]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/execute.c
0765f112fd0ba3807656de78deb90589aa480456
[thirdparty/systemd.git] / src / core / execute.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <errno.h>
4 #include <fcntl.h>
5 #include <poll.h>
6 #include <sys/eventfd.h>
7 #include <sys/ioctl.h>
8 #include <sys/mman.h>
9 #include <sys/personality.h>
10 #include <sys/prctl.h>
11 #include <sys/shm.h>
12 #include <sys/types.h>
13 #include <sys/un.h>
14 #include <unistd.h>
15 #include <utmpx.h>
16
17 #if HAVE_PAM
18 #include <security/pam_appl.h>
19 #endif
20
21 #if HAVE_SELINUX
22 #include <selinux/selinux.h>
23 #endif
24
25 #if HAVE_SECCOMP
26 #include <seccomp.h>
27 #endif
28
29 #if HAVE_APPARMOR
30 #include <sys/apparmor.h>
31 #endif
32
33 #include "sd-messages.h"
34
35 #include "af-list.h"
36 #include "alloc-util.h"
37 #if HAVE_APPARMOR
38 #include "apparmor-util.h"
39 #endif
40 #include "async.h"
41 #include "barrier.h"
42 #include "cap-list.h"
43 #include "capability-util.h"
44 #include "chown-recursive.h"
45 #include "cgroup-setup.h"
46 #include "cpu-set-util.h"
47 #include "def.h"
48 #include "env-file.h"
49 #include "env-util.h"
50 #include "errno-list.h"
51 #include "execute.h"
52 #include "exit-status.h"
53 #include "fd-util.h"
54 #include "format-util.h"
55 #include "fs-util.h"
56 #include "glob-util.h"
57 #include "hexdecoct.h"
58 #include "io-util.h"
59 #include "ioprio.h"
60 #include "label.h"
61 #include "log.h"
62 #include "macro.h"
63 #include "manager.h"
64 #include "memory-util.h"
65 #include "missing_fs.h"
66 #include "mkdir.h"
67 #include "namespace.h"
68 #include "parse-util.h"
69 #include "path-util.h"
70 #include "process-util.h"
71 #include "rlimit-util.h"
72 #include "rm-rf.h"
73 #if HAVE_SECCOMP
74 #include "seccomp-util.h"
75 #endif
76 #include "securebits-util.h"
77 #include "selinux-util.h"
78 #include "signal-util.h"
79 #include "smack-util.h"
80 #include "socket-util.h"
81 #include "special.h"
82 #include "stat-util.h"
83 #include "string-table.h"
84 #include "string-util.h"
85 #include "strv.h"
86 #include "syslog-util.h"
87 #include "terminal-util.h"
88 #include "umask-util.h"
89 #include "unit.h"
90 #include "user-util.h"
91 #include "utmp-wtmp.h"
92
93 #define IDLE_TIMEOUT_USEC (5*USEC_PER_SEC)
94 #define IDLE_TIMEOUT2_USEC (1*USEC_PER_SEC)
95
96 #define SNDBUF_SIZE (8*1024*1024)
97
98 static int shift_fds(int fds[], size_t n_fds) {
99 int start, restart_from;
100
101 if (n_fds <= 0)
102 return 0;
103
104 /* Modifies the fds array! (sorts it) */
105
106 assert(fds);
107
108 start = 0;
109 for (;;) {
110 int i;
111
112 restart_from = -1;
113
114 for (i = start; i < (int) n_fds; i++) {
115 int nfd;
116
117 /* Already at right index? */
118 if (fds[i] == i+3)
119 continue;
120
121 nfd = fcntl(fds[i], F_DUPFD, i + 3);
122 if (nfd < 0)
123 return -errno;
124
125 safe_close(fds[i]);
126 fds[i] = nfd;
127
128 /* Hmm, the fd we wanted isn't free? Then
129 * let's remember that and try again from here */
130 if (nfd != i+3 && restart_from < 0)
131 restart_from = i;
132 }
133
134 if (restart_from < 0)
135 break;
136
137 start = restart_from;
138 }
139
140 return 0;
141 }
142
143 static int flags_fds(const int fds[], size_t n_socket_fds, size_t n_storage_fds, bool nonblock) {
144 size_t i, n_fds;
145 int r;
146
147 n_fds = n_socket_fds + n_storage_fds;
148 if (n_fds <= 0)
149 return 0;
150
151 assert(fds);
152
153 /* Drops/Sets O_NONBLOCK and FD_CLOEXEC from the file flags.
154 * O_NONBLOCK only applies to socket activation though. */
155
156 for (i = 0; i < n_fds; i++) {
157
158 if (i < n_socket_fds) {
159 r = fd_nonblock(fds[i], nonblock);
160 if (r < 0)
161 return r;
162 }
163
164 /* We unconditionally drop FD_CLOEXEC from the fds,
165 * since after all we want to pass these fds to our
166 * children */
167
168 r = fd_cloexec(fds[i], false);
169 if (r < 0)
170 return r;
171 }
172
173 return 0;
174 }
175
176 static const char *exec_context_tty_path(const ExecContext *context) {
177 assert(context);
178
179 if (context->stdio_as_fds)
180 return NULL;
181
182 if (context->tty_path)
183 return context->tty_path;
184
185 return "/dev/console";
186 }
187
188 static void exec_context_tty_reset(const ExecContext *context, const ExecParameters *p) {
189 const char *path;
190
191 assert(context);
192
193 path = exec_context_tty_path(context);
194
195 if (context->tty_vhangup) {
196 if (p && p->stdin_fd >= 0)
197 (void) terminal_vhangup_fd(p->stdin_fd);
198 else if (path)
199 (void) terminal_vhangup(path);
200 }
201
202 if (context->tty_reset) {
203 if (p && p->stdin_fd >= 0)
204 (void) reset_terminal_fd(p->stdin_fd, true);
205 else if (path)
206 (void) reset_terminal(path);
207 }
208
209 if (context->tty_vt_disallocate && path)
210 (void) vt_disallocate(path);
211 }
212
213 static bool is_terminal_input(ExecInput i) {
214 return IN_SET(i,
215 EXEC_INPUT_TTY,
216 EXEC_INPUT_TTY_FORCE,
217 EXEC_INPUT_TTY_FAIL);
218 }
219
220 static bool is_terminal_output(ExecOutput o) {
221 return IN_SET(o,
222 EXEC_OUTPUT_TTY,
223 EXEC_OUTPUT_KMSG_AND_CONSOLE,
224 EXEC_OUTPUT_JOURNAL_AND_CONSOLE);
225 }
226
227 static bool is_kmsg_output(ExecOutput o) {
228 return IN_SET(o,
229 EXEC_OUTPUT_KMSG,
230 EXEC_OUTPUT_KMSG_AND_CONSOLE);
231 }
232
233 static bool exec_context_needs_term(const ExecContext *c) {
234 assert(c);
235
236 /* Return true if the execution context suggests we should set $TERM to something useful. */
237
238 if (is_terminal_input(c->std_input))
239 return true;
240
241 if (is_terminal_output(c->std_output))
242 return true;
243
244 if (is_terminal_output(c->std_error))
245 return true;
246
247 return !!c->tty_path;
248 }
249
250 static int open_null_as(int flags, int nfd) {
251 int fd;
252
253 assert(nfd >= 0);
254
255 fd = open("/dev/null", flags|O_NOCTTY);
256 if (fd < 0)
257 return -errno;
258
259 return move_fd(fd, nfd, false);
260 }
261
262 static int connect_journal_socket(
263 int fd,
264 const char *log_namespace,
265 uid_t uid,
266 gid_t gid) {
267
268 union sockaddr_union sa;
269 socklen_t sa_len;
270 uid_t olduid = UID_INVALID;
271 gid_t oldgid = GID_INVALID;
272 const char *j;
273 int r;
274
275 j = log_namespace ?
276 strjoina("/run/systemd/journal.", log_namespace, "/stdout") :
277 "/run/systemd/journal/stdout";
278 r = sockaddr_un_set_path(&sa.un, j);
279 if (r < 0)
280 return r;
281 sa_len = r;
282
283 if (gid_is_valid(gid)) {
284 oldgid = getgid();
285
286 if (setegid(gid) < 0)
287 return -errno;
288 }
289
290 if (uid_is_valid(uid)) {
291 olduid = getuid();
292
293 if (seteuid(uid) < 0) {
294 r = -errno;
295 goto restore_gid;
296 }
297 }
298
299 r = connect(fd, &sa.sa, sa_len) < 0 ? -errno : 0;
300
301 /* If we fail to restore the uid or gid, things will likely
302 fail later on. This should only happen if an LSM interferes. */
303
304 if (uid_is_valid(uid))
305 (void) seteuid(olduid);
306
307 restore_gid:
308 if (gid_is_valid(gid))
309 (void) setegid(oldgid);
310
311 return r;
312 }
313
314 static int connect_logger_as(
315 const Unit *unit,
316 const ExecContext *context,
317 const ExecParameters *params,
318 ExecOutput output,
319 const char *ident,
320 int nfd,
321 uid_t uid,
322 gid_t gid) {
323
324 _cleanup_close_ int fd = -1;
325 int r;
326
327 assert(context);
328 assert(params);
329 assert(output < _EXEC_OUTPUT_MAX);
330 assert(ident);
331 assert(nfd >= 0);
332
333 fd = socket(AF_UNIX, SOCK_STREAM, 0);
334 if (fd < 0)
335 return -errno;
336
337 r = connect_journal_socket(fd, context->log_namespace, uid, gid);
338 if (r < 0)
339 return r;
340
341 if (shutdown(fd, SHUT_RD) < 0)
342 return -errno;
343
344 (void) fd_inc_sndbuf(fd, SNDBUF_SIZE);
345
346 if (dprintf(fd,
347 "%s\n"
348 "%s\n"
349 "%i\n"
350 "%i\n"
351 "%i\n"
352 "%i\n"
353 "%i\n",
354 context->syslog_identifier ?: ident,
355 params->flags & EXEC_PASS_LOG_UNIT ? unit->id : "",
356 context->syslog_priority,
357 !!context->syslog_level_prefix,
358 false,
359 is_kmsg_output(output),
360 is_terminal_output(output)) < 0)
361 return -errno;
362
363 return move_fd(TAKE_FD(fd), nfd, false);
364 }
365
366 static int open_terminal_as(const char *path, int flags, int nfd) {
367 int fd;
368
369 assert(path);
370 assert(nfd >= 0);
371
372 fd = open_terminal(path, flags | O_NOCTTY);
373 if (fd < 0)
374 return fd;
375
376 return move_fd(fd, nfd, false);
377 }
378
379 static int acquire_path(const char *path, int flags, mode_t mode) {
380 union sockaddr_union sa;
381 socklen_t sa_len;
382 _cleanup_close_ int fd = -1;
383 int r;
384
385 assert(path);
386
387 if (IN_SET(flags & O_ACCMODE, O_WRONLY, O_RDWR))
388 flags |= O_CREAT;
389
390 fd = open(path, flags|O_NOCTTY, mode);
391 if (fd >= 0)
392 return TAKE_FD(fd);
393
394 if (errno != ENXIO) /* ENXIO is returned when we try to open() an AF_UNIX file system socket on Linux */
395 return -errno;
396
397 /* So, it appears the specified path could be an AF_UNIX socket. Let's see if we can connect to it. */
398
399 r = sockaddr_un_set_path(&sa.un, path);
400 if (r < 0)
401 return r == -EINVAL ? -ENXIO : r;
402 sa_len = r;
403
404 fd = socket(AF_UNIX, SOCK_STREAM, 0);
405 if (fd < 0)
406 return -errno;
407
408 if (connect(fd, &sa.sa, sa_len) < 0)
409 return errno == EINVAL ? -ENXIO : -errno; /* Propagate initial error if we get EINVAL, i.e. we have
410 * indication that his wasn't an AF_UNIX socket after all */
411
412 if ((flags & O_ACCMODE) == O_RDONLY)
413 r = shutdown(fd, SHUT_WR);
414 else if ((flags & O_ACCMODE) == O_WRONLY)
415 r = shutdown(fd, SHUT_RD);
416 else
417 r = 0;
418 if (r < 0)
419 return -errno;
420
421 return TAKE_FD(fd);
422 }
423
424 static int fixup_input(
425 const ExecContext *context,
426 int socket_fd,
427 bool apply_tty_stdin) {
428
429 ExecInput std_input;
430
431 assert(context);
432
433 std_input = context->std_input;
434
435 if (is_terminal_input(std_input) && !apply_tty_stdin)
436 return EXEC_INPUT_NULL;
437
438 if (std_input == EXEC_INPUT_SOCKET && socket_fd < 0)
439 return EXEC_INPUT_NULL;
440
441 if (std_input == EXEC_INPUT_DATA && context->stdin_data_size == 0)
442 return EXEC_INPUT_NULL;
443
444 return std_input;
445 }
446
447 static int fixup_output(ExecOutput std_output, int socket_fd) {
448
449 if (std_output == EXEC_OUTPUT_SOCKET && socket_fd < 0)
450 return EXEC_OUTPUT_INHERIT;
451
452 return std_output;
453 }
454
455 static int setup_input(
456 const ExecContext *context,
457 const ExecParameters *params,
458 int socket_fd,
459 const int named_iofds[static 3]) {
460
461 ExecInput i;
462
463 assert(context);
464 assert(params);
465 assert(named_iofds);
466
467 if (params->stdin_fd >= 0) {
468 if (dup2(params->stdin_fd, STDIN_FILENO) < 0)
469 return -errno;
470
471 /* Try to make this the controlling tty, if it is a tty, and reset it */
472 if (isatty(STDIN_FILENO)) {
473 (void) ioctl(STDIN_FILENO, TIOCSCTTY, context->std_input == EXEC_INPUT_TTY_FORCE);
474 (void) reset_terminal_fd(STDIN_FILENO, true);
475 }
476
477 return STDIN_FILENO;
478 }
479
480 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
481
482 switch (i) {
483
484 case EXEC_INPUT_NULL:
485 return open_null_as(O_RDONLY, STDIN_FILENO);
486
487 case EXEC_INPUT_TTY:
488 case EXEC_INPUT_TTY_FORCE:
489 case EXEC_INPUT_TTY_FAIL: {
490 int fd;
491
492 fd = acquire_terminal(exec_context_tty_path(context),
493 i == EXEC_INPUT_TTY_FAIL ? ACQUIRE_TERMINAL_TRY :
494 i == EXEC_INPUT_TTY_FORCE ? ACQUIRE_TERMINAL_FORCE :
495 ACQUIRE_TERMINAL_WAIT,
496 USEC_INFINITY);
497 if (fd < 0)
498 return fd;
499
500 return move_fd(fd, STDIN_FILENO, false);
501 }
502
503 case EXEC_INPUT_SOCKET:
504 assert(socket_fd >= 0);
505
506 return dup2(socket_fd, STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
507
508 case EXEC_INPUT_NAMED_FD:
509 assert(named_iofds[STDIN_FILENO] >= 0);
510
511 (void) fd_nonblock(named_iofds[STDIN_FILENO], false);
512 return dup2(named_iofds[STDIN_FILENO], STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
513
514 case EXEC_INPUT_DATA: {
515 int fd;
516
517 fd = acquire_data_fd(context->stdin_data, context->stdin_data_size, 0);
518 if (fd < 0)
519 return fd;
520
521 return move_fd(fd, STDIN_FILENO, false);
522 }
523
524 case EXEC_INPUT_FILE: {
525 bool rw;
526 int fd;
527
528 assert(context->stdio_file[STDIN_FILENO]);
529
530 rw = (context->std_output == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDOUT_FILENO])) ||
531 (context->std_error == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDERR_FILENO]));
532
533 fd = acquire_path(context->stdio_file[STDIN_FILENO], rw ? O_RDWR : O_RDONLY, 0666 & ~context->umask);
534 if (fd < 0)
535 return fd;
536
537 return move_fd(fd, STDIN_FILENO, false);
538 }
539
540 default:
541 assert_not_reached("Unknown input type");
542 }
543 }
544
545 static bool can_inherit_stderr_from_stdout(
546 const ExecContext *context,
547 ExecOutput o,
548 ExecOutput e) {
549
550 assert(context);
551
552 /* Returns true, if given the specified STDERR and STDOUT output we can directly dup() the stdout fd to the
553 * stderr fd */
554
555 if (e == EXEC_OUTPUT_INHERIT)
556 return true;
557 if (e != o)
558 return false;
559
560 if (e == EXEC_OUTPUT_NAMED_FD)
561 return streq_ptr(context->stdio_fdname[STDOUT_FILENO], context->stdio_fdname[STDERR_FILENO]);
562
563 if (IN_SET(e, EXEC_OUTPUT_FILE, EXEC_OUTPUT_FILE_APPEND))
564 return streq_ptr(context->stdio_file[STDOUT_FILENO], context->stdio_file[STDERR_FILENO]);
565
566 return true;
567 }
568
569 static int setup_output(
570 const Unit *unit,
571 const ExecContext *context,
572 const ExecParameters *params,
573 int fileno,
574 int socket_fd,
575 const int named_iofds[static 3],
576 const char *ident,
577 uid_t uid,
578 gid_t gid,
579 dev_t *journal_stream_dev,
580 ino_t *journal_stream_ino) {
581
582 ExecOutput o;
583 ExecInput i;
584 int r;
585
586 assert(unit);
587 assert(context);
588 assert(params);
589 assert(ident);
590 assert(journal_stream_dev);
591 assert(journal_stream_ino);
592
593 if (fileno == STDOUT_FILENO && params->stdout_fd >= 0) {
594
595 if (dup2(params->stdout_fd, STDOUT_FILENO) < 0)
596 return -errno;
597
598 return STDOUT_FILENO;
599 }
600
601 if (fileno == STDERR_FILENO && params->stderr_fd >= 0) {
602 if (dup2(params->stderr_fd, STDERR_FILENO) < 0)
603 return -errno;
604
605 return STDERR_FILENO;
606 }
607
608 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
609 o = fixup_output(context->std_output, socket_fd);
610
611 if (fileno == STDERR_FILENO) {
612 ExecOutput e;
613 e = fixup_output(context->std_error, socket_fd);
614
615 /* This expects the input and output are already set up */
616
617 /* Don't change the stderr file descriptor if we inherit all
618 * the way and are not on a tty */
619 if (e == EXEC_OUTPUT_INHERIT &&
620 o == EXEC_OUTPUT_INHERIT &&
621 i == EXEC_INPUT_NULL &&
622 !is_terminal_input(context->std_input) &&
623 getppid () != 1)
624 return fileno;
625
626 /* Duplicate from stdout if possible */
627 if (can_inherit_stderr_from_stdout(context, o, e))
628 return dup2(STDOUT_FILENO, fileno) < 0 ? -errno : fileno;
629
630 o = e;
631
632 } else if (o == EXEC_OUTPUT_INHERIT) {
633 /* If input got downgraded, inherit the original value */
634 if (i == EXEC_INPUT_NULL && is_terminal_input(context->std_input))
635 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
636
637 /* If the input is connected to anything that's not a /dev/null or a data fd, inherit that... */
638 if (!IN_SET(i, EXEC_INPUT_NULL, EXEC_INPUT_DATA))
639 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
640
641 /* If we are not started from PID 1 we just inherit STDOUT from our parent process. */
642 if (getppid() != 1)
643 return fileno;
644
645 /* We need to open /dev/null here anew, to get the right access mode. */
646 return open_null_as(O_WRONLY, fileno);
647 }
648
649 switch (o) {
650
651 case EXEC_OUTPUT_NULL:
652 return open_null_as(O_WRONLY, fileno);
653
654 case EXEC_OUTPUT_TTY:
655 if (is_terminal_input(i))
656 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
657
658 /* We don't reset the terminal if this is just about output */
659 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
660
661 case EXEC_OUTPUT_KMSG:
662 case EXEC_OUTPUT_KMSG_AND_CONSOLE:
663 case EXEC_OUTPUT_JOURNAL:
664 case EXEC_OUTPUT_JOURNAL_AND_CONSOLE:
665 r = connect_logger_as(unit, context, params, o, ident, fileno, uid, gid);
666 if (r < 0) {
667 log_unit_warning_errno(unit, r, "Failed to connect %s to the journal socket, ignoring: %m", fileno == STDOUT_FILENO ? "stdout" : "stderr");
668 r = open_null_as(O_WRONLY, fileno);
669 } else {
670 struct stat st;
671
672 /* If we connected this fd to the journal via a stream, patch the device/inode into the passed
673 * parameters, but only then. This is useful so that we can set $JOURNAL_STREAM that permits
674 * services to detect whether they are connected to the journal or not.
675 *
676 * If both stdout and stderr are connected to a stream then let's make sure to store the data
677 * about STDERR as that's usually the best way to do logging. */
678
679 if (fstat(fileno, &st) >= 0 &&
680 (*journal_stream_ino == 0 || fileno == STDERR_FILENO)) {
681 *journal_stream_dev = st.st_dev;
682 *journal_stream_ino = st.st_ino;
683 }
684 }
685 return r;
686
687 case EXEC_OUTPUT_SOCKET:
688 assert(socket_fd >= 0);
689
690 return dup2(socket_fd, fileno) < 0 ? -errno : fileno;
691
692 case EXEC_OUTPUT_NAMED_FD:
693 assert(named_iofds[fileno] >= 0);
694
695 (void) fd_nonblock(named_iofds[fileno], false);
696 return dup2(named_iofds[fileno], fileno) < 0 ? -errno : fileno;
697
698 case EXEC_OUTPUT_FILE:
699 case EXEC_OUTPUT_FILE_APPEND: {
700 bool rw;
701 int fd, flags;
702
703 assert(context->stdio_file[fileno]);
704
705 rw = context->std_input == EXEC_INPUT_FILE &&
706 streq_ptr(context->stdio_file[fileno], context->stdio_file[STDIN_FILENO]);
707
708 if (rw)
709 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
710
711 flags = O_WRONLY;
712 if (o == EXEC_OUTPUT_FILE_APPEND)
713 flags |= O_APPEND;
714
715 fd = acquire_path(context->stdio_file[fileno], flags, 0666 & ~context->umask);
716 if (fd < 0)
717 return fd;
718
719 return move_fd(fd, fileno, 0);
720 }
721
722 default:
723 assert_not_reached("Unknown error type");
724 }
725 }
726
727 static int chown_terminal(int fd, uid_t uid) {
728 int r;
729
730 assert(fd >= 0);
731
732 /* Before we chown/chmod the TTY, let's ensure this is actually a tty */
733 if (isatty(fd) < 1) {
734 if (IN_SET(errno, EINVAL, ENOTTY))
735 return 0; /* not a tty */
736
737 return -errno;
738 }
739
740 /* This might fail. What matters are the results. */
741 r = fchmod_and_chown(fd, TTY_MODE, uid, -1);
742 if (r < 0)
743 return r;
744
745 return 1;
746 }
747
748 static int setup_confirm_stdio(const char *vc, int *_saved_stdin, int *_saved_stdout) {
749 _cleanup_close_ int fd = -1, saved_stdin = -1, saved_stdout = -1;
750 int r;
751
752 assert(_saved_stdin);
753 assert(_saved_stdout);
754
755 saved_stdin = fcntl(STDIN_FILENO, F_DUPFD, 3);
756 if (saved_stdin < 0)
757 return -errno;
758
759 saved_stdout = fcntl(STDOUT_FILENO, F_DUPFD, 3);
760 if (saved_stdout < 0)
761 return -errno;
762
763 fd = acquire_terminal(vc, ACQUIRE_TERMINAL_WAIT, DEFAULT_CONFIRM_USEC);
764 if (fd < 0)
765 return fd;
766
767 r = chown_terminal(fd, getuid());
768 if (r < 0)
769 return r;
770
771 r = reset_terminal_fd(fd, true);
772 if (r < 0)
773 return r;
774
775 r = rearrange_stdio(fd, fd, STDERR_FILENO);
776 fd = -1;
777 if (r < 0)
778 return r;
779
780 *_saved_stdin = saved_stdin;
781 *_saved_stdout = saved_stdout;
782
783 saved_stdin = saved_stdout = -1;
784
785 return 0;
786 }
787
788 static void write_confirm_error_fd(int err, int fd, const Unit *u) {
789 assert(err < 0);
790
791 if (err == -ETIMEDOUT)
792 dprintf(fd, "Confirmation question timed out for %s, assuming positive response.\n", u->id);
793 else {
794 errno = -err;
795 dprintf(fd, "Couldn't ask confirmation for %s: %m, assuming positive response.\n", u->id);
796 }
797 }
798
799 static void write_confirm_error(int err, const char *vc, const Unit *u) {
800 _cleanup_close_ int fd = -1;
801
802 assert(vc);
803
804 fd = open_terminal(vc, O_WRONLY|O_NOCTTY|O_CLOEXEC);
805 if (fd < 0)
806 return;
807
808 write_confirm_error_fd(err, fd, u);
809 }
810
811 static int restore_confirm_stdio(int *saved_stdin, int *saved_stdout) {
812 int r = 0;
813
814 assert(saved_stdin);
815 assert(saved_stdout);
816
817 release_terminal();
818
819 if (*saved_stdin >= 0)
820 if (dup2(*saved_stdin, STDIN_FILENO) < 0)
821 r = -errno;
822
823 if (*saved_stdout >= 0)
824 if (dup2(*saved_stdout, STDOUT_FILENO) < 0)
825 r = -errno;
826
827 *saved_stdin = safe_close(*saved_stdin);
828 *saved_stdout = safe_close(*saved_stdout);
829
830 return r;
831 }
832
833 enum {
834 CONFIRM_PRETEND_FAILURE = -1,
835 CONFIRM_PRETEND_SUCCESS = 0,
836 CONFIRM_EXECUTE = 1,
837 };
838
839 static int ask_for_confirmation(const char *vc, Unit *u, const char *cmdline) {
840 int saved_stdout = -1, saved_stdin = -1, r;
841 _cleanup_free_ char *e = NULL;
842 char c;
843
844 /* For any internal errors, assume a positive response. */
845 r = setup_confirm_stdio(vc, &saved_stdin, &saved_stdout);
846 if (r < 0) {
847 write_confirm_error(r, vc, u);
848 return CONFIRM_EXECUTE;
849 }
850
851 /* confirm_spawn might have been disabled while we were sleeping. */
852 if (manager_is_confirm_spawn_disabled(u->manager)) {
853 r = 1;
854 goto restore_stdio;
855 }
856
857 e = ellipsize(cmdline, 60, 100);
858 if (!e) {
859 log_oom();
860 r = CONFIRM_EXECUTE;
861 goto restore_stdio;
862 }
863
864 for (;;) {
865 r = ask_char(&c, "yfshiDjcn", "Execute %s? [y, f, s – h for help] ", e);
866 if (r < 0) {
867 write_confirm_error_fd(r, STDOUT_FILENO, u);
868 r = CONFIRM_EXECUTE;
869 goto restore_stdio;
870 }
871
872 switch (c) {
873 case 'c':
874 printf("Resuming normal execution.\n");
875 manager_disable_confirm_spawn();
876 r = 1;
877 break;
878 case 'D':
879 unit_dump(u, stdout, " ");
880 continue; /* ask again */
881 case 'f':
882 printf("Failing execution.\n");
883 r = CONFIRM_PRETEND_FAILURE;
884 break;
885 case 'h':
886 printf(" c - continue, proceed without asking anymore\n"
887 " D - dump, show the state of the unit\n"
888 " f - fail, don't execute the command and pretend it failed\n"
889 " h - help\n"
890 " i - info, show a short summary of the unit\n"
891 " j - jobs, show jobs that are in progress\n"
892 " s - skip, don't execute the command and pretend it succeeded\n"
893 " y - yes, execute the command\n");
894 continue; /* ask again */
895 case 'i':
896 printf(" Description: %s\n"
897 " Unit: %s\n"
898 " Command: %s\n",
899 u->id, u->description, cmdline);
900 continue; /* ask again */
901 case 'j':
902 manager_dump_jobs(u->manager, stdout, " ");
903 continue; /* ask again */
904 case 'n':
905 /* 'n' was removed in favor of 'f'. */
906 printf("Didn't understand 'n', did you mean 'f'?\n");
907 continue; /* ask again */
908 case 's':
909 printf("Skipping execution.\n");
910 r = CONFIRM_PRETEND_SUCCESS;
911 break;
912 case 'y':
913 r = CONFIRM_EXECUTE;
914 break;
915 default:
916 assert_not_reached("Unhandled choice");
917 }
918 break;
919 }
920
921 restore_stdio:
922 restore_confirm_stdio(&saved_stdin, &saved_stdout);
923 return r;
924 }
925
926 static int get_fixed_user(const ExecContext *c, const char **user,
927 uid_t *uid, gid_t *gid,
928 const char **home, const char **shell) {
929 int r;
930 const char *name;
931
932 assert(c);
933
934 if (!c->user)
935 return 0;
936
937 /* Note that we don't set $HOME or $SHELL if they are not particularly enlightening anyway
938 * (i.e. are "/" or "/bin/nologin"). */
939
940 name = c->user;
941 r = get_user_creds(&name, uid, gid, home, shell, USER_CREDS_CLEAN);
942 if (r < 0)
943 return r;
944
945 *user = name;
946 return 0;
947 }
948
949 static int get_fixed_group(const ExecContext *c, const char **group, gid_t *gid) {
950 int r;
951 const char *name;
952
953 assert(c);
954
955 if (!c->group)
956 return 0;
957
958 name = c->group;
959 r = get_group_creds(&name, gid, 0);
960 if (r < 0)
961 return r;
962
963 *group = name;
964 return 0;
965 }
966
967 static int get_supplementary_groups(const ExecContext *c, const char *user,
968 const char *group, gid_t gid,
969 gid_t **supplementary_gids, int *ngids) {
970 char **i;
971 int r, k = 0;
972 int ngroups_max;
973 bool keep_groups = false;
974 gid_t *groups = NULL;
975 _cleanup_free_ gid_t *l_gids = NULL;
976
977 assert(c);
978
979 /*
980 * If user is given, then lookup GID and supplementary groups list.
