]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/cgroup.c
Merge pull request #10221 from lucaswerkmeister/bash-completion
[thirdparty/systemd.git] / src / core / cgroup.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <fcntl.h>
4 #include <fnmatch.h>
5
6 #include "alloc-util.h"
7 #include "blockdev-util.h"
8 #include "bpf-firewall.h"
9 #include "btrfs-util.h"
10 #include "bpf-devices.h"
11 #include "bus-error.h"
12 #include "cgroup-util.h"
13 #include "cgroup.h"
14 #include "fd-util.h"
15 #include "fileio.h"
16 #include "fs-util.h"
17 #include "parse-util.h"
18 #include "path-util.h"
19 #include "process-util.h"
20 #include "procfs-util.h"
21 #include "special.h"
22 #include "stat-util.h"
23 #include "stdio-util.h"
24 #include "string-table.h"
25 #include "string-util.h"
26 #include "virt.h"
27
28 #define CGROUP_CPU_QUOTA_PERIOD_USEC ((usec_t) 100 * USEC_PER_MSEC)
29
30 /* Returns the log level to use when cgroup attribute writes fail. When an attribute is missing or we have access
31 * problems we downgrade to LOG_DEBUG. This is supposed to be nice to container managers and kernels which want to mask
32 * out specific attributes from us. */
33 #define LOG_LEVEL_CGROUP_WRITE(r) (IN_SET(abs(r), ENOENT, EROFS, EACCES, EPERM) ? LOG_DEBUG : LOG_WARNING)
34
35 bool manager_owns_host_root_cgroup(Manager *m) {
36 assert(m);
37
38 /* Returns true if we are managing the root cgroup. Note that it isn't sufficient to just check whether the
39 * group root path equals "/" since that will also be the case if CLONE_NEWCGROUP is in the mix. Since there's
40 * appears to be no nice way to detect whether we are in a CLONE_NEWCGROUP namespace we instead just check if
41 * we run in any kind of container virtualization. */
42
43 if (MANAGER_IS_USER(m))
44 return false;
45
46 if (detect_container() > 0)
47 return false;
48
49 return empty_or_root(m->cgroup_root);
50 }
51
52 bool unit_has_host_root_cgroup(Unit *u) {
53 assert(u);
54
55 /* Returns whether this unit manages the root cgroup. This will return true if this unit is the root slice and
56 * the manager manages the root cgroup. */
57
58 if (!manager_owns_host_root_cgroup(u->manager))
59 return false;
60
61 return unit_has_name(u, SPECIAL_ROOT_SLICE);
62 }
63
64 static int set_attribute_and_warn(Unit *u, const char *controller, const char *attribute, const char *value) {
65 int r;
66
67 r = cg_set_attribute(controller, u->cgroup_path, attribute, value);
68 if (r < 0)
69 log_unit_full(u, LOG_LEVEL_CGROUP_WRITE(r), r, "Failed to set '%s' attribute on '%s' to '%.*s': %m",
70 strna(attribute), isempty(u->cgroup_path) ? "/" : u->cgroup_path, (int) strcspn(value, NEWLINE), value);
71
72 return r;
73 }
74
75 static void cgroup_compat_warn(void) {
76 static bool cgroup_compat_warned = false;
77
78 if (cgroup_compat_warned)
79 return;
80
81 log_warning("cgroup compatibility translation between legacy and unified hierarchy settings activated. "
82 "See cgroup-compat debug messages for details.");
83
84 cgroup_compat_warned = true;
85 }
86
87 #define log_cgroup_compat(unit, fmt, ...) do { \
88 cgroup_compat_warn(); \
89 log_unit_debug(unit, "cgroup-compat: " fmt, ##__VA_ARGS__); \
90 } while (false)
91
92 void cgroup_context_init(CGroupContext *c) {
93 assert(c);
94
95 /* Initialize everything to the kernel defaults. */
96
97 *c = (CGroupContext) {
98 .cpu_weight = CGROUP_WEIGHT_INVALID,
99 .startup_cpu_weight = CGROUP_WEIGHT_INVALID,
100 .cpu_quota_per_sec_usec = USEC_INFINITY,
101
102 .cpu_shares = CGROUP_CPU_SHARES_INVALID,
103 .startup_cpu_shares = CGROUP_CPU_SHARES_INVALID,
104
105 .memory_high = CGROUP_LIMIT_MAX,
106 .memory_max = CGROUP_LIMIT_MAX,
107 .memory_swap_max = CGROUP_LIMIT_MAX,
108
109 .memory_limit = CGROUP_LIMIT_MAX,
110
111 .io_weight = CGROUP_WEIGHT_INVALID,
112 .startup_io_weight = CGROUP_WEIGHT_INVALID,
113
114 .blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
115 .startup_blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
116
117 .tasks_max = CGROUP_LIMIT_MAX,
118 };
119 }
120
121 void cgroup_context_free_device_allow(CGroupContext *c, CGroupDeviceAllow *a) {
122 assert(c);
123 assert(a);
124
125 LIST_REMOVE(device_allow, c->device_allow, a);
126 free(a->path);
127 free(a);
128 }
129
130 void cgroup_context_free_io_device_weight(CGroupContext *c, CGroupIODeviceWeight *w) {
131 assert(c);
132 assert(w);
133
134 LIST_REMOVE(device_weights, c->io_device_weights, w);
135 free(w->path);
136 free(w);
137 }
138
139 void cgroup_context_free_io_device_latency(CGroupContext *c, CGroupIODeviceLatency *l) {
140 assert(c);
141 assert(l);
142
143 LIST_REMOVE(device_latencies, c->io_device_latencies, l);
144 free(l->path);
145 free(l);
146 }
147
148 void cgroup_context_free_io_device_limit(CGroupContext *c, CGroupIODeviceLimit *l) {
149 assert(c);
150 assert(l);
151
152 LIST_REMOVE(device_limits, c->io_device_limits, l);
153 free(l->path);
154 free(l);
155 }
156
157 void cgroup_context_free_blockio_device_weight(CGroupContext *c, CGroupBlockIODeviceWeight *w) {
158 assert(c);
159 assert(w);
160
161 LIST_REMOVE(device_weights, c->blockio_device_weights, w);
162 free(w->path);
163 free(w);
164 }
165
166 void cgroup_context_free_blockio_device_bandwidth(CGroupContext *c, CGroupBlockIODeviceBandwidth *b) {
167 assert(c);
168 assert(b);
169
170 LIST_REMOVE(device_bandwidths, c->blockio_device_bandwidths, b);
171 free(b->path);
172 free(b);
173 }
174
175 void cgroup_context_done(CGroupContext *c) {
176 assert(c);
177
178 while (c->io_device_weights)
179 cgroup_context_free_io_device_weight(c, c->io_device_weights);
180
181 while (c->io_device_latencies)
182 cgroup_context_free_io_device_latency(c, c->io_device_latencies);
183
184 while (c->io_device_limits)
185 cgroup_context_free_io_device_limit(c, c->io_device_limits);
186
187 while (c->blockio_device_weights)
188 cgroup_context_free_blockio_device_weight(c, c->blockio_device_weights);
189
190 while (c->blockio_device_bandwidths)
191 cgroup_context_free_blockio_device_bandwidth(c, c->blockio_device_bandwidths);
192
193 while (c->device_allow)
194 cgroup_context_free_device_allow(c, c->device_allow);
195
196 c->ip_address_allow = ip_address_access_free_all(c->ip_address_allow);
197 c->ip_address_deny = ip_address_access_free_all(c->ip_address_deny);
198 }
199
200 void cgroup_context_dump(CGroupContext *c, FILE* f, const char *prefix) {
201 CGroupIODeviceLimit *il;
202 CGroupIODeviceWeight *iw;
203 CGroupIODeviceLatency *l;
204 CGroupBlockIODeviceBandwidth *b;
205 CGroupBlockIODeviceWeight *w;
206 CGroupDeviceAllow *a;
207 IPAddressAccessItem *iaai;
208 char u[FORMAT_TIMESPAN_MAX];
209
210 assert(c);
211 assert(f);
212
213 prefix = strempty(prefix);
214
215 fprintf(f,
216 "%sCPUAccounting=%s\n"
217 "%sIOAccounting=%s\n"
218 "%sBlockIOAccounting=%s\n"
219 "%sMemoryAccounting=%s\n"
220 "%sTasksAccounting=%s\n"
221 "%sIPAccounting=%s\n"
222 "%sCPUWeight=%" PRIu64 "\n"
223 "%sStartupCPUWeight=%" PRIu64 "\n"
224 "%sCPUShares=%" PRIu64 "\n"
225 "%sStartupCPUShares=%" PRIu64 "\n"
226 "%sCPUQuotaPerSecSec=%s\n"
227 "%sIOWeight=%" PRIu64 "\n"
228 "%sStartupIOWeight=%" PRIu64 "\n"
229 "%sBlockIOWeight=%" PRIu64 "\n"
230 "%sStartupBlockIOWeight=%" PRIu64 "\n"
231 "%sMemoryMin=%" PRIu64 "\n"
232 "%sMemoryLow=%" PRIu64 "\n"
233 "%sMemoryHigh=%" PRIu64 "\n"
234 "%sMemoryMax=%" PRIu64 "\n"
235 "%sMemorySwapMax=%" PRIu64 "\n"
236 "%sMemoryLimit=%" PRIu64 "\n"
237 "%sTasksMax=%" PRIu64 "\n"
238 "%sDevicePolicy=%s\n"
239 "%sDelegate=%s\n",
240 prefix, yes_no(c->cpu_accounting),
241 prefix, yes_no(c->io_accounting),
242 prefix, yes_no(c->blockio_accounting),
243 prefix, yes_no(c->memory_accounting),
244 prefix, yes_no(c->tasks_accounting),
245 prefix, yes_no(c->ip_accounting),
246 prefix, c->cpu_weight,
247 prefix, c->startup_cpu_weight,
248 prefix, c->cpu_shares,
249 prefix, c->startup_cpu_shares,
250 prefix, format_timespan(u, sizeof(u), c->cpu_quota_per_sec_usec, 1),
251 prefix, c->io_weight,
252 prefix, c->startup_io_weight,
253 prefix, c->blockio_weight,
254 prefix, c->startup_blockio_weight,
255 prefix, c->memory_min,
256 prefix, c->memory_low,
257 prefix, c->memory_high,
258 prefix, c->memory_max,
259 prefix, c->memory_swap_max,
260 prefix, c->memory_limit,
261 prefix, c->tasks_max,
262 prefix, cgroup_device_policy_to_string(c->device_policy),
263 prefix, yes_no(c->delegate));
264
265 if (c->delegate) {
266 _cleanup_free_ char *t = NULL;
267
268 (void) cg_mask_to_string(c->delegate_controllers, &t);
269
270 fprintf(f, "%sDelegateControllers=%s\n",
271 prefix,
272 strempty(t));
273 }
274
275 LIST_FOREACH(device_allow, a, c->device_allow)
276 fprintf(f,
277 "%sDeviceAllow=%s %s%s%s\n",
278 prefix,
279 a->path,
280 a->r ? "r" : "", a->w ? "w" : "", a->m ? "m" : "");
281
282 LIST_FOREACH(device_weights, iw, c->io_device_weights)
283 fprintf(f,
284 "%sIODeviceWeight=%s %" PRIu64 "\n",
285 prefix,
286 iw->path,
287 iw->weight);
288
289 LIST_FOREACH(device_latencies, l, c->io_device_latencies)
290 fprintf(f,
291 "%sIODeviceLatencyTargetSec=%s %s\n",
292 prefix,
293 l->path,
294 format_timespan(u, sizeof(u), l->target_usec, 1));
295
296 LIST_FOREACH(device_limits, il, c->io_device_limits) {
297 char buf[FORMAT_BYTES_MAX];
298 CGroupIOLimitType type;
299
300 for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
301 if (il->limits[type] != cgroup_io_limit_defaults[type])
302 fprintf(f,
303 "%s%s=%s %s\n",
304 prefix,
305 cgroup_io_limit_type_to_string(type),
306 il->path,
307 format_bytes(buf, sizeof(buf), il->limits[type]));
308 }
309
310 LIST_FOREACH(device_weights, w, c->blockio_device_weights)
311 fprintf(f,
312 "%sBlockIODeviceWeight=%s %" PRIu64,
313 prefix,
314 w->path,
315 w->weight);
316
317 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
318 char buf[FORMAT_BYTES_MAX];
319
320 if (b->rbps != CGROUP_LIMIT_MAX)
321 fprintf(f,
322 "%sBlockIOReadBandwidth=%s %s\n",
323 prefix,
324 b->path,
325 format_bytes(buf, sizeof(buf), b->rbps));
326 if (b->wbps != CGROUP_LIMIT_MAX)
327 fprintf(f,
328 "%sBlockIOWriteBandwidth=%s %s\n",
329 prefix,
330 b->path,
331 format_bytes(buf, sizeof(buf), b->wbps));
332 }
333
334 LIST_FOREACH(items, iaai, c->ip_address_allow) {
335 _cleanup_free_ char *k = NULL;
336
337 (void) in_addr_to_string(iaai->family, &iaai->address, &k);
338 fprintf(f, "%sIPAddressAllow=%s/%u\n", prefix, strnull(k), iaai->prefixlen);
339 }
340
341 LIST_FOREACH(items, iaai, c->ip_address_deny) {
342 _cleanup_free_ char *k = NULL;
343
344 (void) in_addr_to_string(iaai->family, &iaai->address, &k);
345 fprintf(f, "%sIPAddressDeny=%s/%u\n", prefix, strnull(k), iaai->prefixlen);
346 }
347 }
348
349 int cgroup_add_device_allow(CGroupContext *c, const char *dev, const char *mode) {
350 _cleanup_free_ CGroupDeviceAllow *a = NULL;
351 _cleanup_free_ char *d = NULL;
352
353 assert(c);
354 assert(dev);
355 assert(isempty(mode) || in_charset(mode, "rwm"));
356
357 a = new(CGroupDeviceAllow, 1);
358 if (!a)
359 return -ENOMEM;
360
361 d = strdup(dev);
362 if (!d)
363 return -ENOMEM;
364
365 *a = (CGroupDeviceAllow) {
366 .path = TAKE_PTR(d),
367 .r = isempty(mode) || strchr(mode, 'r'),
368 .w = isempty(mode) || strchr(mode, 'w'),
369 .m = isempty(mode) || strchr(mode, 'm'),
370 };
371
372 LIST_PREPEND(device_allow, c->device_allow, a);
373 TAKE_PTR(a);
374
375 return 0;
376 }
377
378 static void cgroup_xattr_apply(Unit *u) {
379 char ids[SD_ID128_STRING_MAX];
380 int r;
381
382 assert(u);
383
384 if (!MANAGER_IS_SYSTEM(u->manager))
385 return;
386
387 if (sd_id128_is_null(u->invocation_id))
388 return;
389
390 r = cg_set_xattr(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path,
391 "trusted.invocation_id",
392 sd_id128_to_string(u->invocation_id, ids), 32,
393 0);
394 if (r < 0)
395 log_unit_debug_errno(u, r, "Failed to set invocation ID on control group %s, ignoring: %m", u->cgroup_path);
396 }
397
398 static int lookup_block_device(const char *p, dev_t *ret) {
399 struct stat st = {};
400 int r;
401
402 assert(p);
403 assert(ret);
404
405 r = device_path_parse_major_minor(p, &st.st_mode, &st.st_rdev);
406 if (r == -ENODEV) { /* not a parsable device node, need to go to disk */
407 if (stat(p, &st) < 0)
408 return log_warning_errno(errno, "Couldn't stat device '%s': %m", p);
409 } else if (r < 0)
410 return log_warning_errno(r, "Failed to parse major/minor from path '%s': %m", p);
