]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/execute.c
core: turn on MountAPIVFS=true when RootImage or RootDirectory are specified
[thirdparty/systemd.git] / src / core / execute.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <errno.h>
4 #include <fcntl.h>
5 #include <poll.h>
6 #include <sys/eventfd.h>
7 #include <sys/ioctl.h>
8 #include <sys/mman.h>
9 #include <sys/mount.h>
10 #include <sys/personality.h>
11 #include <sys/prctl.h>
12 #include <sys/shm.h>
13 #include <sys/types.h>
14 #include <sys/un.h>
15 #include <unistd.h>
16 #include <utmpx.h>
17
18 #if HAVE_PAM
19 #include <security/pam_appl.h>
20 #endif
21
22 #if HAVE_SELINUX
23 #include <selinux/selinux.h>
24 #endif
25
26 #if HAVE_SECCOMP
27 #include <seccomp.h>
28 #endif
29
30 #if HAVE_APPARMOR
31 #include <sys/apparmor.h>
32 #endif
33
34 #include "sd-messages.h"
35
36 #include "acl-util.h"
37 #include "af-list.h"
38 #include "alloc-util.h"
39 #if HAVE_APPARMOR
40 #include "apparmor-util.h"
41 #endif
42 #include "async.h"
43 #include "barrier.h"
44 #include "cap-list.h"
45 #include "capability-util.h"
46 #include "cgroup-setup.h"
47 #include "chown-recursive.h"
48 #include "cpu-set-util.h"
49 #include "def.h"
50 #include "env-file.h"
51 #include "env-util.h"
52 #include "errno-list.h"
53 #include "execute.h"
54 #include "exit-status.h"
55 #include "fd-util.h"
56 #include "fileio.h"
57 #include "format-util.h"
58 #include "fs-util.h"
59 #include "glob-util.h"
60 #include "hexdecoct.h"
61 #include "io-util.h"
62 #include "ioprio.h"
63 #include "label.h"
64 #include "log.h"
65 #include "macro.h"
66 #include "manager.h"
67 #include "memory-util.h"
68 #include "missing_fs.h"
69 #include "mkdir.h"
70 #include "mount-util.h"
71 #include "mountpoint-util.h"
72 #include "namespace.h"
73 #include "parse-util.h"
74 #include "path-util.h"
75 #include "process-util.h"
76 #include "rlimit-util.h"
77 #include "rm-rf.h"
78 #if HAVE_SECCOMP
79 #include "seccomp-util.h"
80 #endif
81 #include "securebits-util.h"
82 #include "selinux-util.h"
83 #include "signal-util.h"
84 #include "smack-util.h"
85 #include "socket-util.h"
86 #include "special.h"
87 #include "stat-util.h"
88 #include "string-table.h"
89 #include "string-util.h"
90 #include "strv.h"
91 #include "syslog-util.h"
92 #include "terminal-util.h"
93 #include "tmpfile-util.h"
94 #include "umask-util.h"
95 #include "unit.h"
96 #include "user-util.h"
97 #include "utmp-wtmp.h"
98
99 #define IDLE_TIMEOUT_USEC (5*USEC_PER_SEC)
100 #define IDLE_TIMEOUT2_USEC (1*USEC_PER_SEC)
101
102 #define SNDBUF_SIZE (8*1024*1024)
103
104 static int shift_fds(int fds[], size_t n_fds) {
105 if (n_fds <= 0)
106 return 0;
107
108 /* Modifies the fds array! (sorts it) */
109
110 assert(fds);
111
112 for (int start = 0;;) {
113 int restart_from = -1;
114
115 for (int i = start; i < (int) n_fds; i++) {
116 int nfd;
117
118 /* Already at right index? */
119 if (fds[i] == i+3)
120 continue;
121
122 nfd = fcntl(fds[i], F_DUPFD, i + 3);
123 if (nfd < 0)
124 return -errno;
125
126 safe_close(fds[i]);
127 fds[i] = nfd;
128
129 /* Hmm, the fd we wanted isn't free? Then
130 * let's remember that and try again from here */
131 if (nfd != i+3 && restart_from < 0)
132 restart_from = i;
133 }
134
135 if (restart_from < 0)
136 break;
137
138 start = restart_from;
139 }
140
141 return 0;
142 }
143
144 static int flags_fds(const int fds[], size_t n_socket_fds, size_t n_storage_fds, bool nonblock) {
145 size_t n_fds;
146 int r;
147
148 n_fds = n_socket_fds + n_storage_fds;
149 if (n_fds <= 0)
150 return 0;
151
152 assert(fds);
153
154 /* Drops/Sets O_NONBLOCK and FD_CLOEXEC from the file flags.
155 * O_NONBLOCK only applies to socket activation though. */
156
157 for (size_t i = 0; i < n_fds; i++) {
158
159 if (i < n_socket_fds) {
160 r = fd_nonblock(fds[i], nonblock);
161 if (r < 0)
162 return r;
163 }
164
165 /* We unconditionally drop FD_CLOEXEC from the fds,
166 * since after all we want to pass these fds to our
167 * children */
168
169 r = fd_cloexec(fds[i], false);
170 if (r < 0)
171 return r;
172 }
173
174 return 0;
175 }
176
177 static const char *exec_context_tty_path(const ExecContext *context) {
178 assert(context);
179
180 if (context->stdio_as_fds)
181 return NULL;
182
183 if (context->tty_path)
184 return context->tty_path;
185
186 return "/dev/console";
187 }
188
189 static void exec_context_tty_reset(const ExecContext *context, const ExecParameters *p) {
190 const char *path;
191
192 assert(context);
193
194 path = exec_context_tty_path(context);
195
196 if (context->tty_vhangup) {
197 if (p && p->stdin_fd >= 0)
198 (void) terminal_vhangup_fd(p->stdin_fd);
199 else if (path)
200 (void) terminal_vhangup(path);
201 }
202
203 if (context->tty_reset) {
204 if (p && p->stdin_fd >= 0)
205 (void) reset_terminal_fd(p->stdin_fd, true);
206 else if (path)
207 (void) reset_terminal(path);
208 }
209
210 if (context->tty_vt_disallocate && path)
211 (void) vt_disallocate(path);
212 }
213
214 static bool is_terminal_input(ExecInput i) {
215 return IN_SET(i,
216 EXEC_INPUT_TTY,
217 EXEC_INPUT_TTY_FORCE,
218 EXEC_INPUT_TTY_FAIL);
219 }
220
221 static bool is_terminal_output(ExecOutput o) {
222 return IN_SET(o,
223 EXEC_OUTPUT_TTY,
224 EXEC_OUTPUT_KMSG_AND_CONSOLE,
225 EXEC_OUTPUT_JOURNAL_AND_CONSOLE);
226 }
227
228 static bool is_kmsg_output(ExecOutput o) {
229 return IN_SET(o,
230 EXEC_OUTPUT_KMSG,
231 EXEC_OUTPUT_KMSG_AND_CONSOLE);
232 }
233
234 static bool exec_context_needs_term(const ExecContext *c) {
235 assert(c);
236
237 /* Return true if the execution context suggests we should set $TERM to something useful. */
238
239 if (is_terminal_input(c->std_input))
240 return true;
241
242 if (is_terminal_output(c->std_output))
243 return true;
244
245 if (is_terminal_output(c->std_error))
246 return true;
247
248 return !!c->tty_path;
249 }
250
251 static int open_null_as(int flags, int nfd) {
252 int fd;
253
254 assert(nfd >= 0);
255
256 fd = open("/dev/null", flags|O_NOCTTY);
257 if (fd < 0)
258 return -errno;
259
260 return move_fd(fd, nfd, false);
261 }
262
263 static int connect_journal_socket(
264 int fd,
265 const char *log_namespace,
266 uid_t uid,
267 gid_t gid) {
268
269 union sockaddr_union sa;
270 socklen_t sa_len;
271 uid_t olduid = UID_INVALID;
272 gid_t oldgid = GID_INVALID;
273 const char *j;
274 int r;
275
276 j = log_namespace ?
277 strjoina("/run/systemd/journal.", log_namespace, "/stdout") :
278 "/run/systemd/journal/stdout";
279 r = sockaddr_un_set_path(&sa.un, j);
280 if (r < 0)
281 return r;
282 sa_len = r;
283
284 if (gid_is_valid(gid)) {
285 oldgid = getgid();
286
287 if (setegid(gid) < 0)
288 return -errno;
289 }
290
291 if (uid_is_valid(uid)) {
292 olduid = getuid();
293
294 if (seteuid(uid) < 0) {
295 r = -errno;
296 goto restore_gid;
297 }
298 }
299
300 r = connect(fd, &sa.sa, sa_len) < 0 ? -errno : 0;
301
302 /* If we fail to restore the uid or gid, things will likely
303 fail later on. This should only happen if an LSM interferes. */
304
305 if (uid_is_valid(uid))
306 (void) seteuid(olduid);
307
308 restore_gid:
309 if (gid_is_valid(gid))
310 (void) setegid(oldgid);
311
312 return r;
313 }
314
315 static int connect_logger_as(
316 const Unit *unit,
317 const ExecContext *context,
318 const ExecParameters *params,
319 ExecOutput output,
320 const char *ident,
321 int nfd,
322 uid_t uid,
323 gid_t gid) {
324
325 _cleanup_close_ int fd = -1;
326 int r;
327
328 assert(context);
329 assert(params);
330 assert(output < _EXEC_OUTPUT_MAX);
331 assert(ident);
332 assert(nfd >= 0);
333
334 fd = socket(AF_UNIX, SOCK_STREAM, 0);
335 if (fd < 0)
336 return -errno;
337
338 r = connect_journal_socket(fd, context->log_namespace, uid, gid);
339 if (r < 0)
340 return r;
341
342 if (shutdown(fd, SHUT_RD) < 0)
343 return -errno;
344
345 (void) fd_inc_sndbuf(fd, SNDBUF_SIZE);
346
347 if (dprintf(fd,
348 "%s\n"
349 "%s\n"
350 "%i\n"
351 "%i\n"
352 "%i\n"
353 "%i\n"
354 "%i\n",
355 context->syslog_identifier ?: ident,
356 params->flags & EXEC_PASS_LOG_UNIT ? unit->id : "",
357 context->syslog_priority,
358 !!context->syslog_level_prefix,
359 false,
360 is_kmsg_output(output),
361 is_terminal_output(output)) < 0)
362 return -errno;
363
364 return move_fd(TAKE_FD(fd), nfd, false);
365 }
366
367 static int open_terminal_as(const char *path, int flags, int nfd) {
368 int fd;
369
370 assert(path);
371 assert(nfd >= 0);
372
373 fd = open_terminal(path, flags | O_NOCTTY);
374 if (fd < 0)
375 return fd;
376
377 return move_fd(fd, nfd, false);
378 }
379
380 static int acquire_path(const char *path, int flags, mode_t mode) {
381 union sockaddr_union sa;
382 socklen_t sa_len;
383 _cleanup_close_ int fd = -1;
384 int r;
385
386 assert(path);
387
388 if (IN_SET(flags & O_ACCMODE, O_WRONLY, O_RDWR))
389 flags |= O_CREAT;
390
391 fd = open(path, flags|O_NOCTTY, mode);
392 if (fd >= 0)
393 return TAKE_FD(fd);
394
395 if (errno != ENXIO) /* ENXIO is returned when we try to open() an AF_UNIX file system socket on Linux */
396 return -errno;
397
398 /* So, it appears the specified path could be an AF_UNIX socket. Let's see if we can connect to it. */
399
400 r = sockaddr_un_set_path(&sa.un, path);
401 if (r < 0)
402 return r == -EINVAL ? -ENXIO : r;
403 sa_len = r;
404
405 fd = socket(AF_UNIX, SOCK_STREAM, 0);
406 if (fd < 0)
407 return -errno;
408
409 if (connect(fd, &sa.sa, sa_len) < 0)
410 return errno == EINVAL ? -ENXIO : -errno; /* Propagate initial error if we get EINVAL, i.e. we have
411 * indication that this wasn't an AF_UNIX socket after all */
412
413 if ((flags & O_ACCMODE) == O_RDONLY)
414 r = shutdown(fd, SHUT_WR);
415 else if ((flags & O_ACCMODE) == O_WRONLY)
416 r = shutdown(fd, SHUT_RD);
417 else
418 r = 0;
419 if (r < 0)
420 return -errno;
421
422 return TAKE_FD(fd);
423 }
424
425 static int fixup_input(
426 const ExecContext *context,
427 int socket_fd,
428 bool apply_tty_stdin) {
429
430 ExecInput std_input;
431
432 assert(context);
433
434 std_input = context->std_input;
435
436 if (is_terminal_input(std_input) && !apply_tty_stdin)
437 return EXEC_INPUT_NULL;
438
439 if (std_input == EXEC_INPUT_SOCKET && socket_fd < 0)
440 return EXEC_INPUT_NULL;
441
442 if (std_input == EXEC_INPUT_DATA && context->stdin_data_size == 0)
443 return EXEC_INPUT_NULL;
444
445 return std_input;
446 }
447
448 static int fixup_output(ExecOutput std_output, int socket_fd) {
449
450 if (std_output == EXEC_OUTPUT_SOCKET && socket_fd < 0)
451 return EXEC_OUTPUT_INHERIT;
452
453 return std_output;
454 }
455
456 static int setup_input(
457 const ExecContext *context,
458 const ExecParameters *params,
459 int socket_fd,
460 const int named_iofds[static 3]) {
461
462 ExecInput i;
463
464 assert(context);
465 assert(params);
466 assert(named_iofds);
467
468 if (params->stdin_fd >= 0) {
469 if (dup2(params->stdin_fd, STDIN_FILENO) < 0)
470 return -errno;
471
472 /* Try to make this the controlling tty, if it is a tty, and reset it */
473 if (isatty(STDIN_FILENO)) {
474 (void) ioctl(STDIN_FILENO, TIOCSCTTY, context->std_input == EXEC_INPUT_TTY_FORCE);
475 (void) reset_terminal_fd(STDIN_FILENO, true);
476 }
477
478 return STDIN_FILENO;
479 }
480
481 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
482
483 switch (i) {
484
485 case EXEC_INPUT_NULL:
486 return open_null_as(O_RDONLY, STDIN_FILENO);
487
488 case EXEC_INPUT_TTY:
489 case EXEC_INPUT_TTY_FORCE:
490 case EXEC_INPUT_TTY_FAIL: {
491 int fd;
492
493 fd = acquire_terminal(exec_context_tty_path(context),
494 i == EXEC_INPUT_TTY_FAIL ? ACQUIRE_TERMINAL_TRY :
495 i == EXEC_INPUT_TTY_FORCE ? ACQUIRE_TERMINAL_FORCE :
496 ACQUIRE_TERMINAL_WAIT,
497 USEC_INFINITY);
498 if (fd < 0)
499 return fd;
500
501 return move_fd(fd, STDIN_FILENO, false);
502 }
503
504 case EXEC_INPUT_SOCKET:
505 assert(socket_fd >= 0);
506
507 return dup2(socket_fd, STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
508
509 case EXEC_INPUT_NAMED_FD:
510 assert(named_iofds[STDIN_FILENO] >= 0);
511
512 (void) fd_nonblock(named_iofds[STDIN_FILENO], false);
513 return dup2(named_iofds[STDIN_FILENO], STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
514
515 case EXEC_INPUT_DATA: {
516 int fd;
517
518 fd = acquire_data_fd(context->stdin_data, context->stdin_data_size, 0);
519 if (fd < 0)
520 return fd;
521
522 return move_fd(fd, STDIN_FILENO, false);
523 }
524
525 case EXEC_INPUT_FILE: {
526 bool rw;
527 int fd;
528
529 assert(context->stdio_file[STDIN_FILENO]);
530
531 rw = (context->std_output == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDOUT_FILENO])) ||
532 (context->std_error == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDERR_FILENO]));
533
534 fd = acquire_path(context->stdio_file[STDIN_FILENO], rw ? O_RDWR : O_RDONLY, 0666 & ~context->umask);
535 if (fd < 0)
536 return fd;
537
538 return move_fd(fd, STDIN_FILENO, false);
539 }
540
541 default:
542 assert_not_reached("Unknown input type");
543 }
544 }
545
546 static bool can_inherit_stderr_from_stdout(
547 const ExecContext *context,
548 ExecOutput o,
549 ExecOutput e) {
550
551 assert(context);
552
553 /* Returns true, if given the specified STDERR and STDOUT output we can directly dup() the stdout fd to the
554 * stderr fd */
555
556 if (e == EXEC_OUTPUT_INHERIT)
557 return true;
558 if (e != o)
559 return false;
560
561 if (e == EXEC_OUTPUT_NAMED_FD)
562 return streq_ptr(context->stdio_fdname[STDOUT_FILENO], context->stdio_fdname[STDERR_FILENO]);
563
564 if (IN_SET(e, EXEC_OUTPUT_FILE, EXEC_OUTPUT_FILE_APPEND))
565 return streq_ptr(context->stdio_file[STDOUT_FILENO], context->stdio_file[STDERR_FILENO]);
566
567 return true;
568 }
569
570 static int setup_output(
571 const Unit *unit,
572 const ExecContext *context,
573 const ExecParameters *params,
574 int fileno,
575 int socket_fd,
576 const int named_iofds[static 3],
577 const char *ident,
578 uid_t uid,
579 gid_t gid,
580 dev_t *journal_stream_dev,
581 ino_t *journal_stream_ino) {
582
583 ExecOutput o;
584 ExecInput i;
585 int r;
586
587 assert(unit);
588 assert(context);
589 assert(params);
590 assert(ident);
591 assert(journal_stream_dev);
592 assert(journal_stream_ino);
593
594 if (fileno == STDOUT_FILENO && params->stdout_fd >= 0) {
595
596 if (dup2(params->stdout_fd, STDOUT_FILENO) < 0)
597 return -errno;
598
599 return STDOUT_FILENO;
600 }
601
602 if (fileno == STDERR_FILENO && params->stderr_fd >= 0) {
603 if (dup2(params->stderr_fd, STDERR_FILENO) < 0)
604 return -errno;
605
606 return STDERR_FILENO;
607 }
608
609 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
610 o = fixup_output(context->std_output, socket_fd);
611
612 if (fileno == STDERR_FILENO) {
613 ExecOutput e;
614 e = fixup_output(context->std_error, socket_fd);
615
616 /* This expects the input and output are already set up */
617
618 /* Don't change the stderr file descriptor if we inherit all
619 * the way and are not on a tty */
620 if (e == EXEC_OUTPUT_INHERIT &&
621 o == EXEC_OUTPUT_INHERIT &&
622 i == EXEC_INPUT_NULL &&
623 !is_terminal_input(context->std_input) &&
624 getppid () != 1)
625 return fileno;
626
627 /* Duplicate from stdout if possible */
628 if (can_inherit_stderr_from_stdout(context, o, e))
629 return dup2(STDOUT_FILENO, fileno) < 0 ? -errno : fileno;
630
631 o = e;
632
633 } else if (o == EXEC_OUTPUT_INHERIT) {
634 /* If input got downgraded, inherit the original value */
635 if (i == EXEC_INPUT_NULL && is_terminal_input(context->std_input))
636 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
637
638 /* If the input is connected to anything that's not a /dev/null or a data fd, inherit that... */
639 if (!IN_SET(i, EXEC_INPUT_NULL, EXEC_INPUT_DATA))
640 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
641
642 /* If we are not started from PID 1 we just inherit STDOUT from our parent process. */
643 if (getppid() != 1)
644 return fileno;
645
646 /* We need to open /dev/null here anew, to get the right access mode. */
647 return open_null_as(O_WRONLY, fileno);
648 }
649
650 switch (o) {
651
652 case EXEC_OUTPUT_NULL:
653 return open_null_as(O_WRONLY, fileno);
654
655 case EXEC_OUTPUT_TTY:
656 if (is_terminal_input(i))
657 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
658
659 /* We don't reset the terminal if this is just about output */
660 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
661
662 case EXEC_OUTPUT_KMSG:
663 case EXEC_OUTPUT_KMSG_AND_CONSOLE:
664 case EXEC_OUTPUT_JOURNAL:
665 case EXEC_OUTPUT_JOURNAL_AND_CONSOLE:
666 r = connect_logger_as(unit, context, params, o, ident, fileno, uid, gid);
667 if (r < 0) {
668 log_unit_warning_errno(unit, r, "Failed to connect %s to the journal socket, ignoring: %m", fileno == STDOUT_FILENO ? "stdout" : "stderr");
669 r = open_null_as(O_WRONLY, fileno);
670 } else {
671 struct stat st;
672
673 /* If we connected this fd to the journal via a stream, patch the device/inode into the passed
674 * parameters, but only then. This is useful so that we can set $JOURNAL_STREAM that permits
675 * services to detect whether they are connected to the journal or not.