981 * We avoid NSS lookups for gid=0. Also we have to initialize groups
982 * here and as early as possible so we keep the list of supplementary
983 * groups of the caller.
984 */
985 if (user && gid_is_valid(gid) && gid != 0) {
986 /* First step, initialize groups from /etc/groups */
987 if (initgroups(user, gid) < 0)
988 return -errno;
989
990 keep_groups = true;
991 }
992
993 if (strv_isempty(c->supplementary_groups))
994 return 0;
995
996 /*
997 * If SupplementaryGroups= was passed then NGROUPS_MAX has to
998 * be positive, otherwise fail.
999 */
1000 errno = 0;
1001 ngroups_max = (int) sysconf(_SC_NGROUPS_MAX);
1002 if (ngroups_max <= 0)
1003 return errno_or_else(EOPNOTSUPP);
1004
1005 l_gids = new(gid_t, ngroups_max);
1006 if (!l_gids)
1007 return -ENOMEM;
1008
1009 if (keep_groups) {
1010 /*
1011 * Lookup the list of groups that the user belongs to, we
1012 * avoid NSS lookups here too for gid=0.
1013 */
1014 k = ngroups_max;
1015 if (getgrouplist(user, gid, l_gids, &k) < 0)
1016 return -EINVAL;
1017 } else
1018 k = 0;
1019
1020 STRV_FOREACH(i, c->supplementary_groups) {
1021 const char *g;
1022
1023 if (k >= ngroups_max)
1024 return -E2BIG;
1025
1026 g = *i;
1027 r = get_group_creds(&g, l_gids+k, 0);
1028 if (r < 0)
1029 return r;
1030
1031 k++;
1032 }
1033
1034 /*
1035 * Sets ngids to zero to drop all supplementary groups, happens
1036 * when we are under root and SupplementaryGroups= is empty.
1037 */
1038 if (k == 0) {
1039 *ngids = 0;
1040 return 0;
1041 }
1042
1043 /* Otherwise get the final list of supplementary groups */
1044 groups = memdup(l_gids, sizeof(gid_t) * k);
1045 if (!groups)
1046 return -ENOMEM;
1047
1048 *supplementary_gids = groups;
1049 *ngids = k;
1050
1051 groups = NULL;
1052
1053 return 0;
1054 }
1055
1056 static int enforce_groups(gid_t gid, const gid_t *supplementary_gids, int ngids) {
1057 int r;
1058
1059 /* Handle SupplementaryGroups= if it is not empty */
1060 if (ngids > 0) {
1061 r = maybe_setgroups(ngids, supplementary_gids);
1062 if (r < 0)
1063 return r;
1064 }
1065
1066 if (gid_is_valid(gid)) {
1067 /* Then set our gids */
1068 if (setresgid(gid, gid, gid) < 0)
1069 return -errno;
1070 }
1071
1072 return 0;
1073 }
1074
1075 static int enforce_user(const ExecContext *context, uid_t uid) {
1076 assert(context);
1077
1078 if (!uid_is_valid(uid))
1079 return 0;
1080
1081 /* Sets (but doesn't look up) the uid and make sure we keep the
1082 * capabilities while doing so. */
1083
1084 if (context->capability_ambient_set != 0) {
1085
1086 /* First step: If we need to keep capabilities but
1087 * drop privileges we need to make sure we keep our
1088 * caps, while we drop privileges. */
1089 if (uid != 0) {
1090 int sb = context->secure_bits | 1<<SECURE_KEEP_CAPS;
1091
1092 if (prctl(PR_GET_SECUREBITS) != sb)
1093 if (prctl(PR_SET_SECUREBITS, sb) < 0)
1094 return -errno;
1095 }
1096 }
1097
1098 /* Second step: actually set the uids */
1099 if (setresuid(uid, uid, uid) < 0)
1100 return -errno;
1101
1102 /* At this point we should have all necessary capabilities but
1103 are otherwise a normal user. However, the caps might got
1104 corrupted due to the setresuid() so we need clean them up
1105 later. This is done outside of this call. */
1106
1107 return 0;
1108 }
1109
1110 #if HAVE_PAM
1111
1112 static int null_conv(
1113 int num_msg,
1114 const struct pam_message **msg,
1115 struct pam_response **resp,
1116 void *appdata_ptr) {
1117
1118 /* We don't support conversations */
1119
1120 return PAM_CONV_ERR;
1121 }
1122
1123 #endif
1124
1125 static int setup_pam(
1126 const char *name,
1127 const char *user,
1128 uid_t uid,
1129 gid_t gid,
1130 const char *tty,
1131 char ***env,
1132 const int fds[], size_t n_fds) {
1133
1134 #if HAVE_PAM
1135
1136 static const struct pam_conv conv = {
1137 .conv = null_conv,
1138 .appdata_ptr = NULL
1139 };
1140
1141 _cleanup_(barrier_destroy) Barrier barrier = BARRIER_NULL;
1142 pam_handle_t *handle = NULL;
1143 sigset_t old_ss;
1144 int pam_code = PAM_SUCCESS, r;
1145 char **nv, **e = NULL;
1146 bool close_session = false;
1147 pid_t pam_pid = 0, parent_pid;
1148 int flags = 0;
1149
1150 assert(name);
1151 assert(user);
1152 assert(env);
1153
1154 /* We set up PAM in the parent process, then fork. The child
1155 * will then stay around until killed via PR_GET_PDEATHSIG or
1156 * systemd via the cgroup logic. It will then remove the PAM
1157 * session again. The parent process will exec() the actual
1158 * daemon. We do things this way to ensure that the main PID
1159 * of the daemon is the one we initially fork()ed. */
1160
1161 r = barrier_create(&barrier);
1162 if (r < 0)
1163 goto fail;
1164
1165 if (log_get_max_level() < LOG_DEBUG)
1166 flags |= PAM_SILENT;
1167
1168 pam_code = pam_start(name, user, &conv, &handle);
1169 if (pam_code != PAM_SUCCESS) {
1170 handle = NULL;
1171 goto fail;
1172 }
1173
1174 if (!tty) {
1175 _cleanup_free_ char *q = NULL;
1176
1177 /* Hmm, so no TTY was explicitly passed, but an fd passed to us directly might be a TTY. Let's figure
1178 * out if that's the case, and read the TTY off it. */
1179
1180 if (getttyname_malloc(STDIN_FILENO, &q) >= 0)
1181 tty = strjoina("/dev/", q);
1182 }
1183
1184 if (tty) {
1185 pam_code = pam_set_item(handle, PAM_TTY, tty);
1186 if (pam_code != PAM_SUCCESS)
1187 goto fail;
1188 }
1189
1190 STRV_FOREACH(nv, *env) {
1191 pam_code = pam_putenv(handle, *nv);
1192 if (pam_code != PAM_SUCCESS)
1193 goto fail;
1194 }
1195
1196 pam_code = pam_acct_mgmt(handle, flags);
1197 if (pam_code != PAM_SUCCESS)
1198 goto fail;
1199
1200 pam_code = pam_setcred(handle, PAM_ESTABLISH_CRED | flags);
1201 if (pam_code != PAM_SUCCESS)
1202 log_debug("pam_setcred() failed, ignoring: %s", pam_strerror(handle, pam_code));
1203
1204 pam_code = pam_open_session(handle, flags);
1205 if (pam_code != PAM_SUCCESS)
1206 goto fail;
1207
1208 close_session = true;
1209
1210 e = pam_getenvlist(handle);
1211 if (!e) {
1212 pam_code = PAM_BUF_ERR;
1213 goto fail;
1214 }
1215
1216 /* Block SIGTERM, so that we know that it won't get lost in
1217 * the child */
1218
1219 assert_se(sigprocmask_many(SIG_BLOCK, &old_ss, SIGTERM, -1) >= 0);
1220
1221 parent_pid = getpid_cached();
1222
1223 r = safe_fork("(sd-pam)", 0, &pam_pid);
1224 if (r < 0)
1225 goto fail;
1226 if (r == 0) {
1227 int sig, ret = EXIT_PAM;
1228
1229 /* The child's job is to reset the PAM session on
1230 * termination */
1231 barrier_set_role(&barrier, BARRIER_CHILD);
1232
1233 /* Make sure we don't keep open the passed fds in this child. We assume that otherwise only those fds
1234 * are open here that have been opened by PAM. */
1235 (void) close_many(fds, n_fds);
1236
1237 /* Drop privileges - we don't need any to pam_close_session
1238 * and this will make PR_SET_PDEATHSIG work in most cases.
1239 * If this fails, ignore the error - but expect sd-pam threads
1240 * to fail to exit normally */
1241
1242 r = maybe_setgroups(0, NULL);
1243 if (r < 0)
1244 log_warning_errno(r, "Failed to setgroups() in sd-pam: %m");
1245 if (setresgid(gid, gid, gid) < 0)
1246 log_warning_errno(errno, "Failed to setresgid() in sd-pam: %m");
1247 if (setresuid(uid, uid, uid) < 0)
1248 log_warning_errno(errno, "Failed to setresuid() in sd-pam: %m");
1249
1250 (void) ignore_signals(SIGPIPE, -1);
1251
1252 /* Wait until our parent died. This will only work if
1253 * the above setresuid() succeeds, otherwise the kernel
1254 * will not allow unprivileged parents kill their privileged
1255 * children this way. We rely on the control groups kill logic
1256 * to do the rest for us. */
1257 if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0)
1258 goto child_finish;
1259
1260 /* Tell the parent that our setup is done. This is especially
1261 * important regarding dropping privileges. Otherwise, unit
1262 * setup might race against our setresuid(2) call.
1263 *
1264 * If the parent aborted, we'll detect this below, hence ignore
1265 * return failure here. */
1266 (void) barrier_place(&barrier);
1267
1268 /* Check if our parent process might already have died? */
1269 if (getppid() == parent_pid) {
1270 sigset_t ss;
1271
1272 assert_se(sigemptyset(&ss) >= 0);
1273 assert_se(sigaddset(&ss, SIGTERM) >= 0);
1274
1275 for (;;) {
1276 if (sigwait(&ss, &sig) < 0) {
1277 if (errno == EINTR)
1278 continue;
1279
1280 goto child_finish;
1281 }
1282
1283 assert(sig == SIGTERM);
1284 break;
1285 }
1286 }
1287
1288 pam_code = pam_setcred(handle, PAM_DELETE_CRED | flags);
1289 if (pam_code != PAM_SUCCESS)
1290 goto child_finish;
1291
1292 /* If our parent died we'll end the session */
1293 if (getppid() != parent_pid) {
1294 pam_code = pam_close_session(handle, flags);
1295 if (pam_code != PAM_SUCCESS)
1296 goto child_finish;
1297 }
1298
1299 ret = 0;
1300
1301 child_finish:
1302 pam_end(handle, pam_code | flags);
1303 _exit(ret);
1304 }
1305
1306 barrier_set_role(&barrier, BARRIER_PARENT);
1307
1308 /* If the child was forked off successfully it will do all the
1309 * cleanups, so forget about the handle here. */
1310 handle = NULL;
1311
1312 /* Unblock SIGTERM again in the parent */
1313 assert_se(sigprocmask(SIG_SETMASK, &old_ss, NULL) >= 0);
1314
1315 /* We close the log explicitly here, since the PAM modules
1316 * might have opened it, but we don't want this fd around. */
1317 closelog();
1318
1319 /* Synchronously wait for the child to initialize. We don't care for
1320 * errors as we cannot recover. However, warn loudly if it happens. */
1321 if (!barrier_place_and_sync(&barrier))
1322 log_error("PAM initialization failed");
1323
1324 return strv_free_and_replace(*env, e);
1325
1326 fail:
1327 if (pam_code != PAM_SUCCESS) {
1328 log_error("PAM failed: %s", pam_strerror(handle, pam_code));
1329 r = -EPERM; /* PAM errors do not map to errno */
1330 } else
1331 log_error_errno(r, "PAM failed: %m");
1332
1333 if (handle) {
1334 if (close_session)
1335 pam_code = pam_close_session(handle, flags);
1336
1337 pam_end(handle, pam_code | flags);
1338 }
1339
1340 strv_free(e);
1341 closelog();
1342
1343 return r;
1344 #else
1345 return 0;
1346 #endif
1347 }
1348
1349 static void rename_process_from_path(const char *path) {
1350 char process_name[11];
1351 const char *p;
1352 size_t l;
1353
1354 /* This resulting string must fit in 10 chars (i.e. the length
1355 * of "/sbin/init") to look pretty in /bin/ps */
1356
1357 p = basename(path);
1358 if (isempty(p)) {
1359 rename_process("(...)");
1360 return;
1361 }
1362
1363 l = strlen(p);
1364 if (l > 8) {
1365 /* The end of the process name is usually more
1366 * interesting, since the first bit might just be
1367 * "systemd-" */
1368 p = p + l - 8;
1369 l = 8;
1370 }
1371
1372 process_name[0] = '(';
1373 memcpy(process_name+1, p, l);
1374 process_name[1+l] = ')';
1375 process_name[1+l+1] = 0;
1376
1377 rename_process(process_name);
1378 }
1379
1380 static bool context_has_address_families(const ExecContext *c) {
1381 assert(c);
1382
1383 return c->address_families_allow_list ||
1384 !set_isempty(c->address_families);
1385 }
1386
1387 static bool context_has_syscall_filters(const ExecContext *c) {
1388 assert(c);
1389
1390 return c->syscall_allow_list ||
1391 !hashmap_isempty(c->syscall_filter);
1392 }
1393
1394 static bool context_has_no_new_privileges(const ExecContext *c) {
1395 assert(c);
1396
1397 if (c->no_new_privileges)
1398 return true;
1399
1400 if (have_effective_cap(CAP_SYS_ADMIN)) /* if we are privileged, we don't need NNP */
1401 return false;
1402
1403 /* We need NNP if we have any form of seccomp and are unprivileged */
1404 return context_has_address_families(c) ||
1405 c->memory_deny_write_execute ||
1406 c->restrict_realtime ||
1407 c->restrict_suid_sgid ||
1408 exec_context_restrict_namespaces_set(c) ||
1409 c->protect_clock ||
1410 c->protect_kernel_tunables ||
1411 c->protect_kernel_modules ||
1412 c->protect_kernel_logs ||
1413 c->private_devices ||
1414 context_has_syscall_filters(c) ||
1415 !set_isempty(c->syscall_archs) ||
1416 c->lock_personality ||
1417 c->protect_hostname;
1418 }
1419
1420 #if HAVE_SECCOMP
1421
1422 static bool skip_seccomp_unavailable(const Unit* u, const char* msg) {
1423
1424 if (is_seccomp_available())
1425 return false;
1426
1427 log_unit_debug(u, "SECCOMP features not detected in the kernel, skipping %s", msg);
1428 return true;
1429 }
1430
1431 static int apply_syscall_filter(const Unit* u, const ExecContext *c, bool needs_ambient_hack) {
1432 uint32_t negative_action, default_action, action;
1433 int r;
1434
1435 assert(u);
1436 assert(c);
1437
1438 if (!context_has_syscall_filters(c))
1439 return 0;
1440
1441 if (skip_seccomp_unavailable(u, "SystemCallFilter="))
1442 return 0;
1443
1444 negative_action = c->syscall_errno == 0 ? scmp_act_kill_process() : SCMP_ACT_ERRNO(c->syscall_errno);
1445
1446 if (c->syscall_allow_list) {
1447 default_action = negative_action;
1448 action = SCMP_ACT_ALLOW;
1449 } else {
1450 default_action = SCMP_ACT_ALLOW;
1451 action = negative_action;
1452 }
1453
1454 if (needs_ambient_hack) {
1455 r = seccomp_filter_set_add(c->syscall_filter, c->syscall_allow_list, syscall_filter_sets + SYSCALL_FILTER_SET_SETUID);
1456 if (r < 0)
1457 return r;
1458 }
1459
1460 return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_filter, action, false);
1461 }
1462
1463 static int apply_syscall_archs(const Unit *u, const ExecContext *c) {
1464 assert(u);
1465 assert(c);
1466
1467 if (set_isempty(c->syscall_archs))
1468 return 0;
1469
1470 if (skip_seccomp_unavailable(u, "SystemCallArchitectures="))
1471 return 0;
1472
1473 return seccomp_restrict_archs(c->syscall_archs);
1474 }
1475
1476 static int apply_address_families(const Unit* u, const ExecContext *c) {
1477 assert(u);
1478 assert(c);
1479
1480 if (!context_has_address_families(c))
1481 return 0;
1482
1483 if (skip_seccomp_unavailable(u, "RestrictAddressFamilies="))
1484 return 0;
1485
1486 return seccomp_restrict_address_families(c->address_families, c->address_families_allow_list);
1487 }
1488
1489 static int apply_memory_deny_write_execute(const Unit* u, const ExecContext *c) {
1490 assert(u);
1491 assert(c);
1492
1493 if (!c->memory_deny_write_execute)
1494 return 0;
1495
1496 if (skip_seccomp_unavailable(u, "MemoryDenyWriteExecute="))
1497 return 0;
1498
1499 return seccomp_memory_deny_write_execute();
1500 }
1501
1502 static int apply_restrict_realtime(const Unit* u, const ExecContext *c) {
1503 assert(u);
1504 assert(c);
1505
1506 if (!c->restrict_realtime)
1507 return 0;
1508
1509 if (skip_seccomp_unavailable(u, "RestrictRealtime="))
1510 return 0;
1511
1512 return seccomp_restrict_realtime();
1513 }
1514
1515 static int apply_restrict_suid_sgid(const Unit* u, const ExecContext *c) {
1516 assert(u);
1517 assert(c);
1518
1519 if (!c->restrict_suid_sgid)
1520 return 0;
1521
1522 if (skip_seccomp_unavailable(u, "RestrictSUIDSGID="))
1523 return 0;
1524
1525 return seccomp_restrict_suid_sgid();
1526 }
1527
1528 static int apply_protect_sysctl(const Unit *u, const ExecContext *c) {
1529 assert(u);
1530 assert(c);
1531
1532 /* Turn off the legacy sysctl() system call. Many distributions turn this off while building the kernel, but
1533 * let's protect even those systems where this is left on in the kernel. */
1534
1535 if (!c->protect_kernel_tunables)
1536 return 0;
1537
1538 if (skip_seccomp_unavailable(u, "ProtectKernelTunables="))
1539 return 0;
1540
1541 return seccomp_protect_sysctl();
1542 }
1543
1544 static int apply_protect_kernel_modules(const Unit *u, const ExecContext *c) {
1545 assert(u);
1546 assert(c);
1547
1548 /* Turn off module syscalls on ProtectKernelModules=yes */
1549
1550 if (!c->protect_kernel_modules)
1551 return 0;
1552
1553 if (skip_seccomp_unavailable(u, "ProtectKernelModules="))
1554 return 0;
1555
1556 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_MODULE, SCMP_ACT_ERRNO(EPERM), false);
1557 }
1558
1559 static int apply_protect_kernel_logs(const Unit *u, const ExecContext *c) {
1560 assert(u);
1561 assert(c);
1562
1563 if (!c->protect_kernel_logs)
1564 return 0;
1565
1566 if (skip_seccomp_unavailable(u, "ProtectKernelLogs="))
1567 return 0;
1568
1569 return seccomp_protect_syslog();
1570 }
1571
1572 static int apply_protect_clock(const Unit *u, const ExecContext *c) {
1573 assert(u);
1574 assert(c);
1575
1576 if (!c->protect_clock)
1577 return 0;
1578
1579 if (skip_seccomp_unavailable(u, "ProtectClock="))
1580 return 0;
1581
1582 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_CLOCK, SCMP_ACT_ERRNO(EPERM), false);
1583 }
1584
1585 static int apply_private_devices(const Unit *u, const ExecContext *c) {
1586 assert(u);
1587 assert(c);
1588
1589 /* If PrivateDevices= is set, also turn off iopl and all @raw-io syscalls. */
1590
1591 if (!c->private_devices)
1592 return 0;
1593
1594 if (skip_seccomp_unavailable(u, "PrivateDevices="))
1595 return 0;
1596
1597 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_RAW_IO, SCMP_ACT_ERRNO(EPERM), false);
1598 }
1599
1600 static int apply_restrict_namespaces(const Unit *u, const ExecContext *c) {
1601 assert(u);
1602 assert(c);
1603
1604 if (!exec_context_restrict_namespaces_set(c))
1605 return 0;
1606
1607 if (skip_seccomp_unavailable(u, "RestrictNamespaces="))
1608 return 0;
1609
1610 return seccomp_restrict_namespaces(c->restrict_namespaces);
1611 }
1612
1613 static int apply_lock_personality(const Unit* u, const ExecContext *c) {
1614 unsigned long personality;
1615 int r;
1616
1617 assert(u);
1618 assert(c);
1619
1620 if (!c->lock_personality)
1621 return 0;
1622
1623 if (skip_seccomp_unavailable(u, "LockPersonality="))
1624 return 0;
1625
1626 personality = c->personality;
1627
1628 /* If personality is not specified, use either PER_LINUX or PER_LINUX32 depending on what is currently set. */
1629 if (personality == PERSONALITY_INVALID) {
1630
1631 r = opinionated_personality(&personality);
1632 if (r < 0)
1633 return r;
1634 }
1635
1636 return seccomp_lock_personality(personality);
1637 }
1638
1639 #endif
1640
1641 static int apply_protect_hostname(const Unit *u, const ExecContext *c, int *ret_exit_status) {
1642 assert(u);
1643 assert(c);
1644
1645 if (!c->protect_hostname)
1646 return 0;
1647
1648 if (ns_type_supported(NAMESPACE_UTS)) {
1649 if (unshare(CLONE_NEWUTS) < 0) {
1650 if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno)) {
1651 *ret_exit_status = EXIT_NAMESPACE;
1652 return log_unit_error_errno(u, errno, "Failed to set up UTS namespacing: %m");
1653 }
1654
1655 log_unit_warning(u, "ProtectHostname=yes is configured, but UTS namespace setup is prohibited (container manager?), ignoring namespace setup.");
1656 }
1657 } else
1658 log_unit_warning(u, "ProtectHostname=yes is configured, but the kernel does not support UTS namespaces, ignoring namespace setup.");
1659
1660 #if HAVE_SECCOMP
1661 int r;
1662