411
412 if (S_ISCHR(st.st_mode)) {
413 log_warning("Device node '%s' is a character device, but block device needed.", p);
414 return -ENOTBLK;
415 } else if (S_ISBLK(st.st_mode))
416 *ret = st.st_rdev;
417 else if (major(st.st_dev) != 0)
418 *ret = st.st_dev; /* If this is not a device node then use the block device this file is stored on */
419 else {
420 /* If this is btrfs, getting the backing block device is a bit harder */
421 r = btrfs_get_block_device(p, ret);
422 if (r < 0 && r != -ENOTTY)
423 return log_warning_errno(r, "Failed to determine block device backing btrfs file system '%s': %m", p);
424 if (r == -ENOTTY) {
425 log_warning("'%s' is not a block device node, and file system block device cannot be determined or is not local.", p);
426 return -ENODEV;
427 }
428 }
429
430 /* If this is a LUKS device, try to get the originating block device */
431 (void) block_get_originating(*ret, ret);
432
433 /* If this is a partition, try to get the originating block device */
434 (void) block_get_whole_disk(*ret, ret);
435 return 0;
436 }
437
438 static int whitelist_device(BPFProgram *prog, const char *path, const char *node, const char *acc) {
439 struct stat st = {};
440 int r;
441
442 assert(path);
443 assert(acc);
444
445 /* Some special handling for /dev/block/%u:%u, /dev/char/%u:%u, /run/systemd/inaccessible/chr and
446 * /run/systemd/inaccessible/blk paths. Instead of stat()ing these we parse out the major/minor directly. This
447 * means clients can use these path without the device node actually around */
448 r = device_path_parse_major_minor(node, &st.st_mode, &st.st_rdev);
449 if (r < 0) {
450 if (r != -ENODEV)
451 return log_warning_errno(r, "Couldn't parse major/minor from device path '%s': %m", node);
452
453 if (stat(node, &st) < 0)
454 return log_warning_errno(errno, "Couldn't stat device %s: %m", node);
455
456 if (!S_ISCHR(st.st_mode) && !S_ISBLK(st.st_mode)) {
457 log_warning("%s is not a device.", node);
458 return -ENODEV;
459 }
460 }
461
462 if (cg_all_unified() > 0) {
463 if (!prog)
464 return 0;
465
466 return cgroup_bpf_whitelist_device(prog, S_ISCHR(st.st_mode) ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK,
467 major(st.st_rdev), minor(st.st_rdev), acc);
468
469 } else {
470 char buf[2+DECIMAL_STR_MAX(dev_t)*2+2+4];
471
472 sprintf(buf,
473 "%c %u:%u %s",
474 S_ISCHR(st.st_mode) ? 'c' : 'b',
475 major(st.st_rdev), minor(st.st_rdev),
476 acc);
477
478 /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore EINVAL here. */
479
480 r = cg_set_attribute("devices", path, "devices.allow", buf);
481 if (r < 0)
482 return log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING,
483 r, "Failed to set devices.allow on %s: %m", path);
484
485 return 0;
486 }
487 }
488
489 static int whitelist_major(BPFProgram *prog, const char *path, const char *name, char type, const char *acc) {
490 _cleanup_fclose_ FILE *f = NULL;
491 char buf[2+DECIMAL_STR_MAX(unsigned)+3+4];
492 bool good = false;
493 unsigned maj;
494 int r;
495
496 assert(path);
497 assert(acc);
498 assert(IN_SET(type, 'b', 'c'));
499
500 if (streq(name, "*")) {
501 /* If the name is a wildcard, then apply this list to all devices of this type */
502
503 if (cg_all_unified() > 0) {
504 if (!prog)
505 return 0;
506
507 (void) cgroup_bpf_whitelist_class(prog, type == 'c' ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK, acc);
508 } else {
509 xsprintf(buf, "%c *:* %s", type, acc);
510
511 r = cg_set_attribute("devices", path, "devices.allow", buf);
512 if (r < 0)
513 log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
514 "Failed to set devices.allow on %s: %m", path);
515 return 0;
516 }
517 }
518
519 if (safe_atou(name, &maj) >= 0 && DEVICE_MAJOR_VALID(maj)) {
520 /* The name is numeric and suitable as major. In that case, let's take is major, and create the entry
521 * directly */
522
523 if (cg_all_unified() > 0) {
524 if (!prog)
525 return 0;
526
527 (void) cgroup_bpf_whitelist_major(prog,
528 type == 'c' ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK,
529 maj, acc);
530 } else {
531 xsprintf(buf, "%c %u:* %s", type, maj, acc);
532
533 r = cg_set_attribute("devices", path, "devices.allow", buf);
534 if (r < 0)
535 log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
536 "Failed to set devices.allow on %s: %m", path);
537 }
538
539 return 0;
540 }
541
542 f = fopen("/proc/devices", "re");
543 if (!f)
544 return log_warning_errno(errno, "Cannot open /proc/devices to resolve %s (%c): %m", name, type);
545
546 for (;;) {
547 _cleanup_free_ char *line = NULL;
548 char *w, *p;
549
550 r = read_line(f, LONG_LINE_MAX, &line);
551 if (r < 0)
552 return log_warning_errno(r, "Failed to read /proc/devices: %m");
553 if (r == 0)
554 break;
555
556 if (type == 'c' && streq(line, "Character devices:")) {
557 good = true;
558 continue;
559 }
560
561 if (type == 'b' && streq(line, "Block devices:")) {
562 good = true;
563 continue;
564 }
565
566 if (isempty(line)) {
567 good = false;
568 continue;
569 }
570
571 if (!good)
572 continue;
573
574 p = strstrip(line);
575
576 w = strpbrk(p, WHITESPACE);
577 if (!w)
578 continue;
579 *w = 0;
580
581 r = safe_atou(p, &maj);
582 if (r < 0)
583 continue;
584 if (maj <= 0)
585 continue;
586
587 w++;
588 w += strspn(w, WHITESPACE);
589
590 if (fnmatch(name, w, 0) != 0)
591 continue;
592
593 if (cg_all_unified() > 0) {
594 if (!prog)
595 continue;
596
597 (void) cgroup_bpf_whitelist_major(prog,
598 type == 'c' ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK,
599 maj, acc);
600 } else {
601 sprintf(buf,
602 "%c %u:* %s",
603 type,
604 maj,
605 acc);
606
607 /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore EINVAL
608 * here. */
609
610 r = cg_set_attribute("devices", path, "devices.allow", buf);
611 if (r < 0)
612 log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING,
613 r, "Failed to set devices.allow on %s: %m", path);
614 }
615 }
616
617 return 0;
618 }
619
620 static bool cgroup_context_has_cpu_weight(CGroupContext *c) {
621 return c->cpu_weight != CGROUP_WEIGHT_INVALID ||
622 c->startup_cpu_weight != CGROUP_WEIGHT_INVALID;
623 }
624
625 static bool cgroup_context_has_cpu_shares(CGroupContext *c) {
626 return c->cpu_shares != CGROUP_CPU_SHARES_INVALID ||
627 c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID;
628 }
629
630 static uint64_t cgroup_context_cpu_weight(CGroupContext *c, ManagerState state) {
631 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
632 c->startup_cpu_weight != CGROUP_WEIGHT_INVALID)
633 return c->startup_cpu_weight;
634 else if (c->cpu_weight != CGROUP_WEIGHT_INVALID)
635 return c->cpu_weight;
636 else
637 return CGROUP_WEIGHT_DEFAULT;
638 }
639
640 static uint64_t cgroup_context_cpu_shares(CGroupContext *c, ManagerState state) {
641 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
642 c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID)
643 return c->startup_cpu_shares;
644 else if (c->cpu_shares != CGROUP_CPU_SHARES_INVALID)
645 return c->cpu_shares;
646 else
647 return CGROUP_CPU_SHARES_DEFAULT;
648 }
649
650 static void cgroup_apply_unified_cpu_weight(Unit *u, uint64_t weight) {
651 char buf[DECIMAL_STR_MAX(uint64_t) + 2];
652
653 xsprintf(buf, "%" PRIu64 "\n", weight);
654 (void) set_attribute_and_warn(u, "cpu", "cpu.weight", buf);
655 }
656
657 static void cgroup_apply_unified_cpu_quota(Unit *u, usec_t quota) {
658 char buf[(DECIMAL_STR_MAX(usec_t) + 1) * 2 + 1];
659
660 if (quota != USEC_INFINITY)
661 xsprintf(buf, USEC_FMT " " USEC_FMT "\n",
662 quota * CGROUP_CPU_QUOTA_PERIOD_USEC / USEC_PER_SEC, CGROUP_CPU_QUOTA_PERIOD_USEC);
663 else
664 xsprintf(buf, "max " USEC_FMT "\n", CGROUP_CPU_QUOTA_PERIOD_USEC);
665 (void) set_attribute_and_warn(u, "cpu", "cpu.max", buf);
666 }
667
668 static void cgroup_apply_legacy_cpu_shares(Unit *u, uint64_t shares) {
669 char buf[DECIMAL_STR_MAX(uint64_t) + 2];
670
671 xsprintf(buf, "%" PRIu64 "\n", shares);
672 (void) set_attribute_and_warn(u, "cpu", "cpu.shares", buf);
673 }
674
675 static void cgroup_apply_legacy_cpu_quota(Unit *u, usec_t quota) {
676 char buf[DECIMAL_STR_MAX(usec_t) + 2];
677
678 xsprintf(buf, USEC_FMT "\n", CGROUP_CPU_QUOTA_PERIOD_USEC);
679 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_period_us", buf);
680
681 if (quota != USEC_INFINITY) {
682 xsprintf(buf, USEC_FMT "\n", quota * CGROUP_CPU_QUOTA_PERIOD_USEC / USEC_PER_SEC);
683 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", buf);
684 } else
685 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", "-1\n");
686 }
687
688 static uint64_t cgroup_cpu_shares_to_weight(uint64_t shares) {
689 return CLAMP(shares * CGROUP_WEIGHT_DEFAULT / CGROUP_CPU_SHARES_DEFAULT,
690 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
691 }
692
693 static uint64_t cgroup_cpu_weight_to_shares(uint64_t weight) {
694 return CLAMP(weight * CGROUP_CPU_SHARES_DEFAULT / CGROUP_WEIGHT_DEFAULT,
695 CGROUP_CPU_SHARES_MIN, CGROUP_CPU_SHARES_MAX);
696 }
697
698 static bool cgroup_context_has_io_config(CGroupContext *c) {
699 return c->io_accounting ||
700 c->io_weight != CGROUP_WEIGHT_INVALID ||
701 c->startup_io_weight != CGROUP_WEIGHT_INVALID ||
702 c->io_device_weights ||
703 c->io_device_latencies ||
704 c->io_device_limits;
705 }
706
707 static bool cgroup_context_has_blockio_config(CGroupContext *c) {
708 return c->blockio_accounting ||
709 c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
710 c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
711 c->blockio_device_weights ||
712 c->blockio_device_bandwidths;
713 }
714
715 static uint64_t cgroup_context_io_weight(CGroupContext *c, ManagerState state) {
716 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
717 c->startup_io_weight != CGROUP_WEIGHT_INVALID)
718 return c->startup_io_weight;
719 else if (c->io_weight != CGROUP_WEIGHT_INVALID)
720 return c->io_weight;
721 else
722 return CGROUP_WEIGHT_DEFAULT;
723 }
724
725 static uint64_t cgroup_context_blkio_weight(CGroupContext *c, ManagerState state) {
726 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
727 c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
728 return c->startup_blockio_weight;
729 else if (c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
730 return c->blockio_weight;
731 else
732 return CGROUP_BLKIO_WEIGHT_DEFAULT;
733 }
734
735 static uint64_t cgroup_weight_blkio_to_io(uint64_t blkio_weight) {
736 return CLAMP(blkio_weight * CGROUP_WEIGHT_DEFAULT / CGROUP_BLKIO_WEIGHT_DEFAULT,
737 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
738 }
739
740 static uint64_t cgroup_weight_io_to_blkio(uint64_t io_weight) {
741 return CLAMP(io_weight * CGROUP_BLKIO_WEIGHT_DEFAULT / CGROUP_WEIGHT_DEFAULT,
742 CGROUP_BLKIO_WEIGHT_MIN, CGROUP_BLKIO_WEIGHT_MAX);
743 }
744
745 static void cgroup_apply_io_device_weight(Unit *u, const char *dev_path, uint64_t io_weight) {
746 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
747 dev_t dev;
748 int r;
749
750 r = lookup_block_device(dev_path, &dev);
751 if (r < 0)
752 return;
753
754 xsprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), io_weight);
755 (void) set_attribute_and_warn(u, "io", "io.weight", buf);
756 }
757
758 static void cgroup_apply_blkio_device_weight(Unit *u, const char *dev_path, uint64_t blkio_weight) {
759 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
760 dev_t dev;
761 int r;
762
763 r = lookup_block_device(dev_path, &dev);
764 if (r < 0)
765 return;
766
767 xsprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), blkio_weight);
768 (void) set_attribute_and_warn(u, "blkio", "blkio.weight_device", buf);
769 }
770
771 static void cgroup_apply_io_device_latency(Unit *u, const char *dev_path, usec_t target) {
772 char buf[DECIMAL_STR_MAX(dev_t)*2+2+7+DECIMAL_STR_MAX(uint64_t)+1];
773 dev_t dev;
774 int r;
775
776 r = lookup_block_device(dev_path, &dev);
777 if (r < 0)
778 return;
779
780 if (target != USEC_INFINITY)
781 xsprintf(buf, "%u:%u target=%" PRIu64 "\n", major(dev), minor(dev), target);
782 else
783 xsprintf(buf, "%u:%u target=max\n", major(dev), minor(dev));
784
785 (void) set_attribute_and_warn(u, "io", "io.latency", buf);
786 }
787
788 static void cgroup_apply_io_device_limit(Unit *u, const char *dev_path, uint64_t *limits) {
789 char limit_bufs[_CGROUP_IO_LIMIT_TYPE_MAX][DECIMAL_STR_MAX(uint64_t)];