676 *
677 * If both stdout and stderr are connected to a stream then let's make sure to store the data
678 * about STDERR as that's usually the best way to do logging. */
679
680 if (fstat(fileno, &st) >= 0 &&
681 (*journal_stream_ino == 0 || fileno == STDERR_FILENO)) {
682 *journal_stream_dev = st.st_dev;
683 *journal_stream_ino = st.st_ino;
684 }
685 }
686 return r;
687
688 case EXEC_OUTPUT_SOCKET:
689 assert(socket_fd >= 0);
690
691 return dup2(socket_fd, fileno) < 0 ? -errno : fileno;
692
693 case EXEC_OUTPUT_NAMED_FD:
694 assert(named_iofds[fileno] >= 0);
695
696 (void) fd_nonblock(named_iofds[fileno], false);
697 return dup2(named_iofds[fileno], fileno) < 0 ? -errno : fileno;
698
699 case EXEC_OUTPUT_FILE:
700 case EXEC_OUTPUT_FILE_APPEND: {
701 bool rw;
702 int fd, flags;
703
704 assert(context->stdio_file[fileno]);
705
706 rw = context->std_input == EXEC_INPUT_FILE &&
707 streq_ptr(context->stdio_file[fileno], context->stdio_file[STDIN_FILENO]);
708
709 if (rw)
710 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
711
712 flags = O_WRONLY;
713 if (o == EXEC_OUTPUT_FILE_APPEND)
714 flags |= O_APPEND;
715
716 fd = acquire_path(context->stdio_file[fileno], flags, 0666 & ~context->umask);
717 if (fd < 0)
718 return fd;
719
720 return move_fd(fd, fileno, 0);
721 }
722
723 default:
724 assert_not_reached("Unknown error type");
725 }
726 }
727
728 static int chown_terminal(int fd, uid_t uid) {
729 int r;
730
731 assert(fd >= 0);
732
733 /* Before we chown/chmod the TTY, let's ensure this is actually a tty */
734 if (isatty(fd) < 1) {
735 if (IN_SET(errno, EINVAL, ENOTTY))
736 return 0; /* not a tty */
737
738 return -errno;
739 }
740
741 /* This might fail. What matters are the results. */
742 r = fchmod_and_chown(fd, TTY_MODE, uid, -1);
743 if (r < 0)
744 return r;
745
746 return 1;
747 }
748
749 static int setup_confirm_stdio(const char *vc, int *_saved_stdin, int *_saved_stdout) {
750 _cleanup_close_ int fd = -1, saved_stdin = -1, saved_stdout = -1;
751 int r;
752
753 assert(_saved_stdin);
754 assert(_saved_stdout);
755
756 saved_stdin = fcntl(STDIN_FILENO, F_DUPFD, 3);
757 if (saved_stdin < 0)
758 return -errno;
759
760 saved_stdout = fcntl(STDOUT_FILENO, F_DUPFD, 3);
761 if (saved_stdout < 0)
762 return -errno;
763
764 fd = acquire_terminal(vc, ACQUIRE_TERMINAL_WAIT, DEFAULT_CONFIRM_USEC);
765 if (fd < 0)
766 return fd;
767
768 r = chown_terminal(fd, getuid());
769 if (r < 0)
770 return r;
771
772 r = reset_terminal_fd(fd, true);
773 if (r < 0)
774 return r;
775
776 r = rearrange_stdio(fd, fd, STDERR_FILENO);
777 fd = -1;
778 if (r < 0)
779 return r;
780
781 *_saved_stdin = saved_stdin;
782 *_saved_stdout = saved_stdout;
783
784 saved_stdin = saved_stdout = -1;
785
786 return 0;
787 }
788
789 static void write_confirm_error_fd(int err, int fd, const Unit *u) {
790 assert(err < 0);
791
792 if (err == -ETIMEDOUT)
793 dprintf(fd, "Confirmation question timed out for %s, assuming positive response.\n", u->id);
794 else {
795 errno = -err;
796 dprintf(fd, "Couldn't ask confirmation for %s: %m, assuming positive response.\n", u->id);
797 }
798 }
799
800 static void write_confirm_error(int err, const char *vc, const Unit *u) {
801 _cleanup_close_ int fd = -1;
802
803 assert(vc);
804
805 fd = open_terminal(vc, O_WRONLY|O_NOCTTY|O_CLOEXEC);
806 if (fd < 0)
807 return;
808
809 write_confirm_error_fd(err, fd, u);
810 }
811
812 static int restore_confirm_stdio(int *saved_stdin, int *saved_stdout) {
813 int r = 0;
814
815 assert(saved_stdin);
816 assert(saved_stdout);
817
818 release_terminal();
819
820 if (*saved_stdin >= 0)
821 if (dup2(*saved_stdin, STDIN_FILENO) < 0)
822 r = -errno;
823
824 if (*saved_stdout >= 0)
825 if (dup2(*saved_stdout, STDOUT_FILENO) < 0)
826 r = -errno;
827
828 *saved_stdin = safe_close(*saved_stdin);
829 *saved_stdout = safe_close(*saved_stdout);
830
831 return r;
832 }
833
834 enum {
835 CONFIRM_PRETEND_FAILURE = -1,
836 CONFIRM_PRETEND_SUCCESS = 0,
837 CONFIRM_EXECUTE = 1,
838 };
839
840 static int ask_for_confirmation(const char *vc, Unit *u, const char *cmdline) {
841 int saved_stdout = -1, saved_stdin = -1, r;
842 _cleanup_free_ char *e = NULL;
843 char c;
844
845 /* For any internal errors, assume a positive response. */
846 r = setup_confirm_stdio(vc, &saved_stdin, &saved_stdout);
847 if (r < 0) {
848 write_confirm_error(r, vc, u);
849 return CONFIRM_EXECUTE;
850 }
851
852 /* confirm_spawn might have been disabled while we were sleeping. */
853 if (manager_is_confirm_spawn_disabled(u->manager)) {
854 r = 1;
855 goto restore_stdio;
856 }
857
858 e = ellipsize(cmdline, 60, 100);
859 if (!e) {
860 log_oom();
861 r = CONFIRM_EXECUTE;
862 goto restore_stdio;
863 }
864
865 for (;;) {
866 r = ask_char(&c, "yfshiDjcn", "Execute %s? [y, f, s – h for help] ", e);
867 if (r < 0) {
868 write_confirm_error_fd(r, STDOUT_FILENO, u);
869 r = CONFIRM_EXECUTE;
870 goto restore_stdio;
871 }
872
873 switch (c) {
874 case 'c':
875 printf("Resuming normal execution.\n");
876 manager_disable_confirm_spawn();
877 r = 1;
878 break;
879 case 'D':
880 unit_dump(u, stdout, " ");
881 continue; /* ask again */
882 case 'f':
883 printf("Failing execution.\n");
884 r = CONFIRM_PRETEND_FAILURE;
885 break;
886 case 'h':
887 printf(" c - continue, proceed without asking anymore\n"
888 " D - dump, show the state of the unit\n"
889 " f - fail, don't execute the command and pretend it failed\n"
890 " h - help\n"
891 " i - info, show a short summary of the unit\n"
892 " j - jobs, show jobs that are in progress\n"
893 " s - skip, don't execute the command and pretend it succeeded\n"
894 " y - yes, execute the command\n");
895 continue; /* ask again */
896 case 'i':
897 printf(" Description: %s\n"
898 " Unit: %s\n"
899 " Command: %s\n",
900 u->id, u->description, cmdline);
901 continue; /* ask again */
902 case 'j':
903 manager_dump_jobs(u->manager, stdout, " ");
904 continue; /* ask again */
905 case 'n':
906 /* 'n' was removed in favor of 'f'. */
907 printf("Didn't understand 'n', did you mean 'f'?\n");
908 continue; /* ask again */
909 case 's':
910 printf("Skipping execution.\n");
911 r = CONFIRM_PRETEND_SUCCESS;
912 break;
913 case 'y':
914 r = CONFIRM_EXECUTE;
915 break;
916 default:
917 assert_not_reached("Unhandled choice");
918 }
919 break;
920 }
921
922 restore_stdio:
923 restore_confirm_stdio(&saved_stdin, &saved_stdout);
924 return r;
925 }
926
927 static int get_fixed_user(const ExecContext *c, const char **user,
928 uid_t *uid, gid_t *gid,
929 const char **home, const char **shell) {
930 int r;
931 const char *name;
932
933 assert(c);
934
935 if (!c->user)
936 return 0;
937
938 /* Note that we don't set $HOME or $SHELL if they are not particularly enlightening anyway
939 * (i.e. are "/" or "/bin/nologin"). */
940
941 name = c->user;
942 r = get_user_creds(&name, uid, gid, home, shell, USER_CREDS_CLEAN);
943 if (r < 0)
944 return r;
945
946 *user = name;
947 return 0;
948 }
949
950 static int get_fixed_group(const ExecContext *c, const char **group, gid_t *gid) {
951 int r;
952 const char *name;
953
954 assert(c);
955
956 if (!c->group)
957 return 0;
958
959 name = c->group;
960 r = get_group_creds(&name, gid, 0);
961 if (r < 0)
962 return r;
963
964 *group = name;
965 return 0;
966 }
967
968 static int get_supplementary_groups(const ExecContext *c, const char *user,
969 const char *group, gid_t gid,
970 gid_t **supplementary_gids, int *ngids) {
971 char **i;
972 int r, k = 0;
973 int ngroups_max;
974 bool keep_groups = false;
975 gid_t *groups = NULL;
976 _cleanup_free_ gid_t *l_gids = NULL;
977
978 assert(c);
979
980 /*
981 * If user is given, then lookup GID and supplementary groups list.
982 * We avoid NSS lookups for gid=0. Also we have to initialize groups
983 * here and as early as possible so we keep the list of supplementary
984 * groups of the caller.
985 */
986 if (user && gid_is_valid(gid) && gid != 0) {
987 /* First step, initialize groups from /etc/groups */
988 if (initgroups(user, gid) < 0)
989 return -errno;
990
991 keep_groups = true;
992 }
993
994 if (strv_isempty(c->supplementary_groups))
995 return 0;
996
997 /*
998 * If SupplementaryGroups= was passed then NGROUPS_MAX has to
999 * be positive, otherwise fail.
1000 */
1001 errno = 0;
1002 ngroups_max = (int) sysconf(_SC_NGROUPS_MAX);
1003 if (ngroups_max <= 0)
1004 return errno_or_else(EOPNOTSUPP);
1005
1006 l_gids = new(gid_t, ngroups_max);
1007 if (!l_gids)
1008 return -ENOMEM;
1009
1010 if (keep_groups) {
1011 /*
1012 * Lookup the list of groups that the user belongs to, we
1013 * avoid NSS lookups here too for gid=0.
1014 */
1015 k = ngroups_max;
1016 if (getgrouplist(user, gid, l_gids, &k) < 0)
1017 return -EINVAL;
1018 } else
1019 k = 0;
1020
1021 STRV_FOREACH(i, c->supplementary_groups) {
1022 const char *g;
1023
1024 if (k >= ngroups_max)
1025 return -E2BIG;
1026
1027 g = *i;
1028 r = get_group_creds(&g, l_gids+k, 0);
1029 if (r < 0)
1030 return r;
1031
1032 k++;
1033 }
1034
1035 /*
1036 * Sets ngids to zero to drop all supplementary groups, happens
1037 * when we are under root and SupplementaryGroups= is empty.
1038 */
1039 if (k == 0) {
1040 *ngids = 0;
1041 return 0;
1042 }
1043
1044 /* Otherwise get the final list of supplementary groups */
1045 groups = memdup(l_gids, sizeof(gid_t) * k);
1046 if (!groups)
1047 return -ENOMEM;
1048
1049 *supplementary_gids = groups;
1050 *ngids = k;
1051
1052 groups = NULL;
1053
1054 return 0;
1055 }
1056
1057 static int enforce_groups(gid_t gid, const gid_t *supplementary_gids, int ngids) {
1058 int r;
1059
1060 /* Handle SupplementaryGroups= if it is not empty */
1061 if (ngids > 0) {
1062 r = maybe_setgroups(ngids, supplementary_gids);
1063 if (r < 0)
1064 return r;
1065 }
1066
1067 if (gid_is_valid(gid)) {
1068 /* Then set our gids */
1069 if (setresgid(gid, gid, gid) < 0)
1070 return -errno;
1071 }
1072
1073 return 0;
1074 }
1075
1076 static int set_securebits(int bits, int mask) {
1077 int current, applied;
1078 current = prctl(PR_GET_SECUREBITS);
1079 if (current < 0)
1080 return -errno;
1081 /* Clear all securebits defined in mask and set bits */
1082 applied = (current & ~mask) | bits;
1083 if (current == applied)
1084 return 0;
1085 if (prctl(PR_SET_SECUREBITS, applied) < 0)
1086 return -errno;
1087 return 1;
1088 }
1089
1090 static int enforce_user(const ExecContext *context, uid_t uid) {
1091 assert(context);
1092 int r;
1093
1094 if (!uid_is_valid(uid))
1095 return 0;
1096
1097 /* Sets (but doesn't look up) the uid and make sure we keep the
1098 * capabilities while doing so. For setting secure bits the capability CAP_SETPCAP is
1099 * required, so we also need keep-caps in this case.
1100 */
1101
1102 if (context->capability_ambient_set != 0 || context->secure_bits != 0) {
1103
1104 /* First step: If we need to keep capabilities but
1105 * drop privileges we need to make sure we keep our
1106 * caps, while we drop privileges. */
1107 if (uid != 0) {
1108 /* Add KEEP_CAPS to the securebits */
1109 r = set_securebits(1<<SECURE_KEEP_CAPS, 0);
1110 if (r < 0)
1111 return r;
1112 }
1113 }
1114
1115 /* Second step: actually set the uids */
1116 if (setresuid(uid, uid, uid) < 0)
1117 return -errno;
1118
1119 /* At this point we should have all necessary capabilities but
1120 are otherwise a normal user. However, the caps might got
1121 corrupted due to the setresuid() so we need clean them up
1122 later. This is done outside of this call. */
1123
1124 return 0;
1125 }
1126
1127 #if HAVE_PAM
1128
1129 static int null_conv(
1130 int num_msg,
1131 const struct pam_message **msg,
1132 struct pam_response **resp,
1133 void *appdata_ptr) {
1134
1135 /* We don't support conversations */
1136
1137 return PAM_CONV_ERR;
1138 }
1139
1140 #endif
1141
1142 static int setup_pam(
1143 const char *name,
1144 const char *user,
1145 uid_t uid,
1146 gid_t gid,
1147 const char *tty,
1148 char ***env,
1149 const int fds[], size_t n_fds) {
1150
1151 #if HAVE_PAM
1152
1153 static const struct pam_conv conv = {
1154 .conv = null_conv,
1155 .appdata_ptr = NULL
1156 };
1157
1158 _cleanup_(barrier_destroy) Barrier barrier = BARRIER_NULL;
1159 pam_handle_t *handle = NULL;
1160 sigset_t old_ss;
1161 int pam_code = PAM_SUCCESS, r;
1162 char **nv, **e = NULL;
1163 bool close_session = false;
1164 pid_t pam_pid = 0, parent_pid;
1165 int flags = 0;
1166
1167 assert(name);
1168 assert(user);
1169 assert(env);
1170
1171 /* We set up PAM in the parent process, then fork. The child
1172 * will then stay around until killed via PR_GET_PDEATHSIG or
1173 * systemd via the cgroup logic. It will then remove the PAM
1174 * session again. The parent process will exec() the actual
1175 * daemon. We do things this way to ensure that the main PID
1176 * of the daemon is the one we initially fork()ed. */
1177
1178 r = barrier_create(&barrier);
1179 if (r < 0)
1180 goto fail;
1181
1182 if (log_get_max_level() < LOG_DEBUG)
1183 flags |= PAM_SILENT;
1184
1185 pam_code = pam_start(name, user, &conv, &handle);
1186 if (pam_code != PAM_SUCCESS) {
1187 handle = NULL;
1188 goto fail;
1189 }
1190
1191 if (!tty) {
1192 _cleanup_free_ char *q = NULL;
1193
1194 /* Hmm, so no TTY was explicitly passed, but an fd passed to us directly might be a TTY. Let's figure
1195 * out if that's the case, and read the TTY off it. */
1196
1197 if (getttyname_malloc(STDIN_FILENO, &q) >= 0)
1198 tty = strjoina("/dev/", q);
1199 }
1200
1201 if (tty) {
1202 pam_code = pam_set_item(handle, PAM_TTY, tty);
1203 if (pam_code != PAM_SUCCESS)
1204 goto fail;
1205 }
1206
1207 STRV_FOREACH(nv, *env) {
1208 pam_code = pam_putenv(handle, *nv);
1209 if (pam_code != PAM_SUCCESS)
1210 goto fail;
1211 }
1212
1213 pam_code = pam_acct_mgmt(handle, flags);
1214 if (pam_code != PAM_SUCCESS)
1215 goto fail;
1216
1217 pam_code = pam_setcred(handle, PAM_ESTABLISH_CRED | flags);
1218 if (pam_code != PAM_SUCCESS)
1219 log_debug("pam_setcred() failed, ignoring: %s", pam_strerror(handle, pam_code));
1220
1221 pam_code = pam_open_session(handle, flags);
1222 if (pam_code != PAM_SUCCESS)
1223 goto fail;
1224
1225 close_session = true;
1226
1227 e = pam_getenvlist(handle);
1228 if (!e) {
1229 pam_code = PAM_BUF_ERR;
1230 goto fail;
1231 }
1232
1233 /* Block SIGTERM, so that we know that it won't get lost in
1234 * the child */
1235
1236 assert_se(sigprocmask_many(SIG_BLOCK, &old_ss, SIGTERM, -1) >= 0);
1237
1238 parent_pid = getpid_cached();
1239
1240 r = safe_fork("(sd-pam)", 0, &pam_pid);
1241 if (r < 0)
1242 goto fail;
1243 if (r == 0) {
1244 int sig, ret = EXIT_PAM;
1245
1246 /* The child's job is to reset the PAM session on
1247 * termination */
1248 barrier_set_role(&barrier, BARRIER_CHILD);
1249
1250 /* Make sure we don't keep open the passed fds in this child. We assume that otherwise only those fds
1251 * are open here that have been opened by PAM. */
1252 (void) close_many(fds, n_fds);
1253
1254 /* Drop privileges - we don't need any to pam_close_session
1255 * and this will make PR_SET_PDEATHSIG work in most cases.
1256 * If this fails, ignore the error - but expect sd-pam threads
1257 * to fail to exit normally */
1258
1259 r = maybe_setgroups(0, NULL);
1260 if (r < 0)
1261 log_warning_errno(r, "Failed to setgroups() in sd-pam: %m");
1262 if (setresgid(gid, gid, gid) < 0)
1263 log_warning_errno(errno, "Failed to setresgid() in sd-pam: %m");
1264 if (setresuid(uid, uid, uid) < 0)
1265 log_warning_errno(errno, "Failed to setresuid() in sd-pam: %m");
1266
1267 (void) ignore_signals(SIGPIPE, -1);
1268
1269 /* Wait until our parent died. This will only work if
1270 * the above setresuid() succeeds, otherwise the kernel
1271 * will not allow unprivileged parents kill their privileged
1272 * children this way. We rely on the control groups kill logic
1273 * to do the rest for us. */
1274 if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0)
1275 goto child_finish;
1276
1277 /* Tell the parent that our setup is done. This is especially
1278 * important regarding dropping privileges. Otherwise, unit
1279 * setup might race against our setresuid(2) call.