1663 if (skip_seccomp_unavailable(u, "ProtectHostname="))
1664 return 0;
1665
1666 r = seccomp_protect_hostname();
1667 if (r < 0) {
1668 *ret_exit_status = EXIT_SECCOMP;
1669 return log_unit_error_errno(u, r, "Failed to apply hostname restrictions: %m");
1670 }
1671 #endif
1672
1673 return 0;
1674 }
1675
1676 static void do_idle_pipe_dance(int idle_pipe[static 4]) {
1677 assert(idle_pipe);
1678
1679 idle_pipe[1] = safe_close(idle_pipe[1]);
1680 idle_pipe[2] = safe_close(idle_pipe[2]);
1681
1682 if (idle_pipe[0] >= 0) {
1683 int r;
1684
1685 r = fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT_USEC);
1686
1687 if (idle_pipe[3] >= 0 && r == 0 /* timeout */) {
1688 ssize_t n;
1689
1690 /* Signal systemd that we are bored and want to continue. */
1691 n = write(idle_pipe[3], "x", 1);
1692 if (n > 0)
1693 /* Wait for systemd to react to the signal above. */
1694 (void) fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT2_USEC);
1695 }
1696
1697 idle_pipe[0] = safe_close(idle_pipe[0]);
1698
1699 }
1700
1701 idle_pipe[3] = safe_close(idle_pipe[3]);
1702 }
1703
1704 static const char *exec_directory_env_name_to_string(ExecDirectoryType t);
1705
1706 static int build_environment(
1707 const Unit *u,
1708 const ExecContext *c,
1709 const ExecParameters *p,
1710 size_t n_fds,
1711 const char *home,
1712 const char *username,
1713 const char *shell,
1714 dev_t journal_stream_dev,
1715 ino_t journal_stream_ino,
1716 char ***ret) {
1717
1718 _cleanup_strv_free_ char **our_env = NULL;
1719 ExecDirectoryType t;
1720 size_t n_env = 0;
1721 char *x;
1722
1723 assert(u);
1724 assert(c);
1725 assert(p);
1726 assert(ret);
1727
1728 our_env = new0(char*, 15 + _EXEC_DIRECTORY_TYPE_MAX);
1729 if (!our_env)
1730 return -ENOMEM;
1731
1732 if (n_fds > 0) {
1733 _cleanup_free_ char *joined = NULL;
1734
1735 if (asprintf(&x, "LISTEN_PID="PID_FMT, getpid_cached()) < 0)
1736 return -ENOMEM;
1737 our_env[n_env++] = x;
1738
1739 if (asprintf(&x, "LISTEN_FDS=%zu", n_fds) < 0)
1740 return -ENOMEM;
1741 our_env[n_env++] = x;
1742
1743 joined = strv_join(p->fd_names, ":");
1744 if (!joined)
1745 return -ENOMEM;
1746
1747 x = strjoin("LISTEN_FDNAMES=", joined);
1748 if (!x)
1749 return -ENOMEM;
1750 our_env[n_env++] = x;
1751 }
1752
1753 if ((p->flags & EXEC_SET_WATCHDOG) && p->watchdog_usec > 0) {
1754 if (asprintf(&x, "WATCHDOG_PID="PID_FMT, getpid_cached()) < 0)
1755 return -ENOMEM;
1756 our_env[n_env++] = x;
1757
1758 if (asprintf(&x, "WATCHDOG_USEC="USEC_FMT, p->watchdog_usec) < 0)
1759 return -ENOMEM;
1760 our_env[n_env++] = x;
1761 }
1762
1763 /* If this is D-Bus, tell the nss-systemd module, since it relies on being able to use D-Bus look up dynamic
1764 * users via PID 1, possibly dead-locking the dbus daemon. This way it will not use D-Bus to resolve names, but
1765 * check the database directly. */
1766 if (p->flags & EXEC_NSS_BYPASS_BUS) {
1767 x = strdup("SYSTEMD_NSS_BYPASS_BUS=1");
1768 if (!x)
1769 return -ENOMEM;
1770 our_env[n_env++] = x;
1771 }
1772
1773 if (home) {
1774 x = strjoin("HOME=", home);
1775 if (!x)
1776 return -ENOMEM;
1777
1778 path_simplify(x + 5, true);
1779 our_env[n_env++] = x;
1780 }
1781
1782 if (username) {
1783 x = strjoin("LOGNAME=", username);
1784 if (!x)
1785 return -ENOMEM;
1786 our_env[n_env++] = x;
1787
1788 x = strjoin("USER=", username);
1789 if (!x)
1790 return -ENOMEM;
1791 our_env[n_env++] = x;
1792 }
1793
1794 if (shell) {
1795 x = strjoin("SHELL=", shell);
1796 if (!x)
1797 return -ENOMEM;
1798
1799 path_simplify(x + 6, true);
1800 our_env[n_env++] = x;
1801 }
1802
1803 if (!sd_id128_is_null(u->invocation_id)) {
1804 if (asprintf(&x, "INVOCATION_ID=" SD_ID128_FORMAT_STR, SD_ID128_FORMAT_VAL(u->invocation_id)) < 0)
1805 return -ENOMEM;
1806
1807 our_env[n_env++] = x;
1808 }
1809
1810 if (exec_context_needs_term(c)) {
1811 const char *tty_path, *term = NULL;
1812
1813 tty_path = exec_context_tty_path(c);
1814
1815 /* If we are forked off PID 1 and we are supposed to operate on /dev/console, then let's try
1816 * to inherit the $TERM set for PID 1. This is useful for containers so that the $TERM the
1817 * container manager passes to PID 1 ends up all the way in the console login shown. */
1818
1819 if (path_equal_ptr(tty_path, "/dev/console") && getppid() == 1)
1820 term = getenv("TERM");
1821
1822 if (!term)
1823 term = default_term_for_tty(tty_path);
1824
1825 x = strjoin("TERM=", term);
1826 if (!x)
1827 return -ENOMEM;
1828 our_env[n_env++] = x;
1829 }
1830
1831 if (journal_stream_dev != 0 && journal_stream_ino != 0) {
1832 if (asprintf(&x, "JOURNAL_STREAM=" DEV_FMT ":" INO_FMT, journal_stream_dev, journal_stream_ino) < 0)
1833 return -ENOMEM;
1834
1835 our_env[n_env++] = x;
1836 }
1837
1838 if (c->log_namespace) {
1839 x = strjoin("LOG_NAMESPACE=", c->log_namespace);
1840 if (!x)
1841 return -ENOMEM;
1842
1843 our_env[n_env++] = x;
1844 }
1845
1846 for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
1847 _cleanup_free_ char *pre = NULL, *joined = NULL;
1848 const char *n;
1849
1850 if (!p->prefix[t])
1851 continue;
1852
1853 if (strv_isempty(c->directories[t].paths))
1854 continue;
1855
1856 n = exec_directory_env_name_to_string(t);
1857 if (!n)
1858 continue;
1859
1860 pre = strjoin(p->prefix[t], "/");
1861 if (!pre)
1862 return -ENOMEM;
1863
1864 joined = strv_join_prefix(c->directories[t].paths, ":", pre);
1865 if (!joined)
1866 return -ENOMEM;
1867
1868 x = strjoin(n, "=", joined);
1869 if (!x)
1870 return -ENOMEM;
1871
1872 our_env[n_env++] = x;
1873 }
1874
1875 our_env[n_env++] = NULL;
1876 assert(n_env <= 14 + _EXEC_DIRECTORY_TYPE_MAX);
1877
1878 *ret = TAKE_PTR(our_env);
1879
1880 return 0;
1881 }
1882
1883 static int build_pass_environment(const ExecContext *c, char ***ret) {
1884 _cleanup_strv_free_ char **pass_env = NULL;
1885 size_t n_env = 0, n_bufsize = 0;
1886 char **i;
1887
1888 STRV_FOREACH(i, c->pass_environment) {
1889 _cleanup_free_ char *x = NULL;
1890 char *v;
1891
1892 v = getenv(*i);
1893 if (!v)
1894 continue;
1895 x = strjoin(*i, "=", v);
1896 if (!x)
1897 return -ENOMEM;
1898
1899 if (!GREEDY_REALLOC(pass_env, n_bufsize, n_env + 2))
1900 return -ENOMEM;
1901
1902 pass_env[n_env++] = TAKE_PTR(x);
1903 pass_env[n_env] = NULL;
1904 }
1905
1906 *ret = TAKE_PTR(pass_env);
1907
1908 return 0;
1909 }
1910
1911 static bool exec_needs_mount_namespace(
1912 const ExecContext *context,
1913 const ExecParameters *params,
1914 const ExecRuntime *runtime) {
1915
1916 assert(context);
1917 assert(params);
1918
1919 if (context->root_image)
1920 return true;
1921
1922 if (!strv_isempty(context->read_write_paths) ||
1923 !strv_isempty(context->read_only_paths) ||
1924 !strv_isempty(context->inaccessible_paths))
1925 return true;
1926
1927 if (context->n_bind_mounts > 0)
1928 return true;
1929
1930 if (context->n_temporary_filesystems > 0)
1931 return true;
1932
1933 if (!IN_SET(context->mount_flags, 0, MS_SHARED))
1934 return true;
1935
1936 if (context->private_tmp && runtime && (runtime->tmp_dir || runtime->var_tmp_dir))
1937 return true;
1938
1939 if (context->private_devices ||
1940 context->private_mounts ||
1941 context->protect_system != PROTECT_SYSTEM_NO ||
1942 context->protect_home != PROTECT_HOME_NO ||
1943 context->protect_kernel_tunables ||
1944 context->protect_kernel_modules ||
1945 context->protect_kernel_logs ||
1946 context->protect_control_groups)
1947 return true;
1948
1949 if (context->root_directory) {
1950 ExecDirectoryType t;
1951
1952 if (context->mount_apivfs)
1953 return true;
1954
1955 for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
1956 if (!params->prefix[t])
1957 continue;
1958
1959 if (!strv_isempty(context->directories[t].paths))
1960 return true;
1961 }
1962 }
1963
1964 if (context->dynamic_user &&
1965 (!strv_isempty(context->directories[EXEC_DIRECTORY_STATE].paths) ||
1966 !strv_isempty(context->directories[EXEC_DIRECTORY_CACHE].paths) ||
1967 !strv_isempty(context->directories[EXEC_DIRECTORY_LOGS].paths)))
1968 return true;
1969
1970 if (context->log_namespace)
1971 return true;
1972
1973 return false;
1974 }
1975
1976 static int setup_private_users(uid_t ouid, gid_t ogid, uid_t uid, gid_t gid) {
1977 _cleanup_free_ char *uid_map = NULL, *gid_map = NULL;
1978 _cleanup_close_pair_ int errno_pipe[2] = { -1, -1 };
1979 _cleanup_close_ int unshare_ready_fd = -1;
1980 _cleanup_(sigkill_waitp) pid_t pid = 0;
1981 uint64_t c = 1;
1982 ssize_t n;
1983 int r;
1984
1985 /* Set up a user namespace and map the original UID/GID (IDs from before any user or group changes, i.e.
1986 * the IDs from the user or system manager(s)) to itself, the selected UID/GID to itself, and everything else to
1987 * nobody. In order to be able to write this mapping we need CAP_SETUID in the original user namespace, which
1988 * we however lack after opening the user namespace. To work around this we fork() a temporary child process,
1989 * which waits for the parent to create the new user namespace while staying in the original namespace. The
1990 * child then writes the UID mapping, under full privileges. The parent waits for the child to finish and
1991 * continues execution normally.
1992 * For unprivileged users (i.e. without capabilities), the root to root mapping is excluded. As such, it
1993 * does not need CAP_SETUID to write the single line mapping to itself. */
1994
1995 /* Can only set up multiple mappings with CAP_SETUID. */
1996 if (have_effective_cap(CAP_SETUID) && uid != ouid && uid_is_valid(uid))
1997 r = asprintf(&uid_map,
1998 UID_FMT " " UID_FMT " 1\n" /* Map $OUID → $OUID */
1999 UID_FMT " " UID_FMT " 1\n", /* Map $UID → $UID */
2000 ouid, ouid, uid, uid);
2001 else
2002 r = asprintf(&uid_map,
2003 UID_FMT " " UID_FMT " 1\n", /* Map $OUID → $OUID */
2004 ouid, ouid);
2005
2006 if (r < 0)
2007 return -ENOMEM;
2008
2009 /* Can only set up multiple mappings with CAP_SETGID. */
2010 if (have_effective_cap(CAP_SETGID) && gid != ogid && gid_is_valid(gid))
2011 r = asprintf(&gid_map,
2012 GID_FMT " " GID_FMT " 1\n" /* Map $OGID → $OGID */
2013 GID_FMT " " GID_FMT " 1\n", /* Map $GID → $GID */
2014 ogid, ogid, gid, gid);
2015 else
2016 r = asprintf(&gid_map,
2017 GID_FMT " " GID_FMT " 1\n", /* Map $OGID -> $OGID */
2018 ogid, ogid);
2019
2020 if (r < 0)
2021 return -ENOMEM;
2022
2023 /* Create a communication channel so that the parent can tell the child when it finished creating the user
2024 * namespace. */
2025 unshare_ready_fd = eventfd(0, EFD_CLOEXEC);
2026 if (unshare_ready_fd < 0)
2027 return -errno;
2028
2029 /* Create a communication channel so that the child can tell the parent a proper error code in case it
2030 * failed. */
2031 if (pipe2(errno_pipe, O_CLOEXEC) < 0)
2032 return -errno;
2033
2034 r = safe_fork("(sd-userns)", FORK_RESET_SIGNALS|FORK_DEATHSIG, &pid);
2035 if (r < 0)
2036 return r;
2037 if (r == 0) {
2038 _cleanup_close_ int fd = -1;
2039 const char *a;
2040 pid_t ppid;
2041
2042 /* Child process, running in the original user namespace. Let's update the parent's UID/GID map from
2043 * here, after the parent opened its own user namespace. */
2044
2045 ppid = getppid();
2046 errno_pipe[0] = safe_close(errno_pipe[0]);
2047
2048 /* Wait until the parent unshared the user namespace */
2049 if (read(unshare_ready_fd, &c, sizeof(c)) < 0) {
2050 r = -errno;
2051 goto child_fail;
2052 }
2053
2054 /* Disable the setgroups() system call in the child user namespace, for good. */
2055 a = procfs_file_alloca(ppid, "setgroups");
2056 fd = open(a, O_WRONLY|O_CLOEXEC);
2057 if (fd < 0) {
2058 if (errno != ENOENT) {
2059 r = -errno;
2060 goto child_fail;
2061 }
2062
2063 /* If the file is missing the kernel is too old, let's continue anyway. */
2064 } else {
2065 if (write(fd, "deny\n", 5) < 0) {
2066 r = -errno;
2067 goto child_fail;
2068 }
2069
2070 fd = safe_close(fd);
2071 }
2072
2073 /* First write the GID map */
2074 a = procfs_file_alloca(ppid, "gid_map");
2075 fd = open(a, O_WRONLY|O_CLOEXEC);
2076 if (fd < 0) {
2077 r = -errno;
2078 goto child_fail;
2079 }
2080 if (write(fd, gid_map, strlen(gid_map)) < 0) {
2081 r = -errno;
2082 goto child_fail;
2083 }
2084 fd = safe_close(fd);
2085
2086 /* The write the UID map */
2087 a = procfs_file_alloca(ppid, "uid_map");
2088 fd = open(a, O_WRONLY|O_CLOEXEC);
2089 if (fd < 0) {
2090 r = -errno;
2091 goto child_fail;
2092 }
2093 if (write(fd, uid_map, strlen(uid_map)) < 0) {
2094 r = -errno;
2095 goto child_fail;
2096 }
2097
2098 _exit(EXIT_SUCCESS);
2099
2100 child_fail:
2101 (void) write(errno_pipe[1], &r, sizeof(r));
2102 _exit(EXIT_FAILURE);
2103 }
2104
2105 errno_pipe[1] = safe_close(errno_pipe[1]);
2106
2107 if (unshare(CLONE_NEWUSER) < 0)
2108 return -errno;
2109
2110 /* Let the child know that the namespace is ready now */
2111 if (write(unshare_ready_fd, &c, sizeof(c)) < 0)
2112 return -errno;
2113
2114 /* Try to read an error code from the child */
2115 n = read(errno_pipe[0], &r, sizeof(r));
2116 if (n < 0)
2117 return -errno;
2118 if (n == sizeof(r)) { /* an error code was sent to us */
2119 if (r < 0)
2120 return r;
2121 return -EIO;
2122 }
2123 if (n != 0) /* on success we should have read 0 bytes */
2124 return -EIO;
2125
2126 r = wait_for_terminate_and_check("(sd-userns)", pid, 0);
2127 pid = 0;
2128 if (r < 0)
2129 return r;
2130 if (r != EXIT_SUCCESS) /* If something strange happened with the child, let's consider this fatal, too */
2131 return -EIO;
2132
2133 return 0;
2134 }
2135
2136 static bool exec_directory_is_private(const ExecContext *context, ExecDirectoryType type) {
2137 if (!context->dynamic_user)
2138 return false;
2139
2140 if (type == EXEC_DIRECTORY_CONFIGURATION)
2141 return false;
2142
2143 if (type == EXEC_DIRECTORY_RUNTIME && context->runtime_directory_preserve_mode == EXEC_PRESERVE_NO)
2144 return false;
2145
2146 return true;
2147 }
2148
2149 static int setup_exec_directory(
2150 const ExecContext *context,
2151 const ExecParameters *params,
2152 uid_t uid,
2153 gid_t gid,
2154 ExecDirectoryType type,
2155 int *exit_status) {
2156
2157 static const int exit_status_table[_EXEC_DIRECTORY_TYPE_MAX] = {
2158 [EXEC_DIRECTORY_RUNTIME] = EXIT_RUNTIME_DIRECTORY,
2159 [EXEC_DIRECTORY_STATE] = EXIT_STATE_DIRECTORY,
2160 [EXEC_DIRECTORY_CACHE] = EXIT_CACHE_DIRECTORY,
2161 [EXEC_DIRECTORY_LOGS] = EXIT_LOGS_DIRECTORY,
2162 [EXEC_DIRECTORY_CONFIGURATION] = EXIT_CONFIGURATION_DIRECTORY,
2163 };
2164 char **rt;
2165 int r;
2166
2167 assert(context);
2168 assert(params);
2169 assert(type >= 0 && type < _EXEC_DIRECTORY_TYPE_MAX);
2170 assert(exit_status);
2171
2172 if (!params->prefix[type])
2173 return 0;
2174
2175 if (params->flags & EXEC_CHOWN_DIRECTORIES) {
2176 if (!uid_is_valid(uid))
2177 uid = 0;
2178 if (!gid_is_valid(gid))
2179 gid = 0;
2180 }
2181
2182 STRV_FOREACH(rt, context->directories[type].paths) {
2183 _cleanup_free_ char *p = NULL, *pp = NULL;
2184
2185 p = path_join(params->prefix[type], *rt);
2186 if (!p) {
2187 r = -ENOMEM;
2188 goto fail;
2189 }
2190
2191 r = mkdir_parents_label(p, 0755);
2192 if (r < 0)
2193 goto fail;
2194
2195 if (exec_directory_is_private(context, type)) {
2196 _cleanup_free_ char *private_root = NULL;
2197
2198 /* So, here's one extra complication when dealing with DynamicUser=1 units. In that
2199 * case we want to avoid leaving a directory around fully accessible that is owned by
2200 * a dynamic user whose UID is later on reused. To lock this down we use the same
2201 * trick used by container managers to prohibit host users to get access to files of
2202 * the same UID in containers: we place everything inside a directory that has an
2203 * access mode of 0700 and is owned root:root, so that it acts as security boundary
2204 * for unprivileged host code. We then use fs namespacing to make this directory
2205 * permeable for the service itself.
2206 *
2207 * Specifically: for a service which wants a special directory "foo/" we first create
2208 * a directory "private/" with access mode 0700 owned by root:root. Then we place
2209 * "foo" inside of that directory (i.e. "private/foo/"), and make "foo" a symlink to
2210 * "private/foo". This way, privileged host users can access "foo/" as usual, but
2211 * unprivileged host users can't look into it. Inside of the namespace of the unit
2212 * "private/" is replaced by a more liberally accessible tmpfs, into which the host's
2213 * "private/foo/" is mounted under the same name, thus disabling the access boundary
2214 * for the service and making sure it only gets access to the dirs it needs but no
2215 * others. Tricky? Yes, absolutely, but it works!
2216 *
2217 * Note that we don't do this for EXEC_DIRECTORY_CONFIGURATION as that's assumed not
2218 * to be owned by the service itself.
2219 *
2220 * Also, note that we don't do this for EXEC_DIRECTORY_RUNTIME as that's often used
2221 * for sharing files or sockets with other services. */
2222
2223 private_root = path_join(params->prefix[type], "private");
2224 if (!private_root) {
2225 r = -ENOMEM;
2226 goto fail;
2227 }
2228
2229 /* First set up private root if it doesn't exist yet, with access mode 0700 and owned by root:root */
2230 r = mkdir_safe_label(private_root, 0700, 0, 0, MKDIR_WARN_MODE);
2231 if (r < 0)
2232 goto fail;
2233
2234 pp = path_join(private_root, *rt);
2235 if (!pp) {
2236 r = -ENOMEM;
2237 goto fail;
2238 }
2239
2240 /* Create all directories between the configured directory and this private root, and mark them 0755 */
2241 r = mkdir_parents_label(pp, 0755);
2242 if (r < 0)
2243 goto fail;
2244
2245 if (is_dir(p, false) > 0 &&
2246 (laccess(pp, F_OK) < 0 && errno == ENOENT)) {
2247
2248 /* Hmm, the private directory doesn't exist yet, but the normal one exists? If so, move
2249 * it over. Most likely the service has been upgraded from one that didn't use
2250 * DynamicUser=1, to one that does. */
2251
2252 log_info("Found pre-existing public %s= directory %s, migrating to %s.\n"
2253 "Apparently, service previously had DynamicUser= turned off, and has now turned it on.",
2254 exec_directory_type_to_string(type), p, pp);
2255
2256 if (rename(p, pp) < 0) {
2257 r = -errno;
2258 goto fail;
2259 }
2260 } else {
2261 /* Otherwise, create the actual directory for the service */
2262
2263 r = mkdir_label(pp, context->directories[type].mode);
2264 if (r < 0 && r != -EEXIST)
2265 goto fail;
2266 }
2267
2268 /* And link it up from the original place */
2269 r = symlink_idempotent(pp, p, true);
2270 if (r < 0)
2271 goto fail;
2272
2273 } else {
2274 _cleanup_free_ char *target = NULL;
2275
2276 if (type != EXEC_DIRECTORY_CONFIGURATION &&
2277 readlink_and_make_absolute(p, &target) >= 0) {
2278 _cleanup_free_ char *q = NULL, *q_resolved = NULL, *target_resolved = NULL;
2279
2280 /* This already exists and is a symlink? Interesting. Maybe it's one created
2281 * by DynamicUser=1 (see above)?
