_event_source, SD_EVENT_PRIORITY_NORMAL-4);
2638 if (r < 0)
2639 return log_error_errno(r, "Failed to set priority of inotify event source: %m");
2640
2641 (void) sd_event_source_set_description(m->cgroup_inotify_event_source, "cgroup-inotify");
2642
2643 } else if (MANAGER_IS_SYSTEM(m) && manager_owns_host_root_cgroup(m) && !MANAGER_IS_TEST_RUN(m)) {
2644
2645 /* On the legacy hierarchy we only get notifications via cgroup agents. (Which isn't really reliable,
2646 * since it does not generate events when control groups with children run empty. */
2647
2648 r = cg_install_release_agent(SYSTEMD_CGROUP_CONTROLLER, SYSTEMD_CGROUP_AGENT_PATH);
2649 if (r < 0)
2650 log_warning_errno(r, "Failed to install release agent, ignoring: %m");
2651 else if (r > 0)
2652 log_debug("Installed release agent.");
2653 else if (r == 0)
2654 log_debug("Release agent already installed.");
2655 }
2656
2657 /* 5. Make sure we are in the special "init.scope" unit in the root slice. */
2658 scope_path = strjoina(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
2659 r = cg_create_and_attach(SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
2660 if (r >= 0) {
2661 /* Also, move all other userspace processes remaining in the root cgroup into that scope. */
2662 r = cg_migrate(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
2663 if (r < 0)
2664 log_warning_errno(r, "Couldn't move remaining userspace processes, ignoring: %m");
2665
2666 /* 6. And pin it, so that it cannot be unmounted */
2667 safe_close(m->pin_cgroupfs_fd);
2668 m->pin_cgroupfs_fd = open(path, O_RDONLY|O_CLOEXEC|O_DIRECTORY|O_NOCTTY|O_NONBLOCK);
2669 if (m->pin_cgroupfs_fd < 0)
2670 return log_error_errno(errno, "Failed to open pin file: %m");
2671
2672 } else if (!MANAGER_IS_TEST_RUN(m))
2673 return log_error_errno(r, "Failed to create %s control group: %m", scope_path);
2674
2675 /* 7. Always enable hierarchical support if it exists... */
2676 if (!all_unified && !MANAGER_IS_TEST_RUN(m))
2677 (void) cg_set_attribute("memory", "/", "memory.use_hierarchy", "1");
2678
2679 /* 8. Figure out which controllers are supported */
2680 r = cg_mask_supported(&m->cgroup_supported);
2681 if (r < 0)
2682 return log_error_errno(r, "Failed to determine supported controllers: %m");
2683
2684 /* 9. Figure out which bpf-based pseudo-controllers are supported */
2685 r = cg_bpf_mask_supported(&mask);
2686 if (r < 0)
2687 return log_error_errno(r, "Failed to determine supported bpf-based pseudo-controllers: %m");
2688 m->cgroup_supported |= mask;
2689
2690 /* 10. Log which controllers are supported */
2691 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++)
2692 log_debug("Controller '%s' supported: %s", cgroup_controller_to_string(c), yes_no(m->cgroup_supported & CGROUP_CONTROLLER_TO_MASK(c)));
2693
2694 return 0;
2695 }
2696
2697 void manager_shutdown_cgroup(Manager *m, bool delete) {
2698 assert(m);
2699
2700 /* We can't really delete the group, since we are in it. But
2701 * let's trim it. */
2702 if (delete && m->cgroup_root && m->test_run_flags != MANAGER_TEST_RUN_MINIMAL)
2703 (void) cg_trim(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, false);
2704
2705 m->cgroup_empty_event_source = sd_event_source_unref(m->cgroup_empty_event_source);
2706
2707 m->cgroup_inotify_wd_unit = hashmap_free(m->cgroup_inotify_wd_unit);
2708