1280 *
1281 * If the parent aborted, we'll detect this below, hence ignore
1282 * return failure here. */
1283 (void) barrier_place(&barrier);
1284
1285 /* Check if our parent process might already have died? */
1286 if (getppid() == parent_pid) {
1287 sigset_t ss;
1288
1289 assert_se(sigemptyset(&ss) >= 0);
1290 assert_se(sigaddset(&ss, SIGTERM) >= 0);
1291
1292 for (;;) {
1293 if (sigwait(&ss, &sig) < 0) {
1294 if (errno == EINTR)
1295 continue;
1296
1297 goto child_finish;
1298 }
1299
1300 assert(sig == SIGTERM);
1301 break;
1302 }
1303 }
1304
1305 pam_code = pam_setcred(handle, PAM_DELETE_CRED | flags);
1306 if (pam_code != PAM_SUCCESS)
1307 goto child_finish;
1308
1309 /* If our parent died we'll end the session */
1310 if (getppid() != parent_pid) {
1311 pam_code = pam_close_session(handle, flags);
1312 if (pam_code != PAM_SUCCESS)
1313 goto child_finish;
1314 }
1315
1316 ret = 0;
1317
1318 child_finish:
1319 pam_end(handle, pam_code | flags);
1320 _exit(ret);
1321 }
1322
1323 barrier_set_role(&barrier, BARRIER_PARENT);
1324
1325 /* If the child was forked off successfully it will do all the
1326 * cleanups, so forget about the handle here. */
1327 handle = NULL;
1328
1329 /* Unblock SIGTERM again in the parent */
1330 assert_se(sigprocmask(SIG_SETMASK, &old_ss, NULL) >= 0);
1331
1332 /* We close the log explicitly here, since the PAM modules
1333 * might have opened it, but we don't want this fd around. */
1334 closelog();
1335
1336 /* Synchronously wait for the child to initialize. We don't care for
1337 * errors as we cannot recover. However, warn loudly if it happens. */
1338 if (!barrier_place_and_sync(&barrier))
1339 log_error("PAM initialization failed");
1340
1341 return strv_free_and_replace(*env, e);
1342
1343 fail:
1344 if (pam_code != PAM_SUCCESS) {
1345 log_error("PAM failed: %s", pam_strerror(handle, pam_code));
1346 r = -EPERM; /* PAM errors do not map to errno */
1347 } else
1348 log_error_errno(r, "PAM failed: %m");
1349
1350 if (handle) {
1351 if (close_session)
1352 pam_code = pam_close_session(handle, flags);
1353
1354 pam_end(handle, pam_code | flags);
1355 }
1356
1357 strv_free(e);
1358 closelog();
1359
1360 return r;
1361 #else
1362 return 0;
1363 #endif
1364 }
1365
1366 static void rename_process_from_path(const char *path) {
1367 char process_name[11];
1368 const char *p;
1369 size_t l;
1370
1371 /* This resulting string must fit in 10 chars (i.e. the length
1372 * of "/sbin/init") to look pretty in /bin/ps */
1373
1374 p = basename(path);
1375 if (isempty(p)) {
1376 rename_process("(...)");
1377 return;
1378 }
1379
1380 l = strlen(p);
1381 if (l > 8) {
1382 /* The end of the process name is usually more
1383 * interesting, since the first bit might just be
1384 * "systemd-" */
1385 p = p + l - 8;
1386 l = 8;
1387 }
1388
1389 process_name[0] = '(';
1390 memcpy(process_name+1, p, l);
1391 process_name[1+l] = ')';
1392 process_name[1+l+1] = 0;
1393
1394 rename_process(process_name);
1395 }
1396
1397 static bool context_has_address_families(const ExecContext *c) {
1398 assert(c);
1399
1400 return c->address_families_allow_list ||
1401 !set_isempty(c->address_families);
1402 }
1403
1404 static bool context_has_syscall_filters(const ExecContext *c) {
1405 assert(c);
1406
1407 return c->syscall_allow_list ||
1408 !hashmap_isempty(c->syscall_filter);
1409 }
1410
1411 static bool context_has_syscall_logs(const ExecContext *c) {
1412 assert(c);
1413
1414 return c->syscall_log_allow_list ||
1415 !hashmap_isempty(c->syscall_log);
1416 }
1417
1418 static bool context_has_no_new_privileges(const ExecContext *c) {
1419 assert(c);
1420
1421 if (c->no_new_privileges)
1422 return true;
1423
1424 if (have_effective_cap(CAP_SYS_ADMIN)) /* if we are privileged, we don't need NNP */
1425 return false;
1426
1427 /* We need NNP if we have any form of seccomp and are unprivileged */
1428 return context_has_address_families(c) ||
1429 c->memory_deny_write_execute ||
1430 c->restrict_realtime ||
1431 c->restrict_suid_sgid ||
1432 exec_context_restrict_namespaces_set(c) ||
1433 c->protect_clock ||
1434 c->protect_kernel_tunables ||
1435 c->protect_kernel_modules ||
1436 c->protect_kernel_logs ||
1437 c->private_devices ||
1438 context_has_syscall_filters(c) ||
1439 context_has_syscall_logs(c) ||
1440 !set_isempty(c->syscall_archs) ||
1441 c->lock_personality ||
1442 c->protect_hostname;
1443 }
1444
1445 static bool exec_context_has_credentials(const ExecContext *context) {
1446
1447 assert(context);
1448
1449 return !hashmap_isempty(context->set_credentials) ||
1450 context->load_credentials;
1451 }
1452
1453 #if HAVE_SECCOMP
1454
1455 static bool skip_seccomp_unavailable(const Unit* u, const char* msg) {
1456
1457 if (is_seccomp_available())
1458 return false;
1459
1460 log_unit_debug(u, "SECCOMP features not detected in the kernel, skipping %s", msg);
1461 return true;
1462 }
1463
1464 static int apply_syscall_filter(const Unit* u, const ExecContext *c, bool needs_ambient_hack) {
1465 uint32_t negative_action, default_action, action;
1466 int r;
1467
1468 assert(u);
1469 assert(c);
1470
1471 if (!context_has_syscall_filters(c))
1472 return 0;
1473
1474 if (skip_seccomp_unavailable(u, "SystemCallFilter="))
1475 return 0;
1476
1477 negative_action = c->syscall_errno == SECCOMP_ERROR_NUMBER_KILL ? scmp_act_kill_process() : SCMP_ACT_ERRNO(c->syscall_errno);
1478
1479 if (c->syscall_allow_list) {
1480 default_action = negative_action;
1481 action = SCMP_ACT_ALLOW;
1482 } else {
1483 default_action = SCMP_ACT_ALLOW;
1484 action = negative_action;
1485 }
1486
1487 if (needs_ambient_hack) {
1488 r = seccomp_filter_set_add(c->syscall_filter, c->syscall_allow_list, syscall_filter_sets + SYSCALL_FILTER_SET_SETUID);
1489 if (r < 0)
1490 return r;
1491 }
1492
1493 return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_filter, action, false);
1494 }
1495
1496 static int apply_syscall_log(const Unit* u, const ExecContext *c) {
1497 #ifdef SCMP_ACT_LOG
1498 uint32_t default_action, action;
1499 #endif
1500
1501 assert(u);
1502 assert(c);
1503
1504 if (!context_has_syscall_logs(c))
1505 return 0;
1506
1507 #ifdef SCMP_ACT_LOG
1508 if (skip_seccomp_unavailable(u, "SystemCallLog="))
1509 return 0;
1510
1511 if (c->syscall_log_allow_list) {
1512 /* Log nothing but the ones listed */
1513 default_action = SCMP_ACT_ALLOW;
1514 action = SCMP_ACT_LOG;
1515 } else {
1516 /* Log everything but the ones listed */
1517 default_action = SCMP_ACT_LOG;
1518 action = SCMP_ACT_ALLOW;
1519 }
1520
1521 return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_log, action, false);
1522 #else
1523 /* old libseccomp */
1524 log_unit_debug(u, "SECCOMP feature SCMP_ACT_LOG not available, skipping SystemCallLog=");
1525 return 0;
1526 #endif
1527 }
1528
1529 static int apply_syscall_archs(const Unit *u, const ExecContext *c) {
1530 assert(u);
1531 assert(c);
1532
1533 if (set_isempty(c->syscall_archs))
1534 return 0;
1535
1536 if (skip_seccomp_unavailable(u, "SystemCallArchitectures="))
1537 return 0;
1538
1539 return seccomp_restrict_archs(c->syscall_archs);
1540 }
1541
1542 static int apply_address_families(const Unit* u, const ExecContext *c) {
1543 assert(u);
1544 assert(c);
1545
1546 if (!context_has_address_families(c))
1547 return 0;
1548
1549 if (skip_seccomp_unavailable(u, "RestrictAddressFamilies="))
1550 return 0;
1551
1552 return seccomp_restrict_address_families(c->address_families, c->address_families_allow_list);
1553 }
1554
1555 static int apply_memory_deny_write_execute(const Unit* u, const ExecContext *c) {
1556 assert(u);
1557 assert(c);
1558
1559 if (!c->memory_deny_write_execute)
1560 return 0;
1561
1562 if (skip_seccomp_unavailable(u, "MemoryDenyWriteExecute="))
1563 return 0;
1564
1565 return seccomp_memory_deny_write_execute();
1566 }
1567
1568 static int apply_restrict_realtime(const Unit* u, const ExecContext *c) {
1569 assert(u);
1570 assert(c);
1571
1572 if (!c->restrict_realtime)
1573 return 0;
1574
1575 if (skip_seccomp_unavailable(u, "RestrictRealtime="))
1576 return 0;
1577
1578 return seccomp_restrict_realtime();
1579 }
1580
1581 static int apply_restrict_suid_sgid(const Unit* u, const ExecContext *c) {
1582 assert(u);
1583 assert(c);
1584
1585 if (!c->restrict_suid_sgid)
1586 return 0;
1587
1588 if (skip_seccomp_unavailable(u, "RestrictSUIDSGID="))
1589 return 0;
1590
1591 return seccomp_restrict_suid_sgid();
1592 }
1593
1594 static int apply_protect_sysctl(const Unit *u, const ExecContext *c) {
1595 assert(u);
1596 assert(c);
1597
1598 /* Turn off the legacy sysctl() system call. Many distributions turn this off while building the kernel, but
1599 * let's protect even those systems where this is left on in the kernel. */
1600
1601 if (!c->protect_kernel_tunables)
1602 return 0;
1603
1604 if (skip_seccomp_unavailable(u, "ProtectKernelTunables="))
1605 return 0;
1606
1607 return seccomp_protect_sysctl();
1608 }
1609
1610 static int apply_protect_kernel_modules(const Unit *u, const ExecContext *c) {
1611 assert(u);
1612 assert(c);
1613
1614 /* Turn off module syscalls on ProtectKernelModules=yes */
1615
1616 if (!c->protect_kernel_modules)
1617 return 0;
1618
1619 if (skip_seccomp_unavailable(u, "ProtectKernelModules="))
1620 return 0;
1621
1622 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_MODULE, SCMP_ACT_ERRNO(EPERM), false);
1623 }
1624
1625 static int apply_protect_kernel_logs(const Unit *u, const ExecContext *c) {
1626 assert(u);
1627 assert(c);
1628
1629 if (!c->protect_kernel_logs)
1630 return 0;
1631
1632 if (skip_seccomp_unavailable(u, "ProtectKernelLogs="))
1633 return 0;
1634
1635 return seccomp_protect_syslog();
1636 }
1637
1638 static int apply_protect_clock(const Unit *u, const ExecContext *c) {
1639 assert(u);
1640 assert(c);
1641
1642 if (!c->protect_clock)
1643 return 0;
1644
1645 if (skip_seccomp_unavailable(u, "ProtectClock="))
1646 return 0;
1647
1648 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_CLOCK, SCMP_ACT_ERRNO(EPERM), false);
1649 }
1650
1651 static int apply_private_devices(const Unit *u, const ExecContext *c) {
1652 assert(u);
1653 assert(c);
1654
1655 /* If PrivateDevices= is set, also turn off iopl and all @raw-io syscalls. */
1656
1657 if (!c->private_devices)
1658 return 0;
1659
1660 if (skip_seccomp_unavailable(u, "PrivateDevices="))
1661 return 0;
1662
1663 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_RAW_IO, SCMP_ACT_ERRNO(EPERM), false);
1664 }
1665
1666 static int apply_restrict_namespaces(const Unit *u, const ExecContext *c) {
1667 assert(u);
1668 assert(c);
1669
1670 if (!exec_context_restrict_namespaces_set(c))
1671 return 0;
1672
1673 if (skip_seccomp_unavailable(u, "RestrictNamespaces="))
1674 return 0;
1675
1676 return seccomp_restrict_namespaces(c->restrict_namespaces);
1677 }
1678
1679 static int apply_lock_personality(const Unit* u, const ExecContext *c) {
1680 unsigned long personality;
1681 int r;
1682
1683 assert(u);
1684 assert(c);
1685
1686 if (!c->lock_personality)
1687 return 0;
1688
1689 if (skip_seccomp_unavailable(u, "LockPersonality="))
1690 return 0;
1691
1692 personality = c->personality;
1693
1694 /* If personality is not specified, use either PER_LINUX or PER_LINUX32 depending on what is currently set. */
1695 if (personality == PERSONALITY_INVALID) {
1696
1697 r = opinionated_personality(&personality);
1698 if (r < 0)
1699 return r;
1700 }
1701
1702 return seccomp_lock_personality(personality);
1703 }
1704
1705 #endif
1706
1707 static int apply_protect_hostname(const Unit *u, const ExecContext *c, int *ret_exit_status) {
1708 assert(u);
1709 assert(c);
1710
1711 if (!c->protect_hostname)
1712 return 0;
1713
1714 if (ns_type_supported(NAMESPACE_UTS)) {
1715 if (unshare(CLONE_NEWUTS) < 0) {
1716 if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno)) {
1717 *ret_exit_status = EXIT_NAMESPACE;
1718 return log_unit_error_errno(u, errno, "Failed to set up UTS namespacing: %m");
1719 }
1720
1721 log_unit_warning(u, "ProtectHostname=yes is configured, but UTS namespace setup is prohibited (container manager?), ignoring namespace setup.");
1722 }
1723 } else
1724 log_unit_warning(u, "ProtectHostname=yes is configured, but the kernel does not support UTS namespaces, ignoring namespace setup.");
1725
1726 #if HAVE_SECCOMP
1727 int r;
1728
1729 if (skip_seccomp_unavailable(u, "ProtectHostname="))
1730 return 0;
1731
1732 r = seccomp_protect_hostname();
1733 if (r < 0) {
1734 *ret_exit_status = EXIT_SECCOMP;
1735 return log_unit_error_errno(u, r, "Failed to apply hostname restrictions: %m");
1736 }
1737 #endif
1738
1739 return 0;
1740 }
1741
1742 static void do_idle_pipe_dance(int idle_pipe[static 4]) {
1743 assert(idle_pipe);
1744
1745 idle_pipe[1] = safe_close(idle_pipe[1]);
1746 idle_pipe[2] = safe_close(idle_pipe[2]);
1747
1748 if (idle_pipe[0] >= 0) {
1749 int r;
1750
1751 r = fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT_USEC);
1752
1753 if (idle_pipe[3] >= 0 && r == 0 /* timeout */) {
1754 ssize_t n;
1755
1756 /* Signal systemd that we are bored and want to continue. */
1757 n = write(idle_pipe[3], "x", 1);
1758 if (n > 0)
1759 /* Wait for systemd to react to the signal above. */
1760 (void) fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT2_USEC);
1761 }
1762
1763 idle_pipe[0] = safe_close(idle_pipe[0]);
1764
1765 }
1766
1767 idle_pipe[3] = safe_close(idle_pipe[3]);
1768 }
1769
1770 static const char *exec_directory_env_name_to_string(ExecDirectoryType t);
1771
1772 static int build_environment(
1773 const Unit *u,
1774 const ExecContext *c,
1775 const ExecParameters *p,
1776 size_t n_fds,
1777 const char *home,
1778 const char *username,
1779 const char *shell,
1780 dev_t journal_stream_dev,
1781 ino_t journal_stream_ino,
1782 char ***ret) {
1783
1784 _cleanup_strv_free_ char **our_env = NULL;
1785 size_t n_env = 0;
1786 char *x;
1787
1788 assert(u);
1789 assert(c);
1790 assert(p);
1791 assert(ret);
1792
1793 #define N_ENV_VARS 16
1794 our_env = new0(char*, N_ENV_VARS + _EXEC_DIRECTORY_TYPE_MAX);
1795 if (!our_env)
1796 return -ENOMEM;
1797
1798 if (n_fds > 0) {
1799 _cleanup_free_ char *joined = NULL;
1800
1801 if (asprintf(&x, "LISTEN_PID="PID_FMT, getpid_cached()) < 0)
1802 return -ENOMEM;
1803 our_env[n_env++] = x;
1804
1805 if (asprintf(&x, "LISTEN_FDS=%zu", n_fds) < 0)
1806 return -ENOMEM;
1807 our_env[n_env++] = x;
1808
1809 joined = strv_join(p->fd_names, ":");
1810 if (!joined)
1811 return -ENOMEM;
1812
1813 x = strjoin("LISTEN_FDNAMES=", joined);
1814 if (!x)
1815 return -ENOMEM;
1816 our_env[n_env++] = x;
1817 }
1818
1819 if ((p->flags & EXEC_SET_WATCHDOG) && p->watchdog_usec > 0) {
1820 if (asprintf(&x, "WATCHDOG_PID="PID_FMT, getpid_cached()) < 0)
1821 return -ENOMEM;
1822 our_env[n_env++] = x;
1823
1824 if (asprintf(&x, "WATCHDOG_USEC="USEC_FMT, p->watchdog_usec) < 0)
1825 return -ENOMEM;
1826 our_env[n_env++] = x;
1827 }
1828
1829 /* If this is D-Bus, tell the nss-systemd module, since it relies on being able to use D-Bus look up dynamic
1830 * users via PID 1, possibly dead-locking the dbus daemon. This way it will not use D-Bus to resolve names, but
1831 * check the database directly. */
1832 if (p->flags & EXEC_NSS_BYPASS_BUS) {
1833 x = strdup("SYSTEMD_NSS_BYPASS_BUS=1");
1834 if (!x)
1835 return -ENOMEM;
1836 our_env[n_env++] = x;
1837 }
1838
1839 if (home) {
1840 x = strjoin("HOME=", home);
1841 if (!x)
1842 return -ENOMEM;
1843
1844 path_simplify(x + 5, true);
1845 our_env[n_env++] = x;
1846 }
1847
1848 if (username) {
1849 x = strjoin("LOGNAME=", username);
1850 if (!x)
1851 return -ENOMEM;
1852 our_env[n_env++] = x;
1853
1854 x = strjoin("USER=", username);
1855 if (!x)
1856 return -ENOMEM;
1857 our_env[n_env++] = x;
1858 }
1859
1860 if (shell) {
1861 x = strjoin("SHELL=", shell);
1862 if (!x)