2282 *
2283 * We do this for all directory types except for ConfigurationDirectory=,
2284 * since they all support the private/ symlink logic at least in some
2285 * configurations, see above. */
2286
2287 r = chase_symlinks(target, NULL, 0, &target_resolved, NULL);
2288 if (r < 0)
2289 goto fail;
2290
2291 q = path_join(params->prefix[type], "private", *rt);
2292 if (!q) {
2293 r = -ENOMEM;
2294 goto fail;
2295 }
2296
2297 /* /var/lib or friends may be symlinks. So, let's chase them also. */
2298 r = chase_symlinks(q, NULL, CHASE_NONEXISTENT, &q_resolved, NULL);
2299 if (r < 0)
2300 goto fail;
2301
2302 if (path_equal(q_resolved, target_resolved)) {
2303
2304 /* Hmm, apparently DynamicUser= was once turned on for this service,
2305 * but is no longer. Let's move the directory back up. */
2306
2307 log_info("Found pre-existing private %s= directory %s, migrating to %s.\n"
2308 "Apparently, service previously had DynamicUser= turned on, and has now turned it off.",
2309 exec_directory_type_to_string(type), q, p);
2310
2311 if (unlink(p) < 0) {
2312 r = -errno;
2313 goto fail;
2314 }
2315
2316 if (rename(q, p) < 0) {
2317 r = -errno;
2318 goto fail;
2319 }
2320 }
2321 }
2322
2323 r = mkdir_label(p, context->directories[type].mode);
2324 if (r < 0) {
2325 if (r != -EEXIST)
2326 goto fail;
2327
2328 if (type == EXEC_DIRECTORY_CONFIGURATION) {
2329 struct stat st;
2330
2331 /* Don't change the owner/access mode of the configuration directory,
2332 * as in the common case it is not written to by a service, and shall
2333 * not be writable. */
2334
2335 if (stat(p, &st) < 0) {
2336 r = -errno;
2337 goto fail;
2338 }
2339
2340 /* Still complain if the access mode doesn't match */
2341 if (((st.st_mode ^ context->directories[type].mode) & 07777) != 0)
2342 log_warning("%s \'%s\' already exists but the mode is different. "
2343 "(File system: %o %sMode: %o)",
2344 exec_directory_type_to_string(type), *rt,
2345 st.st_mode & 07777, exec_directory_type_to_string(type), context->directories[type].mode & 07777);
2346
2347 continue;
2348 }
2349 }
2350 }
2351
2352 /* Lock down the access mode (we use chmod_and_chown() to make this idempotent. We don't
2353 * specify UID/GID here, so that path_chown_recursive() can optimize things depending on the
2354 * current UID/GID ownership.) */
2355 r = chmod_and_chown(pp ?: p, context->directories[type].mode, UID_INVALID, GID_INVALID);
2356 if (r < 0)
2357 goto fail;
2358
2359 /* Then, change the ownership of the whole tree, if necessary. When dynamic users are used we
2360 * drop the suid/sgid bits, since we really don't want SUID/SGID files for dynamic UID/GID
2361 * assignments to exist.*/
2362 r = path_chown_recursive(pp ?: p, uid, gid, context->dynamic_user ? 01777 : 07777);
2363 if (r < 0)
2364 goto fail;
2365 }
2366
2367 return 0;
2368
2369 fail:
2370 *exit_status = exit_status_table[type];
2371 return r;
2372 }
2373
2374 #if ENABLE_SMACK
2375 static int setup_smack(
2376 const ExecContext *context,
2377 const ExecCommand *command) {
2378
2379 int r;
2380
2381 assert(context);
2382 assert(command);
2383
2384 if (context->smack_process_label) {
2385 r = mac_smack_apply_pid(0, context->smack_process_label);
2386 if (r < 0)
2387 return r;
2388 }
2389 #ifdef SMACK_DEFAULT_PROCESS_LABEL
2390 else {
2391 _cleanup_free_ char *exec_label = NULL;
2392
2393 r = mac_smack_read(command->path, SMACK_ATTR_EXEC, &exec_label);
2394 if (r < 0 && !IN_SET(r, -ENODATA, -EOPNOTSUPP))
2395 return r;
2396
2397 r = mac_smack_apply_pid(0, exec_label ? : SMACK_DEFAULT_PROCESS_LABEL);
2398 if (r < 0)
2399 return r;
2400 }
2401 #endif
2402
2403 return 0;
2404 }
2405 #endif
2406
2407 static int compile_bind_mounts(
2408 const ExecContext *context,
2409 const ExecParameters *params,
2410 BindMount **ret_bind_mounts,
2411 size_t *ret_n_bind_mounts,
2412 char ***ret_empty_directories) {
2413
2414 _cleanup_strv_free_ char **empty_directories = NULL;
2415 BindMount *bind_mounts;
2416 size_t n, h = 0, i;
2417 ExecDirectoryType t;
2418 int r;
2419
2420 assert(context);
2421 assert(params);
2422 assert(ret_bind_mounts);
2423 assert(ret_n_bind_mounts);
2424 assert(ret_empty_directories);
2425
2426 n = context->n_bind_mounts;
2427 for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2428 if (!params->prefix[t])
2429 continue;
2430
2431 n += strv_length(context->directories[t].paths);
2432 }
2433
2434 if (n <= 0) {
2435 *ret_bind_mounts = NULL;
2436 *ret_n_bind_mounts = 0;
2437 *ret_empty_directories = NULL;
2438 return 0;
2439 }
2440
2441 bind_mounts = new(BindMount, n);
2442 if (!bind_mounts)
2443 return -ENOMEM;
2444
2445 for (i = 0; i < context->n_bind_mounts; i++) {
2446 BindMount *item = context->bind_mounts + i;
2447 char *s, *d;
2448
2449 s = strdup(item->source);
2450 if (!s) {
2451 r = -ENOMEM;
2452 goto finish;
2453 }
2454
2455 d = strdup(item->destination);
2456 if (!d) {
2457 free(s);
2458 r = -ENOMEM;
2459 goto finish;
2460 }
2461
2462 bind_mounts[h++] = (BindMount) {
2463 .source = s,
2464 .destination = d,
2465 .read_only = item->read_only,
2466 .recursive = item->recursive,
2467 .ignore_enoent = item->ignore_enoent,
2468 };
2469 }
2470
2471 for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2472 char **suffix;
2473
2474 if (!params->prefix[t])
2475 continue;
2476
2477 if (strv_isempty(context->directories[t].paths))
2478 continue;
2479
2480 if (exec_directory_is_private(context, t) &&
2481 !(context->root_directory || context->root_image)) {
2482 char *private_root;
2483
2484 /* So this is for a dynamic user, and we need to make sure the process can access its own
2485 * directory. For that we overmount the usually inaccessible "private" subdirectory with a
2486 * tmpfs that makes it accessible and is empty except for the submounts we do this for. */
2487
2488 private_root = path_join(params->prefix[t], "private");
2489 if (!private_root) {
2490 r = -ENOMEM;
2491 goto finish;
2492 }
2493
2494 r = strv_consume(&empty_directories, private_root);
2495 if (r < 0)
2496 goto finish;
2497 }
2498
2499 STRV_FOREACH(suffix, context->directories[t].paths) {
2500 char *s, *d;
2501
2502 if (exec_directory_is_private(context, t))
2503 s = path_join(params->prefix[t], "private", *suffix);
2504 else
2505 s = path_join(params->prefix[t], *suffix);
2506 if (!s) {
2507 r = -ENOMEM;
2508 goto finish;
2509 }
2510
2511 if (exec_directory_is_private(context, t) &&
2512 (context->root_directory || context->root_image))
2513 /* When RootDirectory= or RootImage= are set, then the symbolic link to the private
2514 * directory is not created on the root directory. So, let's bind-mount the directory
2515 * on the 'non-private' place. */
2516 d = path_join(params->prefix[t], *suffix);
2517 else
2518 d = strdup(s);
2519 if (!d) {
2520 free(s);
2521 r = -ENOMEM;
2522 goto finish;
2523 }
2524
2525 bind_mounts[h++] = (BindMount) {
2526 .source = s,
2527 .destination = d,
2528 .read_only = false,
2529 .nosuid = context->dynamic_user, /* don't allow suid/sgid when DynamicUser= is on */
2530 .recursive = true,
2531 .ignore_enoent = false,
2532 };
2533 }
2534 }
2535
2536 assert(h == n);
2537
2538 *ret_bind_mounts = bind_mounts;
2539 *ret_n_bind_mounts = n;
2540 *ret_empty_directories = TAKE_PTR(empty_directories);
2541
2542 return (int) n;
2543
2544 finish:
2545 bind_mount_free_many(bind_mounts, h);
2546 return r;
2547 }
2548
2549 static bool insist_on_sandboxing(
2550 const ExecContext *context,
2551 const char *root_dir,
2552 const char *root_image,
2553 const BindMount *bind_mounts,
2554 size_t n_bind_mounts) {
2555
2556 size_t i;
2557
2558 assert(context);
2559 assert(n_bind_mounts == 0 || bind_mounts);
2560
2561 /* Checks whether we need to insist on fs namespacing. i.e. whether we have settings configured that
2562 * would alter the view on the file system beyond making things read-only or invisible, i.e. would
2563 * rearrange stuff in a way we cannot ignore gracefully. */
2564
2565 if (context->n_temporary_filesystems > 0)
2566 return true;
2567
2568 if (root_dir || root_image)
2569 return true;
2570
2571 if (context->dynamic_user)
2572 return true;
2573
2574 /* If there are any bind mounts set that don't map back onto themselves, fs namespacing becomes
2575 * essential. */
2576 for (i = 0; i < n_bind_mounts; i++)
2577 if (!path_equal(bind_mounts[i].source, bind_mounts[i].destination))
2578 return true;
2579
2580 if (context->log_namespace)
2581 return true;
2582
2583 return false;
2584 }
2585
2586 static int apply_mount_namespace(
2587 const Unit *u,
2588 const ExecCommand *command,
2589 const ExecContext *context,
2590 const ExecParameters *params,
2591 const ExecRuntime *runtime,
2592 char **error_path) {
2593
2594 _cleanup_strv_free_ char **empty_directories = NULL;
2595 char *tmp = NULL, *var = NULL;
2596 const char *root_dir = NULL, *root_image = NULL;
2597 NamespaceInfo ns_info;
2598 bool needs_sandboxing;
2599 BindMount *bind_mounts = NULL;
2600 size_t n_bind_mounts = 0;
2601 int r;
2602
2603 assert(context);
2604
2605 if (params->flags & EXEC_APPLY_CHROOT) {
2606 root_image = context->root_image;
2607
2608 if (!root_image)
2609 root_dir = context->root_directory;
2610 }
2611
2612 r = compile_bind_mounts(context, params, &bind_mounts, &n_bind_mounts, &empty_directories);
2613 if (r < 0)
2614 return r;
2615
2616 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & EXEC_COMMAND_FULLY_PRIVILEGED);
2617 if (needs_sandboxing) {
2618 /* The runtime struct only contains the parent of the private /tmp,
2619 * which is non-accessible to world users. Inside of it there's a /tmp
2620 * that is sticky, and that's the one we want to use here. */
2621
2622 if (context->private_tmp && runtime) {
2623 if (runtime->tmp_dir)
2624 tmp = strjoina(runtime->tmp_dir, "/tmp");
2625 if (runtime->var_tmp_dir)
2626 var = strjoina(runtime->var_tmp_dir, "/tmp");
2627 }
2628
2629 ns_info = (NamespaceInfo) {
2630 .ignore_protect_paths = false,
2631 .private_dev = context->private_devices,
2632 .protect_control_groups = context->protect_control_groups,
2633 .protect_kernel_tunables = context->protect_kernel_tunables,
2634 .protect_kernel_modules = context->protect_kernel_modules,
2635 .protect_kernel_logs = context->protect_kernel_logs,
2636 .protect_hostname = context->protect_hostname,
2637 .mount_apivfs = context->mount_apivfs,
2638 .private_mounts = context->private_mounts,
2639 };
2640 } else if (!context->dynamic_user && root_dir)
2641 /*
2642 * If DynamicUser=no and RootDirectory= is set then lets pass a relaxed
2643 * sandbox info, otherwise enforce it, don't ignore protected paths and
2644 * fail if we are enable to apply the sandbox inside the mount namespace.
2645 */
2646 ns_info = (NamespaceInfo) {
2647 .ignore_protect_paths = true,
2648 };
2649 else
2650 ns_info = (NamespaceInfo) {};
2651
2652 if (context->mount_flags == MS_SHARED)
2653 log_unit_debug(u, "shared mount propagation hidden by other fs namespacing unit settings: ignoring");
2654
2655 r = setup_namespace(root_dir, root_image,
2656 &ns_info, context->read_write_paths,
2657 needs_sandboxing ? context->read_only_paths : NULL,
2658 needs_sandboxing ? context->inaccessible_paths : NULL,
2659 empty_directories,
2660 bind_mounts,
2661 n_bind_mounts,
2662 context->temporary_filesystems,
2663 context->n_temporary_filesystems,
2664 tmp,
2665 var,
2666 context->log_namespace,
2667 needs_sandboxing ? context->protect_home : PROTECT_HOME_NO,
2668 needs_sandboxing ? context->protect_system : PROTECT_SYSTEM_NO,
2669 context->mount_flags,
2670 context->root_hash, context->root_hash_size, context->root_hash_path, context->root_verity,
2671 DISSECT_IMAGE_DISCARD_ON_LOOP|DISSECT_IMAGE_RELAX_VAR_CHECK|DISSECT_IMAGE_FSCK,
2672 error_path);
2673
2674 /* If we couldn't set up the namespace this is probably due to a missing capability. setup_namespace() reports
2675 * that with a special, recognizable error ENOANO. In this case, silently proceed, but only if exclusively
2676 * sandboxing options were used, i.e. nothing such as RootDirectory= or BindMount= that would result in a
2677 * completely different execution environment. */
2678 if (r == -ENOANO) {
2679 if (insist_on_sandboxing(
2680 context,
2681 root_dir, root_image,
2682 bind_mounts,
2683 n_bind_mounts)) {
2684 log_unit_debug(u, "Failed to set up namespace, and refusing to continue since the selected namespacing options alter mount environment non-trivially.\n"
2685 "Bind mounts: %zu, temporary filesystems: %zu, root directory: %s, root image: %s, dynamic user: %s",
2686 n_bind_mounts, context->n_temporary_filesystems, yes_no(root_dir), yes_no(root_image), yes_no(context->dynamic_user));
2687
2688 r = -EOPNOTSUPP;
2689 } else {
2690 log_unit_debug(u, "Failed to set up namespace, assuming containerized execution and ignoring.");
2691 r = 0;
2692 }
2693 }
2694
2695 bind_mount_free_many(bind_mounts, n_bind_mounts);
2696 return r;
2697 }
2698
2699 static int apply_working_directory(
2700 const ExecContext *context,
2701 const ExecParameters *params,
2702 const char *home,
2703 int *exit_status) {
2704
2705 const char *d, *wd;
2706
2707 assert(context);
2708 assert(exit_status);
2709
2710 if (context->working_directory_home) {
2711
2712 if (!home) {
2713 *exit_status = EXIT_CHDIR;
2714 return -ENXIO;
2715 }
2716
2717 wd = home;
2718
2719 } else if (context->working_directory)
2720 wd = context->working_directory;
2721 else
2722 wd = "/";
2723
2724 if (params->flags & EXEC_APPLY_CHROOT)
2725 d = wd;
2726 else
2727 d = prefix_roota(context->root_directory, wd);
2728
2729 if (chdir(d) < 0 && !context->working_directory_missing_ok) {
2730 *exit_status = EXIT_CHDIR;
2731 return -errno;
2732 }
2733
2734 return 0;
2735 }
2736
2737 static int apply_root_directory(
2738 const ExecContext *context,
2739 const ExecParameters *params,
2740 const bool needs_mount_ns,
2741 int *exit_status) {
2742
2743 assert(context);
2744 assert(exit_status);
2745
2746 if (params->flags & EXEC_APPLY_CHROOT) {
2747 if (!needs_mount_ns && context->root_directory)
2748 if (chroot(context->root_directory) < 0) {
2749 *exit_status = EXIT_CHROOT;
2750 return -errno;
2751 }
2752 }
2753
2754 return 0;
2755 }
2756
2757 static int setup_keyring(
2758 const Unit *u,
2759 const ExecContext *context,
2760 const ExecParameters *p,
2761 uid_t uid, gid_t gid) {
2762
2763 key_serial_t keyring;
2764 int r = 0;
2765 uid_t saved_uid;
2766 gid_t saved_gid;
2767
2768 assert(u);
2769 assert(context);
2770 assert(p);
2771
2772 /* Let's set up a new per-service "session" kernel keyring for each system service. This has the benefit that
2773 * each service runs with its own keyring shared among all processes of the service, but with no hook-up beyond
2774 * that scope, and in particular no link to the per-UID keyring. If we don't do this the keyring will be
2775 * automatically created on-demand and then linked to the per-UID keyring, by the kernel. The kernel's built-in
2776 * on-demand behaviour is very appropriate for login users, but probably not so much for system services, where
2777 * UIDs are not necessarily specific to a service but reused (at least in the case of UID 0). */
2778
2779 if (context->keyring_mode == EXEC_KEYRING_INHERIT)
2780 return 0;
2781
2782 /* Acquiring a reference to the user keyring is nasty. We briefly change identity in order to get things set up
2783 * properly by the kernel. If we don't do that then we can't create it atomically, and that sucks for parallel
2784 * execution. This mimics what pam_keyinit does, too. Setting up session keyring, to be owned by the right user
2785 * & group is just as nasty as acquiring a reference to the user keyring. */
2786
2787 saved_uid = getuid();
2788 saved_gid = getgid();
2789
2790 if (gid_is_valid(gid) && gid != saved_gid) {
2791 if (setregid(gid, -1) < 0)
2792 return log_unit_error_errno(u, errno, "Failed to change GID for user keyring: %m");
2793 }
2794
2795 if (uid_is_valid(uid) && uid != saved_uid) {
2796 if (setreuid(uid, -1) < 0) {
2797 r = log_unit_error_errno(u, errno, "Failed to change UID for user keyring: %m");
2798 goto out;
2799 }
2800 }
2801
2802 keyring = keyctl(KEYCTL_JOIN_SESSION_KEYRING, 0, 0, 0, 0);
2803 if (keyring == -1) {
2804 if (errno == ENOSYS)
2805 log_unit_debug_errno(u, errno, "Kernel keyring not supported, ignoring.");
2806 else if (IN_SET(errno, EACCES, EPERM))
2807 log_unit_debug_errno(u, errno, "Kernel keyring access prohibited, ignoring.");
2808 else if (errno == EDQUOT)
2809 log_unit_debug_errno(u, errno, "Out of kernel keyrings to allocate, ignoring.");
2810 else
2811 r = log_unit_error_errno(u, errno, "Setting up kernel keyring failed: %m");
2812
2813 goto out;
2814 }
2815
2816 /* When requested link the user keyring into the session keyring. */
2817 if (context->keyring_mode == EXEC_KEYRING_SHARED) {
2818
2819 if (keyctl(KEYCTL_LINK,
2820 KEY_SPEC_USER_KEYRING,
2821 KEY_SPEC_SESSION_KEYRING, 0, 0) < 0) {
2822 r = log_unit_error_errno(u, errno, "Failed to link user keyring into session keyring: %m");
2823 goto out;
2824 }
2825 }
2826
2827 /* Restore uid/gid back */
2828 if (uid_is_valid(uid) && uid != saved_uid) {
2829 if (setreuid(saved_uid, -1) < 0) {
2830 r = log_unit_error_errno(u, errno, "Failed to change UID back for user keyring: %m");
2831 goto out;
2832 }
2833 }
2834
2835 if (gid_is_valid(gid) && gid != saved_gid) {
2836 if (setregid(saved_gid, -1) < 0)
2837 return log_unit_error_errno(u, errno, "Failed to change GID back for user keyring: %m");
2838 }
2839
2840 /* Populate they keyring with the invocation ID by default, as original saved_uid. */
2841 if (!sd_id128_is_null(u->invocation_id)) {
2842 key_serial_t key;
2843
2844 key = add_key("user", "invocation_id", &u->invocation_id, sizeof(u->invocation_id), KEY_SPEC_SESSION_KEYRING);
2845 if (key == -1)
2846 log_unit_debug_errno(u, errno, "Failed to add invocation ID to keyring, ignoring: %m");
2847 else {
2848 if (keyctl(KEYCTL_SETPERM, key,
2849 KEY_POS_VIEW|KEY_POS_READ|KEY_POS_SEARCH|
2850 KEY_USR_VIEW|KEY_USR_READ|KEY_USR_SEARCH, 0, 0) < 0)
2851 r = log_unit_error_errno(u, errno, "Failed to restrict invocation ID permission: %m");
2852 }
2853 }
2854
2855 out:
2856 /* Revert back uid & gid for the the last time, and exit */
2857 /* no extra logging, as only the first already reported error matters */
2858 if (getuid() != saved_uid)
2859 (void) setreuid(saved_uid, -1);
2860
2861 if (getgid() != saved_gid)
2862 (void) setregid(saved_gid, -1);
2863
2864 return r;
2865 }
2866
2867 static void append_socket_pair(int *array, size_t *n, const int pair[static 2]) {
2868 assert(array);
2869 assert(n);
2870 assert(pair);
2871
2872 if (pair[0] >= 0)
2873 array[(*n)++] = pair[0];
2874 if (pair[1] >= 0)
2875 array[(*n)++] = pair[1];
2876 }
2877
2878 static int close_remaining_fds(
2879 const ExecParameters *params,
2880 const ExecRuntime *runtime,
2881 const DynamicCreds *dcreds,
2882 int user_lookup_fd,
2883 int socket_fd,
2884 int exec_fd,
2885 const int *fds, size_t n_fds) {
2886
2887 size_t n_dont_close = 0;
2888 int dont_close[n_fds + 12];
2889
2890 assert(params);
2891
2892 if (params->stdin_fd >= 0)
2893 dont_close[n_dont_close++] = params->stdin_fd;
2894 if (params->stdout_fd >= 0)
2895 dont_close[n_dont_close++] = params->stdout_fd;
2896 if (params->stderr_fd >= 0)
2897 dont_close[n_dont_close++] = params->stderr_fd;
2898
2899 if (socket_fd >= 0)
2900 dont_close[n_dont_close++] = socket_fd;
2901 if (exec_fd >= 0)
2902 dont_close[n_dont_close++] = exec_fd;
2903 if (n_fds > 0) {
2904 memcpy(dont_close + n_dont_close, fds, sizeof(int) * n_fds);
2905 n_dont_close += n_fds;
2906 }
2907
2908 if (runtime)
2909 append_socket_pair(dont_close, &n_dont_close, runtime->netns_storage_socket);
2910
2911 if (dcreds) {
2912 if (dcreds->user)
2913 append_socket_pair(dont_close, &n_dont_close, dcreds->user->storage_socket);
2914 if (dcreds->group)
2915 append_socket_pair(dont_close, &n_dont_close, dcreds->group->storage_socket);
2916 }
2917
2918 if (user_lookup_fd >= 0)
2919 dont_close[n_dont_close++] = user_lookup_fd;
2920
2921 return close_all_fds(dont_close, n_dont_close);
2922 }
2923
2924 static int send_user_lookup(
2925 Unit *unit,
2926 int user_lookup_fd,
2927 uid_t uid,
2928 gid_t gid) {
2929
2930 assert(unit);
2931
2932 /* Send the resolved UID/GID to PID 1 after we learnt it. We send a single datagram, containing the UID/GID
2933 * data as well as the unit name. Note that we suppress sending this if no user/group to resolve was
2934 * specified. */
2935
2936 if (user_lookup_fd < 0)
2937 return 0;
2938
2939 if (!uid_is_valid(uid) && !gid_is_valid(gid))
2940 return 0;
2941
2942 if (writev(user_lookup_fd,
2943 (struct iovec[]) {
2944 IOVEC_INIT(&uid, sizeof(uid)),
2945 IOVEC_INIT(&gid, sizeof(gid)),
2946 IOVEC_INIT_STRING(unit->id) }, 3) < 0)
2947 return -errno;
2948
2949 return 0;
2950 }
2951
2952 static int acquire_home(const ExecContext *c, uid_t uid, const char** home, char **buf) {
2953 int r;
2954
2955 assert(c);
2956 assert(home);
2957 assert(buf);
2958
2959 /* If WorkingDirectory=~ is set, try to acquire a usable home directory. */
2960
2961 if (*home)
2962 return 0;
2963
2964 if (!c->working_directory_home)
2965 return 0;
2966
2967 r = get_home_dir(buf);
2968 if (r < 0)
2969 return r;
2970
2971 *home = *buf;
2972 return 1;
2973 }
2974
2975 static int compile_suggested_paths(const ExecContext *c, const ExecParameters *p, char ***ret) {
2976 _cleanup_strv_free_ char ** list = NULL;
2977 ExecDirectoryType t;
2978 int r;
2979
2980 assert(c);
2981 assert(p);
2982 assert(ret);
2983
2984 assert(c->dynamic_user);
2985
2986 /* Compile a list of paths that it might make sense to read the owning UID from to use as initial candidate for
2987 * dynamic UID allocation, in order to save us from doing costly recursive chown()s of the special
2988 * directories. */
2989
2990 for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2991 char **i;
2992
2993 if (t == EXEC_DIRECTORY_CONFIGURATION)
2994 continue;
2995
2996 if (!p->prefix[t])
2997 continue;
2998
2999 STRV_FOREACH(i, c->directories[t].paths) {
3000 char *e;
3001
3002 if (exec_directory_is_private(c, t))
3003 e = path_join(p->prefix[t], "private", *i);
3004 else
3005 e = path_join(p->prefix[t], *i);
3006 if (!e)
3007 return -ENOMEM;
3008
3009 r = strv_consume(&list, e);
3010 if (r < 0)
3011 return r;
3012 }
3013 }
3014
3015 *ret = TAKE_PTR(list);
3016
3017 return 0;
3018 }
3019
3020 static char *exec_command_line(char **argv);
3021
3022 static int exec_parameters_get_cgroup_path(const ExecParameters *params, char **ret) {
3023 bool using_subcgroup;
3024 char *p;
3025
3026 assert(params);
3027 assert(ret);
3028
3029 if (!params->cgroup_path)
3030 return -EINVAL;
3031
3032 /* If we are called for a unit where cgroup delegation is on, and the payload created its own populated
3033 * subcgroup (which we expect it to do, after all it asked for delegation), then we cannot place the control
3034 * processes started after the main unit's process in the unit's main cgroup because it is now an inner one,
3035 * and inner cgroups may not contain processes. Hence, if delegation is on, and this is a control process,
3036 * let's use ".control" as subcgroup instead. Note that we do so only for ExecStartPost=, ExecReload=,
3037 * ExecStop=, ExecStopPost=, i.e. for the commands where the main process is already forked. For ExecStartPre=
3038 * this is not necessary, the cgroup is still empty. We distinguish these cases with the EXEC_CONTROL_CGROUP
3039 * flag, which is only passed for the former statements, not for the latter. */
3040
3041 using_subcgroup = FLAGS_SET(params->flags, EXEC_CONTROL_CGROUP|EXEC_CGROUP_DELEGATE|EXEC_IS_CONTROL);
3042 if (using_subcgroup)
3043 p = path_join(params->cgroup_path, ".control");
3044 else
3045 p = strdup(params->cgroup_path);
3046 if (!p)
3047 return -ENOMEM;
3048
3049 *ret = p;
3050 return using_subcgroup;
3051 }
3052
3053 static int exec_context_cpu_affinity_from_numa(const ExecContext *c, CPUSet *ret) {
3054 _cleanup_(cpu_set_reset) CPUSet s = {};
3055 int r;
3056
3057 assert(c);
3058 assert(ret);
3059
3060 if (!c->numa_policy.nodes.set) {
3061 log_debug("Can't derive CPU affinity mask from NUMA mask because NUMA mask is not set, ignoring");
3062 return 0;
3063 }
3064
3065 r = numa_to_cpu_set(&c->numa_policy, &s);
3066 if (r < 0)
3067 return r;
3068
3069 cpu_set_reset(ret);
3070
3071 return cpu_set_add_all(ret, &s);
3072 }
3073
3074 bool exec_context_get_cpu_affinity_from_numa(const ExecContext *c) {
3075 assert(c);
3076
3077 return c->cpu_affinity_from_numa;
3078 }
3079
3080 static int exec_child(
3081 Unit *unit,
3082 const ExecCommand *command,
3083 const ExecContext *context,
3084 const ExecParameters *params,
3085 ExecRuntime *runtime,
3086 DynamicCreds *dcreds,
3087 int socket_fd,
3088 const int named_iofds[static 3],
3089 int *fds,
3090 size_t n_socket_fds,
3091 size_t n_storage_fds,
3092 char **files_env,
3093 int user_lookup_fd,
3094 int *exit_status) {
3095
3096 _cleanup_strv_free_ char **our_env = NULL, **pass_env = NULL, **accum_env = NULL, **replaced_argv = NULL;
3097 int *fds_with_exec_fd, n_fds_with_exec_fd, r, ngids = 0, exec_fd = -1;
3098 _cleanup_free_ gid_t *supplementary_gids = NULL;
3099 const char *username = NULL, *groupname = NULL;
3100 _cleanup_free_ char *home_buffer = NULL;
3101 const char *home = NULL, *shell = NULL;
3102 char **final_argv = NULL;
3103 dev_t journal_stream_dev = 0;
3104 ino_t journal_stream_ino = 0;
3105 bool userns_set_up = false;
3106 bool needs_sandboxing, /* Do we need to set up full sandboxing? (i.e. all namespacing, all MAC stuff, caps, yadda yadda */
3107 needs_setuid, /* Do we need to do the actual setresuid()/setresgid() calls? */
3108 needs_mount_namespace, /* Do we need to set up a mount namespace for this kernel? */
3109 needs_ambient_hack; /* Do we need to apply the ambient capabilities hack? */
3110 #if HAVE_SELINUX
3111 _cleanup_free_ char *mac_selinux_context_net = NULL;
3112 bool use_selinux = false;
3113 #endif
3114 #if ENABLE_SMACK
3115 bool use_smack = false;
3116 #endif
3117 #if HAVE_APPARMOR
3118 bool use_apparmor = false;
3119 #endif
3120 uid_t saved_uid = getuid();
3121 gid_t saved_gid = getgid();
3122 uid_t uid = UID_INVALID;
3123 gid_t gid = GID_INVALID;
3124 size_t n_fds;
3125 ExecDirectoryType dt;
3126 int secure_bits;
3127 _cleanup_free_ gid_t *gids_after_pam = NULL;
3128 int ngids_after_pam = 0;
3129
3130 assert(unit);
3131 assert(command);
3132 assert(context);
3133 assert(params);
3134 assert(exit_status);
3135
3136 rename_process_from_path(command->path);
3137
3138 /* We reset exactly these signals, since they are the
3139 * only ones we set to SIG_IGN in the main daemon. All
3140 * others we leave untouched because we set them to
3141 * SIG_DFL or a valid handler initially, both of which
3142 * will be demoted to SIG_DFL. */
3143 (void) default_signals(SIGNALS_CRASH_HANDLER,
3144 SIGNALS_IGNORE, -1);
3145
3146 if (context->ignore_sigpipe)
3147 (void) ignore_signals(SIGPIPE, -1);
3148
3149 r = reset_signal_mask();
3150 if (r < 0) {
3151 *exit_status = EXIT_SIGNAL_MASK;
3152 return log_unit_error_errno(unit, r, "Failed to set process signal mask: %m");
3153 }
3154
3155 if (params->idle_pipe)
3156 do_idle_pipe_dance(params->idle_pipe);
3157
3158 /* Close fds we don't need very early to make sure we don't block init reexecution because it cannot bind its
3159 * sockets. Among the fds we close are the logging fds, and we want to keep them closed, so that we don't have
3160 * any fds open we don't really want open during the transition. In order to make logging work, we switch the
3161 * log subsystem into open_when_needed mode, so that it reopens the logs on every single log call. */
3162
3163 log_forget_fds();
3164 log_set_open_when_needed(true);
3165
3166 /* In case anything used libc syslog(), close this here, too */
3167 closelog();
3168
3169 n_fds = n_socket_fds + n_storage_fds;
3170 r = close_remaining_fds(params, runtime, dcreds, user_lookup_fd, socket_fd, params->exec_fd, fds, n_fds);
3171 if (r < 0) {
3172 *exit_status = EXIT_FDS;
3173 return log_unit_error_errno(unit, r, "Failed to close unwanted file descriptors: %m");
3174 }
3175
3176 if (!context->same_pgrp)
3177 if (setsid() < 0) {
3178 *exit_status = EXIT_SETSID;
3179 return log_unit_error_errno(unit, errno, "Failed to create new process session: %m");
3180 }
3181
3182 exec_context_tty_reset(context, params);
3183
3184 if (unit_shall_confirm_spawn(unit)) {
3185 const char *vc = params->confirm_spawn;
3186 _cleanup_free_ char *cmdline = NULL;
3187
3188 cmdline = exec_command_line(command->argv);
3189 if (!cmdline) {
3190 *exit_status = EXIT_MEMORY;
3191 return log_oom();
3192 }
3193
3194 r = ask_for_confirmation(vc, unit, cmdline);
3195 if (r != CONFIRM_EXECUTE) {
3196 if (r == CONFIRM_PRETEND_SUCCESS) {
3197 *exit_status = EXIT_SUCCESS;
3198 return 0;
3199 }
3200 *exit_status = EXIT_CONFIRM;
3201 log_unit_error(unit, "Execution cancelled by the user");
3202 return -ECANCELED;
3203 }
3204 }
3205
3206 /* We are about to invoke NSS and PAM modules. Let's tell them what we are doing here, maybe they care. This is
3207 * used by nss-resolve to disable itself when we are about to start systemd-resolved, to avoid deadlocks. Note
3208 * that these env vars do not survive the execve(), which means they really only apply to the PAM and NSS
3209 * invocations themselves. Also note that while we'll only invoke NSS modules involved in user management they
3210 * might internally call into other NSS modules that are involved in hostname resolution, we never know. */
3211 if (setenv("SYSTEMD_ACTIVATION_UNIT", unit->id, true) != 0 ||
3212 setenv("SYSTEMD_ACTIVATION_SCOPE", MANAGER_IS_SYSTEM(unit->manager) ? "system" : "user", true) != 0) {
3213 *exit_status = EXIT_MEMORY;
3214 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
3215 }
3216
3217 if (context->dynamic_user && dcreds) {
3218 _cleanup_strv_free_ char **suggested_paths = NULL;
3219
3220 /* On top of that, make sure we bypass our own NSS module nss-systemd comprehensively for any NSS
3221 * checks, if DynamicUser=1 is used, as we shouldn't create a feedback loop with ourselves here.*/
3222 if (putenv((char*) "SYSTEMD_NSS_DYNAMIC_BYPASS=1") != 0) {
3223 *exit_status = EXIT_USER;
3224 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
3225 }
3226
3227 r = compile_suggested_paths(context, params, &suggested_paths);
3228 if (r < 0) {
3229 *exit_status = EXIT_MEMORY;
3230 return log_oom();
3231 }
3232
3233 r = dynamic_creds_realize(dcreds, suggested_paths, &uid, &gid);
3234 if (r < 0) {
3235 *exit_status = EXIT_USER;
3236 if (r == -EILSEQ) {
3237 log_unit_error(unit, "Failed to update dynamic user credentials: User or group with specified name already exists.");
3238 return -EOPNOTSUPP;
3239 }
3240 return log_unit_error_errno(unit, r, "Failed to update dynamic user credentials: %m");
3241 }
3242
3243 if (!uid_is_valid(uid)) {
3244 *exit_status = EXIT_USER;
3245 log_unit_error(unit, "UID validation failed for \""UID_FMT"\"", uid);
3246 return -ESRCH;
3247 }
3248
3249 if (!gid_is_valid(gid)) {
3250 *exit_status = EXIT_USER;
3251 log_unit_error(unit, "GID validation failed for \""GID_FMT"\"", gid);
3252 return -ESRCH;
3253 }
3254
3255 if (dcreds->user)
3256 username = dcreds->user->name;
3257
3258 } else {
3259 r = get_fixed_user(context, &username, &uid, &gid, &home, &shell);
3260 if (r < 0) {
3261 *exit_status = EXIT_USER;
3262 return log_unit_error_errno(unit, r, "Failed to determine user credentials: %m");
3263 }
3264
3265 r = get_fixed_group(context, &groupname, &gid);
3266 if (r < 0) {
3267 *exit_status = EXIT_GROUP;
3268 return log_unit_error_errno(unit, r, "Failed to determine group credentials: %m");
3269 }
3270 }
3271
3272 /* Initialize user supplementary groups and get SupplementaryGroups= ones */
3273 r = get_supplementary_groups(context, username, groupname, gid,
3274 &supplementary_gids, &ngids);
3275 if (r < 0) {
3276 *exit_status = EXIT_GROUP;
3277 return log_unit_error_errno(unit, r, "Failed to determine supplementary groups: %m");
3278 }
3279
3280 r = send_user_lookup(unit, user_lookup_fd, uid, gid);
3281 if (r < 0) {
3282 *exit_status = EXIT_USER;
3283 return log_unit_error_errno(unit, r, "Failed to send user credentials to PID1: %m");
3284 }
3285
3286 user_lookup_fd = safe_close(user_lookup_fd);
3287
3288 r = acquire_home(context, uid, &home, &home_buffer);
3289 if (r < 0) {
3290 *exit_status = EXIT_CHDIR;
3291 return log_unit_error_errno(unit, r, "Failed to determine $HOME for user: %m");
3292 }
3293
3294 /* If a socket is connected to STDIN/STDOUT/STDERR, we
3295 * must sure to drop O_NONBLOCK */
3296 if (socket_fd >= 0)
3297 (void) fd_nonblock(socket_fd, false);
3298
3299 /* Journald will try to look-up our cgroup in order to populate _SYSTEMD_CGROUP and _SYSTEMD_UNIT fields.