790 char buf[DECIMAL_STR_MAX(dev_t)*2+2+(6+DECIMAL_STR_MAX(uint64_t)+1)*4];
791 CGroupIOLimitType type;
792 dev_t dev;
793 int r;
794
795 r = lookup_block_device(dev_path, &dev);
796 if (r < 0)
797 return;
798
799 for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
800 if (limits[type] != cgroup_io_limit_defaults[type])
801 xsprintf(limit_bufs[type], "%" PRIu64, limits[type]);
802 else
803 xsprintf(limit_bufs[type], "%s", limits[type] == CGROUP_LIMIT_MAX ? "max" : "0");
804
805 xsprintf(buf, "%u:%u rbps=%s wbps=%s riops=%s wiops=%s\n", major(dev), minor(dev),
806 limit_bufs[CGROUP_IO_RBPS_MAX], limit_bufs[CGROUP_IO_WBPS_MAX],
807 limit_bufs[CGROUP_IO_RIOPS_MAX], limit_bufs[CGROUP_IO_WIOPS_MAX]);
808 (void) set_attribute_and_warn(u, "io", "io.max", buf);
809 }
810
811 static void cgroup_apply_blkio_device_limit(Unit *u, const char *dev_path, uint64_t rbps, uint64_t wbps) {
812 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
813 dev_t dev;
814 int r;
815
816 r = lookup_block_device(dev_path, &dev);
817 if (r < 0)
818 return;
819
820 sprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), rbps);
821 (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.read_bps_device", buf);
822
823 sprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), wbps);
824 (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.write_bps_device", buf);
825 }
826
827 static bool cgroup_context_has_unified_memory_config(CGroupContext *c) {
828 return c->memory_min > 0 || c->memory_low > 0 || c->memory_high != CGROUP_LIMIT_MAX || c->memory_max != CGROUP_LIMIT_MAX || c->memory_swap_max != CGROUP_LIMIT_MAX;
829 }
830
831 static void cgroup_apply_unified_memory_limit(Unit *u, const char *file, uint64_t v) {
832 char buf[DECIMAL_STR_MAX(uint64_t) + 1] = "max\n";
833
834 if (v != CGROUP_LIMIT_MAX)
835 xsprintf(buf, "%" PRIu64 "\n", v);
836
837 (void) set_attribute_and_warn(u, "memory", file, buf);
838 }
839
840 static void cgroup_apply_firewall(Unit *u) {
841 assert(u);
842
843 /* Best-effort: let's apply IP firewalling and/or accounting if that's enabled */
844
845 if (bpf_firewall_compile(u) < 0)
846 return;
847
848 (void) bpf_firewall_install(u);
849 }
850
851 static void cgroup_context_apply(
852 Unit *u,
853 CGroupMask apply_mask,
854 ManagerState state) {
855
856 const char *path;
857 CGroupContext *c;
858 bool is_host_root, is_local_root;
859 int r;
860
861 assert(u);
862
863 /* Nothing to do? Exit early! */
864 if (apply_mask == 0)
865 return;
866
867 /* Some cgroup attributes are not supported on the host root cgroup, hence silently ignore them here. And other
868 * attributes should only be managed for cgroups further down the tree. */
869 is_local_root = unit_has_name(u, SPECIAL_ROOT_SLICE);
870 is_host_root = unit_has_host_root_cgroup(u);
871
872 assert_se(c = unit_get_cgroup_context(u));
873 assert_se(path = u->cgroup_path);
874
875 if (is_local_root) /* Make sure we don't try to display messages with an empty path. */
876 path = "/";
877
878 /* We generally ignore errors caused by read-only mounted cgroup trees (assuming we are running in a container
879 * then), and missing cgroups, i.e. EROFS and ENOENT. */
880
881 /* In fully unified mode these attributes don't exist on the host cgroup root. On legacy the weights exist, but
882 * setting the weight makes very little sense on the host root cgroup, as there are no other cgroups at this
883 * level. The quota exists there too, but any attempt to write to it is refused with EINVAL. Inside of
884 * containers we want to leave control of these to the container manager (and if cgroupsv2 delegation is used
885 * we couldn't even write to them if we wanted to). */
886 if ((apply_mask & CGROUP_MASK_CPU) && !is_local_root) {
887
888 if (cg_all_unified() > 0) {
889 uint64_t weight;
890
891 if (cgroup_context_has_cpu_weight(c))
892 weight = cgroup_context_cpu_weight(c, state);
893 else if (cgroup_context_has_cpu_shares(c)) {
894 uint64_t shares;
895
896 shares = cgroup_context_cpu_shares(c, state);
897 weight = cgroup_cpu_shares_to_weight(shares);
898
899 log_cgroup_compat(u, "Applying [Startup]CPUShares=%" PRIu64 " as [Startup]CPUWeight=%" PRIu64 " on %s",
900 shares, weight, path);
901 } else
902 weight = CGROUP_WEIGHT_DEFAULT;
903
904 cgroup_apply_unified_cpu_weight(u, weight);
905 cgroup_apply_unified_cpu_quota(u, c->cpu_quota_per_sec_usec);
906
907 } else {
908 uint64_t shares;
909
910 if (cgroup_context_has_cpu_weight(c)) {
911 uint64_t weight;
912
913 weight = cgroup_context_cpu_weight(c, state);
914 shares = cgroup_cpu_weight_to_shares(weight);
915
916 log_cgroup_compat(u, "Applying [Startup]CPUWeight=%" PRIu64 " as [Startup]CPUShares=%" PRIu64 " on %s",
917 weight, shares, path);
918 } else if (cgroup_context_has_cpu_shares(c))
919 shares = cgroup_context_cpu_shares(c, state);
920 else
921 shares = CGROUP_CPU_SHARES_DEFAULT;
922
923 cgroup_apply_legacy_cpu_shares(u, shares);
924 cgroup_apply_legacy_cpu_quota(u, c->cpu_quota_per_sec_usec);
925 }
926 }
927
928 /* The 'io' controller attributes are not exported on the host's root cgroup (being a pure cgroupsv2
929 * controller), and in case of containers we want to leave control of these attributes to the container manager
930 * (and we couldn't access that stuff anyway, even if we tried if proper delegation is used). */
931 if ((apply_mask & CGROUP_MASK_IO) && !is_local_root) {
932 char buf[8+DECIMAL_STR_MAX(uint64_t)+1];
933 bool has_io, has_blockio;
934 uint64_t weight;
935
936 has_io = cgroup_context_has_io_config(c);
937 has_blockio = cgroup_context_has_blockio_config(c);
938
939 if (has_io)
940 weight = cgroup_context_io_weight(c, state);
941 else if (has_blockio) {
942 uint64_t blkio_weight;
943
944 blkio_weight = cgroup_context_blkio_weight(c, state);
945 weight = cgroup_weight_blkio_to_io(blkio_weight);
946
947 log_cgroup_compat(u, "Applying [Startup]BlockIOWeight=%" PRIu64 " as [Startup]IOWeight=%" PRIu64,
948 blkio_weight, weight);
949 } else
950 weight = CGROUP_WEIGHT_DEFAULT;
951
952 xsprintf(buf, "default %" PRIu64 "\n", weight);
953 (void) set_attribute_and_warn(u, "io", "io.weight", buf);
954
955 if (has_io) {
956 CGroupIODeviceLatency *latency;
957 CGroupIODeviceLimit *limit;
958 CGroupIODeviceWeight *w;
959
960 LIST_FOREACH(device_weights, w, c->io_device_weights)
961 cgroup_apply_io_device_weight(u, w->path, w->weight);
962
963 LIST_FOREACH(device_limits, limit, c->io_device_limits)
964 cgroup_apply_io_device_limit(u, limit->path, limit->limits);
965
966 LIST_FOREACH(device_latencies, latency, c->io_device_latencies)
967 cgroup_apply_io_device_latency(u, latency->path, latency->target_usec);
968
969 } else if (has_blockio) {
970 CGroupBlockIODeviceWeight *w;
971 CGroupBlockIODeviceBandwidth *b;
972
973 LIST_FOREACH(device_weights, w, c->blockio_device_weights) {
974 weight = cgroup_weight_blkio_to_io(w->weight);
975
976 log_cgroup_compat(u, "Applying BlockIODeviceWeight=%" PRIu64 " as IODeviceWeight=%" PRIu64 " for %s",
977 w->weight, weight, w->path);
978
979 cgroup_apply_io_device_weight(u, w->path, weight);
980 }
981
982 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
983 uint64_t limits[_CGROUP_IO_LIMIT_TYPE_MAX];
984 CGroupIOLimitType type;
985
986 for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
987 limits[type] = cgroup_io_limit_defaults[type];
988
989 limits[CGROUP_IO_RBPS_MAX] = b->rbps;
990 limits[CGROUP_IO_WBPS_MAX] = b->wbps;
991
992 log_cgroup_compat(u, "Applying BlockIO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as IO{Read|Write}BandwidthMax= for %s",
993 b->rbps, b->wbps, b->path);
994
995 cgroup_apply_io_device_limit(u, b->path, limits);
996 }
997 }
998 }
999
1000 if (apply_mask & CGROUP_MASK_BLKIO) {
1001 bool has_io, has_blockio;
1002
1003 has_io = cgroup_context_has_io_config(c);
1004 has_blockio = cgroup_context_has_blockio_config(c);
1005
1006 /* Applying a 'weight' never makes sense for the host root cgroup, and for containers this should be
1007 * left to our container manager, too. */
1008 if (!is_local_root) {
1009 char buf[DECIMAL_STR_MAX(uint64_t)+1];
1010 uint64_t weight;
1011
1012 if (has_io) {
1013 uint64_t io_weight;
1014
1015 io_weight = cgroup_context_io_weight(c, state);
1016 weight = cgroup_weight_io_to_blkio(cgroup_context_io_weight(c, state));
1017
1018 log_cgroup_compat(u, "Applying [Startup]IOWeight=%" PRIu64 " as [Startup]BlockIOWeight=%" PRIu64,
1019 io_weight, weight);
1020 } else if (has_blockio)
1021 weight = cgroup_context_blkio_weight(c, state);
1022 else
1023 weight = CGROUP_BLKIO_WEIGHT_DEFAULT;
1024
1025 xsprintf(buf, "%" PRIu64 "\n", weight);
1026 (void) set_attribute_and_warn(u, "blkio", "blkio.weight", buf);
1027
1028 if (has_io) {
1029 CGroupIODeviceWeight *w;
1030
1031 LIST_FOREACH(device_weights, w, c->io_device_weights) {
1032 weight = cgroup_weight_io_to_blkio(w->weight);
1033
1034 log_cgroup_compat(u, "Applying IODeviceWeight=%" PRIu64 " as BlockIODeviceWeight=%" PRIu64 " for %s",
1035 w->weight, weight, w->path);
1036
1037 cgroup_apply_blkio_device_weight(u, w->path, weight);
1038 }
1039 } else if (has_blockio) {
1040 CGroupBlockIODeviceWeight *w;
1041
1042 LIST_FOREACH(device_weights, w, c->blockio_device_weights)
1043 cgroup_apply_blkio_device_weight(u, w->path, w->weight);
1044 }
1045 }
1046
1047 /* The bandwith limits are something that make sense to be applied to the host's root but not container
1048 * roots, as there we want the container manager to handle it */
1049 if (is_host_root || !is_local_root) {
1050 if (has_io) {
1051 CGroupIODeviceLimit *l;
1052
1053 LIST_FOREACH(device_limits, l, c->io_device_limits) {
1054 log_cgroup_compat(u, "Applying IO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as BlockIO{Read|Write}BandwidthMax= for %s",
1055 l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX], l->path);
1056
1057 cgroup_apply_blkio_device_limit(u, l->path, l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX]);
1058 }
1059 } else if (has_blockio) {
1060 CGroupBlockIODeviceBandwidth *b;
1061
1062 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths)
1063 cgroup_apply_blkio_device_limit(u, b->path, b->rbps, b->wbps);
1064 }
1065 }
1066 }
1067
1068 /* In unified mode 'memory' attributes do not exist on the root cgroup. In legacy mode 'memory.limit_in_bytes'
1069 * exists on the root cgroup, but any writes to it are refused with EINVAL. And if we run in a container we
1070 * want to leave control to the container manager (and if proper cgroupsv2 delegation is used we couldn't even
1071 * write to this if we wanted to.) */
1072 if ((apply_mask & CGROUP_MASK_MEMORY) && !is_local_root) {
1073
1074 if (cg_all_unified() > 0) {
1075 uint64_t max, swap_max = CGROUP_LIMIT_MAX;
1076
1077 if (cgroup_context_has_unified_memory_config(c)) {
1078 max = c->memory_max;
1079 swap_max = c->memory_swap_max;
1080 } else {
1081 max = c->memory_limit;
1082
1083 if (max != CGROUP_LIMIT_MAX)
1084 log_cgroup_compat(u, "Applying MemoryLimit=%" PRIu64 " as MemoryMax=", max);
1085 }
1086
1087 cgroup_apply_unified_memory_limit(u, "memory.min", c->memory_min);
1088 cgroup_apply_unified_memory_limit(u, "memory.low", c->memory_low);
1089 cgroup_apply_unified_memory_limit(u, "memory.high", c->memory_high);
1090 cgroup_apply_unified_memory_limit(u, "memory.max", max);
1091 cgroup_apply_unified_memory_limit(u, "memory.swap.max", swap_max);
1092
1093 } else {
1094 char buf[DECIMAL_STR_MAX(uint64_t) + 1];
1095 uint64_t val;
1096
1097 if (cgroup_context_has_unified_memory_config(c)) {
1098 val = c->memory_max;
1099 log_cgroup_compat(u, "Applying MemoryMax=%" PRIi64 " as MemoryLimit=", val);
1100 } else
1101 val = c->memory_limit;
1102
1103 if (val == CGROUP_LIMIT_MAX)
1104 strncpy(buf, "-1\n", sizeof(buf));
1105 else
1106 xsprintf(buf, "%" PRIu64 "\n", val);
1107
1108 (void) set_attribute_and_warn(u, "memory", "memory.limit_in_bytes", buf);
1109 }
1110 }
1111
1112 /* On cgroupsv2 we can apply BPF everywhere. On cgroupsv1 we apply it everywhere except for the root of
1113 * containers, where we leave this to the manager */
1114 if ((apply_mask & (CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES)) &&
1115 (is_host_root || cg_all_unified() > 0 || !is_local_root)) {
1116 _cleanup_(bpf_program_unrefp) BPFProgram *prog = NULL;