1863 return -ENOMEM;
1864
1865 path_simplify(x + 6, true);
1866 our_env[n_env++] = x;
1867 }
1868
1869 if (!sd_id128_is_null(u->invocation_id)) {
1870 if (asprintf(&x, "INVOCATION_ID=" SD_ID128_FORMAT_STR, SD_ID128_FORMAT_VAL(u->invocation_id)) < 0)
1871 return -ENOMEM;
1872
1873 our_env[n_env++] = x;
1874 }
1875
1876 if (exec_context_needs_term(c)) {
1877 const char *tty_path, *term = NULL;
1878
1879 tty_path = exec_context_tty_path(c);
1880
1881 /* If we are forked off PID 1 and we are supposed to operate on /dev/console, then let's try
1882 * to inherit the $TERM set for PID 1. This is useful for containers so that the $TERM the
1883 * container manager passes to PID 1 ends up all the way in the console login shown. */
1884
1885 if (path_equal_ptr(tty_path, "/dev/console") && getppid() == 1)
1886 term = getenv("TERM");
1887
1888 if (!term)
1889 term = default_term_for_tty(tty_path);
1890
1891 x = strjoin("TERM=", term);
1892 if (!x)
1893 return -ENOMEM;
1894 our_env[n_env++] = x;
1895 }
1896
1897 if (journal_stream_dev != 0 && journal_stream_ino != 0) {
1898 if (asprintf(&x, "JOURNAL_STREAM=" DEV_FMT ":" INO_FMT, journal_stream_dev, journal_stream_ino) < 0)
1899 return -ENOMEM;
1900
1901 our_env[n_env++] = x;
1902 }
1903
1904 if (c->log_namespace) {
1905 x = strjoin("LOG_NAMESPACE=", c->log_namespace);
1906 if (!x)
1907 return -ENOMEM;
1908
1909 our_env[n_env++] = x;
1910 }
1911
1912 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
1913 _cleanup_free_ char *pre = NULL, *joined = NULL;
1914 const char *n;
1915
1916 if (!p->prefix[t])
1917 continue;
1918
1919 if (strv_isempty(c->directories[t].paths))
1920 continue;
1921
1922 n = exec_directory_env_name_to_string(t);
1923 if (!n)
1924 continue;
1925
1926 pre = strjoin(p->prefix[t], "/");
1927 if (!pre)
1928 return -ENOMEM;
1929
1930 joined = strv_join_prefix(c->directories[t].paths, ":", pre);
1931 if (!joined)
1932 return -ENOMEM;
1933
1934 x = strjoin(n, "=", joined);
1935 if (!x)
1936 return -ENOMEM;
1937
1938 our_env[n_env++] = x;
1939 }
1940
1941 if (exec_context_has_credentials(c) && p->prefix[EXEC_DIRECTORY_RUNTIME]) {
1942 x = strjoin("CREDENTIALS_DIRECTORY=", p->prefix[EXEC_DIRECTORY_RUNTIME], "/credentials/", u->id);
1943 if (!x)
1944 return -ENOMEM;
1945
1946 our_env[n_env++] = x;
1947 }
1948
1949 our_env[n_env++] = NULL;
1950 assert(n_env <= N_ENV_VARS + _EXEC_DIRECTORY_TYPE_MAX);
1951 #undef N_ENV_VARS
1952
1953 *ret = TAKE_PTR(our_env);
1954
1955 return 0;
1956 }
1957
1958 static int build_pass_environment(const ExecContext *c, char ***ret) {
1959 _cleanup_strv_free_ char **pass_env = NULL;
1960 size_t n_env = 0, n_bufsize = 0;
1961 char **i;
1962
1963 STRV_FOREACH(i, c->pass_environment) {
1964 _cleanup_free_ char *x = NULL;
1965 char *v;
1966
1967 v = getenv(*i);
1968 if (!v)
1969 continue;
1970 x = strjoin(*i, "=", v);
1971 if (!x)
1972 return -ENOMEM;
1973
1974 if (!GREEDY_REALLOC(pass_env, n_bufsize, n_env + 2))
1975 return -ENOMEM;
1976
1977 pass_env[n_env++] = TAKE_PTR(x);
1978 pass_env[n_env] = NULL;
1979 }
1980
1981 *ret = TAKE_PTR(pass_env);
1982
1983 return 0;
1984 }
1985
1986 static bool exec_needs_mount_namespace(
1987 const ExecContext *context,
1988 const ExecParameters *params,
1989 const ExecRuntime *runtime) {
1990
1991 assert(context);
1992 assert(params);
1993
1994 if (context->root_image)
1995 return true;
1996
1997 if (!strv_isempty(context->read_write_paths) ||
1998 !strv_isempty(context->read_only_paths) ||
1999 !strv_isempty(context->inaccessible_paths))
2000 return true;
2001
2002 if (context->n_bind_mounts > 0)
2003 return true;
2004
2005 if (context->n_temporary_filesystems > 0)
2006 return true;
2007
2008 if (context->n_mount_images > 0)
2009 return true;
2010
2011 if (!IN_SET(context->mount_flags, 0, MS_SHARED))
2012 return true;
2013
2014 if (context->private_tmp && runtime && (runtime->tmp_dir || runtime->var_tmp_dir))
2015 return true;
2016
2017 if (context->private_devices ||
2018 context->private_mounts ||
2019 context->protect_system != PROTECT_SYSTEM_NO ||
2020 context->protect_home != PROTECT_HOME_NO ||
2021 context->protect_kernel_tunables ||
2022 context->protect_kernel_modules ||
2023 context->protect_kernel_logs ||
2024 context->protect_control_groups ||
2025 context->protect_proc != PROTECT_PROC_DEFAULT ||
2026 context->proc_subset != PROC_SUBSET_ALL)
2027 return true;
2028
2029 if (context->root_directory) {
2030 if (exec_context_get_effective_mount_apivfs(context))
2031 return true;
2032
2033 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2034 if (!params->prefix[t])
2035 continue;
2036
2037 if (!strv_isempty(context->directories[t].paths))
2038 return true;
2039 }
2040 }
2041
2042 if (context->dynamic_user &&
2043 (!strv_isempty(context->directories[EXEC_DIRECTORY_STATE].paths) ||
2044 !strv_isempty(context->directories[EXEC_DIRECTORY_CACHE].paths) ||
2045 !strv_isempty(context->directories[EXEC_DIRECTORY_LOGS].paths)))
2046 return true;
2047
2048 if (context->log_namespace)
2049 return true;
2050
2051 return false;
2052 }
2053
2054 static int setup_private_users(uid_t ouid, gid_t ogid, uid_t uid, gid_t gid) {
2055 _cleanup_free_ char *uid_map = NULL, *gid_map = NULL;
2056 _cleanup_close_pair_ int errno_pipe[2] = { -1, -1 };
2057 _cleanup_close_ int unshare_ready_fd = -1;
2058 _cleanup_(sigkill_waitp) pid_t pid = 0;
2059 uint64_t c = 1;
2060 ssize_t n;
2061 int r;
2062
2063 /* Set up a user namespace and map the original UID/GID (IDs from before any user or group changes, i.e.
2064 * the IDs from the user or system manager(s)) to itself, the selected UID/GID to itself, and everything else to
2065 * nobody. In order to be able to write this mapping we need CAP_SETUID in the original user namespace, which
2066 * we however lack after opening the user namespace. To work around this we fork() a temporary child process,
2067 * which waits for the parent to create the new user namespace while staying in the original namespace. The
2068 * child then writes the UID mapping, under full privileges. The parent waits for the child to finish and
2069 * continues execution normally.
2070 * For unprivileged users (i.e. without capabilities), the root to root mapping is excluded. As such, it
2071 * does not need CAP_SETUID to write the single line mapping to itself. */
2072
2073 /* Can only set up multiple mappings with CAP_SETUID. */
2074 if (have_effective_cap(CAP_SETUID) && uid != ouid && uid_is_valid(uid))
2075 r = asprintf(&uid_map,
2076 UID_FMT " " UID_FMT " 1\n" /* Map $OUID → $OUID */
2077 UID_FMT " " UID_FMT " 1\n", /* Map $UID → $UID */
2078 ouid, ouid, uid, uid);
2079 else
2080 r = asprintf(&uid_map,
2081 UID_FMT " " UID_FMT " 1\n", /* Map $OUID → $OUID */
2082 ouid, ouid);
2083
2084 if (r < 0)
2085 return -ENOMEM;
2086
2087 /* Can only set up multiple mappings with CAP_SETGID. */
2088 if (have_effective_cap(CAP_SETGID) && gid != ogid && gid_is_valid(gid))
2089 r = asprintf(&gid_map,
2090 GID_FMT " " GID_FMT " 1\n" /* Map $OGID → $OGID */
2091 GID_FMT " " GID_FMT " 1\n", /* Map $GID → $GID */
2092 ogid, ogid, gid, gid);
2093 else
2094 r = asprintf(&gid_map,
2095 GID_FMT " " GID_FMT " 1\n", /* Map $OGID -> $OGID */
2096 ogid, ogid);
2097
2098 if (r < 0)
2099 return -ENOMEM;
2100
2101 /* Create a communication channel so that the parent can tell the child when it finished creating the user
2102 * namespace. */
2103 unshare_ready_fd = eventfd(0, EFD_CLOEXEC);
2104 if (unshare_ready_fd < 0)
2105 return -errno;
2106
2107 /* Create a communication channel so that the child can tell the parent a proper error code in case it
2108 * failed. */
2109 if (pipe2(errno_pipe, O_CLOEXEC) < 0)
2110 return -errno;
2111
2112 r = safe_fork("(sd-userns)", FORK_RESET_SIGNALS|FORK_DEATHSIG, &pid);
2113 if (r < 0)
2114 return r;
2115 if (r == 0) {
2116 _cleanup_close_ int fd = -1;
2117 const char *a;
2118 pid_t ppid;
2119
2120 /* Child process, running in the original user namespace. Let's update the parent's UID/GID map from
2121 * here, after the parent opened its own user namespace. */
2122
2123 ppid = getppid();
2124 errno_pipe[0] = safe_close(errno_pipe[0]);
2125
2126 /* Wait until the parent unshared the user namespace */
2127 if (read(unshare_ready_fd, &c, sizeof(c)) < 0) {
2128 r = -errno;
2129 goto child_fail;
2130 }
2131
2132 /* Disable the setgroups() system call in the child user namespace, for good. */
2133 a = procfs_file_alloca(ppid, "setgroups");
2134 fd = open(a, O_WRONLY|O_CLOEXEC);
2135 if (fd < 0) {
2136 if (errno != ENOENT) {
2137 r = -errno;
2138 goto child_fail;
2139 }
2140
2141 /* If the file is missing the kernel is too old, let's continue anyway. */
2142 } else {
2143 if (write(fd, "deny\n", 5) < 0) {
2144 r = -errno;
2145 goto child_fail;
2146 }
2147
2148 fd = safe_close(fd);
2149 }
2150
2151 /* First write the GID map */
2152 a = procfs_file_alloca(ppid, "gid_map");
2153 fd = open(a, O_WRONLY|O_CLOEXEC);
2154 if (fd < 0) {
2155 r = -errno;
2156 goto child_fail;
2157 }
2158 if (write(fd, gid_map, strlen(gid_map)) < 0) {
2159 r = -errno;
2160 goto child_fail;
2161 }
2162 fd = safe_close(fd);
2163
2164 /* The write the UID map */
2165 a = procfs_file_alloca(ppid, "uid_map");
2166 fd = open(a, O_WRONLY|O_CLOEXEC);
2167 if (fd < 0) {
2168 r = -errno;
2169 goto child_fail;
2170 }
2171 if (write(fd, uid_map, strlen(uid_map)) < 0) {
2172 r = -errno;
2173 goto child_fail;
2174 }
2175
2176 _exit(EXIT_SUCCESS);
2177
2178 child_fail:
2179 (void) write(errno_pipe[1], &r, sizeof(r));
2180 _exit(EXIT_FAILURE);
2181 }
2182
2183 errno_pipe[1] = safe_close(errno_pipe[1]);
2184
2185 if (unshare(CLONE_NEWUSER) < 0)
2186 return -errno;
2187
2188 /* Let the child know that the namespace is ready now */
2189 if (write(unshare_ready_fd, &c, sizeof(c)) < 0)
2190 return -errno;
2191
2192 /* Try to read an error code from the child */
2193 n = read(errno_pipe[0], &r, sizeof(r));
2194 if (n < 0)
2195 return -errno;
2196 if (n == sizeof(r)) { /* an error code was sent to us */
2197 if (r < 0)
2198 return r;
2199 return -EIO;
2200 }
2201 if (n != 0) /* on success we should have read 0 bytes */
2202 return -EIO;
2203
2204 r = wait_for_terminate_and_check("(sd-userns)", pid, 0);
2205 pid = 0;
2206 if (r < 0)
2207 return r;
2208 if (r != EXIT_SUCCESS) /* If something strange happened with the child, let's consider this fatal, too */
2209 return -EIO;
2210
2211 return 0;
2212 }
2213
2214 static bool exec_directory_is_private(const ExecContext *context, ExecDirectoryType type) {
2215 if (!context->dynamic_user)
2216 return false;
2217
2218 if (type == EXEC_DIRECTORY_CONFIGURATION)
2219 return false;
2220
2221 if (type == EXEC_DIRECTORY_RUNTIME && context->runtime_directory_preserve_mode == EXEC_PRESERVE_NO)
2222 return false;
2223
2224 return true;
2225 }
2226
2227 static int setup_exec_directory(
2228 const ExecContext *context,
2229 const ExecParameters *params,
2230 uid_t uid,
2231 gid_t gid,
2232 ExecDirectoryType type,
2233 int *exit_status) {
2234
2235 static const int exit_status_table[_EXEC_DIRECTORY_TYPE_MAX] = {
2236 [EXEC_DIRECTORY_RUNTIME] = EXIT_RUNTIME_DIRECTORY,
2237 [EXEC_DIRECTORY_STATE] = EXIT_STATE_DIRECTORY,
2238 [EXEC_DIRECTORY_CACHE] = EXIT_CACHE_DIRECTORY,
2239 [EXEC_DIRECTORY_LOGS] = EXIT_LOGS_DIRECTORY,
2240 [EXEC_DIRECTORY_CONFIGURATION] = EXIT_CONFIGURATION_DIRECTORY,
2241 };
2242 char **rt;
2243 int r;
2244
2245 assert(context);
2246 assert(params);
2247 assert(type >= 0 && type < _EXEC_DIRECTORY_TYPE_MAX);
2248 assert(exit_status);
2249
2250 if (!params->prefix[type])
2251 return 0;
2252
2253 if (params->flags & EXEC_CHOWN_DIRECTORIES) {
2254 if (!uid_is_valid(uid))
2255 uid = 0;
2256 if (!gid_is_valid(gid))
2257 gid = 0;
2258 }
2259
2260 STRV_FOREACH(rt, context->directories[type].paths) {
2261 _cleanup_free_ char *p = NULL, *pp = NULL;
2262
2263 p = path_join(params->prefix[type], *rt);
2264 if (!p) {
2265 r = -ENOMEM;
2266 goto fail;
2267 }
2268
2269 r = mkdir_parents_label(p, 0755);
2270 if (r < 0)
2271 goto fail;
2272
2273 if (exec_directory_is_private(context, type)) {
2274 _cleanup_free_ char *private_root = NULL;
2275
2276 /* So, here's one extra complication when dealing with DynamicUser=1 units. In that
2277 * case we want to avoid leaving a directory around fully accessible that is owned by
2278 * a dynamic user whose UID is later on reused. To lock this down we use the same
2279 * trick used by container managers to prohibit host users to get access to files of
2280 * the same UID in containers: we place everything inside a directory that has an
2281 * access mode of 0700 and is owned root:root, so that it acts as security boundary
2282 * for unprivileged host code. We then use fs namespacing to make this directory
2283 * permeable for the service itself.
2284 *
2285 * Specifically: for a service which wants a special directory "foo/" we first create
2286 * a directory "private/" with access mode 0700 owned by root:root. Then we place
2287 * "foo" inside of that directory (i.e. "private/foo/"), and make "foo" a symlink to
2288 * "private/foo". This way, privileged host users can access "foo/" as usual, but
2289 * unprivileged host users can't look into it. Inside of the namespace of the unit
2290 * "private/" is replaced by a more liberally accessible tmpfs, into which the host's
2291 * "private/foo/" is mounted under the same name, thus disabling the access boundary
2292 * for the service and making sure it only gets access to the dirs it needs but no
2293 * others. Tricky? Yes, absolutely, but it works!
2294 *
2295 * Note that we don't do this for EXEC_DIRECTORY_CONFIGURATION as that's assumed not
2296 * to be owned by the service itself.
2297 *
2298 * Also, note that we don't do this for EXEC_DIRECTORY_RUNTIME as that's often used
2299 * for sharing files or sockets with other services. */
2300
2301 private_root = path_join(params->prefix[type], "private");
2302 if (!private_root) {
2303 r = -ENOMEM;
2304 goto fail;
2305 }
2306
2307 /* First set up private root if it doesn't exist yet, with access mode 0700 and owned by root:root */
2308 r = mkdir_safe_label(private_root, 0700, 0, 0, MKDIR_WARN_MODE);
2309 if (r < 0)
2310 goto fail;
2311
2312 pp = path_join(private_root, *rt);
2313 if (!pp) {
2314 r = -ENOMEM;
2315 goto fail;
2316 }
2317
2318 /* Create all directories between the configured directory and this private root, and mark them 0755 */
2319 r = mkdir_parents_label(pp, 0755);
2320 if (r < 0)
2321 goto fail;
2322
2323 if (is_dir(p, false) > 0 &&
2324 (laccess(pp, F_OK) < 0 && errno == ENOENT)) {
2325
2326 /* Hmm, the private directory doesn't exist yet, but the normal one exists? If so, move
2327 * it over. Most likely the service has been upgraded from one that didn't use
2328 * DynamicUser=1, to one that does. */
2329
2330 log_info("Found pre-existing public %s= directory %s, migrating to %s.\n"
2331 "Apparently, service previously had DynamicUser= turned off, and has now turned it on.",
2332 exec_directory_type_to_string(type), p, pp);
2333
2334 if (rename(p, pp) < 0) {
2335 r = -errno;
2336 goto fail;
2337 }
2338 } else {
2339 /* Otherwise, create the actual directory for the service */
2340
2341 r = mkdir_label(pp, context->directories[type].mode);
2342 if (r < 0 && r != -EEXIST)
2343 goto fail;
2344 }
2345
2346 /* And link it up from the original place */
2347 r = symlink_idempotent(pp, p, true);
2348 if (r < 0)
2349 goto fail;
2350
2351 } else {
2352 _cleanup_free_ char *target = NULL;
2353
2354 if (type != EXEC_DIRECTORY_CONFIGURATION &&
2355 readlink_and_make_absolute(p, &target) >= 0) {
2356 _cleanup_free_ char *q = NULL, *q_resolved = NULL, *target_resolved = NULL;
2357
2358 /* This already exists and is a symlink? Interesting. Maybe it's one created
2359 * by DynamicUser=1 (see above)?