3300 * Hence we need to migrate to the target cgroup from init.scope before connecting to journald */
3301 if (params->cgroup_path) {
3302 _cleanup_free_ char *p = NULL;
3303
3304 r = exec_parameters_get_cgroup_path(params, &p);
3305 if (r < 0) {
3306 *exit_status = EXIT_CGROUP;
3307 return log_unit_error_errno(unit, r, "Failed to acquire cgroup path: %m");
3308 }
3309
3310 r = cg_attach_everywhere(params->cgroup_supported, p, 0, NULL, NULL);
3311 if (r < 0) {
3312 *exit_status = EXIT_CGROUP;
3313 return log_unit_error_errno(unit, r, "Failed to attach to cgroup %s: %m", p);
3314 }
3315 }
3316
3317 if (context->network_namespace_path && runtime && runtime->netns_storage_socket[0] >= 0) {
3318 r = open_netns_path(runtime->netns_storage_socket, context->network_namespace_path);
3319 if (r < 0) {
3320 *exit_status = EXIT_NETWORK;
3321 return log_unit_error_errno(unit, r, "Failed to open network namespace path %s: %m", context->network_namespace_path);
3322 }
3323 }
3324
3325 r = setup_input(context, params, socket_fd, named_iofds);
3326 if (r < 0) {
3327 *exit_status = EXIT_STDIN;
3328 return log_unit_error_errno(unit, r, "Failed to set up standard input: %m");
3329 }
3330
3331 r = setup_output(unit, context, params, STDOUT_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
3332 if (r < 0) {
3333 *exit_status = EXIT_STDOUT;
3334 return log_unit_error_errno(unit, r, "Failed to set up standard output: %m");
3335 }
3336
3337 r = setup_output(unit, context, params, STDERR_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
3338 if (r < 0) {
3339 *exit_status = EXIT_STDERR;
3340 return log_unit_error_errno(unit, r, "Failed to set up standard error output: %m");
3341 }
3342
3343 if (context->oom_score_adjust_set) {
3344 /* When we can't make this change due to EPERM, then let's silently skip over it. User namespaces
3345 * prohibit write access to this file, and we shouldn't trip up over that. */
3346 r = set_oom_score_adjust(context->oom_score_adjust);
3347 if (IN_SET(r, -EPERM, -EACCES))
3348 log_unit_debug_errno(unit, r, "Failed to adjust OOM setting, assuming containerized execution, ignoring: %m");
3349 else if (r < 0) {
3350 *exit_status = EXIT_OOM_ADJUST;
3351 return log_unit_error_errno(unit, r, "Failed to adjust OOM setting: %m");
3352 }
3353 }
3354
3355 if (context->coredump_filter_set) {
3356 r = set_coredump_filter(context->coredump_filter);
3357 if (ERRNO_IS_PRIVILEGE(r))
3358 log_unit_debug_errno(unit, r, "Failed to adjust coredump_filter, ignoring: %m");
3359 else if (r < 0)
3360 return log_unit_error_errno(unit, r, "Failed to adjust coredump_filter: %m");
3361 }
3362
3363 if (context->nice_set) {
3364 r = setpriority_closest(context->nice);
3365 if (r < 0)
3366 return log_unit_error_errno(unit, r, "Failed to set up process scheduling priority (nice level): %m");
3367 }
3368
3369 if (context->cpu_sched_set) {
3370 struct sched_param param = {
3371 .sched_priority = context->cpu_sched_priority,
3372 };
3373
3374 r = sched_setscheduler(0,
3375 context->cpu_sched_policy |
3376 (context->cpu_sched_reset_on_fork ?
3377 SCHED_RESET_ON_FORK : 0),
3378 &param);
3379 if (r < 0) {
3380 *exit_status = EXIT_SETSCHEDULER;
3381 return log_unit_error_errno(unit, errno, "Failed to set up CPU scheduling: %m");
3382 }
3383 }
3384
3385 if (context->cpu_affinity_from_numa || context->cpu_set.set) {
3386 _cleanup_(cpu_set_reset) CPUSet converted_cpu_set = {};
3387 const CPUSet *cpu_set;
3388
3389 if (context->cpu_affinity_from_numa) {
3390 r = exec_context_cpu_affinity_from_numa(context, &converted_cpu_set);
3391 if (r < 0) {
3392 *exit_status = EXIT_CPUAFFINITY;
3393 return log_unit_error_errno(unit, r, "Failed to derive CPU affinity mask from NUMA mask: %m");
3394 }
3395
3396 cpu_set = &converted_cpu_set;
3397 } else
3398 cpu_set = &context->cpu_set;
3399
3400 if (sched_setaffinity(0, cpu_set->allocated, cpu_set->set) < 0) {
3401 *exit_status = EXIT_CPUAFFINITY;
3402 return log_unit_error_errno(unit, errno, "Failed to set up CPU affinity: %m");
3403 }
3404 }
3405
3406 if (mpol_is_valid(numa_policy_get_type(&context->numa_policy))) {
3407 r = apply_numa_policy(&context->numa_policy);
3408 if (r == -EOPNOTSUPP)
3409 log_unit_debug_errno(unit, r, "NUMA support not available, ignoring.");
3410 else if (r < 0) {
3411 *exit_status = EXIT_NUMA_POLICY;
3412 return log_unit_error_errno(unit, r, "Failed to set NUMA memory policy: %m");
3413 }
3414 }
3415
3416 if (context->ioprio_set)
3417 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, context->ioprio) < 0) {
3418 *exit_status = EXIT_IOPRIO;
3419 return log_unit_error_errno(unit, errno, "Failed to set up IO scheduling priority: %m");
3420 }
3421
3422 if (context->timer_slack_nsec != NSEC_INFINITY)
3423 if (prctl(PR_SET_TIMERSLACK, context->timer_slack_nsec) < 0) {
3424 *exit_status = EXIT_TIMERSLACK;
3425 return log_unit_error_errno(unit, errno, "Failed to set up timer slack: %m");
3426 }
3427
3428 if (context->personality != PERSONALITY_INVALID) {
3429 r = safe_personality(context->personality);
3430 if (r < 0) {
3431 *exit_status = EXIT_PERSONALITY;
3432 return log_unit_error_errno(unit, r, "Failed to set up execution domain (personality): %m");
3433 }
3434 }
3435
3436 if (context->utmp_id)
3437 utmp_put_init_process(context->utmp_id, getpid_cached(), getsid(0),
3438 context->tty_path,
3439 context->utmp_mode == EXEC_UTMP_INIT ? INIT_PROCESS :
3440 context->utmp_mode == EXEC_UTMP_LOGIN ? LOGIN_PROCESS :
3441 USER_PROCESS,
3442 username);
3443
3444 if (uid_is_valid(uid)) {
3445 r = chown_terminal(STDIN_FILENO, uid);
3446 if (r < 0) {
3447 *exit_status = EXIT_STDIN;
3448 return log_unit_error_errno(unit, r, "Failed to change ownership of terminal: %m");
3449 }
3450 }
3451
3452 /* If delegation is enabled we'll pass ownership of the cgroup to the user of the new process. On cgroup v1
3453 * this is only about systemd's own hierarchy, i.e. not the controller hierarchies, simply because that's not
3454 * safe. On cgroup v2 there's only one hierarchy anyway, and delegation is safe there, hence in that case only
3455 * touch a single hierarchy too. */
3456 if (params->cgroup_path && context->user && (params->flags & EXEC_CGROUP_DELEGATE)) {
3457 r = cg_set_access(SYSTEMD_CGROUP_CONTROLLER, params->cgroup_path, uid, gid);
3458 if (r < 0) {
3459 *exit_status = EXIT_CGROUP;
3460 return log_unit_error_errno(unit, r, "Failed to adjust control group access: %m");
3461 }
3462 }
3463
3464 for (dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
3465 r = setup_exec_directory(context, params, uid, gid, dt, exit_status);
3466 if (r < 0)
3467 return log_unit_error_errno(unit, r, "Failed to set up special execution directory in %s: %m", params->prefix[dt]);
3468 }
3469
3470 r = build_environment(
3471 unit,
3472 context,
3473 params,
3474 n_fds,
3475 home,
3476 username,
3477 shell,
3478 journal_stream_dev,
3479 journal_stream_ino,
3480 &our_env);
3481 if (r < 0) {
3482 *exit_status = EXIT_MEMORY;
3483 return log_oom();
3484 }
3485
3486 r = build_pass_environment(context, &pass_env);
3487 if (r < 0) {
3488 *exit_status = EXIT_MEMORY;
3489 return log_oom();
3490 }
3491
3492 accum_env = strv_env_merge(5,
3493 params->environment,
3494 our_env,
3495 pass_env,
3496 context->environment,
3497 files_env);
3498 if (!accum_env) {
3499 *exit_status = EXIT_MEMORY;
3500 return log_oom();
3501 }
3502 accum_env = strv_env_clean(accum_env);
3503
3504 (void) umask(context->umask);
3505
3506 r = setup_keyring(unit, context, params, uid, gid);
3507 if (r < 0) {
3508 *exit_status = EXIT_KEYRING;
3509 return log_unit_error_errno(unit, r, "Failed to set up kernel keyring: %m");
3510 }
3511
3512 /* We need sandboxing if the caller asked us to apply it and the command isn't explicitly excepted from it */
3513 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & EXEC_COMMAND_FULLY_PRIVILEGED);
3514
3515 /* We need the ambient capability hack, if the caller asked us to apply it and the command is marked for it, and the kernel doesn't actually support ambient caps */
3516 needs_ambient_hack = (params->flags & EXEC_APPLY_SANDBOXING) && (command->flags & EXEC_COMMAND_AMBIENT_MAGIC) && !ambient_capabilities_supported();
3517
3518 /* We need setresuid() if the caller asked us to apply sandboxing and the command isn't explicitly excepted from either whole sandboxing or just setresuid() itself, and the ambient hack is not desired */
3519 if (needs_ambient_hack)
3520 needs_setuid = false;
3521 else
3522 needs_setuid = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & (EXEC_COMMAND_FULLY_PRIVILEGED|EXEC_COMMAND_NO_SETUID));
3523
3524 if (needs_sandboxing) {
3525 /* MAC enablement checks need to be done before a new mount ns is created, as they rely on /sys being
3526 * present. The actual MAC context application will happen later, as late as possible, to avoid
3527 * impacting our own code paths. */
3528
3529 #if HAVE_SELINUX
3530 use_selinux = mac_selinux_use();
3531 #endif
3532 #if ENABLE_SMACK
3533 use_smack = mac_smack_use();
3534 #endif
3535 #if HAVE_APPARMOR
3536 use_apparmor = mac_apparmor_use();
3537 #endif
3538 }
3539
3540 if (needs_sandboxing) {
3541 int which_failed;
3542
3543 /* Let's set the resource limits before we call into PAM, so that pam_limits wins over what
3544 * is set here. (See below.) */
3545
3546 r = setrlimit_closest_all((const struct rlimit* const *) context->rlimit, &which_failed);
3547 if (r < 0) {
3548 *exit_status = EXIT_LIMITS;
3549 return log_unit_error_errno(unit, r, "Failed to adjust resource limit RLIMIT_%s: %m", rlimit_to_string(which_failed));
3550 }
3551 }
3552
3553 if (needs_setuid) {
3554
3555 /* Let's call into PAM after we set up our own idea of resource limits to that pam_limits
3556 * wins here. (See above.) */
3557
3558 if (context->pam_name && username) {
3559 r = setup_pam(context->pam_name, username, uid, gid, context->tty_path, &accum_env, fds, n_fds);
3560 if (r < 0) {
3561 *exit_status = EXIT_PAM;
3562 return log_unit_error_errno(unit, r, "Failed to set up PAM session: %m");
3563 }
3564
3565 ngids_after_pam = getgroups_alloc(&gids_after_pam);
3566 if (ngids_after_pam < 0) {
3567 *exit_status = EXIT_MEMORY;
3568 return log_unit_error_errno(unit, ngids_after_pam, "Failed to obtain groups after setting up PAM: %m");
3569 }
3570 }
3571 }
3572
3573 if (needs_sandboxing) {
3574 #if HAVE_SELINUX
3575 if (use_selinux && params->selinux_context_net && socket_fd >= 0) {
3576 r = mac_selinux_get_child_mls_label(socket_fd, command->path, context->selinux_context, &mac_selinux_context_net);
3577 if (r < 0) {
3578 *exit_status = EXIT_SELINUX_CONTEXT;
3579 return log_unit_error_errno(unit, r, "Failed to determine SELinux context: %m");
3580 }
3581 }
3582 #endif
3583
3584 /* If we're unprivileged, set up the user namespace first to enable use of the other namespaces.
3585 * Users with CAP_SYS_ADMIN can set up user namespaces last because they will be able to
3586 * set up the all of the other namespaces (i.e. network, mount, UTS) without a user namespace. */
3587 if (context->private_users && !have_effective_cap(CAP_SYS_ADMIN)) {
3588 userns_set_up = true;
3589 r = setup_private_users(saved_uid, saved_gid, uid, gid);
3590 if (r < 0) {
3591 *exit_status = EXIT_USER;
3592 return log_unit_error_errno(unit, r, "Failed to set up user namespacing for unprivileged user: %m");
3593 }
3594 }
3595 }
3596
3597 if ((context->private_network || context->network_namespace_path) && runtime && runtime->netns_storage_socket[0] >= 0) {
3598
3599 if (ns_type_supported(NAMESPACE_NET)) {
3600 r = setup_netns(runtime->netns_storage_socket);
3601 if (r == -EPERM)
3602 log_unit_warning_errno(unit, r,
3603 "PrivateNetwork=yes is configured, but network namespace setup failed, ignoring: %m");
3604 else if (r < 0) {
3605 *exit_status = EXIT_NETWORK;
3606 return log_unit_error_errno(unit, r, "Failed to set up network namespacing: %m");
3607 }
3608 } else if (context->network_namespace_path) {
3609 *exit_status = EXIT_NETWORK;
3610 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP),
3611 "NetworkNamespacePath= is not supported, refusing.");
3612 } else
3613 log_unit_warning(unit, "PrivateNetwork=yes is configured, but the kernel does not support network namespaces, ignoring.");
3614 }
3615
3616 needs_mount_namespace = exec_needs_mount_namespace(context, params, runtime);
3617 if (needs_mount_namespace) {
3618 _cleanup_free_ char *error_path = NULL;
3619
3620 r = apply_mount_namespace(unit, command, context, params, runtime, &error_path);
3621 if (r < 0) {
3622 *exit_status = EXIT_NAMESPACE;
3623 return log_unit_error_errno(unit, r, "Failed to set up mount namespacing%s%s: %m",
3624 error_path ? ": " : "", strempty(error_path));
3625 }
3626 }
3627
3628 if (needs_sandboxing) {
3629 r = apply_protect_hostname(unit, context, exit_status);
3630 if (r < 0)
3631 return r;
3632 }
3633
3634 /* Drop groups as early as possible.
3635 * This needs to be done after PrivateDevices=y setup as device nodes should be owned by the host's root.
3636 * For non-root in a userns, devices will be owned by the user/group before the group change, and nobody. */
3637 if (needs_setuid) {
3638 _cleanup_free_ gid_t *gids_to_enforce = NULL;
3639 int ngids_to_enforce = 0;
3640
3641 ngids_to_enforce = merge_gid_lists(supplementary_gids,
3642 ngids,
3643 gids_after_pam,
3644 ngids_after_pam,
3645 &gids_to_enforce);
3646 if (ngids_to_enforce < 0) {
3647 *exit_status = EXIT_MEMORY;
3648 return log_unit_error_errno(unit,
3649 ngids_to_enforce,
3650 "Failed to merge group lists. Group membership might be incorrect: %m");
3651 }
3652
3653 r = enforce_groups(gid, gids_to_enforce, ngids_to_enforce);
3654 if (r < 0) {
3655 *exit_status = EXIT_GROUP;
3656 return log_unit_error_errno(unit, r, "Changing group credentials failed: %m");
3657 }
3658 }
3659
3660 /* If the user namespace was not set up above, try to do it now.