1117 CGroupDeviceAllow *a;
1118
1119 if (cg_all_unified() > 0) {
1120 r = cgroup_init_device_bpf(&prog, c->device_policy, c->device_allow);
1121 if (r < 0)
1122 log_unit_warning_errno(u, r, "Failed to initialize device control bpf program: %m");
1123 } else {
1124 /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore EINVAL
1125 * here. */
1126
1127 if (c->device_allow || c->device_policy != CGROUP_AUTO)
1128 r = cg_set_attribute("devices", path, "devices.deny", "a");
1129 else
1130 r = cg_set_attribute("devices", path, "devices.allow", "a");
1131 if (r < 0)
1132 log_unit_full(u, IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING, r,
1133 "Failed to reset devices.allow/devices.deny: %m");
1134 }
1135
1136 if (c->device_policy == CGROUP_CLOSED ||
1137 (c->device_policy == CGROUP_AUTO && c->device_allow)) {
1138 static const char auto_devices[] =
1139 "/dev/null\0" "rwm\0"
1140 "/dev/zero\0" "rwm\0"
1141 "/dev/full\0" "rwm\0"
1142 "/dev/random\0" "rwm\0"
1143 "/dev/urandom\0" "rwm\0"
1144 "/dev/tty\0" "rwm\0"
1145 "/dev/ptmx\0" "rwm\0"
1146 /* Allow /run/systemd/inaccessible/{chr,blk} devices for mapping InaccessiblePaths */
1147 "/run/systemd/inaccessible/chr\0" "rwm\0"
1148 "/run/systemd/inaccessible/blk\0" "rwm\0";
1149
1150 const char *x, *y;
1151
1152 NULSTR_FOREACH_PAIR(x, y, auto_devices)
1153 (void) whitelist_device(prog, path, x, y);
1154
1155 /* PTS (/dev/pts) devices may not be duplicated, but accessed */
1156 (void) whitelist_major(prog, path, "pts", 'c', "rw");
1157 }
1158
1159 LIST_FOREACH(device_allow, a, c->device_allow) {
1160 char acc[4], *val;
1161 unsigned k = 0;
1162
1163 if (a->r)
1164 acc[k++] = 'r';
1165 if (a->w)
1166 acc[k++] = 'w';
1167 if (a->m)
1168 acc[k++] = 'm';
1169
1170 if (k == 0)
1171 continue;
1172
1173 acc[k++] = 0;
1174
1175 if (path_startswith(a->path, "/dev/"))
1176 (void) whitelist_device(prog, path, a->path, acc);
1177 else if ((val = startswith(a->path, "block-")))
1178 (void) whitelist_major(prog, path, val, 'b', acc);
1179 else if ((val = startswith(a->path, "char-")))
1180 (void) whitelist_major(prog, path, val, 'c', acc);
1181 else
1182 log_unit_debug(u, "Ignoring device '%s' while writing cgroup attribute.", a->path);
1183 }
1184
1185 r = cgroup_apply_device_bpf(u, prog, c->device_policy, c->device_allow);
1186 if (r < 0) {
1187 static bool warned = false;
1188
1189 log_full_errno(warned ? LOG_DEBUG : LOG_WARNING, r,
1190 "Unit %s configures device ACL, but the local system doesn't seem to support the BPF-based device controller.\n"
1191 "Proceeding WITHOUT applying ACL (all devices will be accessible)!\n"
1192 "(This warning is only shown for the first loaded unit using device ACL.)", u->id);
1193
1194 warned = true;
1195 }
1196 }
1197
1198 if (apply_mask & CGROUP_MASK_PIDS) {
1199
1200 if (is_host_root) {
1201 /* So, the "pids" controller does not expose anything on the root cgroup, in order not to
1202 * replicate knobs exposed elsewhere needlessly. We abstract this away here however, and when
1203 * the knobs of the root cgroup are modified propagate this to the relevant sysctls. There's a
1204 * non-obvious asymmetry however: unlike the cgroup properties we don't really want to take
1205 * exclusive ownership of the sysctls, but we still want to honour things if the user sets
1206 * limits. Hence we employ sort of a one-way strategy: when the user sets a bounded limit
1207 * through us it counts. When the user afterwards unsets it again (i.e. sets it to unbounded)
1208 * it also counts. But if the user never set a limit through us (i.e. we are the default of
1209 * "unbounded") we leave things unmodified. For this we manage a global boolean that we turn on
1210 * the first time we set a limit. Note that this boolean is flushed out on manager reload,
1211 * which is desirable so that there's an offical way to release control of the sysctl from
1212 * systemd: set the limit to unbounded and reload. */
1213
1214 if (c->tasks_max != CGROUP_LIMIT_MAX) {
1215 u->manager->sysctl_pid_max_changed = true;
1216 r = procfs_tasks_set_limit(c->tasks_max);
1217 } else if (u->manager->sysctl_pid_max_changed)
1218 r = procfs_tasks_set_limit(TASKS_MAX);
1219 else
1220 r = 0;
1221 if (r < 0)
1222 log_unit_full(u, LOG_LEVEL_CGROUP_WRITE(r), r,
1223 "Failed to write to tasks limit sysctls: %m");
1224 }
1225
1226 /* The attribute itself is not available on the host root cgroup, and in the container case we want to
1227 * leave it for the container manager. */
1228 if (!is_local_root) {
1229 if (c->tasks_max != CGROUP_LIMIT_MAX) {
1230 char buf[DECIMAL_STR_MAX(uint64_t) + 2];
1231
1232 sprintf(buf, "%" PRIu64 "\n", c->tasks_max);
1233 (void) set_attribute_and_warn(u, "pids", "pids.max", buf);
1234 } else
1235 (void) set_attribute_and_warn(u, "pids", "pids.max", "max\n");
1236 }
1237 }
1238
1239 if (apply_mask & CGROUP_MASK_BPF_FIREWALL)
1240 cgroup_apply_firewall(u);
1241 }
1242
1243 static bool unit_get_needs_bpf_firewall(Unit *u) {
1244 CGroupContext *c;
1245 Unit *p;
1246 assert(u);
1247
1248 c = unit_get_cgroup_context(u);
1249 if (!c)
1250 return false;
1251
1252 if (c->ip_accounting ||
1253 c->ip_address_allow ||
1254 c->ip_address_deny)
1255 return true;
1256
1257 /* If any parent slice has an IP access list defined, it applies too */
1258 for (p = UNIT_DEREF(u->slice); p; p = UNIT_DEREF(p->slice)) {
1259 c = unit_get_cgroup_context(p);
1260 if (!c)
1261 return false;
1262
1263 if (c->ip_address_allow ||
1264 c->ip_address_deny)
1265 return true;
1266 }
1267
1268 return false;
1269 }
1270
1271 static CGroupMask cgroup_context_get_mask(CGroupContext *c) {
1272 CGroupMask mask = 0;
1273
1274 /* Figure out which controllers we need, based on the cgroup context object */
1275
1276 if (c->cpu_accounting)
1277 mask |= get_cpu_accounting_mask();
1278
1279 if (cgroup_context_has_cpu_weight(c) ||
1280 cgroup_context_has_cpu_shares(c) ||
1281 c->cpu_quota_per_sec_usec != USEC_INFINITY)
1282 mask |= CGROUP_MASK_CPU;
1283
1284 if (cgroup_context_has_io_config(c) || cgroup_context_has_blockio_config(c))
1285 mask |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
1286
1287 if (c->memory_accounting ||
1288 c->memory_limit != CGROUP_LIMIT_MAX ||
1289 cgroup_context_has_unified_memory_config(c))
1290 mask |= CGROUP_MASK_MEMORY;
1291
1292 if (c->device_allow ||
1293 c->device_policy != CGROUP_AUTO)
1294 mask |= CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES;
1295
1296 if (c->tasks_accounting ||
1297 c->tasks_max != CGROUP_LIMIT_MAX)
1298 mask |= CGROUP_MASK_PIDS;
1299
1300 return CGROUP_MASK_EXTEND_JOINED(mask);
1301 }
1302
1303 static CGroupMask unit_get_bpf_mask(Unit *u) {
1304 CGroupMask mask = 0;
1305
1306 /* Figure out which controllers we need, based on the cgroup context, possibly taking into account children
1307 * too. */
1308
1309 if (unit_get_needs_bpf_firewall(u))
1310 mask |= CGROUP_MASK_BPF_FIREWALL;
1311
1312 return mask;
1313 }
1314
1315 CGroupMask unit_get_own_mask(Unit *u) {
1316 CGroupContext *c;
1317
1318 /* Returns the mask of controllers the unit needs for itself. If a unit is not properly loaded, return an empty
1319 * mask, as we shouldn't reflect it in the cgroup hierarchy then. */
1320
1321 if (u->load_state != UNIT_LOADED)
1322 return 0;
1323
1324 c = unit_get_cgroup_context(u);
1325 if (!c)
1326 return 0;
1327
1328 return (cgroup_context_get_mask(c) | unit_get_bpf_mask(u) | unit_get_delegate_mask(u)) & ~unit_get_ancestor_disable_mask(u);
1329 }
1330
1331 CGroupMask unit_get_delegate_mask(Unit *u) {
1332 CGroupContext *c;
1333
1334 /* If delegation is turned on, then turn on selected controllers, unless we are on the legacy hierarchy and the
1335 * process we fork into is known to drop privileges, and hence shouldn't get access to the controllers.
1336 *
1337 * Note that on the unified hierarchy it is safe to delegate controllers to unprivileged services. */
1338
1339 if (!unit_cgroup_delegate(u))
1340 return 0;
1341
1342 if (cg_all_unified() <= 0) {
1343 ExecContext *e;
1344
1345 e = unit_get_exec_context(u);
1346 if (e && !exec_context_maintains_privileges(e))
1347 return 0;
1348 }
1349
1350 assert_se(c = unit_get_cgroup_context(u));
1351 return CGROUP_MASK_EXTEND_JOINED(c->delegate_controllers);
1352 }
1353
1354 CGroupMask unit_get_members_mask(Unit *u) {
1355 assert(u);
1356
1357 /* Returns the mask of controllers all of the unit's children require, merged */
1358
1359 if (u->cgroup_members_mask_valid)
1360 return u->cgroup_members_mask; /* Use cached value if possible */
1361
1362 u->cgroup_members_mask = 0;
1363
1364 if (u->type == UNIT_SLICE) {
1365 void *v;
1366 Unit *member;
1367 Iterator i;
1368
1369 HASHMAP_FOREACH_KEY(v, member, u->dependencies[UNIT_BEFORE], i) {
1370 if (UNIT_DEREF(member->slice) == u)
1371 u->cgroup_members_mask |= unit_get_subtree_mask(member); /* note that this calls ourselves again, for the children */
1372 }
1373 }
1374
1375 u->cgroup_members_mask_valid = true;
1376 return u->cgroup_members_mask;
1377 }
1378
1379 CGroupMask unit_get_siblings_mask(Unit *u) {
1380 assert(u);
1381
1382 /* Returns the mask of controllers all of the unit's siblings
1383 * require, i.e. the members mask of the unit's parent slice
1384 * if there is one. */
1385
1386 if (UNIT_ISSET(u->slice))
1387 return unit_get_members_mask(UNIT_DEREF(u->slice));
1388
1389 return unit_get_subtree_mask(u); /* we are the top-level slice */
1390 }
1391
1392 CGroupMask unit_get_disable_mask(Unit *u) {
1393 CGroupContext *c;
1394
1395 c = unit_get_cgroup_context(u);
1396 if (!c)
1397 return 0;
1398
1399 return c->disable_controllers;
1400 }
1401
1402 CGroupMask unit_get_ancestor_disable_mask(Unit *u) {
1403 CGroupMask mask;
1404
1405 assert(u);
1406 mask = unit_get_disable_mask(u);
1407
1408 /* Returns the mask of controllers which are marked as forcibly
1409 * disabled in any ancestor unit or the unit in question. */
1410
1411 if (UNIT_ISSET(u->slice))
1412 mask |= unit_get_ancestor_disable_mask(UNIT_DEREF(u->slice));
1413
1414 return mask;
1415 }
1416
1417 CGroupMask unit_get_subtree_mask(Unit *u) {
1418
1419 /* Returns the mask of this subtree, meaning of the group
1420 * itself and its children. */
1421
1422 return unit_get_own_mask(u) | unit_get_members_mask(u);
1423 }
1424
1425 CGroupMask unit_get_target_mask(Unit *u) {
1426 CGroupMask mask;
1427
1428 /* This returns the cgroup mask of all controllers to enable
1429 * for a specific cgroup, i.e. everything it needs itself,
1430 * plus all that its children need, plus all that its siblings
1431 * need. This is primarily useful on the legacy cgroup
1432 * hierarchy, where we need to duplicate each cgroup in each
1433 * hierarchy that shall be enabled for it. */
1434
1435 mask = unit_get_own_mask(u) | unit_get_members_mask(u) | unit_get_siblings_mask(u);
1436 mask &= u->manager->cgroup_supported;
1437 mask &= ~unit_get_ancestor_disable_mask(u);
1438
1439 return mask;
1440 }
1441
1442 CGroupMask unit_get_enable_mask(Unit *u) {
1443 CGroupMask mask;
1444
1445 /* This returns the cgroup mask of all controllers to enable
1446 * for the children of a specific cgroup. This is primarily
1447 * useful for the unified cgroup hierarchy, where each cgroup
1448 * controls which controllers are enabled for its children. */
1449
1450 mask = unit_get_members_mask(u);
1451 mask &= u->manager->cgroup_supported;
1452 mask &= ~unit_get_ancestor_disable_mask(u);
1453
1454 return mask;
1455 }
1456
1457 void unit_invalidate_cgroup_members_masks(Unit *u) {
1458 assert(u);
1459
1460 /* Recurse invalidate the member masks cache all the way up the tree */
1461 u->cgroup_members_mask_valid = false;
1462
1463 if (UNIT_ISSET(u->slice))
1464 unit_invalidate_cgroup_members_masks(UNIT_DEREF(u->slice));
1465 }
1466
1467 const char *unit_get_realized_cgroup_path(Unit *u, CGroupMask mask) {
1468
1469 /* Returns the realized cgroup path of the specified unit where all specified controllers are available. */
1470
1471 while (u) {
1472
1473 if (u->cgroup_path &&
1474 u->cgroup_realized &&
1475 FLAGS_SET(u->cgroup_realized_mask, mask))
1476 return u->cgroup_path;
1477
1478 u = UNIT_DEREF(u->slice);
1479 }
1480
1481 return NULL;
1482 }
1483
1484 static const char *migrate_callback(CGroupMask mask, void *userdata) {
1485 return unit_get_realized_cgroup_path(userdata, mask);