2709 m->cgroup_inotify_event_source = sd_event_source_unref(m->cgroup_inotify_event_source);
2710 m->cgroup_inotify_fd = safe_close(m->cgroup_inotify_fd);
2711
2712 m->pin_cgroupfs_fd = safe_close(m->pin_cgroupfs_fd);
2713
2714 m->cgroup_root = mfree(m->cgroup_root);
2715 }
2716
2717 Unit* manager_get_unit_by_cgroup(Manager *m, const char *cgroup) {
2718 char *p;
2719 Unit *u;
2720
2721 assert(m);
2722 assert(cgroup);
2723
2724 u = hashmap_get(m->cgroup_unit, cgroup);
2725 if (u)
2726 return u;
2727
2728 p = strdupa(cgroup);
2729 for (;;) {
2730 char *e;
2731
2732 e = strrchr(p, '/');
2733 if (!e || e == p)
2734 return hashmap_get(m->cgroup_unit, SPECIAL_ROOT_SLICE);
2735
2736 *e = 0;
2737
2738 u = hashmap_get(m->cgroup_unit, p);
2739 if (u)
2740 return u;
2741 }
2742 }
2743
2744 Unit *manager_get_unit_by_pid_cgroup(Manager *m, pid_t pid) {
2745 _cleanup_free_ char *cgroup = NULL;
2746
2747 assert(m);
2748
2749 if (!pid_is_valid(pid))
2750 return NULL;
2751
2752 if (cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, pid, &cgroup) < 0)
2753 return NULL;
2754
2755 return manager_get_unit_by_cgroup(m, cgroup);
2756 }
2757
2758 Unit *manager_get_unit_by_pid(Manager *m, pid_t pid) {
2759 Unit *u, **array;
2760
2761 assert(m);
2762
2763 /* Note that a process might be owned by multiple units, we return only one here, which is good enough for most
2764 * cases, though not strictly correct. We prefer the one reported by cgroup membership, as that's the most
2765 * relevant one as children of the process will be assigned to that one, too, before all else. */
2766
2767 if (!pid_is_valid(pid))
2768 return NULL;
2769
2770 if (pid == getpid_cached())
2771 return hashmap_get(m->units, SPECIAL_INIT_SCOPE);
2772
2773 u = manager_get_unit_by_pid_cgroup(m, pid);
2774 if (u)
2775 return u;
2776
2777 u = hashmap_get(m->watch_pids, PID_TO_PTR(pid));
2778 if (u)
2779 return u;
2780
2781 array = hashmap_get(m->watch_pids, PID_TO_PTR(-pid));
2782 if (array)
2783 return array[0];
2784
2785 return NULL;
2786 }
2787
2788 int manager_notify_cgroup_empty(Manager *m, const char *cgroup) {
2789 Unit *u;
2790
2791 assert(m);
2792 assert(cgroup);
2793
2794 /* Called on the legacy hierarchy whenever we get an explicit cgroup notification from the cgroup agent process
2795 * or from the --system instance */
2796
2797 log_debug("Got cgroup empty notification for: %s", cgroup);
2798
2799 u = manager_get_unit_by_cgroup(m, cgroup);
2800 if (!u)
2801 return 0;
2802
2803 unit_add_to_cgroup_empty_queue(u);
2804 return 1;
2805 }
2806
2807 int unit_get_memory_current(Unit *u, uint64_t *ret) {
2808 _cleanup_free_ char *v = NULL;
2809 int r;
2810
2811 assert(u);
2812 assert(ret);
2813
2814 if (!UNIT_CGROUP_BOOL(u, memory_accounting))
2815 return -ENODATA;
2816
2817 if (!u->cgroup_path)
2818 return -ENODATA;
2819
2820 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
2821 if (unit_has_host_root_cgroup(u))
2822 return procfs_memory_get_used(ret);
2823
2824 if ((u->cgroup_realized_mask & CGROUP_MASK_MEMORY) == 0)
2825 return -ENODATA;
2826
2827 r = cg_all_unified();
2828 if (r < 0)
2829 return r;
2830 if (r > 0)
2831 r = cg_get_attribute("memory", u->cgroup_path, "memory.current", &v);
2832 else
2833 r = cg_get_attribute("memory", u->cgroup_path, "memory.usage_in_bytes", &v);
2834 if (r == -ENOENT)
2835 return -ENODATA;
2836 if (r < 0)
2837 return r;
2838
2839 return safe_atou64(v, ret);
2840 }
2841