2360 *
2361 * We do this for all directory types except for ConfigurationDirectory=,
2362 * since they all support the private/ symlink logic at least in some
2363 * configurations, see above. */
2364
2365 r = chase_symlinks(target, NULL, 0, &target_resolved, NULL);
2366 if (r < 0)
2367 goto fail;
2368
2369 q = path_join(params->prefix[type], "private", *rt);
2370 if (!q) {
2371 r = -ENOMEM;
2372 goto fail;
2373 }
2374
2375 /* /var/lib or friends may be symlinks. So, let's chase them also. */
2376 r = chase_symlinks(q, NULL, CHASE_NONEXISTENT, &q_resolved, NULL);
2377 if (r < 0)
2378 goto fail;
2379
2380 if (path_equal(q_resolved, target_resolved)) {
2381
2382 /* Hmm, apparently DynamicUser= was once turned on for this service,
2383 * but is no longer. Let's move the directory back up. */
2384
2385 log_info("Found pre-existing private %s= directory %s, migrating to %s.\n"
2386 "Apparently, service previously had DynamicUser= turned on, and has now turned it off.",
2387 exec_directory_type_to_string(type), q, p);
2388
2389 if (unlink(p) < 0) {
2390 r = -errno;
2391 goto fail;
2392 }
2393
2394 if (rename(q, p) < 0) {
2395 r = -errno;
2396 goto fail;
2397 }
2398 }
2399 }
2400
2401 r = mkdir_label(p, context->directories[type].mode);
2402 if (r < 0) {
2403 if (r != -EEXIST)
2404 goto fail;
2405
2406 if (type == EXEC_DIRECTORY_CONFIGURATION) {
2407 struct stat st;
2408
2409 /* Don't change the owner/access mode of the configuration directory,
2410 * as in the common case it is not written to by a service, and shall
2411 * not be writable. */
2412
2413 if (stat(p, &st) < 0) {
2414 r = -errno;
2415 goto fail;
2416 }
2417
2418 /* Still complain if the access mode doesn't match */
2419 if (((st.st_mode ^ context->directories[type].mode) & 07777) != 0)
2420 log_warning("%s \'%s\' already exists but the mode is different. "
2421 "(File system: %o %sMode: %o)",
2422 exec_directory_type_to_string(type), *rt,
2423 st.st_mode & 07777, exec_directory_type_to_string(type), context->directories[type].mode & 07777);
2424
2425 continue;
2426 }
2427 }
2428 }
2429
2430 /* Lock down the access mode (we use chmod_and_chown() to make this idempotent. We don't
2431 * specify UID/GID here, so that path_chown_recursive() can optimize things depending on the
2432 * current UID/GID ownership.) */
2433 r = chmod_and_chown(pp ?: p, context->directories[type].mode, UID_INVALID, GID_INVALID);
2434 if (r < 0)
2435 goto fail;
2436
2437 /* Then, change the ownership of the whole tree, if necessary. When dynamic users are used we
2438 * drop the suid/sgid bits, since we really don't want SUID/SGID files for dynamic UID/GID
2439 * assignments to exist.*/
2440 r = path_chown_recursive(pp ?: p, uid, gid, context->dynamic_user ? 01777 : 07777);
2441 if (r < 0)
2442 goto fail;
2443 }
2444
2445 return 0;
2446
2447 fail:
2448 *exit_status = exit_status_table[type];
2449 return r;
2450 }
2451
2452 static int write_credential(
2453 int dfd,
2454 const char *id,
2455 const void *data,
2456 size_t size,
2457 uid_t uid,
2458 bool ownership_ok) {
2459
2460 _cleanup_(unlink_and_freep) char *tmp = NULL;
2461 _cleanup_close_ int fd = -1;
2462 int r;
2463
2464 r = tempfn_random_child("", "cred", &tmp);
2465 if (r < 0)
2466 return r;
2467
2468 fd = openat(dfd, tmp, O_CREAT|O_RDWR|O_CLOEXEC|O_EXCL|O_NOFOLLOW|O_NOCTTY, 0600);
2469 if (fd < 0) {
2470 tmp = mfree(tmp);
2471 return -errno;
2472 }
2473
2474 r = loop_write(fd, data, size, /* do_pool = */ false);
2475 if (r < 0)
2476 return r;
2477
2478 if (fchmod(fd, 0400) < 0) /* Take away "w" bit */
2479 return -errno;
2480
2481 if (uid_is_valid(uid) && uid != getuid()) {
2482 r = fd_add_uid_acl_permission(fd, uid, ACL_READ);
2483 if (r < 0) {
2484 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
2485 return r;
2486
2487 if (!ownership_ok) /* Ideally we use ACLs, since we can neatly express what we want
2488 * to express: that the user gets read access and nothing
2489 * else. But if the backing fs can't support that (e.g. ramfs)
2490 * then we can use file ownership instead. But that's only safe if
2491 * we can then re-mount the whole thing read-only, so that the
2492 * user can no longer chmod() the file to gain write access. */
2493 return r;
2494
2495 if (fchown(fd, uid, (gid_t) -1) < 0)
2496 return -errno;
2497 }
2498 }
2499
2500 if (renameat(dfd, tmp, dfd, id) < 0)
2501 return -errno;
2502
2503 tmp = mfree(tmp);
2504 return 0;
2505 }
2506
2507 #define CREDENTIALS_BYTES_MAX (1024LU * 1024LU) /* Refuse to pass more than 1M, after all this is unswappable memory */
2508
2509 static int acquire_credentials(
2510 const ExecContext *context,
2511 const ExecParameters *params,
2512 const char *p,
2513 uid_t uid,
2514 bool ownership_ok) {
2515
2516 uint64_t left = CREDENTIALS_BYTES_MAX;
2517 _cleanup_close_ int dfd = -1;
2518 ExecSetCredential *sc;
2519 char **id, **fn;
2520 int r;
2521
2522 assert(context);
2523 assert(p);
2524
2525 dfd = open(p, O_DIRECTORY|O_CLOEXEC);
2526 if (dfd < 0)
2527 return -errno;
2528
2529 /* First we use the literally specified credentials. Note that they might be overridden again below,
2530 * and thus act as a "default" if the same credential is specified multiple times */
2531 HASHMAP_FOREACH(sc, context->set_credentials) {
2532 size_t add;
2533
2534 add = strlen(sc->id) + sc->size;
2535 if (add > left)
2536 return -E2BIG;
2537
2538 r = write_credential(dfd, sc->id, sc->data, sc->size, uid, ownership_ok);
2539 if (r < 0)
2540 return r;
2541
2542 left -= add;
2543 }
2544
2545 /* Then, load credential off disk (or acquire via AF_UNIX socket) */
2546 STRV_FOREACH_PAIR(id, fn, context->load_credentials) {
2547 ReadFullFileFlags flags = READ_FULL_FILE_SECURE;
2548 _cleanup_(erase_and_freep) char *data = NULL;
2549 _cleanup_free_ char *j = NULL;
2550 const char *source;
2551 size_t size, add;
2552
2553 if (path_is_absolute(*fn)) {
2554 /* If this is an absolute path, read the data directly from it, and support AF_UNIX sockets */
2555 source = *fn;
2556 flags |= READ_FULL_FILE_CONNECT_SOCKET;
2557 } else if (params->received_credentials) {
2558 /* If this is a relative path, take it relative to the credentials we received
2559 * ourselves. We don't support the AF_UNIX stuff in this mode, since we are operating
2560 * on a credential store, i.e. this is guaranteed to be regular files. */
2561 j = path_join(params->received_credentials, *fn);
2562 if (!j)
2563 return -ENOMEM;
2564
2565 source = j;
2566 } else
2567 source = NULL;
2568
2569 if (source)
2570 r = read_full_file_full(AT_FDCWD, source, flags, &data, &size);
2571 else
2572 r = -ENOENT;
2573 if (r == -ENOENT &&
2574 faccessat(dfd, *id, F_OK, AT_SYMLINK_NOFOLLOW) >= 0) /* If the source file doesn't exist, but we already acquired the key otherwise, then don't fail */
2575 continue;
2576 if (r < 0)
2577 return r;
2578
2579 add = strlen(*id) + size;
2580 if (add > left)
2581 return -E2BIG;
2582
2583 r = write_credential(dfd, *id, data, size, uid, ownership_ok);
2584 if (r < 0)
2585 return r;
2586
2587 left -= add;
2588 }
2589
2590 if (fchmod(dfd, 0500) < 0) /* Now take away the "w" bit */
2591 return -errno;
2592
2593 /* After we created all keys with the right perms, also make sure the credential store as a whole is
2594 * accessible */
2595
2596 if (uid_is_valid(uid) && uid != getuid()) {
2597 r = fd_add_uid_acl_permission(dfd, uid, ACL_READ | ACL_EXECUTE);
2598 if (r < 0) {
2599 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
2600 return r;
2601
2602 if (!ownership_ok)
2603 return r;
2604
2605 if (fchown(dfd, uid, (gid_t) -1) < 0)
2606 return -errno;
2607 }
2608 }
2609
2610 return 0;
2611 }
2612
2613 static int setup_credentials_internal(
2614 const ExecContext *context,
2615 const ExecParameters *params,
2616 const char *final, /* This is where the credential store shall eventually end up at */
2617 const char *workspace, /* This is where we can prepare it before moving it to the final place */
2618 bool reuse_workspace, /* Whether to reuse any existing workspace mount if it already is a mount */
2619 bool must_mount, /* Whether to require that we mount something, it's not OK to use the plain directory fall back */
2620 uid_t uid) {
2621
2622 int r, workspace_mounted; /* negative if we don't know yet whether we have/can mount something; true
2623 * if we mounted something; false if we definitely can't mount anything */
2624 bool final_mounted;
2625 const char *where;
2626
2627 assert(context);
2628 assert(final);
2629 assert(workspace);
2630
2631 if (reuse_workspace) {
2632 r = path_is_mount_point(workspace, NULL, 0);
2633 if (r < 0)
2634 return r;
2635 if (r > 0)
2636 workspace_mounted = true; /* If this is already a mount, and we are supposed to reuse it, let's keep this in mind */
2637 else
2638 workspace_mounted = -1; /* We need to figure out if we can mount something to the workspace */
2639 } else
2640 workspace_mounted = -1; /* ditto */
2641
2642 r = path_is_mount_point(final, NULL, 0);
2643 if (r < 0)
2644 return r;
2645 if (r > 0) {
2646 /* If the final place already has something mounted, we use that. If the workspace also has
2647 * something mounted we assume it's actually the same mount (but with MS_RDONLY
2648 * different). */
2649 final_mounted = true;
2650
2651 if (workspace_mounted < 0) {
2652 /* If the final place is mounted, but the workspace we isn't, then let's bind mount
2653 * the final version to the workspace, and make it writable, so that we can make
2654 * changes */
2655
2656 r = mount_nofollow_verbose(LOG_DEBUG, final, workspace, NULL, MS_BIND|MS_REC, NULL);
2657 if (r < 0)
2658 return r;
2659
2660 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
2661 if (r < 0)
2662 return r;
2663
2664 workspace_mounted = true;
2665 }
2666 } else
2667 final_mounted = false;
2668
2669 if (workspace_mounted < 0) {
2670 /* Nothing is mounted on the workspace yet, let's try to mount something now */
2671 for (int try = 0;; try++) {
2672
2673 if (try == 0) {
2674 /* Try "ramfs" first, since it's not swap backed */
2675 r = mount_nofollow_verbose(LOG_DEBUG, "ramfs", workspace, "ramfs", MS_NODEV|MS_NOEXEC|MS_NOSUID, "mode=0700");
2676 if (r >= 0) {
2677 workspace_mounted = true;
2678 break;
2679 }
2680
2681 } else if (try == 1) {
2682 _cleanup_free_ char *opts = NULL;
2683
2684 if (asprintf(&opts, "mode=0700,nr_inodes=1024,size=%lu", CREDENTIALS_BYTES_MAX) < 0)
2685 return -ENOMEM;
2686
2687 /* Fall back to "tmpfs" otherwise */
2688 r = mount_nofollow_verbose(LOG_DEBUG, "tmpfs", workspace, "tmpfs", MS_NODEV|MS_NOEXEC|MS_NOSUID, opts);
2689 if (r >= 0) {
2690 workspace_mounted = true;
2691 break;
2692 }
2693
2694 } else {
2695 /* If that didn't work, try to make a bind mount from the final to the workspace, so that we can make it writable there. */
2696 r = mount_nofollow_verbose(LOG_DEBUG, final, workspace, NULL, MS_BIND|MS_REC, NULL);
2697 if (r < 0) {
2698 if (!ERRNO_IS_PRIVILEGE(r)) /* Propagate anything that isn't a permission problem */
2699 return r;
2700
2701 if (must_mount) /* If we it's not OK to use the plain directory
2702 * fallback, propagate all errors too */
2703 return r;
2704
2705 /* If we lack privileges to bind mount stuff, then let's gracefully
2706 * proceed for compat with container envs, and just use the final dir
2707 * as is. */
2708
2709 workspace_mounted = false;
2710 break;
2711 }
2712
2713 /* Make the new bind mount writable (i.e. drop MS_RDONLY) */
2714 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
2715 if (r < 0)
2716 return r;
2717
2718 workspace_mounted = true;
2719 break;
2720 }
2721 }
2722 }
2723
2724 assert(!must_mount || workspace_mounted > 0);
2725 where = workspace_mounted ? workspace : final;
2726
2727 r = acquire_credentials(context, params, where, uid, workspace_mounted);
2728 if (r < 0)
2729 return r;
2730
2731 if (workspace_mounted) {
2732 /* Make workspace read-only now, so that any bind mount we make from it defaults to read-only too */
2733 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_RDONLY|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
2734 if (r < 0)
2735 return r;
2736
2737 /* And mount it to the final place, read-only */
2738 if (final_mounted)
2739 r = umount_verbose(LOG_DEBUG, workspace, MNT_DETACH|UMOUNT_NOFOLLOW);
2740 else
2741 r = mount_nofollow_verbose(LOG_DEBUG, workspace, final, NULL, MS_MOVE, NULL);
2742 if (r < 0)
2743 return r;
2744 } else {
2745 _cleanup_free_ char *parent = NULL;
2746
2747 /* If we do not have our own mount put used the plain directory fallback, then we need to
2748 * open access to the top-level credential directory and the per-service directory now */
2749
2750 parent = dirname_malloc(final);
2751 if (!parent)
2752 return -ENOMEM;
2753 if (chmod(parent, 0755) < 0)
2754 return -errno;
2755 }
2756
2757 return 0;
2758 }
2759
2760 static int setup_credentials(
2761 const ExecContext *context,
2762 const ExecParameters *params,
2763 const char *unit,
2764 uid_t uid) {
2765
2766 _cleanup_free_ char *p = NULL, *q = NULL;
2767 const char *i;
2768 int r;
2769
2770 assert(context);
2771 assert(params);
2772
2773 if (!exec_context_has_credentials(context))
2774 return 0;
2775
2776 if (!params->prefix[EXEC_DIRECTORY_RUNTIME])
2777 return -EINVAL;
2778
2779 /* This where we'll place stuff when we are done; this main credentials directory is world-readable,
2780 * and the subdir we mount over with a read-only file system readable by the service's user */
2781 q = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "credentials");
2782 if (!q)
2783 return -ENOMEM;
2784
2785 r = mkdir_label(q, 0755); /* top-level dir: world readable/searchable */
2786 if (r < 0 && r != -EEXIST)
2787 return r;
2788
2789 p = path_join(q, unit);
2790 if (!p)
2791 return -ENOMEM;
2792
2793 r = mkdir_label(p, 0700); /* per-unit dir: private to user */
2794 if (r < 0 && r != -EEXIST)
2795 return r;
2796
2797 r = safe_fork("(sd-mkdcreds)", FORK_DEATHSIG|FORK_WAIT|FORK_NEW_MOUNTNS, NULL);
2798 if (r < 0) {
2799 _cleanup_free_ char *t = NULL, *u = NULL;
2800
2801 /* If this is not a privilege or support issue then propagate the error */
2802 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
2803 return r;
2804
2805 /* Temporary workspace, that remains inaccessible all the time. We prepare stuff there before moving
2806 * it into place, so that users can't access half-initialized credential stores. */
2807 t = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "systemd/temporary-credentials");
2808 if (!t)
2809 return -ENOMEM;
2810
2811 /* We can't set up a mount namespace. In that case operate on a fixed, inaccessible per-unit
2812 * directory outside of /run/credentials/ first, and then move it over to /run/credentials/
2813 * after it is fully set up */
2814 u = path_join(t, unit);
2815 if (!u)
2816 return -ENOMEM;
2817
2818 FOREACH_STRING(i, t, u) {
2819 r = mkdir_label(i, 0700);
2820 if (r < 0 && r != -EEXIST)
2821 return r;
2822 }
2823
2824 r = setup_credentials_internal(
2825 context,
2826 params,
2827 p, /* final mount point */
2828 u, /* temporary workspace to overmount */
2829 true, /* reuse the workspace if it is already a mount */
2830 false, /* it's OK to fall back to a plain directory if we can't mount anything */
2831 uid);
2832
2833 (void) rmdir(u); /* remove the workspace again if we can. */
2834
2835 if (r < 0)
2836 return r;
2837
2838 } else if (r == 0) {
2839
2840 /* We managed to set up a mount namespace, and are now in a child. That's great. In this case
2841 * we can use the same directory for all cases, after turning off propagation. Question
2842 * though is: where do we turn off propagation exactly, and where do we place the workspace
2843 * directory? We need some place that is guaranteed to be a mount point in the host, and
2844 * which is guaranteed to have a subdir we can mount over. /run/ is not suitable for this,
2845 * since we ultimately want to move the resulting file system there, i.e. we need propagation
2846 * for /run/ eventually. We could use our own /run/systemd/bind mount on itself, but that
2847 * would be visible in the host mount table all the time, which we want to avoid. Hence, what
2848 * we do here instead we use /dev/ and /dev/shm/ for our purposes. We know for sure that
2849 * /dev/ is a mount point and we now for sure that /dev/shm/ exists. Hence we can turn off
2850 * propagation on the former, and then overmount the latter.