1486 }
1487
1488 char *unit_default_cgroup_path(const Unit *u) {
1489 _cleanup_free_ char *escaped = NULL, *slice = NULL;
1490 int r;
1491
1492 assert(u);
1493
1494 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
1495 return strdup(u->manager->cgroup_root);
1496
1497 if (UNIT_ISSET(u->slice) && !unit_has_name(UNIT_DEREF(u->slice), SPECIAL_ROOT_SLICE)) {
1498 r = cg_slice_to_path(UNIT_DEREF(u->slice)->id, &slice);
1499 if (r < 0)
1500 return NULL;
1501 }
1502
1503 escaped = cg_escape(u->id);
1504 if (!escaped)
1505 return NULL;
1506
1507 if (slice)
1508 return strjoin(u->manager->cgroup_root, "/", slice, "/",
1509 escaped);
1510 else
1511 return strjoin(u->manager->cgroup_root, "/", escaped);
1512 }
1513
1514 int unit_set_cgroup_path(Unit *u, const char *path) {
1515 _cleanup_free_ char *p = NULL;
1516 int r;
1517
1518 assert(u);
1519
1520 if (path) {
1521 p = strdup(path);
1522 if (!p)
1523 return -ENOMEM;
1524 } else
1525 p = NULL;
1526
1527 if (streq_ptr(u->cgroup_path, p))
1528 return 0;
1529
1530 if (p) {
1531 r = hashmap_put(u->manager->cgroup_unit, p, u);
1532 if (r < 0)
1533 return r;
1534 }
1535
1536 unit_release_cgroup(u);
1537
1538 u->cgroup_path = TAKE_PTR(p);
1539
1540 return 1;
1541 }
1542
1543 int unit_watch_cgroup(Unit *u) {
1544 _cleanup_free_ char *events = NULL;
1545 int r;
1546
1547 assert(u);
1548
1549 if (!u->cgroup_path)
1550 return 0;
1551
1552 if (u->cgroup_inotify_wd >= 0)
1553 return 0;
1554
1555 /* Only applies to the unified hierarchy */
1556 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
1557 if (r < 0)
1558 return log_error_errno(r, "Failed to determine whether the name=systemd hierarchy is unified: %m");
1559 if (r == 0)
1560 return 0;
1561
1562 /* Don't watch the root slice, it's pointless. */
1563 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
1564 return 0;
1565
1566 r = hashmap_ensure_allocated(&u->manager->cgroup_inotify_wd_unit, &trivial_hash_ops);
1567 if (r < 0)
1568 return log_oom();
1569
1570 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.events", &events);
1571 if (r < 0)
1572 return log_oom();
1573
1574 u->cgroup_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
1575 if (u->cgroup_inotify_wd < 0) {
1576
1577 if (errno == ENOENT) /* If the directory is already
1578 * gone we don't need to track
1579 * it, so this is not an error */
1580 return 0;
1581
1582 return log_unit_error_errno(u, errno, "Failed to add inotify watch descriptor for control group %s: %m", u->cgroup_path);
1583 }
1584
1585 r = hashmap_put(u->manager->cgroup_inotify_wd_unit, INT_TO_PTR(u->cgroup_inotify_wd), u);
1586 if (r < 0)
1587 return log_unit_error_errno(u, r, "Failed to add inotify watch descriptor to hash map: %m");
1588
1589 return 0;
1590 }
1591
1592 int unit_pick_cgroup_path(Unit *u) {
1593 _cleanup_free_ char *path = NULL;
1594 int r;
1595
1596 assert(u);
1597
1598 if (u->cgroup_path)
1599 return 0;
1600
1601 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1602 return -EINVAL;
1603
1604 path = unit_default_cgroup_path(u);
1605 if (!path)
1606 return log_oom();
1607
1608 r = unit_set_cgroup_path(u, path);
1609 if (r == -EEXIST)
1610 return log_unit_error_errno(u, r, "Control group %s exists already.", path);
1611 if (r < 0)
1612 return log_unit_error_errno(u, r, "Failed to set unit's control group path to %s: %m", path);
1613
1614 return 0;
1615 }
1616
1617 static int unit_create_cgroup(
1618 Unit *u,
1619 CGroupMask target_mask,
1620 CGroupMask enable_mask,
1621 ManagerState state) {
1622
1623 bool created;
1624 int r;
1625
1626 assert(u);
1627
1628 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1629 return 0;
1630
1631 /* Figure out our cgroup path */
1632 r = unit_pick_cgroup_path(u);
1633 if (r < 0)
1634 return r;
1635
1636 /* First, create our own group */
1637 r = cg_create_everywhere(u->manager->cgroup_supported, target_mask, u->cgroup_path);
1638 if (r < 0)
1639 return log_unit_error_errno(u, r, "Failed to create cgroup %s: %m", u->cgroup_path);
1640 created = r;
1641
1642 /* Start watching it */
1643 (void) unit_watch_cgroup(u);
1644
1645 /* Preserve enabled controllers in delegated units, adjust others. */
1646 if (created || !u->cgroup_realized || !unit_cgroup_delegate(u)) {
1647 CGroupMask result_mask = 0;
1648
1649 /* Enable all controllers we need */
1650 r = cg_enable_everywhere(u->manager->cgroup_supported, enable_mask, u->cgroup_path, &result_mask);
1651 if (r < 0)
1652 log_unit_warning_errno(u, r, "Failed to enable/disable controllers on cgroup %s, ignoring: %m", u->cgroup_path);
1653
1654 /* If we just turned off a controller, this might release the controller for our parent too, let's
1655 * enqueue the parent for re-realization in that case again. */
1656 if (UNIT_ISSET(u->slice)) {
1657 CGroupMask turned_off;
1658
1659 turned_off = (u->cgroup_realized ? u->cgroup_enabled_mask & ~result_mask : 0);
1660 if (turned_off != 0) {
1661 Unit *parent;
1662
1663 /* Force the parent to propagate the enable mask to the kernel again, by invalidating
1664 * the controller we just turned off. */
1665
1666 for (parent = UNIT_DEREF(u->slice); parent; parent = UNIT_DEREF(parent->slice))
1667 unit_invalidate_cgroup(parent, turned_off);
1668 }
1669 }
1670
1671 /* Remember what's actually enabled now */
1672 u->cgroup_enabled_mask = result_mask;
1673 }
1674
1675 /* Keep track that this is now realized */
1676 u->cgroup_realized = true;
1677 u->cgroup_realized_mask = target_mask;
1678
1679 if (u->type != UNIT_SLICE && !unit_cgroup_delegate(u)) {
1680
1681 /* Then, possibly move things over, but not if
1682 * subgroups may contain processes, which is the case
1683 * for slice and delegation units. */
1684 r = cg_migrate_everywhere(u->manager->cgroup_supported, u->cgroup_path, u->cgroup_path, migrate_callback, u);
1685 if (r < 0)
1686 log_unit_warning_errno(u, r, "Failed to migrate cgroup from to %s, ignoring: %m", u->cgroup_path);
1687 }
1688
1689 /* Set attributes */
1690 cgroup_context_apply(u, target_mask, state);
1691 cgroup_xattr_apply(u);
1692
1693 return 0;
1694 }
1695
1696 static int unit_attach_pid_to_cgroup_via_bus(Unit *u, pid_t pid, const char *suffix_path) {
1697 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
1698 char *pp;
1699 int r;
1700
1701 assert(u);
1702
1703 if (MANAGER_IS_SYSTEM(u->manager))
1704 return -EINVAL;
1705
1706 if (!u->manager->system_bus)
1707 return -EIO;
1708
1709 if (!u->cgroup_path)
1710 return -EINVAL;
1711
1712 /* Determine this unit's cgroup path relative to our cgroup root */
1713 pp = path_startswith(u->cgroup_path, u->manager->cgroup_root);
1714 if (!pp)
1715 return -EINVAL;
1716
1717 pp = strjoina("/", pp, suffix_path);
1718 path_simplify(pp, false);
1719
1720 r = sd_bus_call_method(u->manager->system_bus,
1721 "org.freedesktop.systemd1",
1722 "/org/freedesktop/systemd1",
1723 "org.freedesktop.systemd1.Manager",
1724 "AttachProcessesToUnit",
1725 &error, NULL,
1726 "ssau",
1727 NULL /* empty unit name means client's unit, i.e. us */, pp, 1, (uint32_t) pid);
1728 if (r < 0)
1729 return log_unit_debug_errno(u, r, "Failed to attach unit process " PID_FMT " via the bus: %s", pid, bus_error_message(&error, r));
1730
1731 return 0;
1732 }
1733
1734 int unit_attach_pids_to_cgroup(Unit *u, Set *pids, const char *suffix_path) {
1735 CGroupMask delegated_mask;
1736 const char *p;
1737 Iterator i;
1738 void *pidp;
1739 int r, q;
1740
1741 assert(u);
1742
1743 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1744 return -EINVAL;
1745
1746 if (set_isempty(pids))
1747 return 0;
1748
1749 r = unit_realize_cgroup(u);
1750 if (r < 0)
1751 return r;
1752
1753 if (isempty(suffix_path))
1754 p = u->cgroup_path;
1755 else
1756 p = strjoina(u->cgroup_path, "/", suffix_path);
1757
1758 delegated_mask = unit_get_delegate_mask(u);
1759
1760 r = 0;
1761 SET_FOREACH(pidp, pids, i) {
1762 pid_t pid = PTR_TO_PID(pidp);
1763 CGroupController c;
1764
1765 /* First, attach the PID to the main cgroup hierarchy */
1766 q = cg_attach(SYSTEMD_CGROUP_CONTROLLER, p, pid);
1767 if (q < 0) {
1768 log_unit_debug_errno(u, q, "Couldn't move process " PID_FMT " to requested cgroup '%s': %m", pid, p);
1769
1770 if (MANAGER_IS_USER(u->manager) && IN_SET(q, -EPERM, -EACCES)) {
1771 int z;
1772
1773 /* If we are in a user instance, and we can't move the process ourselves due to
1774 * permission problems, let's ask the system instance about it instead. Since it's more
1775 * privileged it might be able to move the process across the leaves of a subtree who's
1776 * top node is not owned by us. */
1777
1778 z = unit_attach_pid_to_cgroup_via_bus(u, pid, suffix_path);
1779 if (z < 0)
1780 log_unit_debug_errno(u, z, "Couldn't move process " PID_FMT " to requested cgroup '%s' via the system bus either: %m", pid, p);
1781 else
1782 continue; /* When the bus thing worked via the bus we are fully done for this PID. */
1783 }
1784
1785 if (r >= 0)
1786 r = q; /* Remember first error */
1787
1788 continue;
1789 }
1790
1791 q = cg_all_unified();
1792 if (q < 0)
1793 return q;
1794 if (q > 0)
1795 continue;
1796
1797 /* In the legacy hierarchy, attach the process to the request cgroup if possible, and if not to the
1798 * innermost realized one */
1799
1800 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
1801 CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c);
1802 const char *realized;
1803
1804 if (!(u->manager->cgroup_supported & bit))
1805 continue;
1806
1807 /* If this controller is delegated and realized, honour the caller's request for the cgroup suffix. */
1808 if (delegated_mask & u->cgroup_realized_mask & bit) {
1809 q = cg_attach(cgroup_controller_to_string(c), p, pid);
1810 if (q >= 0)
1811 continue; /* Success! */
1812
1813 log_unit_debug_errno(u, q, "Failed to attach PID " PID_FMT " to requested cgroup %s in controller %s, falling back to unit's cgroup: %m",
1814 pid, p, cgroup_controller_to_string(c));
1815 }
1816
1817 /* So this controller is either not delegate or realized, or something else weird happened. In
1818 * that case let's attach the PID at least to the closest cgroup up the tree that is
1819 * realized. */
1820 realized = unit_get_realized_cgroup_path(u, bit);
1821 if (!realized)
1822 continue; /* Not even realized in the root slice? Then let's not bother */
1823
1824 q = cg_attach(cgroup_controller_to_string(c), realized, pid);
1825 if (q < 0)
1826 log_unit_debug_errno(u, q, "Failed to attach PID " PID_FMT " to realized cgroup %s in controller %s, ignoring: %m",
1827 pid, realized, cgroup_controller_to_string(c));
1828 }
1829 }
1830
1831 return r;
1832 }
1833
1834 static bool unit_has_mask_realized(
1835 Unit *u,
1836 CGroupMask target_mask,
1837 CGroupMask enable_mask) {
1838
1839 assert(u);
1840
1841 /* Returns true if this unit is fully realized. We check four things:
1842 *
1843 * 1. Whether the cgroup was created at all
1844 * 2. Whether the cgroup was created in all the hierarchies we need it to be created in (in case of cgroupsv1)
1845 * 3. Whether the cgroup has all the right controllers enabled (in case of cgroupsv2)
1846 * 4. Whether the invalidation mask is currently zero
1847 *
1848 * If you wonder why we mask the target realization and enable mask with CGROUP_MASK_V1/CGROUP_MASK_V2: note
1849 * that there are three sets of bitmasks: CGROUP_MASK_V1 (for real cgroupv1 controllers), CGROUP_MASK_V2 (for
1850 * real cgroupv2 controllers) and CGROUP_MASK_BPF (for BPF-based pseudo-controllers). Now, cgroup_realized_mask
1851 * is only matters for cgroupsv1 controllers, and cgroup_enabled_mask only used for cgroupsv2, and if they
1852 * differ in the others, we don't really care. (After all, the cgroup_enabled_mask tracks with controllers are
1853 * enabled through cgroup.subtree_control, and since the BPF pseudo-controllers don't show up there, they
1854 * simply don't matter. */
1855
1856 return u->cgroup_realized &&
1857 ((u->cgroup_realized_mask ^ target_mask) & CGROUP_MASK_V1) == 0 &&
1858 ((u->cgroup_enabled_mask ^ enable_mask) & CGROUP_MASK_V2) == 0 &&
1859 u->cgroup_invalidated_mask == 0;
1860 }
1861
1862 static bool unit_has_mask_disables_realized(
1863 Unit *u,
1864 CGroupMask target_mask,
1865 CGroupMask enable_mask) {
1866
1867 assert(u);
1868
1869 /* Returns true if all controllers which should be disabled are indeed disabled.