2842 int unit_get_tasks_current(Unit *u, uint64_t *ret) {
2843 _cleanup_free_ char *v = NULL;
2844 int r;
2845
2846 assert(u);
2847 assert(ret);
2848
2849 if (!UNIT_CGROUP_BOOL(u, tasks_accounting))
2850 return -ENODATA;
2851
2852 if (!u->cgroup_path)
2853 return -ENODATA;
2854
2855 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
2856 if (unit_has_host_root_cgroup(u))
2857 return procfs_tasks_get_current(ret);
2858
2859 if ((u->cgroup_realized_mask & CGROUP_MASK_PIDS) == 0)
2860 return -ENODATA;
2861
2862 r = cg_get_attribute("pids", u->cgroup_path, "pids.current", &v);
2863 if (r == -ENOENT)
2864 return -ENODATA;
2865 if (r < 0)
2866 return r;
2867
2868 return safe_atou64(v, ret);
2869 }
2870
2871 static int unit_get_cpu_usage_raw(Unit *u, nsec_t *ret) {
2872 _cleanup_free_ char *v = NULL;
2873 uint64_t ns;
2874 int r;
2875
2876 assert(u);
2877 assert(ret);
2878
2879 if (!u->cgroup_path)
2880 return -ENODATA;
2881
2882 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
2883 if (unit_has_host_root_cgroup(u))
2884 return procfs_cpu_get_usage(ret);
2885
2886 /* Requisite controllers for CPU accounting are not enabled */
2887 if ((get_cpu_accounting_mask() & ~u->cgroup_realized_mask) != 0)
2888 return -ENODATA;
2889
2890 r = cg_all_unified();
2891 if (r < 0)
2892 return r;
2893 if (r > 0) {
2894 _cleanup_free_ char *val = NULL;
2895 uint64_t us;
2896
2897 r = cg_get_keyed_attribute("cpu", u->cgroup_path, "cpu.stat", STRV_MAKE("usage_usec"), &val);
2898 if (IN_SET(r, -ENOENT, -ENXIO))
2899 return -ENODATA;
2900 if (r < 0)
2901 return r;
2902
2903 r = safe_atou64(val, &us);
2904 if (r < 0)
2905 return r;
2906
2907 ns = us * NSEC_PER_USEC;
2908 } else {
2909 r = cg_get_attribute("cpuacct", u->cgroup_path, "cpuacct.usage", &v);
2910 if (r == -ENOENT)
2911 return -ENODATA;
2912 if (r < 0)
2913 return r;
2914
2915 r = safe_atou64(v, &ns);
2916 if (r < 0)
2917 return r;
2918 }
2919
2920 *ret = ns;
2921 return 0;
2922 }
2923
2924 int unit_get_cpu_usage(Unit *u, nsec_t *ret) {
2925 nsec_t ns;
2926 int r;
2927
2928 assert(u);
2929
2930 /* Retrieve the current CPU usage counter. This will subtract the CPU counter taken when the unit was
2931 * started. If the cgroup has been removed already, returns the last cached value. To cache the value, simply
2932 * call this function with a NULL return value. */
2933
2934 if (!UNIT_CGROUP_BOOL(u, cpu_accounting))
2935 return -ENODATA;
2936
2937 r = unit_get_cpu_usage_raw(u, &ns);
2938 if (r == -ENODATA && u->cpu_usage_last != NSEC_INFINITY) {
2939 /* If we can't get the CPU usage anymore (because the cgroup was already removed, for example), use our
2940 * cached value. */
2941
2942 if (ret)
2943 *ret = u->cpu_usage_last;
2944 return 0;
2945 }
2946 if (r < 0)
2947 return r;
2948
2949 if (ns > u->cpu_usage_base)
2950 ns -= u->cpu_usage_base;
2951 else
2952 ns = 0;
2953
2954 u->cpu_usage_last = ns;
2955 if (ret)
2956 *ret = ns;
2957
2958 return 0;
2959 }
2960
2961 int unit_get_ip_accounting(
2962 Unit *u,
2963 CGroupIPAccountingMetric metric,
2964 uint64_t *ret) {
2965
2966 uint64_t value;
2967 int fd, r;
2968
2969 assert(u);
2970 assert(metric >= 0);
2971 assert(metric < _CGROUP_IP_ACCOUNTING_METRIC_MAX);
2972 assert(ret);
2973
2974 if (!UNIT_CGROUP_BOOL(u, ip_accounting))
2975 return -ENODATA;
2976
2977 fd = IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_INGRESS_PACKETS) ?