3661 * It's preferred to set up the user namespace later (after all other namespaces) so as not to be
3662 * restricted by rules pertaining to combining user namspaces with other namespaces (e.g. in the
3663 * case of mount namespaces being less privileged when the mount point list is copied from a
3664 * different user namespace). */
3665
3666 if (needs_sandboxing && context->private_users && !userns_set_up) {
3667 r = setup_private_users(saved_uid, saved_gid, uid, gid);
3668 if (r < 0) {
3669 *exit_status = EXIT_USER;
3670 return log_unit_error_errno(unit, r, "Failed to set up user namespacing: %m");
3671 }
3672 }
3673
3674 /* We repeat the fd closing here, to make sure that nothing is leaked from the PAM modules. Note that we are
3675 * more aggressive this time since socket_fd and the netns fds we don't need anymore. We do keep the exec_fd
3676 * however if we have it as we want to keep it open until the final execve(). */
3677
3678 if (params->exec_fd >= 0) {
3679 exec_fd = params->exec_fd;
3680
3681 if (exec_fd < 3 + (int) n_fds) {
3682 int moved_fd;
3683
3684 /* Let's move the exec fd far up, so that it's outside of the fd range we want to pass to the
3685 * process we are about to execute. */
3686
3687 moved_fd = fcntl(exec_fd, F_DUPFD_CLOEXEC, 3 + (int) n_fds);
3688 if (moved_fd < 0) {
3689 *exit_status = EXIT_FDS;
3690 return log_unit_error_errno(unit, errno, "Couldn't move exec fd up: %m");
3691 }
3692
3693 safe_close(exec_fd);
3694 exec_fd = moved_fd;
3695 } else {
3696 /* This fd should be FD_CLOEXEC already, but let's make sure. */
3697 r = fd_cloexec(exec_fd, true);
3698 if (r < 0) {
3699 *exit_status = EXIT_FDS;
3700 return log_unit_error_errno(unit, r, "Failed to make exec fd FD_CLOEXEC: %m");
3701 }
3702 }
3703
3704 fds_with_exec_fd = newa(int, n_fds + 1);
3705 memcpy_safe(fds_with_exec_fd, fds, n_fds * sizeof(int));
3706 fds_with_exec_fd[n_fds] = exec_fd;
3707 n_fds_with_exec_fd = n_fds + 1;
3708 } else {
3709 fds_with_exec_fd = fds;
3710 n_fds_with_exec_fd = n_fds;
3711 }
3712
3713 r = close_all_fds(fds_with_exec_fd, n_fds_with_exec_fd);
3714 if (r >= 0)
3715 r = shift_fds(fds, n_fds);
3716 if (r >= 0)
3717 r = flags_fds(fds, n_socket_fds, n_storage_fds, context->non_blocking);
3718 if (r < 0) {
3719 *exit_status = EXIT_FDS;
3720 return log_unit_error_errno(unit, r, "Failed to adjust passed file descriptors: %m");
3721 }
3722
3723 /* At this point, the fds we want to pass to the program are all ready and set up, with O_CLOEXEC turned off
3724 * and at the right fd numbers. The are no other fds open, with one exception: the exec_fd if it is defined,
3725 * and it has O_CLOEXEC set, after all we want it to be closed by the execve(), so that our parent knows we
3726 * came this far. */
3727
3728 secure_bits = context->secure_bits;
3729
3730 if (needs_sandboxing) {
3731 uint64_t bset;
3732
3733 /* Set the RTPRIO resource limit to 0, but only if nothing else was explicitly
3734 * requested. (Note this is placed after the general resource limit initialization, see
3735 * above, in order to take precedence.) */
3736 if (context->restrict_realtime && !context->rlimit[RLIMIT_RTPRIO]) {
3737 if (setrlimit(RLIMIT_RTPRIO, &RLIMIT_MAKE_CONST(0)) < 0) {
3738 *exit_status = EXIT_LIMITS;
3739 return log_unit_error_errno(unit, errno, "Failed to adjust RLIMIT_RTPRIO resource limit: %m");
3740 }
3741 }
3742
3743 #if ENABLE_SMACK
3744 /* LSM Smack needs the capability CAP_MAC_ADMIN to change the current execution security context of the
3745 * process. This is the latest place before dropping capabilities. Other MAC context are set later. */
3746 if (use_smack) {
3747 r = setup_smack(context, command);
3748 if (r < 0) {
3749 *exit_status = EXIT_SMACK_PROCESS_LABEL;
3750 return log_unit_error_errno(unit, r, "Failed to set SMACK process label: %m");
3751 }
3752 }
3753 #endif
3754
3755 bset = context->capability_bounding_set;
3756 /* If the ambient caps hack is enabled (which means the kernel can't do them, and the user asked for
3757 * our magic fallback), then let's add some extra caps, so that the service can drop privs of its own,
3758 * instead of us doing that */
3759 if (needs_ambient_hack)
3760 bset |= (UINT64_C(1) << CAP_SETPCAP) |
3761 (UINT64_C(1) << CAP_SETUID) |
3762 (UINT64_C(1) << CAP_SETGID);
3763
3764 if (!cap_test_all(bset)) {
3765 r = capability_bounding_set_drop(bset, false);
3766 if (r < 0) {
3767 *exit_status = EXIT_CAPABILITIES;
3768 return log_unit_error_errno(unit, r, "Failed to drop capabilities: %m");
3769 }
3770 }
3771
3772 /* This is done before enforce_user, but ambient set
3773 * does not survive over setresuid() if keep_caps is not set. */
3774 if (!needs_ambient_hack) {
3775 r = capability_ambient_set_apply(context->capability_ambient_set, true);
3776 if (r < 0) {
3777 *exit_status = EXIT_CAPABILITIES;
3778 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (before UID change): %m");
3779 }
3780 }
3781 }
3782
3783 /* chroot to root directory first, before we lose the ability to chroot */
3784 r = apply_root_directory(context, params, needs_mount_namespace, exit_status);
3785 if (r < 0)
3786 return log_unit_error_errno(unit, r, "Chrooting to the requested root directory failed: %m");
3787
3788 if (needs_setuid) {
3789 if (uid_is_valid(uid)) {
3790 r = enforce_user(context, uid);
3791 if (r < 0) {
3792 *exit_status = EXIT_USER;
3793 return log_unit_error_errno(unit, r, "Failed to change UID to " UID_FMT ": %m", uid);
3794 }
3795
3796 if (!needs_ambient_hack &&
3797 context->capability_ambient_set != 0) {
3798
3799 /* Fix the ambient capabilities after user change. */
3800 r = capability_ambient_set_apply(context->capability_ambient_set, false);
3801 if (r < 0) {
3802 *exit_status = EXIT_CAPABILITIES;
3803 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (after UID change): %m");
3804 }
3805
3806 /* If we were asked to change user and ambient capabilities
3807 * were requested, we had to add keep-caps to the securebits
3808 * so that we would maintain the inherited capability set
3809 * through the setresuid(). Make sure that the bit is added
3810 * also to the context secure_bits so that we don't try to
3811 * drop the bit away next. */
3812
3813 secure_bits |= 1<<SECURE_KEEP_CAPS;
3814 }
3815 }
3816 }
3817
3818 /* Apply working directory here, because the working directory might be on NFS and only the user running
3819 * this service might have the correct privilege to change to the working directory */
3820 r = apply_working_directory(context, params, home, exit_status);
3821 if (r < 0)
3822 return log_unit_error_errno(unit, r, "Changing to the requested working directory failed: %m");
3823
3824 if (needs_sandboxing) {
3825 /* Apply other MAC contexts late, but before seccomp syscall filtering, as those should really be last to
3826 * influence our own codepaths as little as possible. Moreover, applying MAC contexts usually requires
3827 * syscalls that are subject to seccomp filtering, hence should probably be applied before the syscalls
3828 * are restricted. */
3829
3830 #if HAVE_SELINUX
3831 if (use_selinux) {
3832 char *exec_context = mac_selinux_context_net ?: context->selinux_context;
3833
3834 if (exec_context) {
3835 r = setexeccon(exec_context);
3836 if (r < 0) {
3837 *exit_status = EXIT_SELINUX_CONTEXT;
3838 return log_unit_error_errno(unit, r, "Failed to change SELinux context to %s: %m", exec_context);
3839 }
3840 }
3841 }
3842 #endif
3843
3844 #if HAVE_APPARMOR
3845 if (use_apparmor && context->apparmor_profile) {
3846 r = aa_change_onexec(context->apparmor_profile);
3847 if (r < 0 && !context->apparmor_profile_ignore) {
3848 *exit_status = EXIT_APPARMOR_PROFILE;
3849 return log_unit_error_errno(unit, errno, "Failed to prepare AppArmor profile change to %s: %m", context->apparmor_profile);
3850 }
3851 }
3852 #endif
3853
3854 /* PR_GET_SECUREBITS is not privileged, while PR_SET_SECUREBITS is. So to suppress potential EPERMs
3855 * we'll try not to call PR_SET_SECUREBITS unless necessary. */
3856 if (prctl(PR_GET_SECUREBITS) != secure_bits)
3857 if (prctl(PR_SET_SECUREBITS, secure_bits) < 0) {
3858 *exit_status = EXIT_SECUREBITS;
3859 return log_unit_error_errno(unit, errno, "Failed to set process secure bits: %m");
3860 }
3861
3862 if (context_has_no_new_privileges(context))
3863 if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) < 0) {
3864 *exit_status = EXIT_NO_NEW_PRIVILEGES;
3865 return log_unit_error_errno(unit, errno, "Failed to disable new privileges: %m");
3866 }
3867
3868 #if HAVE_SECCOMP
3869 r = apply_address_families(unit, context);
3870 if (r < 0) {
3871 *exit_status = EXIT_ADDRESS_FAMILIES;
3872 return log_unit_error_errno(unit, r, "Failed to restrict address families: %m");
3873 }
3874
3875 r = apply_memory_deny_write_execute(unit, context);
3876 if (r < 0) {
3877 *exit_status = EXIT_SECCOMP;
3878 return log_unit_error_errno(unit, r, "Failed to disable writing to executable memory: %m");
3879 }
3880
3881 r = apply_restrict_realtime(unit, context);
3882 if (r < 0) {
3883 *exit_status = EXIT_SECCOMP;
3884 return log_unit_error_errno(unit, r, "Failed to apply realtime restrictions: %m");
3885 }
3886
3887 r = apply_restrict_suid_sgid(unit, context);
3888 if (r < 0) {
3889 *exit_status = EXIT_SECCOMP;
3890 return log_unit_error_errno(unit, r, "Failed to apply SUID/SGID restrictions: %m");
3891 }
3892
3893 r = apply_restrict_namespaces(unit, context);
3894 if (r < 0) {
3895 *exit_status = EXIT_SECCOMP;
3896 return log_unit_error_errno(unit, r, "Failed to apply namespace restrictions: %m");
3897 }
3898
3899 r = apply_protect_sysctl(unit, context);
3900 if (r < 0) {
3901 *exit_status = EXIT_SECCOMP;
3902 return log_unit_error_errno(unit, r, "Failed to apply sysctl restrictions: %m");
3903 }
3904
3905 r = apply_protect_kernel_modules(unit, context);
3906 if (r < 0) {
3907 *exit_status = EXIT_SECCOMP;
3908 return log_unit_error_errno(unit, r, "Failed to apply module loading restrictions: %m");
3909 }
3910
3911 r = apply_protect_kernel_logs(unit, context);
3912 if (r < 0) {
3913 *exit_status = EXIT_SECCOMP;
3914 return log_unit_error_errno(unit, r, "Failed to apply kernel log restrictions: %m");
3915 }
3916
3917 r = apply_protect_clock(unit, context);
3918 if (r < 0) {
3919 *exit_status = EXIT_SECCOMP;
3920 return log_unit_error_errno(unit, r, "Failed to apply clock restrictions: %m");
3921 }
3922
3923 r = apply_private_devices(unit, context);
3924 if (r < 0) {
3925 *exit_status = EXIT_SECCOMP;
3926 return log_unit_error_errno(unit, r, "Failed to set up private devices: %m");
3927 }
3928
3929 r = apply_syscall_archs(unit, context);
3930 if (r < 0) {
3931 *exit_status = EXIT_SECCOMP;
3932 return log_unit_error_errno(unit, r, "Failed to apply syscall architecture restrictions: %m");
3933 }
3934
3935 r = apply_lock_personality(unit, context);
3936 if (r < 0) {
3937 *exit_status = EXIT_SECCOMP;
3938 return log_unit_error_errno(unit, r, "Failed to lock personalities: %m");
3939 }
3940
3941 /* This really should remain the last step before the execve(), to make sure our own code is unaffected
3942 * by the filter as little as possible. */
3943 r = apply_syscall_filter(unit, context, needs_ambient_hack);
3944 if (r < 0) {
3945 *exit_status = EXIT_SECCOMP;
3946 return log_unit_error_errno(unit, r, "Failed to apply system call filters: %m");
3947 }
3948 #endif
3949 }
3950
3951 if (!strv_isempty(context->unset_environment)) {
3952 char **ee = NULL;
3953
3954 ee = strv_env_delete(accum_env, 1, context->unset_environment);
3955 if (!ee) {
3956 *exit_status = EXIT_MEMORY;
3957 return log_oom();
3958 }
3959
3960 strv_free_and_replace(accum_env, ee);
3961 }
3962
3963 if (!FLAGS_SET(command->flags, EXEC_COMMAND_NO_ENV_EXPAND)) {
3964 replaced_argv = replace_env_argv(command->argv, accum_env);
3965 if (!replaced_argv) {
3966 *exit_status = EXIT_MEMORY;
3967 return log_oom();
3968 }
3969 final_argv = replaced_argv;
3970 } else
3971 final_argv = command->argv;
3972
3973 if (DEBUG_LOGGING) {
3974 _cleanup_free_ char *line;
3975
3976 line = exec_command_line(final_argv);
3977 if (line)
3978 log_struct(LOG_DEBUG,
3979 "EXECUTABLE=%s", command->path,
3980 LOG_UNIT_MESSAGE(unit, "Executing: %s", line),
3981 LOG_UNIT_ID(unit),
3982 LOG_UNIT_INVOCATION_ID(unit));
3983 }
3984
3985 if (exec_fd >= 0) {
3986 uint8_t hot = 1;
3987
3988 /* We have finished with all our initializations. Let's now let the manager know that. From this point
3989 * on, if the manager sees POLLHUP on the exec_fd, then execve() was successful. */
3990
3991 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
3992 *exit_status = EXIT_EXEC;
3993 return log_unit_error_errno(unit, errno, "Failed to enable exec_fd: %m");
3994 }
3995 }
3996
3997 execve(command->path, final_argv, accum_env);
3998 r = -errno;
3999
4000 if (exec_fd >= 0) {
4001 uint8_t hot = 0;
4002
4003 /* The execve() failed. This means the exec_fd is still open. Which means we need to tell the manager
4004 * that POLLHUP on it no longer means execve() succeeded. */
4005
4006 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
4007 *exit_status = EXIT_EXEC;
4008 return log_unit_error_errno(unit, errno, "Failed to disable exec_fd: %m");
4009 }
4010 }
4011
4012 if (r == -ENOENT && (command->flags & EXEC_COMMAND_IGNORE_FAILURE)) {
4013 log_struct_errno(LOG_INFO, r,
4014 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
4015 LOG_UNIT_ID(unit),
4016 LOG_UNIT_INVOCATION_ID(unit),
4017 LOG_UNIT_MESSAGE(unit, "Executable %s missing, skipping: %m",
4018 command->path),
4019 "EXECUTABLE=%s", command->path);
4020 return 0;
4021 }
4022
4023 *exit_status = EXIT_EXEC;
4024 return log_unit_error_errno(unit, r, "Failed to execute command: %m");
4025 }
4026
4027 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l);
4028 static int exec_context_named_iofds(const ExecContext *c, const ExecParameters *p, int named_iofds[static 3]);
4029
4030 int exec_spawn(Unit *unit,
4031 ExecCommand *command,
4032 const ExecContext *context,
4033 const ExecParameters *params,
4034 ExecRuntime *runtime,
4035 DynamicCreds *dcreds,
4036 pid_t *ret) {
4037
4038 int socket_fd, r, named_iofds[3] = { -1, -1, -1 }, *fds = NULL;
4039 _cleanup_free_ char *subcgroup_path = NULL;
4040 _cleanup_strv_free_ char **files_env = NULL;
4041 size_t n_storage_fds = 0, n_socket_fds = 0;
4042 _cleanup_free_ char *line = NULL;
4043 pid_t pid;
4044
4045 assert(unit);
4046 assert(command);
4047 assert(context);
4048 assert(ret);
4049 assert(params);
4050 assert(params->fds || (params->n_socket_fds + params->n_storage_fds <= 0));
4051
4052 if (context->std_input == EXEC_INPUT_SOCKET ||
4053 context->std_output == EXEC_OUTPUT_SOCKET ||
4054 context->std_error == EXEC_OUTPUT_SOCKET) {
4055
4056 if (params->n_socket_fds > 1) {
4057 log_unit_error(unit, "Got more than one socket.");
4058 return -EINVAL;
4059 }
4060
4061 if (params->n_socket_fds == 0) {
4062 log_unit_error(unit, "Got no socket.");
4063 return -EINVAL;
4064 }
4065
4066 socket_fd = params->fds[0];
4067 } else {
4068 socket_fd = -1;
4069 fds = params->fds;
4070 n_socket_fds = params->n_socket_fds;
4071 n_storage_fds = params->n_storage_fds;
4072 }
4073
4074 r = exec_context_named_iofds(context, params, named_iofds);
4075 if (r < 0)
4076 return log_unit_error_errno(unit, r, "Failed to load a named file descriptor: %m");
4077
4078 r = exec_context_load_environment(unit, context, &files_env);
4079 if (r < 0)
4080 return log_unit_error_errno(unit, r, "Failed to load environment files: %m");
4081
4082 line = exec_command_line(command->argv);
4083 if (!line)
4084 return log_oom();
4085
4086 log_struct(LOG_DEBUG,
4087 LOG_UNIT_MESSAGE(unit, "About to execute: %s", line),
4088 "EXECUTABLE=%s", command->path,
4089 LOG_UNIT_ID(unit),
4090 LOG_UNIT_INVOCATION_ID(unit));
4091
4092 if (params->cgroup_path) {
4093 r = exec_parameters_get_cgroup_path(params, &subcgroup_path);
4094 if (r < 0)
4095 return log_unit_error_errno(unit, r, "Failed to acquire subcgroup path: %m");
4096 if (r > 0) { /* We are using a child cgroup */
4097 r = cg_create(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path);
4098 if (r < 0)
4099 return log_unit_error_errno(unit, r, "Failed to create control group '%s': %m", subcgroup_path);
4100 }
4101 }
4102
4103 pid = fork();
4104 if (pid < 0)
4105 return log_unit_error_errno(unit, errno, "Failed to fork: %m");
4106
4107 if (pid == 0) {
4108 int exit_status = EXIT_SUCCESS;
4109
4110 r = exec_child(unit,
4111 command,
4112 context,
4113 params,
4114 runtime,
4115 dcreds,
4116 socket_fd,
4117 named_iofds,
4118 fds,
4119 n_socket_fds,
4120 n_storage_fds,
4121 files_env,
4122 unit->manager->user_lookup_fds[1],
4123 &exit_status);
4124
4125 if (r < 0) {
4126 const char *status =
4127 exit_status_to_string(exit_status,
4128 EXIT_STATUS_LIBC | EXIT_STATUS_SYSTEMD);
4129
4130 log_struct_errno(LOG_ERR, r,
4131 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
4132 LOG_UNIT_ID(unit),
4133 LOG_UNIT_INVOCATION_ID(unit),
4134 LOG_UNIT_MESSAGE(unit, "Failed at step %s spawning %s: %m",
4135 status, command->path),
4136 "EXECUTABLE=%s", command->path);
4137 }
4138
4139 _exit(exit_status);
4140 }
4141
4142 log_unit_debug(unit, "Forked %s as "PID_FMT, command->path, pid);
4143
4144 /* We add the new process to the cgroup both in the child (so that we can be sure that no user code is ever
4145 * executed outside of the cgroup) and in the parent (so that we can be sure that when we kill the cgroup the
4146 * process will be killed too). */
4147 if (subcgroup_path)
4148 (void) cg_attach(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path, pid);
4149
4150 exec_status_start(&command->exec_status, pid);
4151
4152 *ret = pid;
4153 return 0;
4154 }
4155
4156 void exec_context_init(ExecContext *c) {
4157 ExecDirectoryType i;
4158
4159 assert(c);
4160
4161 c->umask = 0022;
4162 c->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 0);
4163 c->cpu_sched_policy = SCHED_OTHER;
4164 c->syslog_priority = LOG_DAEMON|LOG_INFO;
4165 c->syslog_level_prefix = true;
4166 c->ignore_sigpipe = true;
4167 c->timer_slack_nsec = NSEC_INFINITY;
4168 c->personality = PERSONALITY_INVALID;
4169 for (i = 0; i < _EXEC_DIRECTORY_TYPE_MAX; i++)
4170 c->directories[i].mode = 0755;
4171 c->timeout_clean_usec = USEC_INFINITY;
4172 c->capability_bounding_set = CAP_ALL;
4173 assert_cc(NAMESPACE_FLAGS_INITIAL != NAMESPACE_FLAGS_ALL);
4174 c->restrict_namespaces = NAMESPACE_FLAGS_INITIAL;
4175 c->log_level_max = -1;
4176 numa_policy_reset(&c->numa_policy);
4177 }
4178
4179 void exec_context_done(ExecContext *c) {
4180 ExecDirectoryType i;
4181 size_t l;
4182
4183 assert(c);
4184
4185 c->environment = strv_free(c->environment);
4186 c->environment_files = strv_free(c->environment_files);
4187 c->pass_environment = strv_free(c->pass_environment);
4188 c->unset_environment = strv_free(c->unset_environment);
4189
4190 rlimit_free_all(c->rlimit);
4191
4192 for (l = 0; l < 3; l++) {
4193 c->stdio_fdname[l] = mfree(c->stdio_fdname[l]);
4194 c->stdio_file[l] = mfree(c->stdio_file[l]);
4195 }
4196
4197 c->working_directory = mfree(c->working_directory);
4198 c->root_directory = mfree(c->root_directory);
4199 c->root_image = mfree(c->root_image);
4200 c->root_hash = mfree(c->root_hash);
4201 c->root_hash_size = 0;
4202 c->root_hash_path = mfree(c->root_hash_path);
4203 c->root_verity = mfree(c->root_verity);
4204 c->tty_path = mfree(c->tty_path);
4205 c->syslog_identifier = mfree(c->syslog_identifier);
4206 c->user = mfree(c->user);
4207 c->group = mfree(c->group);
4208
4209 c->supplementary_groups = strv_free(c->supplementary_groups);
4210
4211 c->pam_name = mfree(c->pam_name);
4212
4213 c->read_only_paths = strv_free(c->read_only_paths);
4214 c->read_write_paths = strv_free(c->read_write_paths);
4215 c->inaccessible_paths = strv_free(c->inaccessible_paths);
4216
4217 bind_mount_free_many(c->bind_mounts, c->n_bind_mounts);
4218 c->bind_mounts = NULL;
4219 c->n_bind_mounts = 0;
4220 temporary_filesystem_free_many(c->temporary_filesystems, c->n_temporary_filesystems);
4221 c->temporary_filesystems = NULL;
4222 c->n_temporary_filesystems = 0;
4223
4224 cpu_set_reset(&c->cpu_set);
4225 numa_policy_reset(&c->numa_policy);
4226
4227 c->utmp_id = mfree(c->utmp_id);
4228 c->selinux_context = mfree(c->selinux_context);
4229 c->apparmor_profile = mfree(c->apparmor_profile);
4230 c->smack_process_label = mfree(c->smack_process_label);
4231
4232 c->syscall_filter = hashmap_free(c->syscall_filter);
4233 c->syscall_archs = set_free(c->syscall_archs);
4234 c->address_families = set_free(c->address_families);
4235
4236 for (i = 0; i < _EXEC_DIRECTORY_TYPE_MAX; i++)
4237 c->directories[i].paths = strv_free(c->directories[i].paths);
4238
4239 c->log_level_max = -1;
4240
4241 exec_context_free_log_extra_fields(c);
4242
4243 c->log_ratelimit_interval_usec = 0;
4244 c->log_ratelimit_burst = 0;
4245
4246 c->stdin_data = mfree(c->stdin_data);
4247 c->stdin_data_size = 0;
4248
4249 c->network_namespace_path = mfree(c->network_namespace_path);
4250
4251 c->log_namespace = mfree(c->log_namespace);
4252 }
4253
4254 int exec_context_destroy_runtime_directory(const ExecContext *c, const char *runtime_prefix) {
4255 char **i;
4256
4257 assert(c);
4258
4259 if (!runtime_prefix)
4260 return 0;
4261
4262 STRV_FOREACH(i, c->directories[EXEC_DIRECTORY_RUNTIME].paths) {
4263 _cleanup_free_ char *p;
4264
4265 if (exec_directory_is_private(c, EXEC_DIRECTORY_RUNTIME))
4266 p = path_join(runtime_prefix, "private", *i);
4267 else