1870 *
1871 * Unlike unit_has_mask_realized, we don't care what was enabled, only that anything we want to remove is
1872 * already removed. */
1873
1874 return !u->cgroup_realized ||
1875 (FLAGS_SET(u->cgroup_realized_mask, target_mask & CGROUP_MASK_V1) &&
1876 FLAGS_SET(u->cgroup_enabled_mask, enable_mask & CGROUP_MASK_V2));
1877 }
1878
1879 static bool unit_has_mask_enables_realized(
1880 Unit *u,
1881 CGroupMask target_mask,
1882 CGroupMask enable_mask) {
1883
1884 assert(u);
1885
1886 /* Returns true if all controllers which should be enabled are indeed enabled.
1887 *
1888 * Unlike unit_has_mask_realized, we don't care about the controllers that are not present, only that anything
1889 * we want to add is already added. */
1890
1891 return u->cgroup_realized &&
1892 ((u->cgroup_realized_mask | target_mask) & CGROUP_MASK_V1) == (u->cgroup_realized_mask & CGROUP_MASK_V1) &&
1893 ((u->cgroup_enabled_mask | enable_mask) & CGROUP_MASK_V2) == (u->cgroup_enabled_mask & CGROUP_MASK_V2);
1894 }
1895
1896 void unit_add_to_cgroup_realize_queue(Unit *u) {
1897 assert(u);
1898
1899 if (u->in_cgroup_realize_queue)
1900 return;
1901
1902 LIST_PREPEND(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
1903 u->in_cgroup_realize_queue = true;
1904 }
1905
1906 static void unit_remove_from_cgroup_realize_queue(Unit *u) {
1907 assert(u);
1908
1909 if (!u->in_cgroup_realize_queue)
1910 return;
1911
1912 LIST_REMOVE(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
1913 u->in_cgroup_realize_queue = false;
1914 }
1915
1916 /* Controllers can only be enabled breadth-first, from the root of the
1917 * hierarchy downwards to the unit in question. */
1918 static int unit_realize_cgroup_now_enable(Unit *u, ManagerState state) {
1919 CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
1920 int r;
1921
1922 assert(u);
1923
1924 /* First go deal with this unit's parent, or we won't be able to enable
1925 * any new controllers at this layer. */
1926 if (UNIT_ISSET(u->slice)) {
1927 r = unit_realize_cgroup_now_enable(UNIT_DEREF(u->slice), state);
1928 if (r < 0)
1929 return r;
1930 }
1931
1932 target_mask = unit_get_target_mask(u);
1933 enable_mask = unit_get_enable_mask(u);
1934
1935 /* We can only enable in this direction, don't try to disable anything.
1936 */
1937 if (unit_has_mask_enables_realized(u, target_mask, enable_mask))
1938 return 0;
1939
1940 new_target_mask = u->cgroup_realized_mask | target_mask;
1941 new_enable_mask = u->cgroup_enabled_mask | enable_mask;
1942
1943 return unit_create_cgroup(u, new_target_mask, new_enable_mask, state);
1944 }
1945
1946 /* Controllers can only be disabled depth-first, from the leaves of the
1947 * hierarchy upwards to the unit in question. */
1948 static int unit_realize_cgroup_now_disable(Unit *u, ManagerState state) {
1949 Iterator i;
1950 Unit *m;
1951 void *v;
1952
1953 assert(u);
1954
1955 if (u->type != UNIT_SLICE)
1956 return 0;
1957
1958 HASHMAP_FOREACH_KEY(v, m, u->dependencies[UNIT_BEFORE], i) {
1959 CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
1960 int r;
1961
1962 if (UNIT_DEREF(m->slice) != u)
1963 continue;
1964
1965 /* The cgroup for this unit might not actually be fully
1966 * realised yet, in which case it isn't holding any controllers
1967 * open anyway. */
1968 if (!m->cgroup_path)
1969 continue;
1970
1971 /* We must disable those below us first in order to release the
1972 * controller. */
1973 if (m->type == UNIT_SLICE)
1974 (void) unit_realize_cgroup_now_disable(m, state);
1975
1976 target_mask = unit_get_target_mask(m);
1977 enable_mask = unit_get_enable_mask(m);
1978
1979 /* We can only disable in this direction, don't try to enable
1980 * anything. */
1981 if (unit_has_mask_disables_realized(m, target_mask, enable_mask))
1982 continue;
1983
1984 new_target_mask = m->cgroup_realized_mask & target_mask;
1985 new_enable_mask = m->cgroup_enabled_mask & enable_mask;
1986
1987 r = unit_create_cgroup(m, new_target_mask, new_enable_mask, state);
1988 if (r < 0)
1989 return r;
1990 }
1991
1992 return 0;
1993 }
1994
1995 /* Check if necessary controllers and attributes for a unit are in place.
1996 *
1997 * - If so, do nothing.
1998 * - If not, create paths, move processes over, and set attributes.
1999 *
2000 * Controllers can only be *enabled* in a breadth-first way, and *disabled* in
2001 * a depth-first way. As such the process looks like this:
2002 *
2003 * Suppose we have a cgroup hierarchy which looks like this:
2004 *
2005 * root
2006 * / \
2007 * / \
2008 * / \
2009 * a b
2010 * / \ / \
2011 * / \ / \
2012 * c d e f
2013 * / \ / \ / \ / \
2014 * h i j k l m n o
2015 *
2016 * 1. We want to realise cgroup "d" now.
2017 * 2. cgroup "a" has DisableControllers=cpu in the associated unit.
2018 * 3. cgroup "k" just started requesting the memory controller.
2019 *
2020 * To make this work we must do the following in order:
2021 *
2022 * 1. Disable CPU controller in k, j
2023 * 2. Disable CPU controller in d
2024 * 3. Enable memory controller in root
2025 * 4. Enable memory controller in a
2026 * 5. Enable memory controller in d
2027 * 6. Enable memory controller in k
2028 *
2029 * Notice that we need to touch j in one direction, but not the other. We also
2030 * don't go beyond d when disabling -- it's up to "a" to get realized if it
2031 * wants to disable further. The basic rules are therefore:
2032 *
2033 * - If you're disabling something, you need to realise all of the cgroups from
2034 * your recursive descendants to the root. This starts from the leaves.
2035 * - If you're enabling something, you need to realise from the root cgroup
2036 * downwards, but you don't need to iterate your recursive descendants.
2037 *
2038 * Returns 0 on success and < 0 on failure. */
2039 static int unit_realize_cgroup_now(Unit *u, ManagerState state) {
2040 CGroupMask target_mask, enable_mask;
2041 int r;
2042
2043 assert(u);
2044
2045 unit_remove_from_cgroup_realize_queue(u);
2046
2047 target_mask = unit_get_target_mask(u);
2048 enable_mask = unit_get_enable_mask(u);
2049
2050 if (unit_has_mask_realized(u, target_mask, enable_mask))
2051 return 0;
2052
2053 /* Disable controllers below us, if there are any */
2054 r = unit_realize_cgroup_now_disable(u, state);
2055 if (r < 0)
2056 return r;
2057
2058 /* Enable controllers above us, if there are any */
2059 if (UNIT_ISSET(u->slice)) {
2060 r = unit_realize_cgroup_now_enable(UNIT_DEREF(u->slice), state);
2061 if (r < 0)
2062 return r;
2063 }
2064
2065 /* Now actually deal with the cgroup we were trying to realise and set attributes */
2066 r = unit_create_cgroup(u, target_mask, enable_mask, state);
2067 if (r < 0)
2068 return r;
2069
2070 /* Now, reset the invalidation mask */
2071 u->cgroup_invalidated_mask = 0;
2072 return 0;
2073 }
2074
2075 unsigned manager_dispatch_cgroup_realize_queue(Manager *m) {
2076 ManagerState state;
2077 unsigned n = 0;
2078 Unit *i;
2079 int r;
2080
2081 assert(m);
2082
2083 state = manager_state(m);
2084
2085 while ((i = m->cgroup_realize_queue)) {
2086 assert(i->in_cgroup_realize_queue);
2087
2088 if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(i))) {
2089 /* Maybe things changed, and the unit is not actually active anymore? */
2090 unit_remove_from_cgroup_realize_queue(i);
2091 continue;
2092 }
2093
2094 r = unit_realize_cgroup_now(i, state);
2095 if (r < 0)
2096 log_warning_errno(r, "Failed to realize cgroups for queued unit %s, ignoring: %m", i->id);
2097
2098 n++;
2099 }
2100
2101 return n;
2102 }
2103
2104 static void unit_add_siblings_to_cgroup_realize_queue(Unit *u) {
2105 Unit *slice;
2106
2107 /* This adds the siblings of the specified unit and the
2108 * siblings of all parent units to the cgroup queue. (But
2109 * neither the specified unit itself nor the parents.) */
2110
2111 while ((slice = UNIT_DEREF(u->slice))) {
2112 Iterator i;
2113 Unit *m;
2114 void *v;
2115
2116 HASHMAP_FOREACH_KEY(v, m, u->dependencies[UNIT_BEFORE], i) {
2117 /* Skip units that have a dependency on the slice
2118 * but aren't actually in it. */
2119 if (UNIT_DEREF(m->slice) != slice)
2120 continue;
2121
2122 /* No point in doing cgroup application for units
2123 * without active processes. */
2124 if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(m)))
2125 continue;
2126
2127 /* If the unit doesn't need any new controllers
2128 * and has current ones realized, it doesn't need
2129 * any changes. */
2130 if (unit_has_mask_realized(m,
2131 unit_get_target_mask(m),
2132 unit_get_enable_mask(m)))
2133 continue;
2134
2135 unit_add_to_cgroup_realize_queue(m);
2136 }
2137
2138 u = slice;
2139 }
2140 }
2141
2142 int unit_realize_cgroup(Unit *u) {
2143 assert(u);
2144
2145 if (!UNIT_HAS_CGROUP_CONTEXT(u))
2146 return 0;
2147
2148 /* So, here's the deal: when realizing the cgroups for this
2149 * unit, we need to first create all parents, but there's more
2150 * actually: for the weight-based controllers we also need to
2151 * make sure that all our siblings (i.e. units that are in the
2152 * same slice as we are) have cgroups, too. Otherwise, things
2153 * would become very uneven as each of their processes would
2154 * get as much resources as all our group together. This call
2155 * will synchronously create the parent cgroups, but will
2156 * defer work on the siblings to the next event loop
2157 * iteration. */
2158
2159 /* Add all sibling slices to the cgroup queue. */
2160 unit_add_siblings_to_cgroup_realize_queue(u);
2161
2162 /* And realize this one now (and apply the values) */
2163 return unit_realize_cgroup_now(u, manager_state(u->manager));
2164 }
2165
2166 void unit_release_cgroup(Unit *u) {
2167 assert(u);
2168
2169 /* Forgets all cgroup details for this cgroup — but does *not* destroy the cgroup. This is hence OK to call
2170 * when we close down everything for reexecution, where we really want to leave the cgroup in place. */
2171
2172 if (u->cgroup_path) {
2173 (void) hashmap_remove(u->manager->cgroup_unit, u->cgroup_path);
2174 u->cgroup_path = mfree(u->cgroup_path);
2175 }
2176
2177 if (u->cgroup_inotify_wd >= 0) {
2178 if (inotify_rm_watch(u->manager->cgroup_inotify_fd, u->cgroup_inotify_wd) < 0)
2179 log_unit_debug_errno(u, errno, "Failed to remove cgroup inotify watch %i for %s, ignoring: %m", u->cgroup_inotify_wd, u->id);
2180
2181 (void) hashmap_remove(u->manager->cgroup_inotify_wd_unit, INT_TO_PTR(u->cgroup_inotify_wd));
2182 u->cgroup_inotify_wd = -1;
2183 }
2184 }
2185
2186 void unit_prune_cgroup(Unit *u) {
2187 int r;
2188 bool is_root_slice;
2189
2190 assert(u);
2191
2192 /* Removes the cgroup, if empty and possible, and stops watching it. */
2193
2194 if (!u->cgroup_path)
2195 return;
2196
2197 (void) unit_get_cpu_usage(u, NULL); /* Cache the last CPU usage value before we destroy the cgroup */
2198
2199 is_root_slice = unit_has_name(u, SPECIAL_ROOT_SLICE);
2200
2201 r = cg_trim_everywhere(u->manager->cgroup_supported, u->cgroup_path, !is_root_slice);
2202 if (r < 0) {
2203 log_unit_debug_errno(u, r, "Failed to destroy cgroup %s, ignoring: %m", u->cgroup_path);
2204 return;
2205 }
2206
2207 if (is_root_slice)
2208 return;
2209
2210 unit_release_cgroup(u);
2211
2212 u->cgroup_realized = false;
2213 u->cgroup_realized_mask = 0;
2214 u->cgroup_enabled_mask = 0;
2215
2216 u->bpf_device_control_installed = bpf_program_unref(u->bpf_device_control_installed);
2217 }
2218
2219 int unit_search_main_pid(Unit *u, pid_t *ret) {
2220 _cleanup_fclose_ FILE *f = NULL;
2221 pid_t pid = 0, npid, mypid;
2222 int r;
2223
2224 assert(u);
2225 assert(ret);
2226
2227 if (!u->cgroup_path)
2228 return -ENXIO;
2229
2230 r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, &f);
2231 if (r < 0)
2232 return r;
2233
2234 mypid = getpid_cached();
2235 while (cg_read_pid(f, &npid) > 0) {
2236 pid_t ppid;
2237
2238 if (npid == pid)
2239 continue;
2240
2241 /* Ignore processes that aren't our kids */
2242 if (get_process_ppid(npid, &ppid) >= 0 && ppid != mypid)
2243 continue;
2244
2245 if (pid != 0)
2246 /* Dang, there's more than one daemonized PID
2247 in this group, so we don't know what process
2248 is the main process. */
2249
2250 return -ENODATA;
2251
2252 pid = npid;
2253 }
2254
2255 *ret = pid;
2256 return 0;
2257 }
2258
2259 static int unit_watch_pids_in_path(Unit *u, const char *path) {
2260 _cleanup_closedir_ DIR *d = NULL;
2261 _cleanup_fclose_ FILE *f = NULL;
2262 int ret = 0, r;
2263
2264 assert(u);
2265 assert(path);
2266
2267 r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, path, &f);
2268 if (r < 0)
2269 ret = r;
2270 else {
2271 pid_t pid;
2272
2273 while ((r = cg_read_pid(f, &pid)) > 0) {
2274 r = unit_watch_pid(u, pid);
2275 if (r < 0 && ret >= 0)
2276 ret = r;
2277 }
2278
2279 if (r < 0 && ret >= 0)
2280 ret = r;
2281 }
2282
2283 r = cg_enumerate_subgroups(SYSTEMD_CGROUP_CONTROLLER, path, &d);
2284 if (r < 0) {
2285 if (ret >= 0)
2286 ret = r;
2287 } else {
2288 char *fn;
2289
2290 while ((r = cg_read_subgroup(d, &fn)) > 0) {
2291 _cleanup_free_ char *p = NULL;
2292
2293 p = strjoin(path, "/", fn);
2294 free(fn);
2295
2296 if (!p)
2297 return -ENOMEM;
2298
2299 r = unit_watch_pids_in_path(u, p);
2300 if (r < 0 && ret >= 0)
2301 ret = r;
2302 }
2303
2304 if (r < 0 && ret >= 0)
2305 ret = r;
2306 }
2307
2308 return ret;
2309 }
2310
2311 int unit_synthesize_cgroup_empty_event(Unit *u) {
2312 int r;
2313
2314 assert(u);
2315
2316 /* Enqueue a synthetic cgroup empty event if this unit doesn't watch any PIDs anymore. This is compatibility
2317 * support for non-unified systems where notifications aren't reliable, and hence need to take whatever we can
2318 * get as notification source as soon as we stopped having any useful PIDs to watch for. */
2319
2320 if (!u->cgroup_path)
2321 return -ENOENT;
2322
2323 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2324 if (r < 0)
2325 return r;
2326 if (r > 0) /* On unified we have reliable notifications, and don't need this */
2327 return 0;
2328
2329 if (!set_isempty(u->pids))
2330 return 0;
2331
2332 unit_add_to_cgroup_empty_queue(u);
2333 return 0;
2334 }
2335
2336 int unit_watch_all_pids(Unit *u) {
2337 int r;
2338
2339 assert(u);
2340
2341 /* Adds all PIDs from our cgroup to the set of PIDs we
2342 * watch. This is a fallback logic for cases where we do not
2343 * get reliable cgroup empty notifications: we try to use
2344 * SIGCHLD as replacement. */
2345
2346 if (!u->cgroup_path)
2347 return -ENOENT;
2348
2349 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2350 if (r < 0)
2351 return r;
2352 if (r > 0) /* On unified we can use proper notifications */
2353 return 0;
2354
2355 return unit_watch_pids_in_path(u, u->cgroup_path);
2356 }
2357
2358 static int on_cgroup_empty_event(sd_event_source *s, void *userdata) {
2359 Manager *m = userdata;
2360 Unit *u;
2361 int r;
2362
2363 assert(s);
2364 assert(m);
2365
2366 u = m->cgroup_empty_queue;
2367 if (!u)
2368 return 0;
2369
2370 assert(u->in_cgroup_empty_queue);
2371 u->in_cgroup_empty_queue = false;
2372 LIST_REMOVE(cgroup_empty_queue, m->cgroup_empty_queue, u);
2373
2374 if (m->cgroup_empty_queue) {
2375 /* More stuff queued, let's make sure we remain enabled */
2376 r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
2377 if (r < 0)
2378 log_debug_errno(r, "Failed to reenable cgroup empty event source, ignoring: %m");
2379 }
2380
2381 unit_add_to_gc_queue(u);
2382
2383 if (UNIT_VTABLE(u)->notify_cgroup_empty)
2384 UNIT_VTABLE(u)->notify_cgroup_empty(u);
2385
2386 return 0;
2387 }
2388
2389 void unit_add_to_cgroup_empty_queue(Unit *u) {
2390 int r;
2391
2392 assert(u);
2393
2394 /* Note that there are four different ways how cgroup empty events reach us:
2395 *
2396 * 1. On the unified hierarchy we get an inotify event on the cgroup
2397 *
2398 * 2. On the legacy hierarchy, when running in system mode, we get a datagram on the cgroup agent socket
2399 *
2400 * 3. On the legacy hierarchy, when running in user mode, we get a D-Bus signal on the system bus
2401 *
2402 * 4. On the legacy hierarchy, in service units we start watching all processes of the cgroup for SIGCHLD as
2403 * soon as we get one SIGCHLD, to deal with unreliable cgroup notifications.