2851 *
2852 * Yes it's nasty playing games with /dev/ and /dev/shm/ like this, since it does not exist
2853 * for this purpose, but there are few other candidates that work equally well for us, and
2854 * given that the we do this in a privately namespaced short-lived single-threaded process
2855 * that no one else sees this should be OK to do.*/
2856
2857 r = mount_nofollow_verbose(LOG_DEBUG, NULL, "/dev", NULL, MS_SLAVE|MS_REC, NULL); /* Turn off propagation from our namespace to host */
2858 if (r < 0)
2859 goto child_fail;
2860
2861 r = setup_credentials_internal(
2862 context,
2863 params,
2864 p, /* final mount point */
2865 "/dev/shm", /* temporary workspace to overmount */
2866 false, /* do not reuse /dev/shm if it is already a mount, under no circumstances */
2867 true, /* insist that something is mounted, do not allow fallback to plain directory */
2868 uid);
2869 if (r < 0)
2870 goto child_fail;
2871
2872 _exit(EXIT_SUCCESS);
2873
2874 child_fail:
2875 _exit(EXIT_FAILURE);
2876 }
2877
2878 return 0;
2879 }
2880
2881 #if ENABLE_SMACK
2882 static int setup_smack(
2883 const ExecContext *context,
2884 const char *executable) {
2885 int r;
2886
2887 assert(context);
2888 assert(executable);
2889
2890 if (context->smack_process_label) {
2891 r = mac_smack_apply_pid(0, context->smack_process_label);
2892 if (r < 0)
2893 return r;
2894 }
2895 #ifdef SMACK_DEFAULT_PROCESS_LABEL
2896 else {
2897 _cleanup_free_ char *exec_label = NULL;
2898
2899 r = mac_smack_read(executable, SMACK_ATTR_EXEC, &exec_label);
2900 if (r < 0 && !IN_SET(r, -ENODATA, -EOPNOTSUPP))
2901 return r;
2902
2903 r = mac_smack_apply_pid(0, exec_label ? : SMACK_DEFAULT_PROCESS_LABEL);
2904 if (r < 0)
2905 return r;
2906 }
2907 #endif
2908
2909 return 0;
2910 }
2911 #endif
2912
2913 static int compile_bind_mounts(
2914 const ExecContext *context,
2915 const ExecParameters *params,
2916 BindMount **ret_bind_mounts,
2917 size_t *ret_n_bind_mounts,
2918 char ***ret_empty_directories) {
2919
2920 _cleanup_strv_free_ char **empty_directories = NULL;
2921 BindMount *bind_mounts;
2922 size_t n, h = 0;
2923 int r;
2924
2925 assert(context);
2926 assert(params);
2927 assert(ret_bind_mounts);
2928 assert(ret_n_bind_mounts);
2929 assert(ret_empty_directories);
2930
2931 n = context->n_bind_mounts;
2932 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2933 if (!params->prefix[t])
2934 continue;
2935
2936 n += strv_length(context->directories[t].paths);
2937 }
2938
2939 if (n <= 0) {
2940 *ret_bind_mounts = NULL;
2941 *ret_n_bind_mounts = 0;
2942 *ret_empty_directories = NULL;
2943 return 0;
2944 }
2945
2946 bind_mounts = new(BindMount, n);
2947 if (!bind_mounts)
2948 return -ENOMEM;
2949
2950 for (size_t i = 0; i < context->n_bind_mounts; i++) {
2951 BindMount *item = context->bind_mounts + i;
2952 char *s, *d;
2953
2954 s = strdup(item->source);
2955 if (!s) {
2956 r = -ENOMEM;
2957 goto finish;
2958 }
2959
2960 d = strdup(item->destination);
2961 if (!d) {
2962 free(s);
2963 r = -ENOMEM;
2964 goto finish;
2965 }
2966
2967 bind_mounts[h++] = (BindMount) {
2968 .source = s,
2969 .destination = d,
2970 .read_only = item->read_only,
2971 .recursive = item->recursive,
2972 .ignore_enoent = item->ignore_enoent,
2973 };
2974 }
2975
2976 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2977 char **suffix;
2978
2979 if (!params->prefix[t])
2980 continue;
2981
2982 if (strv_isempty(context->directories[t].paths))
2983 continue;
2984
2985 if (exec_directory_is_private(context, t) &&
2986 !(context->root_directory || context->root_image)) {
2987 char *private_root;
2988
2989 /* So this is for a dynamic user, and we need to make sure the process can access its own
2990 * directory. For that we overmount the usually inaccessible "private" subdirectory with a
2991 * tmpfs that makes it accessible and is empty except for the submounts we do this for. */
2992
2993 private_root = path_join(params->prefix[t], "private");
2994 if (!private_root) {
2995 r = -ENOMEM;
2996 goto finish;
2997 }
2998
2999 r = strv_consume(&empty_directories, private_root);
3000 if (r < 0)
3001 goto finish;
3002 }
3003
3004 STRV_FOREACH(suffix, context->directories[t].paths) {
3005 char *s, *d;
3006
3007 if (exec_directory_is_private(context, t))
3008 s = path_join(params->prefix[t], "private", *suffix);
3009 else
3010 s = path_join(params->prefix[t], *suffix);
3011 if (!s) {
3012 r = -ENOMEM;
3013 goto finish;
3014 }
3015
3016 if (exec_directory_is_private(context, t) &&
3017 (context->root_directory || context->root_image))
3018 /* When RootDirectory= or RootImage= are set, then the symbolic link to the private
3019 * directory is not created on the root directory. So, let's bind-mount the directory
3020 * on the 'non-private' place. */
3021 d = path_join(params->prefix[t], *suffix);
3022 else
3023 d = strdup(s);
3024 if (!d) {
3025 free(s);
3026 r = -ENOMEM;
3027 goto finish;
3028 }
3029
3030 bind_mounts[h++] = (BindMount) {
3031 .source = s,
3032 .destination = d,
3033 .read_only = false,
3034 .nosuid = context->dynamic_user, /* don't allow suid/sgid when DynamicUser= is on */
3035 .recursive = true,
3036 .ignore_enoent = false,
3037 };
3038 }
3039 }
3040
3041 assert(h == n);
3042
3043 *ret_bind_mounts = bind_mounts;
3044 *ret_n_bind_mounts = n;
3045 *ret_empty_directories = TAKE_PTR(empty_directories);
3046
3047 return (int) n;
3048
3049 finish:
3050 bind_mount_free_many(bind_mounts, h);
3051 return r;
3052 }
3053
3054 static bool insist_on_sandboxing(
3055 const ExecContext *context,
3056 const char *root_dir,
3057 const char *root_image,
3058 const BindMount *bind_mounts,
3059 size_t n_bind_mounts) {
3060
3061 assert(context);
3062 assert(n_bind_mounts == 0 || bind_mounts);
3063
3064 /* Checks whether we need to insist on fs namespacing. i.e. whether we have settings configured that
3065 * would alter the view on the file system beyond making things read-only or invisible, i.e. would
3066 * rearrange stuff in a way we cannot ignore gracefully. */
3067
3068 if (context->n_temporary_filesystems > 0)
3069 return true;
3070
3071 if (root_dir || root_image)
3072 return true;
3073
3074 if (context->n_mount_images > 0)
3075 return true;
3076
3077 if (context->dynamic_user)
3078 return true;
3079
3080 /* If there are any bind mounts set that don't map back onto themselves, fs namespacing becomes
3081 * essential. */
3082 for (size_t i = 0; i < n_bind_mounts; i++)
3083 if (!path_equal(bind_mounts[i].source, bind_mounts[i].destination))
3084 return true;
3085
3086 if (context->log_namespace)
3087 return true;
3088
3089 return false;
3090 }
3091
3092 static int apply_mount_namespace(
3093 const Unit *u,
3094 ExecCommandFlags command_flags,
3095 const ExecContext *context,
3096 const ExecParameters *params,
3097 const ExecRuntime *runtime,
3098 char **error_path) {
3099
3100 _cleanup_strv_free_ char **empty_directories = NULL;
3101 const char *tmp_dir = NULL, *var_tmp_dir = NULL;
3102 const char *root_dir = NULL, *root_image = NULL;
3103 _cleanup_free_ char *creds_path = NULL;
3104 NamespaceInfo ns_info;
3105 bool needs_sandboxing;
3106 BindMount *bind_mounts = NULL;
3107 size_t n_bind_mounts = 0;
3108 int r;
3109
3110 assert(context);
3111
3112 if (params->flags & EXEC_APPLY_CHROOT) {
3113 root_image = context->root_image;
3114
3115 if (!root_image)
3116 root_dir = context->root_directory;
3117 }
3118
3119 r = compile_bind_mounts(context, params, &bind_mounts, &n_bind_mounts, &empty_directories);
3120 if (r < 0)
3121 return r;
3122
3123 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command_flags & EXEC_COMMAND_FULLY_PRIVILEGED);
3124 if (needs_sandboxing) {
3125 /* The runtime struct only contains the parent of the private /tmp,
3126 * which is non-accessible to world users. Inside of it there's a /tmp
3127 * that is sticky, and that's the one we want to use here.
3128 * This does not apply when we are using /run/systemd/empty as fallback. */
3129
3130 if (context->private_tmp && runtime) {
3131 if (streq_ptr(runtime->tmp_dir, RUN_SYSTEMD_EMPTY))
3132 tmp_dir = runtime->tmp_dir;
3133 else if (runtime->tmp_dir)
3134 tmp_dir = strjoina(runtime->tmp_dir, "/tmp");
3135
3136 if (streq_ptr(runtime->var_tmp_dir, RUN_SYSTEMD_EMPTY))
3137 var_tmp_dir = runtime->var_tmp_dir;
3138 else if (runtime->var_tmp_dir)
3139 var_tmp_dir = strjoina(runtime->var_tmp_dir, "/tmp");
3140 }
3141
3142 ns_info = (NamespaceInfo) {
3143 .ignore_protect_paths = false,
3144 .private_dev = context->private_devices,
3145 .protect_control_groups = context->protect_control_groups,
3146 .protect_kernel_tunables = context->protect_kernel_tunables,
3147 .protect_kernel_modules = context->protect_kernel_modules,
3148 .protect_kernel_logs = context->protect_kernel_logs,
3149 .protect_hostname = context->protect_hostname,
3150 .mount_apivfs = exec_context_get_effective_mount_apivfs(context),
3151 .private_mounts = context->private_mounts,
3152 .protect_home = context->protect_home,
3153 .protect_system = context->protect_system,
3154 .protect_proc = context->protect_proc,
3155 .proc_subset = context->proc_subset,
3156 };
3157 } else if (!context->dynamic_user && root_dir)
3158 /*
3159 * If DynamicUser=no and RootDirectory= is set then lets pass a relaxed
3160 * sandbox info, otherwise enforce it, don't ignore protected paths and
3161 * fail if we are enable to apply the sandbox inside the mount namespace.
3162 */
3163 ns_info = (NamespaceInfo) {
3164 .ignore_protect_paths = true,
3165 };
3166 else
3167 ns_info = (NamespaceInfo) {};
3168
3169 if (context->mount_flags == MS_SHARED)
3170 log_unit_debug(u, "shared mount propagation hidden by other fs namespacing unit settings: ignoring");
3171
3172 if (exec_context_has_credentials(context) && params->prefix[EXEC_DIRECTORY_RUNTIME]) {
3173 creds_path = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "credentials", u->id);
3174 if (!creds_path) {
3175 r = -ENOMEM;
3176 goto finalize;
3177 }
3178 }
3179
3180 r = setup_namespace(root_dir, root_image, context->root_image_options,
3181 &ns_info, context->read_write_paths,
3182 needs_sandboxing ? context->read_only_paths : NULL,
3183 needs_sandboxing ? context->inaccessible_paths : NULL,
3184 empty_directories,
3185 bind_mounts,
3186 n_bind_mounts,
3187 context->temporary_filesystems,
3188 context->n_temporary_filesystems,
3189 context->mount_images,
3190 context->n_mount_images,
3191 tmp_dir,
3192 var_tmp_dir,
3193 creds_path,
3194 context->log_namespace,
3195 context->mount_flags,
3196 context->root_hash, context->root_hash_size, context->root_hash_path,
3197 context->root_hash_sig, context->root_hash_sig_size, context->root_hash_sig_path,
3198 context->root_verity,
3199 DISSECT_IMAGE_DISCARD_ON_LOOP|DISSECT_IMAGE_RELAX_VAR_CHECK|DISSECT_IMAGE_FSCK,
3200 error_path);
3201
3202 /* If we couldn't set up the namespace this is probably due to a missing capability. setup_namespace() reports
3203 * that with a special, recognizable error ENOANO. In this case, silently proceed, but only if exclusively
3204 * sandboxing options were used, i.e. nothing such as RootDirectory= or BindMount= that would result in a
3205 * completely different execution environment. */
3206 if (r == -ENOANO) {
3207 if (insist_on_sandboxing(
3208 context,
3209 root_dir, root_image,
3210 bind_mounts,
3211 n_bind_mounts)) {
3212 log_unit_debug(u, "Failed to set up namespace, and refusing to continue since the selected namespacing options alter mount environment non-trivially.\n"
3213 "Bind mounts: %zu, temporary filesystems: %zu, root directory: %s, root image: %s, dynamic user: %s",
3214 n_bind_mounts, context->n_temporary_filesystems, yes_no(root_dir), yes_no(root_image), yes_no(context->dynamic_user));
3215
3216 r = -EOPNOTSUPP;
3217 } else {
3218 log_unit_debug(u, "Failed to set up namespace, assuming containerized execution and ignoring.");
3219 r = 0;
3220 }
3221 }
3222
3223 finalize:
3224 bind_mount_free_many(bind_mounts, n_bind_mounts);
3225 return r;
3226 }
3227
3228 static int apply_working_directory(
3229 const ExecContext *context,
3230 const ExecParameters *params,
3231 const char *home,
3232 int *exit_status) {
3233
3234 const char *d, *wd;
3235
3236 assert(context);
3237 assert(exit_status);
3238
3239 if (context->working_directory_home) {
3240
3241 if (!home) {
3242 *exit_status = EXIT_CHDIR;
3243 return -ENXIO;
3244 }
3245
3246 wd = home;
3247
3248 } else if (context->working_directory)
3249 wd = context->working_directory;
3250 else
3251 wd = "/";
3252
3253 if (params->flags & EXEC_APPLY_CHROOT)
3254 d = wd;
3255 else
3256 d = prefix_roota(context->root_directory, wd);
3257
3258 if (chdir(d) < 0 && !context->working_directory_missing_ok) {
3259 *exit_status = EXIT_CHDIR;
3260 return -errno;
3261 }
3262
3263 return 0;
3264 }
3265
3266 static int apply_root_directory(
3267 const ExecContext *context,
3268 const ExecParameters *params,
3269 const bool needs_mount_ns,
3270 int *exit_status) {
3271
3272 assert(context);
3273 assert(exit_status);
3274
3275 if (params->flags & EXEC_APPLY_CHROOT)
3276 if (!needs_mount_ns && context->root_directory)
3277 if (chroot(context->root_directory) < 0) {
3278 *exit_status = EXIT_CHROOT;
3279 return -errno;
3280 }
3281
3282 return 0;
3283 }
3284
3285 static int setup_keyring(
3286 const Unit *u,
3287 const ExecContext *context,
3288 const ExecParameters *p,
3289 uid_t uid, gid_t gid) {
3290
3291 key_serial_t keyring;
3292 int r = 0;
3293 uid_t saved_uid;
3294 gid_t saved_gid;
3295
3296 assert(u);
3297 assert(context);
3298 assert(p);
3299
3300 /* Let's set up a new per-service "session" kernel keyring for each system service. This has the benefit that
3301 * each service runs with its own keyring shared among all processes of the service, but with no hook-up beyond
3302 * that scope, and in particular no link to the per-UID keyring. If we don't do this the keyring will be
3303 * automatically created on-demand and then linked to the per-UID keyring, by the kernel. The kernel's built-in
3304 * on-demand behaviour is very appropriate for login users, but probably not so much for system services, where
3305 * UIDs are not necessarily specific to a service but reused (at least in the case of UID 0). */
3306
3307 if (context->keyring_mode == EXEC_KEYRING_INHERIT)
3308 return 0;
3309
3310 /* Acquiring a reference to the user keyring is nasty. We briefly change identity in order to get things set up
3311 * properly by the kernel. If we don't do that then we can't create it atomically, and that sucks for parallel
3312 * execution. This mimics what pam_keyinit does, too. Setting up session keyring, to be owned by the right user
3313 * & group is just as nasty as acquiring a reference to the user keyring. */
3314
3315 saved_uid = getuid();
3316 saved_gid = getgid();
3317
3318 if (gid_is_valid(gid) && gid != saved_gid) {
3319 if (setregid(gid, -1) < 0)
3320 return log_unit_error_errno(u, errno, "Failed to change GID for user keyring: %m");
3321 }
3322
3323 if (uid_is_valid(uid) && uid != saved_uid) {
3324 if (setreuid(uid, -1) < 0) {
3325 r = log_unit_error_errno(u, errno, "Failed to change UID for user keyring: %m");
3326 goto out;
3327 }
3328 }
3329
3330 keyring = keyctl(KEYCTL_JOIN_SESSION_KEYRING, 0, 0, 0, 0);
3331 if (keyring == -1) {
3332 if (errno == ENOSYS)
3333 log_unit_debug_errno(u, errno, "Kernel keyring not supported, ignoring.");
3334 else if (ERRNO_IS_PRIVILEGE(errno))
3335 log_unit_debug_errno(u, errno, "Kernel keyring access prohibited, ignoring.");
3336 else if (errno == EDQUOT)
3337 log_unit_debug_errno(u, errno, "Out of kernel keyrings to allocate, ignoring.");
3338 else
3339 r = log_unit_error_errno(u, errno, "Setting up kernel keyring failed: %m");
3340
3341 goto out;
3342 }
3343
3344 /* When requested link the user keyring into the session keyring. */
3345 if (context->keyring_mode == EXEC_KEYRING_SHARED) {
3346
3347 if (keyctl(KEYCTL_LINK,
3348 KEY_SPEC_USER_KEYRING,
3349 KEY_SPEC_SESSION_KEYRING, 0, 0) < 0) {
3350 r = log_unit_error_errno(u, errno, "Failed to link user keyring into session keyring: %m");
3351 goto out;
3352 }
3353 }
3354
3355 /* Restore uid/gid back */
3356 if (uid_is_valid(uid) && uid != saved_uid) {
3357 if (setreuid(saved_uid, -1) < 0) {
3358 r = log_unit_error_errno(u, errno, "Failed to change UID back for user keyring: %m");
3359 goto out;
3360 }
3361 }
3362
3363 if (gid_is_valid(gid) && gid != saved_gid) {
3364 if (setregid(saved_gid, -1) < 0)
3365 return log_unit_error_errno(u, errno, "Failed to change GID back for user keyring: %m");
3366 }
3367
3368 /* Populate they keyring with the invocation ID by default, as original saved_uid. */
3369 if (!sd_id128_is_null(u->invocation_id)) {
3370 key_serial_t key;
3371
3372 key = add_key("user", "invocation_id", &u->invocation_id, sizeof(u->invocation_id), KEY_SPEC_SESSION_KEYRING);
3373 if (key == -1)
3374 log_unit_debug_errno(u, errno, "Failed to add invocation ID to keyring, ignoring: %m");
3375 else {
3376 if (keyctl(KEYCTL_SETPERM, key,
3377 KEY_POS_VIEW|KEY_POS_READ|KEY_POS_SEARCH|
3378 KEY_USR_VIEW|KEY_USR_READ|KEY_USR_SEARCH, 0, 0) < 0)
3379 r = log_unit_error_errno(u, errno, "Failed to restrict invocation ID permission: %m");
3380 }
3381 }
3382
3383 out:
3384 /* Revert back uid & gid for the last time, and exit */
3385 /* no extra logging, as only the first already reported error matters */
3386 if (getuid() != saved_uid)
3387 (void) setreuid(saved_uid, -1);
3388
3389 if (getgid() != saved_gid)
3390 (void) setregid(saved_gid, -1);