4268 p = path_join(runtime_prefix, *i);
4269 if (!p)
4270 return -ENOMEM;
4271
4272 /* We execute this synchronously, since we need to be sure this is gone when we start the
4273 * service next. */
4274 (void) rm_rf(p, REMOVE_ROOT);
4275 }
4276
4277 return 0;
4278 }
4279
4280 static void exec_command_done(ExecCommand *c) {
4281 assert(c);
4282
4283 c->path = mfree(c->path);
4284 c->argv = strv_free(c->argv);
4285 }
4286
4287 void exec_command_done_array(ExecCommand *c, size_t n) {
4288 size_t i;
4289
4290 for (i = 0; i < n; i++)
4291 exec_command_done(c+i);
4292 }
4293
4294 ExecCommand* exec_command_free_list(ExecCommand *c) {
4295 ExecCommand *i;
4296
4297 while ((i = c)) {
4298 LIST_REMOVE(command, c, i);
4299 exec_command_done(i);
4300 free(i);
4301 }
4302
4303 return NULL;
4304 }
4305
4306 void exec_command_free_array(ExecCommand **c, size_t n) {
4307 size_t i;
4308
4309 for (i = 0; i < n; i++)
4310 c[i] = exec_command_free_list(c[i]);
4311 }
4312
4313 void exec_command_reset_status_array(ExecCommand *c, size_t n) {
4314 size_t i;
4315
4316 for (i = 0; i < n; i++)
4317 exec_status_reset(&c[i].exec_status);
4318 }
4319
4320 void exec_command_reset_status_list_array(ExecCommand **c, size_t n) {
4321 size_t i;
4322
4323 for (i = 0; i < n; i++) {
4324 ExecCommand *z;
4325
4326 LIST_FOREACH(command, z, c[i])
4327 exec_status_reset(&z->exec_status);
4328 }
4329 }
4330
4331 typedef struct InvalidEnvInfo {
4332 const Unit *unit;
4333 const char *path;
4334 } InvalidEnvInfo;
4335
4336 static void invalid_env(const char *p, void *userdata) {
4337 InvalidEnvInfo *info = userdata;
4338
4339 log_unit_error(info->unit, "Ignoring invalid environment assignment '%s': %s", p, info->path);
4340 }
4341
4342 const char* exec_context_fdname(const ExecContext *c, int fd_index) {
4343 assert(c);
4344
4345 switch (fd_index) {
4346
4347 case STDIN_FILENO:
4348 if (c->std_input != EXEC_INPUT_NAMED_FD)
4349 return NULL;
4350
4351 return c->stdio_fdname[STDIN_FILENO] ?: "stdin";
4352
4353 case STDOUT_FILENO:
4354 if (c->std_output != EXEC_OUTPUT_NAMED_FD)
4355 return NULL;
4356
4357 return c->stdio_fdname[STDOUT_FILENO] ?: "stdout";
4358
4359 case STDERR_FILENO:
4360 if (c->std_error != EXEC_OUTPUT_NAMED_FD)
4361 return NULL;
4362
4363 return c->stdio_fdname[STDERR_FILENO] ?: "stderr";
4364
4365 default:
4366 return NULL;
4367 }
4368 }
4369
4370 static int exec_context_named_iofds(
4371 const ExecContext *c,
4372 const ExecParameters *p,
4373 int named_iofds[static 3]) {
4374
4375 size_t i, targets;
4376 const char* stdio_fdname[3];
4377 size_t n_fds;
4378
4379 assert(c);
4380 assert(p);
4381 assert(named_iofds);
4382
4383 targets = (c->std_input == EXEC_INPUT_NAMED_FD) +
4384 (c->std_output == EXEC_OUTPUT_NAMED_FD) +
4385 (c->std_error == EXEC_OUTPUT_NAMED_FD);
4386
4387 for (i = 0; i < 3; i++)
4388 stdio_fdname[i] = exec_context_fdname(c, i);
4389
4390 n_fds = p->n_storage_fds + p->n_socket_fds;
4391
4392 for (i = 0; i < n_fds && targets > 0; i++)
4393 if (named_iofds[STDIN_FILENO] < 0 &&
4394 c->std_input == EXEC_INPUT_NAMED_FD &&
4395 stdio_fdname[STDIN_FILENO] &&
4396 streq(p->fd_names[i], stdio_fdname[STDIN_FILENO])) {
4397
4398 named_iofds[STDIN_FILENO] = p->fds[i];
4399 targets--;
4400
4401 } else if (named_iofds[STDOUT_FILENO] < 0 &&
4402 c->std_output == EXEC_OUTPUT_NAMED_FD &&
4403 stdio_fdname[STDOUT_FILENO] &&
4404 streq(p->fd_names[i], stdio_fdname[STDOUT_FILENO])) {
4405
4406 named_iofds[STDOUT_FILENO] = p->fds[i];
4407 targets--;
4408
4409 } else if (named_iofds[STDERR_FILENO] < 0 &&
4410 c->std_error == EXEC_OUTPUT_NAMED_FD &&
4411 stdio_fdname[STDERR_FILENO] &&
4412 streq(p->fd_names[i], stdio_fdname[STDERR_FILENO])) {
4413
4414 named_iofds[STDERR_FILENO] = p->fds[i];
4415 targets--;
4416 }
4417
4418 return targets == 0 ? 0 : -ENOENT;
4419 }
4420
4421 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l) {
4422 char **i, **r = NULL;
4423
4424 assert(c);
4425 assert(l);
4426
4427 STRV_FOREACH(i, c->environment_files) {
4428 char *fn;
4429 int k;
4430 unsigned n;
4431 bool ignore = false;
4432 char **p;
4433 _cleanup_globfree_ glob_t pglob = {};
4434
4435 fn = *i;
4436
4437 if (fn[0] == '-') {
4438 ignore = true;
4439 fn++;
4440 }
4441
4442 if (!path_is_absolute(fn)) {
4443 if (ignore)
4444 continue;
4445
4446 strv_free(r);
4447 return -EINVAL;
4448 }
4449
4450 /* Filename supports globbing, take all matching files */
4451 k = safe_glob(fn, 0, &pglob);
4452 if (k < 0) {
4453 if (ignore)
4454 continue;
4455
4456 strv_free(r);
4457 return k;
4458 }
4459
4460 /* When we don't match anything, -ENOENT should be returned */
4461 assert(pglob.gl_pathc > 0);
4462
4463 for (n = 0; n < pglob.gl_pathc; n++) {
4464 k = load_env_file(NULL, pglob.gl_pathv[n], &p);
4465 if (k < 0) {
4466 if (ignore)
4467 continue;
4468
4469 strv_free(r);
4470 return k;
4471 }
4472 /* Log invalid environment variables with filename */
4473 if (p) {
4474 InvalidEnvInfo info = {
4475 .unit = unit,
4476 .path = pglob.gl_pathv[n]
4477 };
4478
4479 p = strv_env_clean_with_callback(p, invalid_env, &info);
4480 }
4481
4482 if (!r)
4483 r = p;
4484 else {
4485 char **m;
4486
4487 m = strv_env_merge(2, r, p);
4488 strv_free(r);
4489 strv_free(p);
4490 if (!m)
4491 return -ENOMEM;
4492
4493 r = m;
4494 }
4495 }
4496 }
4497
4498 *l = r;
4499
4500 return 0;
4501 }
4502
4503 static bool tty_may_match_dev_console(const char *tty) {
4504 _cleanup_free_ char *resolved = NULL;
4505
4506 if (!tty)
4507 return true;
4508
4509 tty = skip_dev_prefix(tty);
4510
4511 /* trivial identity? */
4512 if (streq(tty, "console"))
4513 return true;
4514
4515 if (resolve_dev_console(&resolved) < 0)
4516 return true; /* if we could not resolve, assume it may */
4517
4518 /* "tty0" means the active VC, so it may be the same sometimes */
4519 return path_equal(resolved, tty) || (streq(resolved, "tty0") && tty_is_vc(tty));
4520 }
4521
4522 static bool exec_context_may_touch_tty(const ExecContext *ec) {
4523 assert(ec);
4524
4525 return ec->tty_reset ||
4526 ec->tty_vhangup ||
4527 ec->tty_vt_disallocate ||
4528 is_terminal_input(ec->std_input) ||
4529 is_terminal_output(ec->std_output) ||
4530 is_terminal_output(ec->std_error);
4531 }
4532
4533 bool exec_context_may_touch_console(const ExecContext *ec) {
4534
4535 return exec_context_may_touch_tty(ec) &&
4536 tty_may_match_dev_console(exec_context_tty_path(ec));
4537 }
4538
4539 static void strv_fprintf(FILE *f, char **l) {
4540 char **g;
4541
4542 assert(f);
4543
4544 STRV_FOREACH(g, l)
4545 fprintf(f, " %s", *g);
4546 }
4547
4548 void exec_context_dump(const ExecContext *c, FILE* f, const char *prefix) {
4549 char **e, **d, buf_clean[FORMAT_TIMESPAN_MAX];
4550 ExecDirectoryType dt;
4551 unsigned i;
4552 int r;
4553
4554 assert(c);
4555 assert(f);
4556
4557 prefix = strempty(prefix);
4558
4559 fprintf(f,
4560 "%sUMask: %04o\n"
4561 "%sWorkingDirectory: %s\n"
4562 "%sRootDirectory: %s\n"
4563 "%sNonBlocking: %s\n"
4564 "%sPrivateTmp: %s\n"
4565 "%sPrivateDevices: %s\n"
4566 "%sProtectKernelTunables: %s\n"
4567 "%sProtectKernelModules: %s\n"
4568 "%sProtectKernelLogs: %s\n"
4569 "%sProtectClock: %s\n"
4570 "%sProtectControlGroups: %s\n"
4571 "%sPrivateNetwork: %s\n"
4572 "%sPrivateUsers: %s\n"
4573 "%sProtectHome: %s\n"
4574 "%sProtectSystem: %s\n"
4575 "%sMountAPIVFS: %s\n"
4576 "%sIgnoreSIGPIPE: %s\n"
4577 "%sMemoryDenyWriteExecute: %s\n"
4578 "%sRestrictRealtime: %s\n"
4579 "%sRestrictSUIDSGID: %s\n"
4580 "%sKeyringMode: %s\n"
4581 "%sProtectHostname: %s\n",
4582 prefix, c->umask,
4583 prefix, c->working_directory ? c->working_directory : "/",
4584 prefix, c->root_directory ? c->root_directory : "/",
4585 prefix, yes_no(c->non_blocking),
4586 prefix, yes_no(c->private_tmp),
4587 prefix, yes_no(c->private_devices),
4588 prefix, yes_no(c->protect_kernel_tunables),
4589 prefix, yes_no(c->protect_kernel_modules),
4590 prefix, yes_no(c->protect_kernel_logs),
4591 prefix, yes_no(c->protect_clock),
4592 prefix, yes_no(c->protect_control_groups),
4593 prefix, yes_no(c->private_network),
4594 prefix, yes_no(c->private_users),
4595 prefix, protect_home_to_string(c->protect_home),
4596 prefix, protect_system_to_string(c->protect_system),
4597 prefix, yes_no(c->mount_apivfs),
4598 prefix, yes_no(c->ignore_sigpipe),
4599 prefix, yes_no(c->memory_deny_write_execute),
4600 prefix, yes_no(c->restrict_realtime),
4601 prefix, yes_no(c->restrict_suid_sgid),
4602 prefix, exec_keyring_mode_to_string(c->keyring_mode),
4603 prefix, yes_no(c->protect_hostname));
4604
4605 if (c->root_image)
4606 fprintf(f, "%sRootImage: %s\n", prefix, c->root_image);
4607
4608 if (c->root_hash) {
4609 _cleanup_free_ char *encoded = NULL;
4610 encoded = hexmem(c->root_hash, c->root_hash_size);
4611 if (encoded)
4612 fprintf(f, "%sRootHash: %s\n", prefix, encoded);
4613 }
4614
4615 if (c->root_hash_path)
4616 fprintf(f, "%sRootHash: %s\n", prefix, c->root_hash_path);
4617
4618 if (c->root_verity)
4619 fprintf(f, "%sRootVerity: %s\n", prefix, c->root_verity);
4620
4621 STRV_FOREACH(e, c->environment)
4622 fprintf(f, "%sEnvironment: %s\n", prefix, *e);
4623
4624 STRV_FOREACH(e, c->environment_files)
4625 fprintf(f, "%sEnvironmentFile: %s\n", prefix, *e);
4626
4627 STRV_FOREACH(e, c->pass_environment)
4628 fprintf(f, "%sPassEnvironment: %s\n", prefix, *e);
4629
4630 STRV_FOREACH(e, c->unset_environment)
4631 fprintf(f, "%sUnsetEnvironment: %s\n", prefix, *e);
4632
4633 fprintf(f, "%sRuntimeDirectoryPreserve: %s\n", prefix, exec_preserve_mode_to_string(c->runtime_directory_preserve_mode));
4634
4635 for (dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
4636 fprintf(f, "%s%sMode: %04o\n", prefix, exec_directory_type_to_string(dt), c->directories[dt].mode);
4637
4638 STRV_FOREACH(d, c->directories[dt].paths)
4639 fprintf(f, "%s%s: %s\n", prefix, exec_directory_type_to_string(dt), *d);
4640 }
4641
4642 fprintf(f,
4643 "%sTimeoutCleanSec: %s\n",
4644 prefix, format_timespan(buf_clean, sizeof(buf_clean), c->timeout_clean_usec, USEC_PER_SEC));
4645
4646 if (c->nice_set)
4647 fprintf(f,
4648 "%sNice: %i\n",
4649 prefix, c->nice);
4650
4651 if (c->oom_score_adjust_set)
4652 fprintf(f,
4653 "%sOOMScoreAdjust: %i\n",
4654 prefix, c->oom_score_adjust);
4655
4656 if (c->coredump_filter_set)
4657 fprintf(f,
4658 "%sCoredumpFilter: 0x%"PRIx64"\n",
4659 prefix, c->coredump_filter);
4660
4661 for (i = 0; i < RLIM_NLIMITS; i++)
4662 if (c->rlimit[i]) {
4663 fprintf(f, "%sLimit%s: " RLIM_FMT "\n",
4664 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_max);
4665 fprintf(f, "%sLimit%sSoft: " RLIM_FMT "\n",
4666 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_cur);
4667 }
4668
4669 if (c->ioprio_set) {
4670 _cleanup_free_ char *class_str = NULL;
4671
4672 r = ioprio_class_to_string_alloc(IOPRIO_PRIO_CLASS(c->ioprio), &class_str);
4673 if (r >= 0)
4674 fprintf(f, "%sIOSchedulingClass: %s\n", prefix, class_str);
4675
4676 fprintf(f, "%sIOPriority: %lu\n", prefix, IOPRIO_PRIO_DATA(c->ioprio));
4677 }
4678
4679 if (c->cpu_sched_set) {
4680 _cleanup_free_ char *policy_str = NULL;
4681
4682 r = sched_policy_to_string_alloc(c->cpu_sched_policy, &policy_str);
4683 if (r >= 0)
4684 fprintf(f, "%sCPUSchedulingPolicy: %s\n", prefix, policy_str);
4685
4686 fprintf(f,
4687 "%sCPUSchedulingPriority: %i\n"
4688 "%sCPUSchedulingResetOnFork: %s\n",
4689 prefix, c->cpu_sched_priority,
4690 prefix, yes_no(c->cpu_sched_reset_on_fork));
4691 }
4692
4693 if (c->cpu_set.set) {
4694 _cleanup_free_ char *affinity = NULL;
4695
4696 affinity = cpu_set_to_range_string(&c->cpu_set);
4697 fprintf(f, "%sCPUAffinity: %s\n", prefix, affinity);
4698 }
4699
4700 if (mpol_is_valid(numa_policy_get_type(&c->numa_policy))) {
4701 _cleanup_free_ char *nodes = NULL;
4702
4703 nodes = cpu_set_to_range_string(&c->numa_policy.nodes);
4704 fprintf(f, "%sNUMAPolicy: %s\n", prefix, mpol_to_string(numa_policy_get_type(&c->numa_policy)));
4705 fprintf(f, "%sNUMAMask: %s\n", prefix, strnull(nodes));
4706 }
4707
4708 if (c->timer_slack_nsec != NSEC_INFINITY)
4709 fprintf(f, "%sTimerSlackNSec: "NSEC_FMT "\n", prefix, c->timer_slack_nsec);
4710
4711 fprintf(f,
4712 "%sStandardInput: %s\n"
4713 "%sStandardOutput: %s\n"
4714 "%sStandardError: %s\n",
4715 prefix, exec_input_to_string(c->std_input),
4716 prefix, exec_output_to_string(c->std_output),
4717 prefix, exec_output_to_string(c->std_error));
4718
4719 if (c->std_input == EXEC_INPUT_NAMED_FD)
4720 fprintf(f, "%sStandardInputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDIN_FILENO]);
4721 if (c->std_output == EXEC_OUTPUT_NAMED_FD)
4722 fprintf(f, "%sStandardOutputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDOUT_FILENO]);
4723 if (c->std_error == EXEC_OUTPUT_NAMED_FD)
4724 fprintf(f, "%sStandardErrorFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDERR_FILENO]);
4725
4726 if (c->std_input == EXEC_INPUT_FILE)
4727 fprintf(f, "%sStandardInputFile: %s\n", prefix, c->stdio_file[STDIN_FILENO]);
4728 if (c->std_output == EXEC_OUTPUT_FILE)
4729 fprintf(f, "%sStandardOutputFile: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
4730 if (c->std_output == EXEC_OUTPUT_FILE_APPEND)
4731 fprintf(f, "%sStandardOutputFileToAppend: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
4732 if (c->std_error == EXEC_OUTPUT_FILE)
4733 fprintf(f, "%sStandardErrorFile: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
4734 if (c->std_error == EXEC_OUTPUT_FILE_APPEND)
4735 fprintf(f, "%sStandardErrorFileToAppend: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
4736
4737 if (c->tty_path)
4738 fprintf(f,
4739 "%sTTYPath: %s\n"
4740 "%sTTYReset: %s\n"
4741 "%sTTYVHangup: %s\n"
4742 "%sTTYVTDisallocate: %s\n",
4743 prefix, c->tty_path,
4744 prefix, yes_no(c->tty_reset),
4745 prefix, yes_no(c->tty_vhangup),
4746 prefix, yes_no(c->tty_vt_disallocate));
4747
4748 if (IN_SET(c->std_output,
4749 EXEC_OUTPUT_KMSG,
4750 EXEC_OUTPUT_JOURNAL,
4751 EXEC_OUTPUT_KMSG_AND_CONSOLE,
4752 EXEC_OUTPUT_JOURNAL_AND_CONSOLE) ||
4753 IN_SET(c->std_error,
4754 EXEC_OUTPUT_KMSG,
4755 EXEC_OUTPUT_JOURNAL,
4756 EXEC_OUTPUT_KMSG_AND_CONSOLE,
4757 EXEC_OUTPUT_JOURNAL_AND_CONSOLE)) {
4758
4759 _cleanup_free_ char *fac_str = NULL, *lvl_str = NULL;
4760
4761 r = log_facility_unshifted_to_string_alloc(c->syslog_priority >> 3, &fac_str);
4762 if (r >= 0)
4763 fprintf(f, "%sSyslogFacility: %s\n", prefix, fac_str);
4764
4765 r = log_level_to_string_alloc(LOG_PRI(c->syslog_priority), &lvl_str);
4766 if (r >= 0)
4767 fprintf(f, "%sSyslogLevel: %s\n", prefix, lvl_str);
4768 }
4769
4770 if (c->log_level_max >= 0) {
4771 _cleanup_free_ char *t = NULL;
4772
4773 (void) log_level_to_string_alloc(c->log_level_max, &t);
4774
4775 fprintf(f, "%sLogLevelMax: %s\n", prefix, strna(t));
4776 }
4777
4778 if (c->log_ratelimit_interval_usec > 0) {
4779 char buf_timespan[FORMAT_TIMESPAN_MAX];
4780
4781 fprintf(f,
4782 "%sLogRateLimitIntervalSec: %s\n",
4783 prefix, format_timespan(buf_timespan, sizeof(buf_timespan), c->log_ratelimit_interval_usec, USEC_PER_SEC));
4784 }
4785
4786 if (c->log_ratelimit_burst > 0)
4787 fprintf(f, "%sLogRateLimitBurst: %u\n", prefix, c->log_ratelimit_burst);
4788
4789 if (c->n_log_extra_fields > 0) {
4790 size_t j;
4791
4792 for (j = 0; j < c->n_log_extra_fields; j++) {
4793 fprintf(f, "%sLogExtraFields: ", prefix);
4794 fwrite(c->log_extra_fields[j].iov_base,
4795 1, c->log_extra_fields[j].iov_len,
4796 f);
4797 fputc('\n', f);
4798 }
4799 }
4800
4801 if (c->log_namespace)
4802 fprintf(f, "%sLogNamespace: %s\n", prefix, c->log_namespace);
4803
4804 if (c->secure_bits) {
4805 _cleanup_free_ char *str = NULL;
4806
4807 r = secure_bits_to_string_alloc(c->secure_bits, &str);
4808 if (r >= 0)
4809 fprintf(f, "%sSecure Bits: %s\n", prefix, str);
4810 }
4811
4812 if (c->capability_bounding_set != CAP_ALL) {
4813 _cleanup_free_ char *str = NULL;
4814
4815 r = capability_set_to_string_alloc(c->capability_bounding_set, &str);
4816 if (r >= 0)
4817 fprintf(f, "%sCapabilityBoundingSet: %s\n", prefix, str);
4818 }
4819
4820 if (c->capability_ambient_set != 0) {
4821 _cleanup_free_ char *str = NULL;
4822
4823 r = capability_set_to_string_alloc(c->capability_ambient_set, &str);
4824 if (r >= 0)
4825 fprintf(f, "%sAmbientCapabilities: %s\n", prefix, str);
4826 }
4827
4828 if (c->user)
4829 fprintf(f, "%sUser: %s\n", prefix, c->user);
4830 if (c->group)
4831 fprintf(f, "%sGroup: %s\n", prefix, c->group);
4832
4833 fprintf(f, "%sDynamicUser: %s\n", prefix, yes_no(c->dynamic_user));
4834
4835 if (!strv_isempty(c->supplementary_groups)) {
4836 fprintf(f, "%sSupplementaryGroups:", prefix);
4837 strv_fprintf(f, c->supplementary_groups);
4838 fputs("\n", f);
4839 }
4840
4841 if (c->pam_name)
4842 fprintf(f, "%sPAMName: %s\n", prefix, c->pam_name);
4843
4844 if (!strv_isempty(c->read_write_paths)) {
4845 fprintf(f, "%sReadWritePaths:", prefix);
4846 strv_fprintf(f, c->read_write_paths);
4847 fputs("\n", f);
4848 }
4849
4850 if (!strv_isempty(c->read_only_paths)) {
4851 fprintf(f, "%sReadOnlyPaths:", prefix);
4852 strv_fprintf(f, c->read_only_paths);
4853 fputs("\n", f);
4854 }
4855
4856 if (!strv_isempty(c->inaccessible_paths)) {
4857 fprintf(f, "%sInaccessiblePaths:", prefix);
4858 strv_fprintf(f, c->inaccessible_paths);
4859 fputs("\n", f);
4860 }
4861
4862 if (c->n_bind_mounts > 0)
4863 for (i = 0; i < c->n_bind_mounts; i++)
4864 fprintf(f, "%s%s: %s%s:%s:%s\n", prefix,
4865 c->bind_mounts[i].read_only ? "BindReadOnlyPaths" : "BindPaths",
4866 c->bind_mounts[i].ignore_enoent ? "-": "",
4867 c->bind_mounts[i].source,
4868 c->bind_mounts[i].destination,
4869 c->bind_mounts[i].recursive ? "rbind" : "norbind");
4870
4871 if (c->n_temporary_filesystems > 0)
4872 for (i = 0; i < c->n_temporary_filesystems; i++) {
4873 TemporaryFileSystem *t = c->temporary_filesystems + i;
4874
4875 fprintf(f, "%sTemporaryFileSystem: %s%s%s\n", prefix,
4876 t->path,
4877 isempty(t->options) ? "" : ":",
4878 strempty(t->options));
4879 }
4880
4881 if (c->utmp_id)
4882 fprintf(f,
4883 "%sUtmpIdentifier: %s\n",
4884 prefix, c->utmp_id);
4885
4886 if (c->selinux_context)
4887 fprintf(f,
4888 "%sSELinuxContext: %s%s\n",
4889 prefix, c->selinux_context_ignore ? "-" : "", c->selinux_context);
4890
4891 if (c->apparmor_profile)
4892 fprintf(f,
4893 "%sAppArmorProfile: %s%s\n",
4894 prefix, c->apparmor_profile_ignore ? "-" : "", c->apparmor_profile);
4895
4896 if (c->smack_process_label)
4897 fprintf(f,
4898 "%sSmackProcessLabel: %s%s\n",
4899 prefix, c->smack_process_label_ignore ? "-" : "", c->smack_process_label);
4900
4901 if (c->personality != PERSONALITY_INVALID)
4902 fprintf(f,
4903 "%sPersonality: %s\n",
4904 prefix, strna(personality_to_string(c->personality)));
4905
4906 fprintf(f,
4907 "%sLockPersonality: %s\n",
4908 prefix, yes_no(c->lock_personality));
4909
4910 if (c->syscall_filter) {
4911 #if HAVE_SECCOMP
4912 Iterator j;
4913 void *id, *val;
4914 bool first = true;
4915 #endif
4916
4917 fprintf(f,
4918 "%sSystemCallFilter: ",
4919 prefix);
4920
4921 if (!c->syscall_allow_list)
4922 fputc('~', f);
4923
4924 #if HAVE_SECCOMP
4925 HASHMAP_FOREACH_KEY(val, id, c->syscall_filter, j) {
4926 _cleanup_free_ char *name = NULL;
4927 const char *errno_name = NULL;
4928 int num = PTR_TO_INT(val);
4929
4930 if (first)
4931 first = false;
4932 else
4933 fputc(' ', f);
4934
4935 name = seccomp_syscall_resolve_num_arch(SCMP_ARCH_NATIVE, PTR_TO_INT(id) - 1);
4936 fputs(strna(name), f);
4937
4938 if (num >= 0) {
4939 errno_name = errno_to_name(num);
4940 if (errno_name)
4941 fprintf(f, ":%s", errno_name);
4942 else
4943 fprintf(f, ":%d", num);
4944 }
4945 }
4946 #endif
4947
4948 fputc('\n', f);
4949 }
4950
4951 if (c->syscall_archs) {
4952 #if HAVE_SECCOMP
4953 Iterator j;
4954 void *id;
4955 #endif
4956
4957 fprintf(f,
4958 "%sSystemCallArchitectures:",
4959 prefix);
4960
4961 #if HAVE_SECCOMP
4962 SET_FOREACH(id, c->syscall_archs, j)
4963 fprintf(f, " %s", strna(seccomp_arch_to_string(PTR_TO_UINT32(id) - 1)));
4964 #endif
4965 fputc('\n', f);
4966 }
4967
4968 if (exec_context_restrict_namespaces_set(c)) {
4969 _cleanup_free_ char *s = NULL;
4970
4971 r = namespace_flags_to_string(c->restrict_namespaces, &s);
4972 if (r >= 0)
4973 fprintf(f, "%sRestrictNamespaces: %s\n",
4974 prefix, strna(s));
4975 }
4976
4977 if (c->network_namespace_path)
4978 fprintf(f,
4979 "%sNetworkNamespacePath: %s\n",
4980 prefix, c->network_namespace_path);
4981
4982 if (c->syscall_errno > 0) {
4983 const char *errno_name;
4984
4985 fprintf(f, "%sSystemCallErrorNumber: ", prefix);
4986
4987 errno_name = errno_to_name(c->syscall_errno);
4988 if (errno_name)
4989 fprintf(f, "%s\n", errno_name);
4990 else
4991 fprintf(f, "%d\n", c->syscall_errno);
4992 }
4993 }
4994
4995 bool exec_context_maintains_privileges(const ExecContext *c) {
4996 assert(c);
4997
4998 /* Returns true if the process forked off would run under
4999 * an unchanged UID or as root. */
5000
5001 if (!c->user)
5002 return true;
5003
5004 if (streq(c->user, "root") || streq(c->user, "0"))
5005 return true;
5006
5007 return false;
5008 }
5009
5010 int exec_context_get_effective_ioprio(const ExecContext *c) {
5011 int p;
5012
5013 assert(c);
5014
5015 if (c->ioprio_set)
5016 return c->ioprio;
5017
5018 p = ioprio_get(IOPRIO_WHO_PROCESS, 0);
5019 if (p < 0)
5020 return IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 4);
5021
5022 return p;
5023 }
5024
5025 void exec_context_free_log_extra_fields(ExecContext *c) {
5026 size_t l;
5027
5028 assert(c);
5029
5030 for (l = 0; l < c->n_log_extra_fields; l++)
5031 free(c->log_extra_fields[l].iov_base);