2404 *
2405 * Regardless which way we got the notification, we'll verify it here, and then add it to a separate
2406 * queue. This queue will be dispatched at a lower priority than the SIGCHLD handler, so that we always use
2407 * SIGCHLD if we can get it first, and only use the cgroup empty notifications if there's no SIGCHLD pending
2408 * (which might happen if the cgroup doesn't contain processes that are our own child, which is typically the
2409 * case for scope units). */
2410
2411 if (u->in_cgroup_empty_queue)
2412 return;
2413
2414 /* Let's verify that the cgroup is really empty */
2415 if (!u->cgroup_path)
2416 return;
2417 r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
2418 if (r < 0) {
2419 log_unit_debug_errno(u, r, "Failed to determine whether cgroup %s is empty: %m", u->cgroup_path);
2420 return;
2421 }
2422 if (r == 0)
2423 return;
2424
2425 LIST_PREPEND(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
2426 u->in_cgroup_empty_queue = true;
2427
2428 /* Trigger the defer event */
2429 r = sd_event_source_set_enabled(u->manager->cgroup_empty_event_source, SD_EVENT_ONESHOT);
2430 if (r < 0)
2431 log_debug_errno(r, "Failed to enable cgroup empty event source: %m");
2432 }
2433
2434 static int on_cgroup_inotify_event(sd_event_source *s, int fd, uint32_t revents, void *userdata) {
2435 Manager *m = userdata;
2436
2437 assert(s);
2438 assert(fd >= 0);
2439 assert(m);
2440
2441 for (;;) {
2442 union inotify_event_buffer buffer;
2443 struct inotify_event *e;
2444 ssize_t l;
2445
2446 l = read(fd, &buffer, sizeof(buffer));
2447 if (l < 0) {
2448 if (IN_SET(errno, EINTR, EAGAIN))
2449 return 0;
2450
2451 return log_error_errno(errno, "Failed to read control group inotify events: %m");
2452 }
2453
2454 FOREACH_INOTIFY_EVENT(e, buffer, l) {
2455 Unit *u;
2456
2457 if (e->wd < 0)
2458 /* Queue overflow has no watch descriptor */
2459 continue;
2460
2461 if (e->mask & IN_IGNORED)
2462 /* The watch was just removed */
2463 continue;
2464
2465 u = hashmap_get(m->cgroup_inotify_wd_unit, INT_TO_PTR(e->wd));
2466 if (!u) /* Not that inotify might deliver
2467 * events for a watch even after it
2468 * was removed, because it was queued
2469 * before the removal. Let's ignore
2470 * this here safely. */
2471 continue;
2472
2473 unit_add_to_cgroup_empty_queue(u);
2474 }
2475 }
2476 }
2477
2478 static int cg_bpf_mask_supported(CGroupMask *ret) {
2479 CGroupMask mask = 0;
2480 int r;
2481
2482 /* BPF-based firewall */
2483 r = bpf_firewall_supported();
2484 if (r > 0)
2485 mask |= CGROUP_MASK_BPF_FIREWALL;
2486
2487 /* BPF-based device access control */
2488 r = bpf_devices_supported();
2489 if (r > 0)
2490 mask |= CGROUP_MASK_BPF_DEVICES;
2491
2492 *ret = mask;
2493 return 0;
2494 }
2495
2496 int manager_setup_cgroup(Manager *m) {
2497 _cleanup_free_ char *path = NULL;
2498 const char *scope_path;
2499 CGroupController c;
2500 int r, all_unified;
2501 CGroupMask mask;
2502 char *e;
2503
2504 assert(m);
2505
2506 /* 1. Determine hierarchy */
2507 m->cgroup_root = mfree(m->cgroup_root);
2508 r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, 0, &m->cgroup_root);
2509 if (r < 0)
2510 return log_error_errno(r, "Cannot determine cgroup we are running in: %m");
2511
2512 /* Chop off the init scope, if we are already located in it */
2513 e = endswith(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
2514
2515 /* LEGACY: Also chop off the system slice if we are in
2516 * it. This is to support live upgrades from older systemd
2517 * versions where PID 1 was moved there. Also see
2518 * cg_get_root_path(). */
2519 if (!e && MANAGER_IS_SYSTEM(m)) {
2520 e = endswith(m->cgroup_root, "/" SPECIAL_SYSTEM_SLICE);
2521 if (!e)
2522 e = endswith(m->cgroup_root, "/system"); /* even more legacy */
2523 }
2524 if (e)
2525 *e = 0;
2526
2527 /* And make sure to store away the root value without trailing slash, even for the root dir, so that we can
2528 * easily prepend it everywhere. */
2529 delete_trailing_chars(m->cgroup_root, "/");
2530
2531 /* 2. Show data */
2532 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, NULL, &path);
2533 if (r < 0)
2534 return log_error_errno(r, "Cannot find cgroup mount point: %m");
2535
2536 r = cg_unified_flush();
2537 if (r < 0)
2538 return log_error_errno(r, "Couldn't determine if we are running in the unified hierarchy: %m");
2539
2540 all_unified = cg_all_unified();
2541 if (all_unified < 0)
2542 return log_error_errno(all_unified, "Couldn't determine whether we are in all unified mode: %m");
2543 if (all_unified > 0)
2544 log_debug("Unified cgroup hierarchy is located at %s.", path);
2545 else {
2546 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2547 if (r < 0)
2548 return log_error_errno(r, "Failed to determine whether systemd's own controller is in unified mode: %m");
2549 if (r > 0)
2550 log_debug("Unified cgroup hierarchy is located at %s. Controllers are on legacy hierarchies.", path);
2551 else
2552 log_debug("Using cgroup controller " SYSTEMD_CGROUP_CONTROLLER_LEGACY ". File system hierarchy is at %s.", path);
2553 }
2554
2555 /* 3. Allocate cgroup empty defer event source */
2556 m->cgroup_empty_event_source = sd_event_source_unref(m->cgroup_empty_event_source);
2557 r = sd_event_add_defer(m->event, &m->cgroup_empty_event_source, on_cgroup_empty_event, m);
2558 if (r < 0)
2559 return log_error_errno(r, "Failed to create cgroup empty event source: %m");
2560
2561 r = sd_event_source_set_priority(m->cgroup_empty_event_source, SD_EVENT_PRIORITY_NORMAL-5);
2562 if (r < 0)
2563 return log_error_errno(r, "Failed to set priority of cgroup empty event source: %m");
2564
2565 r = sd_event_source_set_enabled(m->cgroup_empty_event_source, SD_EVENT_OFF);
2566 if (r < 0)
2567 return log_error_errno(r, "Failed to disable cgroup empty event source: %m");
2568
2569 (void) sd_event_source_set_description(m->cgroup_empty_event_source, "cgroup-empty");
2570
2571 /* 4. Install notifier inotify object, or agent */
2572 if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0) {
2573
2574 /* In the unified hierarchy we can get cgroup empty notifications via inotify. */
2575
2576 m->cgroup_inotify_event_source = sd_event_source_unref(m->cgroup_inotify_event_source);
2577 safe_close(m->cgroup_inotify_fd);
2578
2579 m->cgroup_inotify_fd = inotify_init1(IN_NONBLOCK|IN_CLOEXEC);
2580 if (m->cgroup_inotify_fd < 0)
2581 return log_error_errno(errno, "Failed to create control group inotify object: %m");
2582
2583 r = sd_event_add_io(m->event, &m->cgroup_inotify_event_source, m->cgroup_inotify_fd, EPOLLIN, on_cgroup_inotify_event, m);
2584 if (r < 0)
2585 return log_error_errno(r, "Failed to watch control group inotify object: %m");
2586
2587 /* Process cgroup empty notifications early, but after service notifications and SIGCHLD. Also
2588 * see handling of cgroup agent notifications, for the classic cgroup hierarchy support. */
2589 r = sd_event_source_set_priority(m->cgroup_inotify_event_source, SD_EVENT_PRIORITY_NORMAL-4);
2590 if (r < 0)
2591 return log_error_errno(r, "Failed to set priority of inotify event source: %m");
2592
2593 (void) sd_event_source_set_description(m->cgroup_inotify_event_source, "cgroup-inotify");
2594
2595 } else if (MANAGER_IS_SYSTEM(m) && manager_owns_host_root_cgroup(m) && !MANAGER_IS_TEST_RUN(m)) {
2596
2597 /* On the legacy hierarchy we only get notifications via cgroup agents. (Which isn't really reliable,
2598 * since it does not generate events when control groups with children run empty. */
2599
2600 r = cg_install_release_agent(SYSTEMD_CGROUP_CONTROLLER, SYSTEMD_CGROUP_AGENT_PATH);
2601 if (r < 0)
2602 log_warning_errno(r, "Failed to install release agent, ignoring: %m");
2603 else if (r > 0)
2604 log_debug("Installed release agent.");
2605 else if (r == 0)
2606 log_debug("Release agent already installed.");
2607 }
2608
2609 /* 5. Make sure we are in the special "init.scope" unit in the root slice. */
2610 scope_path = strjoina(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
2611 r = cg_create_and_attach(SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
2612 if (r >= 0) {
2613 /* Also, move all other userspace processes remaining in the root cgroup into that scope. */
2614 r = cg_migrate(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
2615 if (r < 0)
2616 log_warning_errno(r, "Couldn't move remaining userspace processes, ignoring: %m");
2617
2618 /* 6. And pin it, so that it cannot be unmounted */
2619 safe_close(m->pin_cgroupfs_fd);
2620 m->pin_cgroupfs_fd = open(path, O_RDONLY|O_CLOEXEC|O_DIRECTORY|O_NOCTTY|O_NONBLOCK);
2621 if (m->pin_cgroupfs_fd < 0)
2622 return log_error_errno(errno, "Failed to open pin file: %m");
2623
2624 } else if (!MANAGER_IS_TEST_RUN(m))
2625 return log_error_errno(r, "Failed to create %s control group: %m", scope_path);
2626
2627 /* 7. Always enable hierarchical support if it exists... */
2628 if (!all_unified && !MANAGER_IS_TEST_RUN(m))
2629 (void) cg_set_attribute("memory", "/", "memory.use_hierarchy", "1");
2630
2631 /* 8. Figure out which controllers are supported */
2632 r = cg_mask_supported(&m->cgroup_supported);
2633 if (r < 0)
2634 return log_error_errno(r, "Failed to determine supported controllers: %m");
2635
2636 /* 9. Figure out which bpf-based pseudo-controllers are supported */
2637 r = cg_bpf_mask_supported(&mask);
2638 if (r < 0)
2639 return log_error_errno(r, "Failed to determine supported bpf-based pseudo-controllers: %m");
2640 m->cgroup_supported |= mask;
2641
2642 /* 10. Log which controllers are supported */
2643 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++)
2644 log_debug("Controller '%s' supported: %s", cgroup_controller_to_string(c), yes_no(m->cgroup_supported & CGROUP_CONTROLLER_TO_MASK(c)));
2645
2646 return 0;
2647 }
2648
2649 void manager_shutdown_cgroup(Manager *m, bool delete) {
2650 assert(m);
2651
2652 /* We can't really delete the group, since we are in it. But
2653 * let's trim it. */
2654 if (delete && m->cgroup_root && m->test_run_flags != MANAGER_TEST_RUN_MINIMAL)
2655 (void) cg_trim(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, false);
2656
2657 m->cgroup_empty_event_source = sd_event_source_unref(m->cgroup_empty_event_source);
2658
2659 m->cgroup_inotify_wd_unit = hashmap_free(m->cgroup_inotify_wd_unit);
2660
2661 m->cgroup_inotify_event_source = sd_event_source_unref(m->cgroup_inotify_event_source);