2978 u->ip_accounting_ingress_map_fd :
2979 u->ip_accounting_egress_map_fd;
2980 if (fd < 0)
2981 return -ENODATA;
2982
2983 if (IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_EGRESS_BYTES))
2984 r = bpf_firewall_read_accounting(fd, &value, NULL);
2985 else
2986 r = bpf_firewall_read_accounting(fd, NULL, &value);
2987 if (r < 0)
2988 return r;
2989
2990 /* Add in additional metrics from a previous runtime. Note that when reexecing/reloading the daemon we compile
2991 * all BPF programs and maps anew, but serialize the old counters. When deserializing we store them in the
2992 * ip_accounting_extra[] field, and add them in here transparently. */
2993
2994 *ret = value + u->ip_accounting_extra[metric];
2995
2996 return r;
2997 }
2998
2999 int unit_reset_cpu_accounting(Unit *u) {
3000 nsec_t ns;
3001 int r;
3002
3003 assert(u);
3004
3005 u->cpu_usage_last = NSEC_INFINITY;
3006
3007 r = unit_get_cpu_usage_raw(u, &ns);
3008 if (r < 0) {
3009 u->cpu_usage_base = 0;
3010 return r;
3011 }
3012
3013 u->cpu_usage_base = ns;
3014 return 0;
3015 }
3016
3017 int unit_reset_ip_accounting(Unit *u) {
3018 int r = 0, q = 0;
3019
3020 assert(u);
3021
3022 if (u->ip_accounting_ingress_map_fd >= 0)
3023 r = bpf_firewall_reset_accounting(u->ip_accounting_ingress_map_fd);
3024
3025 if (u->ip_accounting_egress_map_fd >= 0)
3026 q = bpf_firewall_reset_accounting(u->ip_accounting_egress_map_fd);
3027
3028 zero(u->ip_accounting_extra);
3029
3030 return r < 0 ? r : q;
3031 }
3032
3033 void unit_invalidate_cgroup(Unit *u, CGroupMask m) {
3034 assert(u);
3035
3036 if (!UNIT_HAS_CGROUP_CONTEXT(u))
3037 return;
3038
3039 if (m == 0)
3040 return;
3041
3042 /* always invalidate compat pairs together */
3043 if (m & (CGROUP_MASK_IO | CGROUP_MASK_BLKIO))
3044 m |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
3045
3046 if (m & (CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT))
3047 m |= CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT;
3048
3049 if (FLAGS_SET(u->cgroup_invalidated_mask, m)) /* NOP? */
3050 return;
3051
3052 u->cgroup_invalidated_mask |= m;
3053 unit_add_to_cgroup_realize_queue(u);
3054 }
3055
3056 void unit_invalidate_cgroup_bpf(Unit *u) {
3057 assert(u);
3058
3059 if (!UNIT_HAS_CGROUP_CONTEXT(u))
3060 return;
3061
3062 if (u->cgroup_invalidated_mask & CGROUP_MASK_BPF_FIREWALL) /* NOP? */
3063 return;
3064
3065 u->cgroup_invalidated_mask |= CGROUP_MASK_BPF_FIREWALL;
3066 unit_add_to_cgroup_realize_queue(u);
3067
3068 /* If we are a slice unit, we also need to put compile a new BPF program for all our children, as the IP access
3069 * list of our children includes our own. */
3070 if (u->type == UNIT_SLICE) {
3071 Unit *member;
3072 Iterator i;
3073 void *v;
3074
3075 HASHMAP_FOREACH_KEY(v, member, u->dependencies[UNIT_BEFORE], i) {
3076 if (UNIT_DEREF(member->slice) == u)
3077 unit_invalidate_cgroup_bpf(member);
3078 }
3079 }
3080 }
3081
3082 bool unit_cgroup_delegate(Unit *u) {
3083 CGroupContext *c;
3084
3085 assert(u);
3086
3087 if (!UNIT_VTABLE(u)->can_delegate)
3088 return false;
3089
3090 c = unit_get_cgroup_context(u);
3091 if (!c)
3092 return false;
3093
3094 return c->delegate;
3095 }
3096
3097 void manager_invalidate_startup_units(Manager *m) {
3098 Iterator i;
3099 Unit *u;
3100
3101 assert(m);
3102
3103 SET_FOREACH(u, m->startup_units, i)
3104 unit_invalidate_cgroup(u, CGROUP_MASK_CPU|CGROUP_MASK_IO|CGROUP_MASK_BLKIO);
3105 }
3106
3107 static const char* const cgroup_device_policy_table[_CGROUP_DEVICE_POLICY_MAX] = {
3108 [CGROUP_AUTO] = "auto",
3109 [CGROUP_CLOSED] = "closed",
3110 [CGROUP_STRICT] = "strict",
3111 };
3112
3113 DEFINE_STRING_TABLE_LOOKUP(cgroup_device_policy, CGroupDevicePolicy);