3391
3392 return r;
3393 }
3394
3395 static void append_socket_pair(int *array, size_t *n, const int pair[static 2]) {
3396 assert(array);
3397 assert(n);
3398 assert(pair);
3399
3400 if (pair[0] >= 0)
3401 array[(*n)++] = pair[0];
3402 if (pair[1] >= 0)
3403 array[(*n)++] = pair[1];
3404 }
3405
3406 static int close_remaining_fds(
3407 const ExecParameters *params,
3408 const ExecRuntime *runtime,
3409 const DynamicCreds *dcreds,
3410 int user_lookup_fd,
3411 int socket_fd,
3412 int exec_fd,
3413 const int *fds, size_t n_fds) {
3414
3415 size_t n_dont_close = 0;
3416 int dont_close[n_fds + 12];
3417
3418 assert(params);
3419
3420 if (params->stdin_fd >= 0)
3421 dont_close[n_dont_close++] = params->stdin_fd;
3422 if (params->stdout_fd >= 0)
3423 dont_close[n_dont_close++] = params->stdout_fd;
3424 if (params->stderr_fd >= 0)
3425 dont_close[n_dont_close++] = params->stderr_fd;
3426
3427 if (socket_fd >= 0)
3428 dont_close[n_dont_close++] = socket_fd;
3429 if (exec_fd >= 0)
3430 dont_close[n_dont_close++] = exec_fd;
3431 if (n_fds > 0) {
3432 memcpy(dont_close + n_dont_close, fds, sizeof(int) * n_fds);
3433 n_dont_close += n_fds;
3434 }
3435
3436 if (runtime)
3437 append_socket_pair(dont_close, &n_dont_close, runtime->netns_storage_socket);
3438
3439 if (dcreds) {
3440 if (dcreds->user)
3441 append_socket_pair(dont_close, &n_dont_close, dcreds->user->storage_socket);
3442 if (dcreds->group)
3443 append_socket_pair(dont_close, &n_dont_close, dcreds->group->storage_socket);
3444 }
3445
3446 if (user_lookup_fd >= 0)
3447 dont_close[n_dont_close++] = user_lookup_fd;
3448
3449 return close_all_fds(dont_close, n_dont_close);
3450 }
3451
3452 static int send_user_lookup(
3453 Unit *unit,
3454 int user_lookup_fd,
3455 uid_t uid,
3456 gid_t gid) {
3457
3458 assert(unit);
3459
3460 /* Send the resolved UID/GID to PID 1 after we learnt it. We send a single datagram, containing the UID/GID
3461 * data as well as the unit name. Note that we suppress sending this if no user/group to resolve was
3462 * specified. */
3463
3464 if (user_lookup_fd < 0)
3465 return 0;
3466
3467 if (!uid_is_valid(uid) && !gid_is_valid(gid))
3468 return 0;
3469
3470 if (writev(user_lookup_fd,
3471 (struct iovec[]) {
3472 IOVEC_INIT(&uid, sizeof(uid)),
3473 IOVEC_INIT(&gid, sizeof(gid)),
3474 IOVEC_INIT_STRING(unit->id) }, 3) < 0)
3475 return -errno;
3476
3477 return 0;
3478 }
3479
3480 static int acquire_home(const ExecContext *c, uid_t uid, const char** home, char **buf) {
3481 int r;
3482
3483 assert(c);
3484 assert(home);
3485 assert(buf);
3486
3487 /* If WorkingDirectory=~ is set, try to acquire a usable home directory. */
3488
3489 if (*home)
3490 return 0;
3491
3492 if (!c->working_directory_home)
3493 return 0;
3494
3495 r = get_home_dir(buf);
3496 if (r < 0)
3497 return r;
3498
3499 *home = *buf;
3500 return 1;
3501 }
3502
3503 static int compile_suggested_paths(const ExecContext *c, const ExecParameters *p, char ***ret) {
3504 _cleanup_strv_free_ char ** list = NULL;
3505 int r;
3506
3507 assert(c);
3508 assert(p);
3509 assert(ret);
3510
3511 assert(c->dynamic_user);
3512
3513 /* Compile a list of paths that it might make sense to read the owning UID from to use as initial candidate for
3514 * dynamic UID allocation, in order to save us from doing costly recursive chown()s of the special
3515 * directories. */
3516
3517 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
3518 char **i;
3519
3520 if (t == EXEC_DIRECTORY_CONFIGURATION)
3521 continue;
3522
3523 if (!p->prefix[t])
3524 continue;
3525
3526 STRV_FOREACH(i, c->directories[t].paths) {
3527 char *e;
3528
3529 if (exec_directory_is_private(c, t))
3530 e = path_join(p->prefix[t], "private", *i);
3531 else
3532 e = path_join(p->prefix[t], *i);
3533 if (!e)
3534 return -ENOMEM;
3535
3536 r = strv_consume(&list, e);
3537 if (r < 0)
3538 return r;
3539 }
3540 }
3541
3542 *ret = TAKE_PTR(list);
3543
3544 return 0;
3545 }
3546
3547 static char *exec_command_line(char **argv);
3548
3549 static int exec_parameters_get_cgroup_path(const ExecParameters *params, char **ret) {
3550 bool using_subcgroup;
3551 char *p;
3552
3553 assert(params);
3554 assert(ret);
3555
3556 if (!params->cgroup_path)
3557 return -EINVAL;
3558
3559 /* If we are called for a unit where cgroup delegation is on, and the payload created its own populated
3560 * subcgroup (which we expect it to do, after all it asked for delegation), then we cannot place the control
3561 * processes started after the main unit's process in the unit's main cgroup because it is now an inner one,
3562 * and inner cgroups may not contain processes. Hence, if delegation is on, and this is a control process,
3563 * let's use ".control" as subcgroup instead. Note that we do so only for ExecStartPost=, ExecReload=,
3564 * ExecStop=, ExecStopPost=, i.e. for the commands where the main process is already forked. For ExecStartPre=
3565 * this is not necessary, the cgroup is still empty. We distinguish these cases with the EXEC_CONTROL_CGROUP
3566 * flag, which is only passed for the former statements, not for the latter. */
3567
3568 using_subcgroup = FLAGS_SET(params->flags, EXEC_CONTROL_CGROUP|EXEC_CGROUP_DELEGATE|EXEC_IS_CONTROL);
3569 if (using_subcgroup)
3570 p = path_join(params->cgroup_path, ".control");
3571 else
3572 p = strdup(params->cgroup_path);
3573 if (!p)
3574 return -ENOMEM;
3575
3576 *ret = p;
3577 return using_subcgroup;
3578 }
3579
3580 static int exec_context_cpu_affinity_from_numa(const ExecContext *c, CPUSet *ret) {
3581 _cleanup_(cpu_set_reset) CPUSet s = {};
3582 int r;
3583
3584 assert(c);
3585 assert(ret);
3586
3587 if (!c->numa_policy.nodes.set) {
3588 log_debug("Can't derive CPU affinity mask from NUMA mask because NUMA mask is not set, ignoring");
3589 return 0;
3590 }
3591
3592 r = numa_to_cpu_set(&c->numa_policy, &s);
3593 if (r < 0)
3594 return r;
3595
3596 cpu_set_reset(ret);
3597
3598 return cpu_set_add_all(ret, &s);
3599 }
3600
3601 bool exec_context_get_cpu_affinity_from_numa(const ExecContext *c) {
3602 assert(c);
3603
3604 return c->cpu_affinity_from_numa;
3605 }
3606
3607 static int exec_child(
3608 Unit *unit,
3609 const ExecCommand *command,
3610 const ExecContext *context,
3611 const ExecParameters *params,
3612 ExecRuntime *runtime,
3613 DynamicCreds *dcreds,
3614 int socket_fd,
3615 const int named_iofds[static 3],
3616 int *fds,
3617 size_t n_socket_fds,
3618 size_t n_storage_fds,
3619 char **files_env,
3620 int user_lookup_fd,
3621 int *exit_status) {
3622
3623 _cleanup_strv_free_ char **our_env = NULL, **pass_env = NULL, **accum_env = NULL, **replaced_argv = NULL;
3624 int *fds_with_exec_fd, n_fds_with_exec_fd, r, ngids = 0, exec_fd = -1;
3625 _cleanup_free_ gid_t *supplementary_gids = NULL;
3626 const char *username = NULL, *groupname = NULL;
3627 _cleanup_free_ char *home_buffer = NULL;
3628 const char *home = NULL, *shell = NULL;
3629 char **final_argv = NULL;
3630 dev_t journal_stream_dev = 0;
3631 ino_t journal_stream_ino = 0;
3632 bool userns_set_up = false;
3633 bool needs_sandboxing, /* Do we need to set up full sandboxing? (i.e. all namespacing, all MAC stuff, caps, yadda yadda */
3634 needs_setuid, /* Do we need to do the actual setresuid()/setresgid() calls? */
3635 needs_mount_namespace, /* Do we need to set up a mount namespace for this kernel? */
3636 needs_ambient_hack; /* Do we need to apply the ambient capabilities hack? */
3637 #if HAVE_SELINUX
3638 _cleanup_free_ char *mac_selinux_context_net = NULL;
3639 bool use_selinux = false;
3640 #endif
3641 #if ENABLE_SMACK
3642 bool use_smack = false;
3643 #endif
3644 #if HAVE_APPARMOR
3645 bool use_apparmor = false;
3646 #endif
3647 uid_t saved_uid = getuid();
3648 gid_t saved_gid = getgid();
3649 uid_t uid = UID_INVALID;
3650 gid_t gid = GID_INVALID;
3651 size_t n_fds;
3652 int secure_bits;
3653 _cleanup_free_ gid_t *gids_after_pam = NULL;
3654 int ngids_after_pam = 0;
3655
3656 assert(unit);
3657 assert(command);
3658 assert(context);
3659 assert(params);
3660 assert(exit_status);
3661
3662 rename_process_from_path(command->path);
3663
3664 /* We reset exactly these signals, since they are the
3665 * only ones we set to SIG_IGN in the main daemon. All
3666 * others we leave untouched because we set them to
3667 * SIG_DFL or a valid handler initially, both of which
3668 * will be demoted to SIG_DFL. */
3669 (void) default_signals(SIGNALS_CRASH_HANDLER,
3670 SIGNALS_IGNORE, -1);
3671
3672 if (context->ignore_sigpipe)
3673 (void) ignore_signals(SIGPIPE, -1);
3674
3675 r = reset_signal_mask();
3676 if (r < 0) {
3677 *exit_status = EXIT_SIGNAL_MASK;
3678 return log_unit_error_errno(unit, r, "Failed to set process signal mask: %m");
3679 }
3680
3681 if (params->idle_pipe)
3682 do_idle_pipe_dance(params->idle_pipe);
3683
3684 /* Close fds we don't need very early to make sure we don't block init reexecution because it cannot bind its
3685 * sockets. Among the fds we close are the logging fds, and we want to keep them closed, so that we don't have
3686 * any fds open we don't really want open during the transition. In order to make logging work, we switch the
3687 * log subsystem into open_when_needed mode, so that it reopens the logs on every single log call. */
3688
3689 log_forget_fds();
3690 log_set_open_when_needed(true);
3691
3692 /* In case anything used libc syslog(), close this here, too */
3693 closelog();
3694
3695 n_fds = n_socket_fds + n_storage_fds;
3696 r = close_remaining_fds(params, runtime, dcreds, user_lookup_fd, socket_fd, params->exec_fd, fds, n_fds);
3697 if (r < 0) {
3698 *exit_status = EXIT_FDS;
3699 return log_unit_error_errno(unit, r, "Failed to close unwanted file descriptors: %m");
3700 }
3701
3702 if (!context->same_pgrp &&
3703 setsid() < 0) {
3704 *exit_status = EXIT_SETSID;
3705 return log_unit_error_errno(unit, errno, "Failed to create new process session: %m");
3706 }
3707
3708 exec_context_tty_reset(context, params);
3709
3710 if (unit_shall_confirm_spawn(unit)) {
3711 const char *vc = params->confirm_spawn;
3712 _cleanup_free_ char *cmdline = NULL;
3713
3714 cmdline = exec_command_line(command->argv);
3715 if (!cmdline) {
3716 *exit_status = EXIT_MEMORY;
3717 return log_oom();
3718 }
3719
3720 r = ask_for_confirmation(vc, unit, cmdline);
3721 if (r != CONFIRM_EXECUTE) {
3722 if (r == CONFIRM_PRETEND_SUCCESS) {
3723 *exit_status = EXIT_SUCCESS;
3724 return 0;
3725 }
3726 *exit_status = EXIT_CONFIRM;
3727 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(ECANCELED),
3728 "Execution cancelled by the user");
3729 }
3730 }
3731
3732 /* We are about to invoke NSS and PAM modules. Let's tell them what we are doing here, maybe they care. This is
3733 * used by nss-resolve to disable itself when we are about to start systemd-resolved, to avoid deadlocks. Note
3734 * that these env vars do not survive the execve(), which means they really only apply to the PAM and NSS
3735 * invocations themselves. Also note that while we'll only invoke NSS modules involved in user management they
3736 * might internally call into other NSS modules that are involved in hostname resolution, we never know. */
3737 if (setenv("SYSTEMD_ACTIVATION_UNIT", unit->id, true) != 0 ||
3738 setenv("SYSTEMD_ACTIVATION_SCOPE", MANAGER_IS_SYSTEM(unit->manager) ? "system" : "user", true) != 0) {
3739 *exit_status = EXIT_MEMORY;
3740 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
3741 }
3742
3743 if (context->dynamic_user && dcreds) {
3744 _cleanup_strv_free_ char **suggested_paths = NULL;
3745
3746 /* On top of that, make sure we bypass our own NSS module nss-systemd comprehensively for any NSS
3747 * checks, if DynamicUser=1 is used, as we shouldn't create a feedback loop with ourselves here.*/
3748 if (putenv((char*) "SYSTEMD_NSS_DYNAMIC_BYPASS=1") != 0) {
3749 *exit_status = EXIT_USER;
3750 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
3751 }
3752
3753 r = compile_suggested_paths(context, params, &suggested_paths);
3754 if (r < 0) {
3755 *exit_status = EXIT_MEMORY;
3756 return log_oom();
3757 }
3758
3759 r = dynamic_creds_realize(dcreds, suggested_paths, &uid, &gid);
3760 if (r < 0) {
3761 *exit_status = EXIT_USER;
3762 if (r == -EILSEQ) {
3763 log_unit_error(unit, "Failed to update dynamic user credentials: User or group with specified name already exists.");
3764 return -EOPNOTSUPP;
3765 }
3766 return log_unit_error_errno(unit, r, "Failed to update dynamic user credentials: %m");
3767 }
3768
3769 if (!uid_is_valid(uid)) {
3770 *exit_status = EXIT_USER;
3771 log_unit_error(unit, "UID validation failed for \""UID_FMT"\"", uid);
3772 return -ESRCH;
3773 }
3774
3775 if (!gid_is_valid(gid)) {
3776 *exit_status = EXIT_USER;
3777 log_unit_error(unit, "GID validation failed for \""GID_FMT"\"", gid);
3778 return -ESRCH;
3779 }
3780
3781 if (dcreds->user)
3782 username = dcreds->user->name;
3783
3784 } else {
3785 r = get_fixed_user(context, &username, &uid, &gid, &home, &shell);
3786 if (r < 0) {
3787 *exit_status = EXIT_USER;
3788 return log_unit_error_errno(unit, r, "Failed to determine user credentials: %m");
3789 }
3790
3791 r = get_fixed_group(context, &groupname, &gid);
3792 if (r < 0) {
3793 *exit_status = EXIT_GROUP;
3794 return log_unit_error_errno(unit, r, "Failed to determine group credentials: %m");
3795 }
3796 }
3797
3798 /* Initialize user supplementary groups and get SupplementaryGroups= ones */
3799 r = get_supplementary_groups(context, username, groupname, gid,
3800 &supplementary_gids, &ngids);
3801 if (r < 0) {
3802 *exit_status = EXIT_GROUP;
3803 return log_unit_error_errno(unit, r, "Failed to determine supplementary groups: %m");
3804 }
3805
3806 r = send_user_lookup(unit, user_lookup_fd, uid, gid);
3807 if (r < 0) {
3808 *exit_status = EXIT_USER;
3809 return log_unit_error_errno(unit, r, "Failed to send user credentials to PID1: %m");
3810 }
3811
3812 user_lookup_fd = safe_close(user_lookup_fd);
3813
3814 r = acquire_home(context, uid, &home, &home_buffer);
3815 if (r < 0) {
3816 *exit_status = EXIT_CHDIR;
3817 return log_unit_error_errno(unit, r, "Failed to determine $HOME for user: %m");
3818 }
3819
3820 /* If a socket is connected to STDIN/STDOUT/STDERR, we
3821 * must sure to drop O_NONBLOCK */
3822 if (socket_fd >= 0)
3823 (void) fd_nonblock(socket_fd, false);
3824
3825 /* Journald will try to look-up our cgroup in order to populate _SYSTEMD_CGROUP and _SYSTEMD_UNIT fields.
3826 * Hence we need to migrate to the target cgroup from init.scope before connecting to journald */
3827 if (params->cgroup_path) {
3828 _cleanup_free_ char *p = NULL;
3829
3830 r = exec_parameters_get_cgroup_path(params, &p);
3831 if (r < 0) {
3832 *exit_status = EXIT_CGROUP;
3833 return log_unit_error_errno(unit, r, "Failed to acquire cgroup path: %m");
3834 }
3835
3836 r = cg_attach_everywhere(params->cgroup_supported, p, 0, NULL, NULL);
3837 if (r < 0) {
3838 *exit_status = EXIT_CGROUP;
3839 return log_unit_error_errno(unit, r, "Failed to attach to cgroup %s: %m", p);
3840 }
3841 }
3842
3843 if (context->network_namespace_path && runtime && runtime->netns_storage_socket[0] >= 0) {
3844 r = open_netns_path(runtime->netns_storage_socket, context->network_namespace_path);
3845 if (r < 0) {
3846 *exit_status = EXIT_NETWORK;
3847 return log_unit_error_errno(unit, r, "Failed to open network namespace path %s: %m", context->network_namespace_path);
3848 }
3849 }
3850
3851 r = setup_input(context, params, socket_fd, named_iofds);
3852 if (r < 0) {
3853 *exit_status = EXIT_STDIN;
3854 return log_unit_error_errno(unit, r, "Failed to set up standard input: %m");
3855 }
3856
3857 r = setup_output(unit, context, params, STDOUT_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
3858 if (r < 0) {
3859 *exit_status = EXIT_STDOUT;
3860 return log_unit_error_errno(unit, r, "Failed to set up standard output: %m");
3861 }
3862
3863 r = setup_output(unit, context, params, STDERR_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
3864 if (r < 0) {
3865 *exit_status = EXIT_STDERR;
3866 return log_unit_error_errno(unit, r, "Failed to set up standard error output: %m");
3867 }
3868
3869 if (context->oom_score_adjust_set) {
3870 /* When we can't make this change due to EPERM, then let's silently skip over it. User namespaces
3871 * prohibit write access to this file, and we shouldn't trip up over that. */
3872 r = set_oom_score_adjust(context->oom_score_adjust);
3873 if (ERRNO_IS_PRIVILEGE(r))
3874 log_unit_debug_errno(unit, r, "Failed to adjust OOM setting, assuming containerized execution, ignoring: %m");
3875 else if (r < 0) {
3876 *exit_status = EXIT_OOM_ADJUST;
3877 return log_unit_error_errno(unit, r, "Failed to adjust OOM setting: %m");
3878 }
3879 }
3880
3881 if (context->coredump_filter_set) {
3882 r = set_coredump_filter(context->coredump_filter);
3883 if (ERRNO_IS_PRIVILEGE(r))
3884 log_unit_debug_errno(unit, r, "Failed to adjust coredump_filter, ignoring: %m");
3885 else if (r < 0)
3886 return log_unit_error_errno(unit, r, "Failed to adjust coredump_filter: %m");
3887 }
3888
3889 if (context->nice_set) {
3890 r = setpriority_closest(context->nice);
3891 if (r < 0)
3892 return log_unit_error_errno(unit, r, "Failed to set up process scheduling priority (nice level): %m");
3893 }
3894
3895 if (context->cpu_sched_set) {
3896 struct sched_param param = {
3897 .sched_priority = context->cpu_sched_priority,
3898 };
3899
3900 r = sched_setscheduler(0,
3901 context->cpu_sched_policy |
3902 (context->cpu_sched_reset_on_fork ?