2662 m->cgroup_inotify_fd = safe_close(m->cgroup_inotify_fd);
2663
2664 m->pin_cgroupfs_fd = safe_close(m->pin_cgroupfs_fd);
2665
2666 m->cgroup_root = mfree(m->cgroup_root);
2667 }
2668
2669 Unit* manager_get_unit_by_cgroup(Manager *m, const char *cgroup) {
2670 char *p;
2671 Unit *u;
2672
2673 assert(m);
2674 assert(cgroup);
2675
2676 u = hashmap_get(m->cgroup_unit, cgroup);
2677 if (u)
2678 return u;
2679
2680 p = strdupa(cgroup);
2681 for (;;) {
2682 char *e;
2683
2684 e = strrchr(p, '/');
2685 if (!e || e == p)
2686 return hashmap_get(m->cgroup_unit, SPECIAL_ROOT_SLICE);
2687
2688 *e = 0;
2689
2690 u = hashmap_get(m->cgroup_unit, p);
2691 if (u)
2692 return u;
2693 }
2694 }
2695
2696 Unit *manager_get_unit_by_pid_cgroup(Manager *m, pid_t pid) {
2697 _cleanup_free_ char *cgroup = NULL;
2698
2699 assert(m);
2700
2701 if (!pid_is_valid(pid))
2702 return NULL;
2703
2704 if (cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, pid, &cgroup) < 0)
2705 return NULL;
2706
2707 return manager_get_unit_by_cgroup(m, cgroup);
2708 }
2709
2710 Unit *manager_get_unit_by_pid(Manager *m, pid_t pid) {
2711 Unit *u, **array;
2712
2713 assert(m);
2714
2715 /* Note that a process might be owned by multiple units, we return only one here, which is good enough for most
2716 * cases, though not strictly correct. We prefer the one reported by cgroup membership, as that's the most
2717 * relevant one as children of the process will be assigned to that one, too, before all else. */
2718
2719 if (!pid_is_valid(pid))
2720 return NULL;
2721
2722 if (pid == getpid_cached())
2723 return hashmap_get(m->units, SPECIAL_INIT_SCOPE);
2724
2725 u = manager_get_unit_by_pid_cgroup(m, pid);
2726 if (u)
2727 return u;
2728
2729 u = hashmap_get(m->watch_pids, PID_TO_PTR(pid));
2730 if (u)
2731 return u;
2732
2733 array = hashmap_get(m->watch_pids, PID_TO_PTR(-pid));
2734 if (array)
2735 return array[0];
2736
2737 return NULL;
2738 }
2739
2740 int manager_notify_cgroup_empty(Manager *m, const char *cgroup) {
2741 Unit *u;
2742
2743 assert(m);
2744 assert(cgroup);
2745
2746 /* Called on the legacy hierarchy whenever we get an explicit cgroup notification from the cgroup agent process
2747 * or from the --system instance */
2748
2749 log_debug("Got cgroup empty notification for: %s", cgroup);
2750
2751 u = manager_get_unit_by_cgroup(m, cgroup);
2752 if (!u)
2753 return 0;
2754
2755 unit_add_to_cgroup_empty_queue(u);
2756 return 1;
2757 }
2758
2759 int unit_get_memory_current(Unit *u, uint64_t *ret) {
2760 _cleanup_free_ char *v = NULL;
2761 int r;
2762
2763 assert(u);
2764 assert(ret);
2765
2766 if (!UNIT_CGROUP_BOOL(u, memory_accounting))
2767 return -ENODATA;
2768
2769 if (!u->cgroup_path)
2770 return -ENODATA;
2771
2772 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
2773 if (unit_has_host_root_cgroup(u))
2774 return procfs_memory_get_current(ret);
2775
2776 if ((u->cgroup_realized_mask & CGROUP_MASK_MEMORY) == 0)
2777 return -ENODATA;
2778
2779 r = cg_all_unified();
2780 if (r < 0)
2781 return r;
2782 if (r > 0)
2783 r = cg_get_attribute("memory", u->cgroup_path, "memory.current", &v);
2784 else
2785 r = cg_get_attribute("memory", u->cgroup_path, "memory.usage_in_bytes", &v);
2786 if (r == -ENOENT)
2787 return -ENODATA;
2788 if (r < 0)
2789 return r;
2790
2791 return safe_atou64(v, ret);
2792 }
2793
2794 int unit_get_tasks_current(Unit *u, uint64_t *ret) {
2795 _cleanup_free_ char *v = NULL;
2796 int r;
2797
2798 assert(u);
2799 assert(ret);
2800
2801 if (!UNIT_CGROUP_BOOL(u, tasks_accounting))
2802 return -ENODATA;
2803
2804 if (!u->cgroup_path)
2805 return -ENODATA;
2806
2807 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
2808 if (unit_has_host_root_cgroup(u))
2809 return procfs_tasks_get_current(ret);
2810
2811 if ((u->cgroup_realized_mask & CGROUP_MASK_PIDS) == 0)
2812 return -ENODATA;
2813
2814 r = cg_get_attribute("pids", u->cgroup_path, "pids.current", &v);
2815 if (r == -ENOENT)
2816 return -ENODATA;
2817 if (r < 0)
2818 return r;
2819
2820 return safe_atou64(v, ret);
2821 }
2822
2823 static int unit_get_cpu_usage_raw(Unit *u, nsec_t *ret) {
2824 _cleanup_free_ char *v = NULL;
2825 uint64_t ns;
2826 int r;
2827
2828 assert(u);
2829 assert(ret);
2830
2831 if (!u->cgroup_path)
2832 return -ENODATA;
2833
2834 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
2835 if (unit_has_host_root_cgroup(u))
2836 return procfs_cpu_get_usage(ret);
2837
2838 /* Requisite controllers for CPU accounting are not enabled */
2839 if ((get_cpu_accounting_mask() & ~u->cgroup_realized_mask) != 0)
2840 return -ENODATA;
2841
2842 r = cg_all_unified();
2843 if (r < 0)
2844 return r;
2845 if (r > 0) {
2846 _cleanup_free_ char *val = NULL;
2847 uint64_t us;
2848
2849 r = cg_get_keyed_attribute("cpu", u->cgroup_path, "cpu.stat", STRV_MAKE("usage_usec"), &val);
2850 if (IN_SET(r, -ENOENT, -ENXIO))
2851 return -ENODATA;
2852 if (r < 0)
2853 return r;
2854
2855 r = safe_atou64(val, &us);
2856 if (r < 0)
2857 return r;
2858
2859 ns = us * NSEC_PER_USEC;
2860 } else {
2861 r = cg_get_attribute("cpuacct", u->cgroup_path, "cpuacct.usage", &v);
2862 if (r == -ENOENT)
2863 return -ENODATA;
2864 if (r < 0)
2865 return r;
2866
2867 r = safe_atou64(v, &ns);
2868 if (r < 0)
2869 return r;
2870 }
2871
2872 *ret = ns;
2873 return 0;
2874 }
2875
2876 int unit_get_cpu_usage(Unit *u, nsec_t *ret) {
2877 nsec_t ns;
2878 int r;
2879
2880 assert(u);
2881
2882 /* Retrieve the current CPU usage counter. This will subtract the CPU counter taken when the unit was
2883 * started. If the cgroup has been removed already, returns the last cached value. To cache the value, simply
2884 * call this function with a NULL return value. */
2885
2886 if (!UNIT_CGROUP_BOOL(u, cpu_accounting))
2887 return -ENODATA;
2888
2889 r = unit_get_cpu_usage_raw(u, &ns);
2890 if (r == -ENODATA && u->cpu_usage_last != NSEC_INFINITY) {
2891 /* If we can't get the CPU usage anymore (because the cgroup was already removed, for example), use our
2892 * cached value. */
2893
2894 if (ret)
2895 *ret = u->cpu_usage_last;
2896 return 0;
2897 }
2898 if (r < 0)
2899 return r;
2900
2901 if (ns > u->cpu_usage_base)
2902 ns -= u->cpu_usage_base;
2903 else
2904 ns = 0;
2905
2906 u->cpu_usage_last = ns;
2907 if (ret)
2908 *ret = ns;
2909
2910 return 0;
2911 }
2912
2913 int unit_get_ip_accounting(
2914 Unit *u,
2915 CGroupIPAccountingMetric metric,
2916 uint64_t *ret) {
2917
2918 uint64_t value;
2919 int fd, r;
2920
2921 assert(u);
2922 assert(metric >= 0);
2923 assert(metric < _CGROUP_IP_ACCOUNTING_METRIC_MAX);
2924 assert(ret);
2925
2926 if (!UNIT_CGROUP_BOOL(u, ip_accounting))
2927 return -ENODATA;
2928
2929 fd = IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_INGRESS_PACKETS) ?
2930 u->ip_accounting_ingress_map_fd :
2931 u->ip_accounting_egress_map_fd;
2932 if (fd < 0)
2933 return -ENODATA;
2934
2935 if (IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_EGRESS_BYTES))
2936 r = bpf_firewall_read_accounting(fd, &value, NULL);
2937 else
2938 r = bpf_firewall_read_accounting(fd, NULL, &value);
2939 if (r < 0)
2940 return r;
2941
2942 /* Add in additional metrics from a previous runtime. Note that when reexecing/reloading the daemon we compile
2943 * all BPF programs and maps anew, but serialize the old counters. When deserializing we store them in the
2944 * ip_accounting_extra[] field, and add them in here transparently. */
2945
2946 *ret = value + u->ip_accounting_extra[metric];
2947
2948 return r;
2949 }
2950
2951 int unit_reset_cpu_accounting(Unit *u) {
2952 nsec_t ns;
2953 int r;
2954
2955 assert(u);
2956
2957 u->cpu_usage_last = NSEC_INFINITY;
2958
2959 r = unit_get_cpu_usage_raw(u, &ns);
2960 if (r < 0) {
2961 u->cpu_usage_base = 0;
2962 return r;
2963 }
2964
2965 u->cpu_usage_base = ns;
2966 return 0;
2967 }
2968
2969 int unit_reset_ip_accounting(Unit *u) {
2970 int r = 0, q = 0;
2971
2972 assert(u);
2973
2974 if (u->ip_accounting_ingress_map_fd >= 0)
2975 r = bpf_firewall_reset_accounting(u->ip_accounting_ingress_map_fd);
2976
2977 if (u->ip_accounting_egress_map_fd >= 0)
2978 q = bpf_firewall_reset_accounting(u->ip_accounting_egress_map_fd);
2979
2980 zero(u->ip_accounting_extra);
2981
2982 return r < 0 ? r : q;
2983 }
2984
2985 void unit_invalidate_cgroup(Unit *u, CGroupMask m) {
2986 assert(u);
2987
2988 if (!UNIT_HAS_CGROUP_CONTEXT(u))
2989 return;
2990
2991 if (m == 0)
2992 return;
2993
2994 /* always invalidate compat pairs together */
2995 if (m & (CGROUP_MASK_IO | CGROUP_MASK_BLKIO))
2996 m |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
2997
2998 if (m & (CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT))
2999 m |= CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT;
3000
3001 if (FLAGS_SET(u->cgroup_invalidated_mask, m)) /* NOP? */
3002 return;
3003
3004 u->cgroup_invalidated_mask |= m;
3005 unit_add_to_cgroup_realize_queue(u);
3006 }
3007
3008 void unit_invalidate_cgroup_bpf(Unit *u) {
3009 assert(u);
3010
3011 if (!UNIT_HAS_CGROUP_CONTEXT(u))
3012 return;
3013
3014 if (u->cgroup_invalidated_mask & CGROUP_MASK_BPF_FIREWALL) /* NOP? */
3015 return;
3016
3017 u->cgroup_invalidated_mask |= CGROUP_MASK_BPF_FIREWALL;
3018 unit_add_to_cgroup_realize_queue(u);
3019
3020 /* If we are a slice unit, we also need to put compile a new BPF program for all our children, as the IP access
3021 * list of our children includes our own. */
3022 if (u->type == UNIT_SLICE) {
3023 Unit *member;
3024 Iterator i;
3025 void *v;
3026
3027 HASHMAP_FOREACH_KEY(v, member, u->dependencies[UNIT_BEFORE], i) {
3028 if (UNIT_DEREF(member->slice) == u)
3029 unit_invalidate_cgroup_bpf(member);
3030 }
3031 }
3032 }
3033
3034 bool unit_cgroup_delegate(Unit *u) {
3035 CGroupContext *c;
3036
3037 assert(u);
3038
3039 if (!UNIT_VTABLE(u)->can_delegate)
3040 return false;
3041
3042 c = unit_get_cgroup_context(u);
3043 if (!c)
3044 return false;
3045
3046 return c->delegate;
3047 }
3048
3049 void manager_invalidate_startup_units(Manager *m) {
3050 Iterator i;
3051 Unit *u;
3052
3053 assert(m);
3054
3055 SET_FOREACH(u, m->startup_units, i)
3056 unit_invalidate_cgroup(u, CGROUP_MASK_CPU|CGROUP_MASK_IO|CGROUP_MASK_BLKIO);
3057 }
3058
3059 static const char* const cgroup_device_policy_table[_CGROUP_DEVICE_POLICY_MAX] = {
3060 [CGROUP_AUTO] = "auto",
3061 [CGROUP_CLOSED] = "closed",
3062 [CGROUP_STRICT] = "strict",
3063 };
3064
3065 DEFINE_STRING_TABLE_LOOKUP(cgroup_device_policy, CGroupDevicePolicy);