5032 c->log_extra_fields = mfree(c->log_extra_fields);
5033 c->n_log_extra_fields = 0;
5034 }
5035
5036 void exec_context_revert_tty(ExecContext *c) {
5037 int r;
5038
5039 assert(c);
5040
5041 /* First, reset the TTY (possibly kicking everybody else from the TTY) */
5042 exec_context_tty_reset(c, NULL);
5043
5044 /* And then undo what chown_terminal() did earlier. Note that we only do this if we have a path
5045 * configured. If the TTY was passed to us as file descriptor we assume the TTY is opened and managed
5046 * by whoever passed it to us and thus knows better when and how to chmod()/chown() it back. */
5047
5048 if (exec_context_may_touch_tty(c)) {
5049 const char *path;
5050
5051 path = exec_context_tty_path(c);
5052 if (path) {
5053 r = chmod_and_chown(path, TTY_MODE, 0, TTY_GID);
5054 if (r < 0 && r != -ENOENT)
5055 log_warning_errno(r, "Failed to reset TTY ownership/access mode of %s, ignoring: %m", path);
5056 }
5057 }
5058 }
5059
5060 int exec_context_get_clean_directories(
5061 ExecContext *c,
5062 char **prefix,
5063 ExecCleanMask mask,
5064 char ***ret) {
5065
5066 _cleanup_strv_free_ char **l = NULL;
5067 ExecDirectoryType t;
5068 int r;
5069
5070 assert(c);
5071 assert(prefix);
5072 assert(ret);
5073
5074 for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
5075 char **i;
5076
5077 if (!FLAGS_SET(mask, 1U << t))
5078 continue;
5079
5080 if (!prefix[t])
5081 continue;
5082
5083 STRV_FOREACH(i, c->directories[t].paths) {
5084 char *j;
5085
5086 j = path_join(prefix[t], *i);
5087 if (!j)
5088 return -ENOMEM;
5089
5090 r = strv_consume(&l, j);
5091 if (r < 0)
5092 return r;
5093
5094 /* Also remove private directories unconditionally. */
5095 if (t != EXEC_DIRECTORY_CONFIGURATION) {
5096 j = path_join(prefix[t], "private", *i);
5097 if (!j)
5098 return -ENOMEM;
5099
5100 r = strv_consume(&l, j);
5101 if (r < 0)
5102 return r;
5103 }
5104 }
5105 }
5106
5107 *ret = TAKE_PTR(l);
5108 return 0;
5109 }
5110
5111 int exec_context_get_clean_mask(ExecContext *c, ExecCleanMask *ret) {
5112 ExecCleanMask mask = 0;
5113
5114 assert(c);
5115 assert(ret);
5116
5117 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
5118 if (!strv_isempty(c->directories[t].paths))
5119 mask |= 1U << t;
5120
5121 *ret = mask;
5122 return 0;
5123 }
5124
5125 void exec_status_start(ExecStatus *s, pid_t pid) {
5126 assert(s);
5127
5128 *s = (ExecStatus) {
5129 .pid = pid,
5130 };
5131
5132 dual_timestamp_get(&s->start_timestamp);
5133 }
5134
5135 void exec_status_exit(ExecStatus *s, const ExecContext *context, pid_t pid, int code, int status) {
5136 assert(s);
5137
5138 if (s->pid != pid) {
5139 *s = (ExecStatus) {
5140 .pid = pid,
5141 };
5142 }
5143
5144 dual_timestamp_get(&s->exit_timestamp);
5145
5146 s->code = code;
5147 s->status = status;
5148
5149 if (context && context->utmp_id)
5150 (void) utmp_put_dead_process(context->utmp_id, pid, code, status);
5151 }
5152
5153 void exec_status_reset(ExecStatus *s) {
5154 assert(s);
5155
5156 *s = (ExecStatus) {};
5157 }
5158
5159 void exec_status_dump(const ExecStatus *s, FILE *f, const char *prefix) {
5160 char buf[FORMAT_TIMESTAMP_MAX];
5161
5162 assert(s);
5163 assert(f);
5164
5165 if (s->pid <= 0)
5166 return;
5167
5168 prefix = strempty(prefix);
5169
5170 fprintf(f,
5171 "%sPID: "PID_FMT"\n",
5172 prefix, s->pid);
5173
5174 if (dual_timestamp_is_set(&s->start_timestamp))
5175 fprintf(f,
5176 "%sStart Timestamp: %s\n",
5177 prefix, format_timestamp(buf, sizeof(buf), s->start_timestamp.realtime));
5178
5179 if (dual_timestamp_is_set(&s->exit_timestamp))
5180 fprintf(f,
5181 "%sExit Timestamp: %s\n"
5182 "%sExit Code: %s\n"
5183 "%sExit Status: %i\n",
5184 prefix, format_timestamp(buf, sizeof(buf), s->exit_timestamp.realtime),
5185 prefix, sigchld_code_to_string(s->code),
5186 prefix, s->status);
5187 }
5188
5189 static char *exec_command_line(char **argv) {
5190 size_t k;
5191 char *n, *p, **a;
5192 bool first = true;
5193
5194 assert(argv);
5195
5196 k = 1;
5197 STRV_FOREACH(a, argv)
5198 k += strlen(*a)+3;
5199
5200 n = new(char, k);
5201 if (!n)
5202 return NULL;
5203
5204 p = n;
5205 STRV_FOREACH(a, argv) {
5206
5207 if (!first)
5208 *(p++) = ' ';
5209 else
5210 first = false;
5211
5212 if (strpbrk(*a, WHITESPACE)) {
5213 *(p++) = '\'';
5214 p = stpcpy(p, *a);
5215 *(p++) = '\'';
5216 } else
5217 p = stpcpy(p, *a);
5218
5219 }
5220
5221 *p = 0;
5222
5223 /* FIXME: this doesn't really handle arguments that have
5224 * spaces and ticks in them */
5225
5226 return n;
5227 }
5228
5229 static void exec_command_dump(ExecCommand *c, FILE *f, const char *prefix) {
5230 _cleanup_free_ char *cmd = NULL;
5231 const char *prefix2;
5232
5233 assert(c);
5234 assert(f);
5235
5236 prefix = strempty(prefix);
5237 prefix2 = strjoina(prefix, "\t");
5238
5239 cmd = exec_command_line(c->argv);
5240 fprintf(f,
5241 "%sCommand Line: %s\n",
5242 prefix, cmd ? cmd : strerror_safe(ENOMEM));
5243
5244 exec_status_dump(&c->exec_status, f, prefix2);
5245 }
5246
5247 void exec_command_dump_list(ExecCommand *c, FILE *f, const char *prefix) {
5248 assert(f);
5249
5250 prefix = strempty(prefix);
5251
5252 LIST_FOREACH(command, c, c)
5253 exec_command_dump(c, f, prefix);
5254 }
5255
5256 void exec_command_append_list(ExecCommand **l, ExecCommand *e) {
5257 ExecCommand *end;
5258
5259 assert(l);
5260 assert(e);
5261
5262 if (*l) {
5263 /* It's kind of important, that we keep the order here */
5264 LIST_FIND_TAIL(command, *l, end);
5265 LIST_INSERT_AFTER(command, *l, end, e);
5266 } else
5267 *l = e;
5268 }
5269
5270 int exec_command_set(ExecCommand *c, const char *path, ...) {
5271 va_list ap;
5272 char **l, *p;
5273
5274 assert(c);
5275 assert(path);
5276
5277 va_start(ap, path);
5278 l = strv_new_ap(path, ap);
5279 va_end(ap);
5280
5281 if (!l)
5282 return -ENOMEM;
5283
5284 p = strdup(path);
5285 if (!p) {
5286 strv_free(l);
5287 return -ENOMEM;
5288 }
5289
5290 free_and_replace(c->path, p);
5291
5292 return strv_free_and_replace(c->argv, l);
5293 }
5294
5295 int exec_command_append(ExecCommand *c, const char *path, ...) {
5296 _cleanup_strv_free_ char **l = NULL;
5297 va_list ap;
5298 int r;
5299
5300 assert(c);
5301 assert(path);
5302
5303 va_start(ap, path);
5304 l = strv_new_ap(path, ap);
5305 va_end(ap);
5306
5307 if (!l)
5308 return -ENOMEM;
5309
5310 r = strv_extend_strv(&c->argv, l, false);
5311 if (r < 0)
5312 return r;
5313
5314 return 0;
5315 }
5316
5317 static void *remove_tmpdir_thread(void *p) {
5318 _cleanup_free_ char *path = p;
5319
5320 (void) rm_rf(path, REMOVE_ROOT|REMOVE_PHYSICAL);
5321 return NULL;
5322 }
5323
5324 static ExecRuntime* exec_runtime_free(ExecRuntime *rt, bool destroy) {
5325 int r;
5326
5327 if (!rt)
5328 return NULL;
5329
5330 if (rt->manager)
5331 (void) hashmap_remove(rt->manager->exec_runtime_by_id, rt->id);
5332
5333 /* When destroy is true, then rm_rf tmp_dir and var_tmp_dir. */
5334 if (destroy && rt->tmp_dir) {
5335 log_debug("Spawning thread to nuke %s", rt->tmp_dir);
5336
5337 r = asynchronous_job(remove_tmpdir_thread, rt->tmp_dir);
5338 if (r < 0) {
5339 log_warning_errno(r, "Failed to nuke %s: %m", rt->tmp_dir);
5340 free(rt->tmp_dir);
5341 }
5342
5343 rt->tmp_dir = NULL;
5344 }
5345
5346 if (destroy && rt->var_tmp_dir) {
5347 log_debug("Spawning thread to nuke %s", rt->var_tmp_dir);
5348
5349 r = asynchronous_job(remove_tmpdir_thread, rt->var_tmp_dir);
5350 if (r < 0) {
5351 log_warning_errno(r, "Failed to nuke %s: %m", rt->var_tmp_dir);
5352 free(rt->var_tmp_dir);
5353 }
5354
5355 rt->var_tmp_dir = NULL;
5356 }
5357
5358 rt->id = mfree(rt->id);
5359 rt->tmp_dir = mfree(rt->tmp_dir);
5360 rt->var_tmp_dir = mfree(rt->var_tmp_dir);
5361 safe_close_pair(rt->netns_storage_socket);
5362 return mfree(rt);
5363 }
5364
5365 static void exec_runtime_freep(ExecRuntime **rt) {
5366 (void) exec_runtime_free(*rt, false);
5367 }
5368
5369 static int exec_runtime_allocate(ExecRuntime **ret) {
5370 ExecRuntime *n;
5371
5372 assert(ret);
5373
5374 n = new(ExecRuntime, 1);
5375 if (!n)
5376 return -ENOMEM;
5377
5378 *n = (ExecRuntime) {
5379 .netns_storage_socket = { -1, -1 },
5380 };
5381
5382 *ret = n;
5383 return 0;
5384 }
5385
5386 static int exec_runtime_add(
5387 Manager *m,
5388 const char *id,
5389 const char *tmp_dir,
5390 const char *var_tmp_dir,
5391 const int netns_storage_socket[2],
5392 ExecRuntime **ret) {
5393
5394 _cleanup_(exec_runtime_freep) ExecRuntime *rt = NULL;
5395 int r;
5396
5397 assert(m);
5398 assert(id);
5399
5400 r = hashmap_ensure_allocated(&m->exec_runtime_by_id, &string_hash_ops);
5401 if (r < 0)
5402 return r;
5403
5404 r = exec_runtime_allocate(&rt);
5405 if (r < 0)
5406 return r;
5407
5408 rt->id = strdup(id);
5409 if (!rt->id)
5410 return -ENOMEM;
5411
5412 if (tmp_dir) {
5413 rt->tmp_dir = strdup(tmp_dir);
5414 if (!rt->tmp_dir)
5415 return -ENOMEM;
5416
5417 /* When tmp_dir is set, then we require var_tmp_dir is also set. */
5418 assert(var_tmp_dir);
5419 rt->var_tmp_dir = strdup(var_tmp_dir);
5420 if (!rt->var_tmp_dir)
5421 return -ENOMEM;
5422 }
5423
5424 if (netns_storage_socket) {
5425 rt->netns_storage_socket[0] = netns_storage_socket[0];
5426 rt->netns_storage_socket[1] = netns_storage_socket[1];
5427 }
5428
5429 r = hashmap_put(m->exec_runtime_by_id, rt->id, rt);
5430 if (r < 0)
5431 return r;
5432
5433 rt->manager = m;
5434
5435 if (ret)
5436 *ret = rt;
5437
5438 /* do not remove created ExecRuntime object when the operation succeeds. */
5439 rt = NULL;
5440 return 0;
5441 }
5442
5443 static int exec_runtime_make(Manager *m, const ExecContext *c, const char *id, ExecRuntime **ret) {
5444 _cleanup_free_ char *tmp_dir = NULL, *var_tmp_dir = NULL;
5445 _cleanup_close_pair_ int netns_storage_socket[2] = { -1, -1 };
5446 int r;
5447
5448 assert(m);
5449 assert(c);
5450 assert(id);
5451
5452 /* It is not necessary to create ExecRuntime object. */
5453 if (!c->private_network && !c->private_tmp && !c->network_namespace_path)
5454 return 0;
5455
5456 if (c->private_tmp &&
5457 !(prefixed_path_strv_contains(c->inaccessible_paths, "/tmp") &&
5458 (prefixed_path_strv_contains(c->inaccessible_paths, "/var/tmp") ||
5459 prefixed_path_strv_contains(c->inaccessible_paths, "/var")))) {
5460 r = setup_tmp_dirs(id, &tmp_dir, &var_tmp_dir);
5461 if (r < 0)
5462 return r;
5463 }
5464
5465 if (c->private_network || c->network_namespace_path) {
5466 if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, netns_storage_socket) < 0)
5467 return -errno;
5468 }
5469
5470 r = exec_runtime_add(m, id, tmp_dir, var_tmp_dir, netns_storage_socket, ret);
5471 if (r < 0)
5472 return r;
5473
5474 /* Avoid cleanup */
5475 netns_storage_socket[0] = netns_storage_socket[1] = -1;
5476 return 1;
5477 }
5478
5479 int exec_runtime_acquire(Manager *m, const ExecContext *c, const char *id, bool create, ExecRuntime **ret) {
5480 ExecRuntime *rt;
5481 int r;
5482
5483 assert(m);
5484 assert(id);
5485 assert(ret);
5486
5487 rt = hashmap_get(m->exec_runtime_by_id, id);
5488 if (rt)
5489 /* We already have a ExecRuntime object, let's increase the ref count and reuse it */
5490 goto ref;
5491
5492 if (!create)
5493 return 0;
5494
5495 /* If not found, then create a new object. */
5496 r = exec_runtime_make(m, c, id, &rt);
5497 if (r <= 0)
5498 /* When r == 0, it is not necessary to create ExecRuntime object. */
5499 return r;
5500
5501 ref:
5502 /* increment reference counter. */
5503 rt->n_ref++;
5504 *ret = rt;
5505 return 1;
5506 }
5507
5508 ExecRuntime *exec_runtime_unref(ExecRuntime *rt, bool destroy) {
5509 if (!rt)
5510 return NULL;
5511
5512 assert(rt->n_ref > 0);
5513
5514 rt->n_ref--;
5515 if (rt->n_ref > 0)
5516 return NULL;
5517
5518 return exec_runtime_free(rt, destroy);
5519 }
5520
5521 int exec_runtime_serialize(const Manager *m, FILE *f, FDSet *fds) {
5522 ExecRuntime *rt;
5523 Iterator i;
5524
5525 assert(m);
5526 assert(f);
5527 assert(fds);
5528
5529 HASHMAP_FOREACH(rt, m->exec_runtime_by_id, i) {
5530 fprintf(f, "exec-runtime=%s", rt->id);
5531
5532 if (rt->tmp_dir)
5533 fprintf(f, " tmp-dir=%s", rt->tmp_dir);
5534
5535 if (rt->var_tmp_dir)
5536 fprintf(f, " var-tmp-dir=%s", rt->var_tmp_dir);
5537
5538 if (rt->netns_storage_socket[0] >= 0) {
5539 int copy;
5540
5541 copy = fdset_put_dup(fds, rt->netns_storage_socket[0]);
5542 if (copy < 0)
5543 return copy;
5544
5545 fprintf(f, " netns-socket-0=%i", copy);
5546 }
5547
5548 if (rt->netns_storage_socket[1] >= 0) {
5549 int copy;
5550
5551 copy = fdset_put_dup(fds, rt->netns_storage_socket[1]);
5552 if (copy < 0)
5553 return copy;
5554
5555 fprintf(f, " netns-socket-1=%i", copy);
5556 }
5557
5558 fputc('\n', f);
5559 }
5560
5561 return 0;
5562 }
5563
5564 int exec_runtime_deserialize_compat(Unit *u, const char *key, const char *value, FDSet *fds) {
5565 _cleanup_(exec_runtime_freep) ExecRuntime *rt_create = NULL;
5566 ExecRuntime *rt;
5567 int r;
5568
5569 /* This is for the migration from old (v237 or earlier) deserialization text.
5570 * Due to the bug #7790, this may not work with the units that use JoinsNamespaceOf=.
5571 * Even if the ExecRuntime object originally created by the other unit, we cannot judge
5572 * so or not from the serialized text, then we always creates a new object owned by this. */
5573
5574 assert(u);
5575 assert(key);
5576 assert(value);
5577
5578 /* Manager manages ExecRuntime objects by the unit id.
5579 * So, we omit the serialized text when the unit does not have id (yet?)... */
5580 if (isempty(u->id)) {
5581 log_unit_debug(u, "Invocation ID not found. Dropping runtime parameter.");
5582 return 0;
5583 }
5584
5585 r = hashmap_ensure_allocated(&u->manager->exec_runtime_by_id, &string_hash_ops);
5586 if (r < 0) {
5587 log_unit_debug_errno(u, r, "Failed to allocate storage for runtime parameter: %m");
5588 return 0;
5589 }
5590
5591 rt = hashmap_get(u->manager->exec_runtime_by_id, u->id);
5592 if (!rt) {
5593 r = exec_runtime_allocate(&rt_create);
5594 if (r < 0)
5595 return log_oom();
5596
5597 rt_create->id = strdup(u->id);
5598 if (!rt_create->id)
5599 return log_oom();
5600
5601 rt = rt_create;
5602 }
5603
5604 if (streq(key, "tmp-dir")) {
5605 char *copy;
5606
5607 copy = strdup(value);
5608 if (!copy)
5609 return log_oom();
5610
5611 free_and_replace(rt->tmp_dir, copy);
5612
5613 } else if (streq(key, "var-tmp-dir")) {
5614 char *copy;
5615
5616 copy = strdup(value);
5617 if (!copy)
5618 return log_oom();
5619
5620 free_and_replace(rt->var_tmp_dir, copy);
5621
5622 } else if (streq(key, "netns-socket-0")) {
5623 int fd;
5624
5625 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
5626 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
5627 return 0;
5628 }
5629
5630 safe_close(rt->netns_storage_socket[0]);
5631 rt->netns_storage_socket[0] = fdset_remove(fds, fd);
5632
5633 } else if (streq(key, "netns-socket-1")) {
5634 int fd;
5635
5636 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
5637 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
5638 return 0;
5639 }
5640
5641 safe_close(rt->netns_storage_socket[1]);
5642 rt->netns_storage_socket[1] = fdset_remove(fds, fd);
5643 } else
5644 return 0;
5645
5646 /* If the object is newly created, then put it to the hashmap which manages ExecRuntime objects. */
5647 if (rt_create) {
5648 r = hashmap_put(u->manager->exec_runtime_by_id, rt_create->id, rt_create);
5649 if (r < 0) {
5650 log_unit_debug_errno(u, r, "Failed to put runtime parameter to manager's storage: %m");
5651 return 0;
5652 }
5653
5654 rt_create->manager = u->manager;
5655
5656 /* Avoid cleanup */
5657 rt_create = NULL;
5658 }
5659
5660 return 1;
5661 }
5662
5663 void exec_runtime_deserialize_one(Manager *m, const char *value, FDSet *fds) {
5664 char *id = NULL, *tmp_dir = NULL, *var_tmp_dir = NULL;
5665 int r, fd0 = -1, fd1 = -1;
5666 const char *p, *v = value;
5667 size_t n;
5668
5669 assert(m);
5670 assert(value);
5671 assert(fds);
5672
5673 n = strcspn(v, " ");
5674 id = strndupa(v, n);
5675 if (v[n] != ' ')
5676 goto finalize;
5677 p = v + n + 1;
5678
5679 v = startswith(p, "tmp-dir=");
5680 if (v) {
5681 n = strcspn(v, " ");
5682 tmp_dir = strndupa(v, n);
5683 if (v[n] != ' ')
5684 goto finalize;
5685 p = v + n + 1;
5686 }
5687
5688 v = startswith(p, "var-tmp-dir=");
5689 if (v) {
5690 n = strcspn(v, " ");
5691 var_tmp_dir = strndupa(v, n);
5692 if (v[n] != ' ')
5693 goto finalize;
5694 p = v + n + 1;
5695 }
5696
5697 v = startswith(p, "netns-socket-0=");
5698 if (v) {
5699 char *buf;
5700
5701 n = strcspn(v, " ");
5702 buf = strndupa(v, n);
5703 if (safe_atoi(buf, &fd0) < 0 || !fdset_contains(fds, fd0)) {
5704 log_debug("Unable to process exec-runtime netns fd specification.");
5705 return;
5706 }
5707 fd0 = fdset_remove(fds, fd0);
5708 if (v[n] != ' ')
5709 goto finalize;
5710 p = v + n + 1;
5711 }
5712
5713 v = startswith(p, "netns-socket-1=");
5714 if (v) {
5715 char *buf;
5716
5717 n = strcspn(v, " ");
5718 buf = strndupa(v, n);
5719 if (safe_atoi(buf, &fd1) < 0 || !fdset_contains(fds, fd1)) {
5720 log_debug("Unable to process exec-runtime netns fd specification.");
5721 return;
5722 }
5723 fd1 = fdset_remove(fds, fd1);
5724 }
5725
5726 finalize:
5727
5728 r = exec_runtime_add(m, id, tmp_dir, var_tmp_dir, (int[]) { fd0, fd1 }, NULL);
5729 if (r < 0)
5730 log_debug_errno(r, "Failed to add exec-runtime: %m");
5731 }
5732
5733 void exec_runtime_vacuum(Manager *m) {
5734 ExecRuntime *rt;
5735 Iterator i;
5736
5737 assert(m);
5738
5739 /* Free unreferenced ExecRuntime objects. This is used after manager deserialization process. */
5740
5741 HASHMAP_FOREACH(rt, m->exec_runtime_by_id, i) {
5742 if (rt->n_ref > 0)
5743 continue;
5744
5745 (void) exec_runtime_free(rt, false);
5746 }
5747 }
5748
5749 void exec_params_clear(ExecParameters *p) {
5750 if (!p)
5751 return;
5752
5753 strv_free(p->environment);
5754 }
5755
5756 static const char* const exec_input_table[_EXEC_INPUT_MAX] = {
5757 [EXEC_INPUT_NULL] = "null",
5758 [EXEC_INPUT_TTY] = "tty",
5759 [EXEC_INPUT_TTY_FORCE] = "tty-force",
5760 [EXEC_INPUT_TTY_FAIL] = "tty-fail",
5761 [EXEC_INPUT_SOCKET] = "socket",
5762 [EXEC_INPUT_NAMED_FD] = "fd",
5763 [EXEC_INPUT_DATA] = "data",
5764 [EXEC_INPUT_FILE] = "file",
5765 };
5766
5767 DEFINE_STRING_TABLE_LOOKUP(exec_input, ExecInput);
5768
5769 static const char* const exec_output_table[_EXEC_OUTPUT_MAX] = {
5770 [EXEC_OUTPUT_INHERIT] = "inherit",
5771 [EXEC_OUTPUT_NULL] = "null",
5772 [EXEC_OUTPUT_TTY] = "tty",
5773 [EXEC_OUTPUT_KMSG] = "kmsg",
5774 [EXEC_OUTPUT_KMSG_AND_CONSOLE] = "kmsg+console",
5775 [EXEC_OUTPUT_JOURNAL] = "journal",
5776 [EXEC_OUTPUT_JOURNAL_AND_CONSOLE] = "journal+console",
5777 [EXEC_OUTPUT_SOCKET] = "socket",
5778 [EXEC_OUTPUT_NAMED_FD] = "fd",
5779 [EXEC_OUTPUT_FILE] = "file",
5780 [EXEC_OUTPUT_FILE_APPEND] = "append",
5781 };
5782
5783 DEFINE_STRING_TABLE_LOOKUP(exec_output, ExecOutput);
5784
5785 static const char* const exec_utmp_mode_table[_EXEC_UTMP_MODE_MAX] = {
5786 [EXEC_UTMP_INIT] = "init",
5787 [EXEC_UTMP_LOGIN] = "login",
5788 [EXEC_UTMP_USER] = "user",
5789 };
5790
5791 DEFINE_STRING_TABLE_LOOKUP(exec_utmp_mode, ExecUtmpMode);
5792
5793 static const char* const exec_preserve_mode_table[_EXEC_PRESERVE_MODE_MAX] = {
5794 [EXEC_PRESERVE_NO] = "no",
5795 [EXEC_PRESERVE_YES] = "yes",
5796 [EXEC_PRESERVE_RESTART] = "restart",
5797 };
5798
5799 DEFINE_STRING_TABLE_LOOKUP_WITH_BOOLEAN(exec_preserve_mode, ExecPreserveMode, EXEC_PRESERVE_YES);
5800
5801 /* This table maps ExecDirectoryType to the setting it is configured with in the unit */
5802 static const char* const exec_directory_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
5803 [EXEC_DIRECTORY_RUNTIME] = "RuntimeDirectory",
5804 [EXEC_DIRECTORY_STATE] = "StateDirectory",
5805 [EXEC_DIRECTORY_CACHE] = "CacheDirectory",
5806 [EXEC_DIRECTORY_LOGS] = "LogsDirectory",
5807 [EXEC_DIRECTORY_CONFIGURATION] = "ConfigurationDirectory",
5808 };
5809
5810 DEFINE_STRING_TABLE_LOOKUP(exec_directory_type, ExecDirectoryType);
5811
5812 /* And this table maps ExecDirectoryType too, but to a generic term identifying the type of resource. This
5813 * one is supposed to be generic enough to be used for unit types that don't use ExecContext and per-unit
5814 * directories, specifically .timer units with their timestamp touch file. */
5815 static const char* const exec_resource_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
5816 [EXEC_DIRECTORY_RUNTIME] = "runtime",
5817 [EXEC_DIRECTORY_STATE] = "state",
5818 [EXEC_DIRECTORY_CACHE] = "cache",
5819 [EXEC_DIRECTORY_LOGS] = "logs",
5820 [EXEC_DIRECTORY_CONFIGURATION] = "configuration",
5821 };
5822
5823 DEFINE_STRING_TABLE_LOOKUP(exec_resource_type, ExecDirectoryType);
5824
5825 /* And this table also maps ExecDirectoryType, to the environment variable we pass the selected directory to
5826 * the service payload in. */
5827 static const char* const exec_directory_env_name_table[_EXEC_DIRECTORY_TYPE_MAX] = {
5828 [EXEC_DIRECTORY_RUNTIME] = "RUNTIME_DIRECTORY",
5829 [EXEC_DIRECTORY_STATE] = "STATE_DIRECTORY",
5830 [EXEC_DIRECTORY_CACHE] = "CACHE_DIRECTORY",
5831 [EXEC_DIRECTORY_LOGS] = "LOGS_DIRECTORY",
5832 [EXEC_DIRECTORY_CONFIGURATION] = "CONFIGURATION_DIRECTORY",
5833 };
5834
5835 DEFINE_PRIVATE_STRING_TABLE_LOOKUP_TO_STRING(exec_directory_env_name, ExecDirectoryType);
5836
5837 static const char* const exec_keyring_mode_table[_EXEC_KEYRING_MODE_MAX] = {
5838 [EXEC_KEYRING_INHERIT] = "inherit",
5839 [EXEC_KEYRING_PRIVATE] = "private",
5840 [EXEC_KEYRING_SHARED] = "shared",
5841 };
5842
5843 DEFINE_STRING_TABLE_LOOKUP(exec_keyring_mode, ExecKeyringMode);