3903 SCHED_RESET_ON_FORK : 0),
3904 &param);
3905 if (r < 0) {
3906 *exit_status = EXIT_SETSCHEDULER;
3907 return log_unit_error_errno(unit, errno, "Failed to set up CPU scheduling: %m");
3908 }
3909 }
3910
3911 if (context->cpu_affinity_from_numa || context->cpu_set.set) {
3912 _cleanup_(cpu_set_reset) CPUSet converted_cpu_set = {};
3913 const CPUSet *cpu_set;
3914
3915 if (context->cpu_affinity_from_numa) {
3916 r = exec_context_cpu_affinity_from_numa(context, &converted_cpu_set);
3917 if (r < 0) {
3918 *exit_status = EXIT_CPUAFFINITY;
3919 return log_unit_error_errno(unit, r, "Failed to derive CPU affinity mask from NUMA mask: %m");
3920 }
3921
3922 cpu_set = &converted_cpu_set;
3923 } else
3924 cpu_set = &context->cpu_set;
3925
3926 if (sched_setaffinity(0, cpu_set->allocated, cpu_set->set) < 0) {
3927 *exit_status = EXIT_CPUAFFINITY;
3928 return log_unit_error_errno(unit, errno, "Failed to set up CPU affinity: %m");
3929 }
3930 }
3931
3932 if (mpol_is_valid(numa_policy_get_type(&context->numa_policy))) {
3933 r = apply_numa_policy(&context->numa_policy);
3934 if (r == -EOPNOTSUPP)
3935 log_unit_debug_errno(unit, r, "NUMA support not available, ignoring.");
3936 else if (r < 0) {
3937 *exit_status = EXIT_NUMA_POLICY;
3938 return log_unit_error_errno(unit, r, "Failed to set NUMA memory policy: %m");
3939 }
3940 }
3941
3942 if (context->ioprio_set)
3943 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, context->ioprio) < 0) {
3944 *exit_status = EXIT_IOPRIO;
3945 return log_unit_error_errno(unit, errno, "Failed to set up IO scheduling priority: %m");
3946 }
3947
3948 if (context->timer_slack_nsec != NSEC_INFINITY)
3949 if (prctl(PR_SET_TIMERSLACK, context->timer_slack_nsec) < 0) {
3950 *exit_status = EXIT_TIMERSLACK;
3951 return log_unit_error_errno(unit, errno, "Failed to set up timer slack: %m");
3952 }
3953
3954 if (context->personality != PERSONALITY_INVALID) {
3955 r = safe_personality(context->personality);
3956 if (r < 0) {
3957 *exit_status = EXIT_PERSONALITY;
3958 return log_unit_error_errno(unit, r, "Failed to set up execution domain (personality): %m");
3959 }
3960 }
3961
3962 if (context->utmp_id)
3963 utmp_put_init_process(context->utmp_id, getpid_cached(), getsid(0),
3964 context->tty_path,
3965 context->utmp_mode == EXEC_UTMP_INIT ? INIT_PROCESS :
3966 context->utmp_mode == EXEC_UTMP_LOGIN ? LOGIN_PROCESS :
3967 USER_PROCESS,
3968 username);
3969
3970 if (uid_is_valid(uid)) {
3971 r = chown_terminal(STDIN_FILENO, uid);
3972 if (r < 0) {
3973 *exit_status = EXIT_STDIN;
3974 return log_unit_error_errno(unit, r, "Failed to change ownership of terminal: %m");
3975 }
3976 }
3977
3978 /* If delegation is enabled we'll pass ownership of the cgroup to the user of the new process. On cgroup v1
3979 * this is only about systemd's own hierarchy, i.e. not the controller hierarchies, simply because that's not
3980 * safe. On cgroup v2 there's only one hierarchy anyway, and delegation is safe there, hence in that case only
3981 * touch a single hierarchy too. */
3982 if (params->cgroup_path && context->user && (params->flags & EXEC_CGROUP_DELEGATE)) {
3983 r = cg_set_access(SYSTEMD_CGROUP_CONTROLLER, params->cgroup_path, uid, gid);
3984 if (r < 0) {
3985 *exit_status = EXIT_CGROUP;
3986 return log_unit_error_errno(unit, r, "Failed to adjust control group access: %m");
3987 }
3988 }
3989
3990 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
3991 r = setup_exec_directory(context, params, uid, gid, dt, exit_status);
3992 if (r < 0)
3993 return log_unit_error_errno(unit, r, "Failed to set up special execution directory in %s: %m", params->prefix[dt]);
3994 }
3995
3996 if (FLAGS_SET(params->flags, EXEC_WRITE_CREDENTIALS)) {
3997 r = setup_credentials(context, params, unit->id, uid);
3998 if (r < 0) {
3999 *exit_status = EXIT_CREDENTIALS;
4000 return log_unit_error_errno(unit, r, "Failed to set up credentials: %m");
4001 }
4002 }
4003
4004 r = build_environment(
4005 unit,
4006 context,
4007 params,
4008 n_fds,
4009 home,
4010 username,
4011 shell,
4012 journal_stream_dev,
4013 journal_stream_ino,
4014 &our_env);
4015 if (r < 0) {
4016 *exit_status = EXIT_MEMORY;
4017 return log_oom();
4018 }
4019
4020 r = build_pass_environment(context, &pass_env);
4021 if (r < 0) {
4022 *exit_status = EXIT_MEMORY;
4023 return log_oom();
4024 }
4025
4026 accum_env = strv_env_merge(5,
4027 params->environment,
4028 our_env,
4029 pass_env,
4030 context->environment,
4031 files_env);
4032 if (!accum_env) {
4033 *exit_status = EXIT_MEMORY;
4034 return log_oom();
4035 }
4036 accum_env = strv_env_clean(accum_env);
4037
4038 (void) umask(context->umask);
4039
4040 r = setup_keyring(unit, context, params, uid, gid);
4041 if (r < 0) {
4042 *exit_status = EXIT_KEYRING;
4043 return log_unit_error_errno(unit, r, "Failed to set up kernel keyring: %m");
4044 }
4045
4046 /* We need sandboxing if the caller asked us to apply it and the command isn't explicitly excepted from it */
4047 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & EXEC_COMMAND_FULLY_PRIVILEGED);
4048
4049 /* We need the ambient capability hack, if the caller asked us to apply it and the command is marked for it, and the kernel doesn't actually support ambient caps */
4050 needs_ambient_hack = (params->flags & EXEC_APPLY_SANDBOXING) && (command->flags & EXEC_COMMAND_AMBIENT_MAGIC) && !ambient_capabilities_supported();
4051
4052 /* We need setresuid() if the caller asked us to apply sandboxing and the command isn't explicitly excepted from either whole sandboxing or just setresuid() itself, and the ambient hack is not desired */
4053 if (needs_ambient_hack)
4054 needs_setuid = false;
4055 else
4056 needs_setuid = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & (EXEC_COMMAND_FULLY_PRIVILEGED|EXEC_COMMAND_NO_SETUID));
4057
4058 if (needs_sandboxing) {
4059 /* MAC enablement checks need to be done before a new mount ns is created, as they rely on /sys being
4060 * present. The actual MAC context application will happen later, as late as possible, to avoid
4061 * impacting our own code paths. */
4062
4063 #if HAVE_SELINUX
4064 use_selinux = mac_selinux_use();
4065 #endif
4066 #if ENABLE_SMACK
4067 use_smack = mac_smack_use();
4068 #endif
4069 #if HAVE_APPARMOR
4070 use_apparmor = mac_apparmor_use();
4071 #endif
4072 }
4073
4074 if (needs_sandboxing) {
4075 int which_failed;
4076
4077 /* Let's set the resource limits before we call into PAM, so that pam_limits wins over what
4078 * is set here. (See below.) */
4079
4080 r = setrlimit_closest_all((const struct rlimit* const *) context->rlimit, &which_failed);
4081 if (r < 0) {
4082 *exit_status = EXIT_LIMITS;
4083 return log_unit_error_errno(unit, r, "Failed to adjust resource limit RLIMIT_%s: %m", rlimit_to_string(which_failed));
4084 }
4085 }
4086
4087 if (needs_setuid && context->pam_name && username) {
4088 /* Let's call into PAM after we set up our own idea of resource limits to that pam_limits
4089 * wins here. (See above.) */
4090
4091 r = setup_pam(context->pam_name, username, uid, gid, context->tty_path, &accum_env, fds, n_fds);
4092 if (r < 0) {
4093 *exit_status = EXIT_PAM;
4094 return log_unit_error_errno(unit, r, "Failed to set up PAM session: %m");
4095 }
4096
4097 ngids_after_pam = getgroups_alloc(&gids_after_pam);
4098 if (ngids_after_pam < 0) {
4099 *exit_status = EXIT_MEMORY;
4100 return log_unit_error_errno(unit, ngids_after_pam, "Failed to obtain groups after setting up PAM: %m");
4101 }
4102 }
4103
4104 if (needs_sandboxing && context->private_users && !have_effective_cap(CAP_SYS_ADMIN)) {
4105 /* If we're unprivileged, set up the user namespace first to enable use of the other namespaces.
4106 * Users with CAP_SYS_ADMIN can set up user namespaces last because they will be able to
4107 * set up the all of the other namespaces (i.e. network, mount, UTS) without a user namespace. */
4108
4109 userns_set_up = true;
4110 r = setup_private_users(saved_uid, saved_gid, uid, gid);
4111 if (r < 0) {
4112 *exit_status = EXIT_USER;
4113 return log_unit_error_errno(unit, r, "Failed to set up user namespacing for unprivileged user: %m");
4114 }
4115 }
4116
4117 if ((context->private_network || context->network_namespace_path) && runtime && runtime->netns_storage_socket[0] >= 0) {
4118
4119 if (ns_type_supported(NAMESPACE_NET)) {
4120 r = setup_netns(runtime->netns_storage_socket);
4121 if (r == -EPERM)
4122 log_unit_warning_errno(unit, r,
4123 "PrivateNetwork=yes is configured, but network namespace setup failed, ignoring: %m");
4124 else if (r < 0) {
4125 *exit_status = EXIT_NETWORK;
4126 return log_unit_error_errno(unit, r, "Failed to set up network namespacing: %m");
4127 }
4128 } else if (context->network_namespace_path) {
4129 *exit_status = EXIT_NETWORK;
4130 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP),
4131 "NetworkNamespacePath= is not supported, refusing.");
4132 } else
4133 log_unit_warning(unit, "PrivateNetwork=yes is configured, but the kernel does not support network namespaces, ignoring.");
4134 }
4135
4136 needs_mount_namespace = exec_needs_mount_namespace(context, params, runtime);
4137 if (needs_mount_namespace) {
4138 _cleanup_free_ char *error_path = NULL;
4139
4140 r = apply_mount_namespace(unit, command->flags, context, params, runtime, &error_path);
4141 if (r < 0) {
4142 *exit_status = EXIT_NAMESPACE;
4143 return log_unit_error_errno(unit, r, "Failed to set up mount namespacing%s%s: %m",
4144 error_path ? ": " : "", strempty(error_path));
4145 }
4146 }
4147
4148 if (needs_sandboxing) {
4149 r = apply_protect_hostname(unit, context, exit_status);
4150 if (r < 0)
4151 return r;
4152 }
4153
4154 /* Drop groups as early as possible.
4155 * This needs to be done after PrivateDevices=y setup as device nodes should be owned by the host's root.
4156 * For non-root in a userns, devices will be owned by the user/group before the group change, and nobody. */
4157 if (needs_setuid) {
4158 _cleanup_free_ gid_t *gids_to_enforce = NULL;
4159 int ngids_to_enforce = 0;
4160
4161 ngids_to_enforce = merge_gid_lists(supplementary_gids,
4162 ngids,
4163 gids_after_pam,
4164 ngids_after_pam,
4165 &gids_to_enforce);
4166 if (ngids_to_enforce < 0) {
4167 *exit_status = EXIT_MEMORY;
4168 return log_unit_error_errno(unit,
4169 ngids_to_enforce,
4170 "Failed to merge group lists. Group membership might be incorrect: %m");
4171 }
4172
4173 r = enforce_groups(gid, gids_to_enforce, ngids_to_enforce);
4174 if (r < 0) {
4175 *exit_status = EXIT_GROUP;
4176 return log_unit_error_errno(unit, r, "Changing group credentials failed: %m");
4177 }
4178 }
4179
4180 /* If the user namespace was not set up above, try to do it now.
4181 * It's preferred to set up the user namespace later (after all other namespaces) so as not to be
4182 * restricted by rules pertaining to combining user namspaces with other namespaces (e.g. in the
4183 * case of mount namespaces being less privileged when the mount point list is copied from a
4184 * different user namespace). */
4185
4186 if (needs_sandboxing && context->private_users && !userns_set_up) {
4187 r = setup_private_users(saved_uid, saved_gid, uid, gid);
4188 if (r < 0) {
4189 *exit_status = EXIT_USER;
4190 return log_unit_error_errno(unit, r, "Failed to set up user namespacing: %m");
4191 }
4192 }
4193
4194 /* Now that the mount namespace has been set up and privileges adjusted, let's look for the thing we
4195 * shall execute. */
4196
4197 _cleanup_free_ char *executable = NULL;
4198 r = find_executable_full(command->path, false, &executable);
4199 if (r < 0) {
4200 if (r != -ENOMEM && (command->flags & EXEC_COMMAND_IGNORE_FAILURE)) {
4201 log_struct_errno(LOG_INFO, r,
4202 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
4203 LOG_UNIT_ID(unit),
4204 LOG_UNIT_INVOCATION_ID(unit),
4205 LOG_UNIT_MESSAGE(unit, "Executable %s missing, skipping: %m",
4206 command->path),
4207 "EXECUTABLE=%s", command->path);
4208 return 0;
4209 }
4210
4211 *exit_status = EXIT_EXEC;
4212 return log_struct_errno(LOG_INFO, r,
4213 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
4214 LOG_UNIT_ID(unit),
4215 LOG_UNIT_INVOCATION_ID(unit),
4216 LOG_UNIT_MESSAGE(unit, "Failed to locate executable %s: %m",
4217 command->path),
4218 "EXECUTABLE=%s", command->path);
4219 }
4220
4221 #if HAVE_SELINUX
4222 if (needs_sandboxing && use_selinux && params->selinux_context_net && socket_fd >= 0) {
4223 r = mac_selinux_get_child_mls_label(socket_fd, executable, context->selinux_context, &mac_selinux_context_net);
4224 if (r < 0) {
4225 *exit_status = EXIT_SELINUX_CONTEXT;
4226 return log_unit_error_errno(unit, r, "Failed to determine SELinux context: %m");
4227 }
4228 }
4229 #endif
4230
4231 /* We repeat the fd closing here, to make sure that nothing is leaked from the PAM modules. Note that we are
4232 * more aggressive this time since socket_fd and the netns fds we don't need anymore. We do keep the exec_fd
4233 * however if we have it as we want to keep it open until the final execve(). */
4234
4235 if (params->exec_fd >= 0) {
4236 exec_fd = params->exec_fd;
4237
4238 if (exec_fd < 3 + (int) n_fds) {
4239 int moved_fd;
4240
4241 /* Let's move the exec fd far up, so that it's outside of the fd range we want to pass to the
4242 * process we are about to execute. */
4243
4244 moved_fd = fcntl(exec_fd, F_DUPFD_CLOEXEC, 3 + (int) n_fds);
4245 if (moved_fd < 0) {
4246 *exit_status = EXIT_FDS;
4247 return log_unit_error_errno(unit, errno, "Couldn't move exec fd up: %m");
4248 }
4249
4250 CLOSE_AND_REPLACE(exec_fd, moved_fd);
4251 } else {
4252 /* This fd should be FD_CLOEXEC already, but let's make sure. */
4253 r = fd_cloexec(exec_fd, true);
4254 if (r < 0) {
4255 *exit_status = EXIT_FDS;
4256 return log_unit_error_errno(unit, r, "Failed to make exec fd FD_CLOEXEC: %m");
4257 }
4258 }
4259
4260 fds_with_exec_fd = newa(int, n_fds + 1);
4261 memcpy_safe(fds_with_exec_fd, fds, n_fds * sizeof(int));
4262 fds_with_exec_fd[n_fds] = exec_fd;
4263 n_fds_with_exec_fd = n_fds + 1;
4264 } else {
4265 fds_with_exec_fd = fds;
4266 n_fds_with_exec_fd = n_fds;
4267 }
4268
4269 r = close_all_fds(fds_with_exec_fd, n_fds_with_exec_fd);
4270 if (r >= 0)
4271 r = shift_fds(fds, n_fds);
4272 if (r >= 0)
4273 r = flags_fds(fds, n_socket_fds, n_storage_fds, context->non_blocking);
4274 if (r < 0) {
4275 *exit_status = EXIT_FDS;
4276 return log_unit_error_errno(unit, r, "Failed to adjust passed file descriptors: %m");
4277 }
4278
4279 /* At this point, the fds we want to pass to the program are all ready and set up, with O_CLOEXEC turned off
4280 * and at the right fd numbers. The are no other fds open, with one exception: the exec_fd if it is defined,
4281 * and it has O_CLOEXEC set, after all we want it to be closed by the execve(), so that our parent knows we
4282 * came this far. */
4283
4284 secure_bits = context->secure_bits;
4285
4286 if (needs_sandboxing) {
4287 uint64_t bset;
4288
4289 /* Set the RTPRIO resource limit to 0, but only if nothing else was explicitly
4290 * requested. (Note this is placed after the general resource limit initialization, see
4291 * above, in order to take precedence.) */
4292 if (context->restrict_realtime && !context->rlimit[RLIMIT_RTPRIO]) {
4293 if (setrlimit(RLIMIT_RTPRIO, &RLIMIT_MAKE_CONST(0)) < 0) {
4294 *exit_status = EXIT_LIMITS;
4295 return log_unit_error_errno(unit, errno, "Failed to adjust RLIMIT_RTPRIO resource limit: %m");
4296 }
4297 }
4298
4299 #if ENABLE_SMACK
4300 /* LSM Smack needs the capability CAP_MAC_ADMIN to change the current execution security context of the
4301 * process. This is the latest place before dropping capabilities. Other MAC context are set later. */
4302 if (use_smack) {
4303 r = setup_smack(context, executable);
4304 if (r < 0) {
4305 *exit_status = EXIT_SMACK_PROCESS_LABEL;
4306 return log_unit_error_errno(unit, r, "Failed to set SMACK process label: %m");
4307 }
4308 }
4309 #endif
4310
4311 bset = context->capability_bounding_set;
4312 /* If the ambient caps hack is enabled (which means the kernel can't do them, and the user asked for
4313 * our magic fallback), then let's add some extra caps, so that the service can drop privs of its own,
4314 * instead of us doing that */
4315 if (needs_ambient_hack)
4316 bset |= (UINT64_C(1) << CAP_SETPCAP) |
4317 (UINT64_C(1) << CAP_SETUID) |
4318 (UINT64_C(1) << CAP_SETGID);
4319
4320 if (!cap_test_all(bset)) {
4321 r = capability_bounding_set_drop(bset, false);
4322 if (r < 0) {
4323 *exit_status = EXIT_CAPABILITIES;
4324 return log_unit_error_errno(unit, r, "Failed to drop capabilities: %m");
4325 }
4326 }
4327
4328 /* Ambient capabilities are cleared during setresuid() (in enforce_user()) even with
4329 * keep-caps set.
4330 * To be able to raise the ambient capabilities after setresuid() they have to be
4331 * added to the inherited set and keep caps has to be set (done in enforce_user()).
4332 * After setresuid() the ambient capabilities can be raised as they are present in
4333 * the permitted and inhertiable set. However it is possible that someone wants to
4334 * set ambient capabilities without changing the user, so we also set the ambient
4335 * capabilities here.
4336 * The requested ambient capabilities are raised in the inheritable set if the
4337 * second argument is true. */
4338 if (!needs_ambient_hack) {
4339 r = capability_ambient_set_apply(context->capability_ambient_set, true);
4340 if (r < 0) {
4341 *exit_status = EXIT_CAPABILITIES;
4342 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (before UID change): %m");
4343 }
4344 }
4345 }
4346
4347 /* chroot to root directory first, before we lose the ability to chroot */
4348 r = apply_root_directory(context, params, needs_mount_namespace, exit_status);
4349 if (r < 0)
4350 return log_unit_error_errno(unit, r, "Chrooting to the requested root directory failed: %m");
4351
4352 if (needs_setuid) {
4353 if (uid_is_valid(uid)) {
4354 r = enforce_user(context, uid);
4355 if (r < 0) {
4356 *exit_status = EXIT_USER;
4357 return log_unit_error_errno(unit, r, "Failed to change UID to " UID_FMT ": %m", uid);
4358 }
4359
4360 if (!needs_ambient_hack &&
4361 context->capability_ambient_set != 0) {
4362
4363 /* Raise the ambient capabilities after user change. */
4364 r = capability_ambient_set_apply(context->capability_ambient_set, false);
4365 if (r < 0) {
4366 *exit_status = EXIT_CAPABILITIES;
4367 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (after UID change): %m");
4368 }
4369 }
4370 }
4371 }
4372
4373 /* Apply working directory here, because the working directory might be on NFS and only the user running
4374 * this service might have the correct privilege to change to the working directory */
4375 r = apply_working_directory(context, params, home, exit_status);
4376 if (r < 0)
4377 return log_unit_error_errno(unit, r, "Changing to the requested working directory failed: %m");
4378
4379 if (needs_sandboxing) {
4380 /* Apply other MAC contexts late, but before seccomp syscall filtering, as those should really be last to
4381 * influence our own codepaths as little as possible. Moreover, applying MAC contexts usually requires
4382 * syscalls that are subject to seccomp filtering, hence should probably be applied before the syscalls
4383 * are restricted. */
4384
4385 #if HAVE_SELINUX
4386 if (use_selinux) {
4387 char *exec_context = mac_selinux_context_net ?: context->selinux_context;
4388
4389 if (exec_context) {
4390 r = setexeccon(exec_context);
4391 if (r < 0) {
4392 *exit_status = EXIT_SELINUX_CONTEXT;
4393 return log_unit_error_errno(unit, r, "Failed to change SELinux context to %s: %m", exec_context);
4394 }
4395 }
4396 }
4397 #endif
4398
4399 #if HAVE_APPARMOR
4400 if (use_apparmor && context->apparmor_profile) {
4401 r = aa_change_onexec(context->apparmor_profile);
4402 if (r < 0 && !context->apparmor_profile_ignore) {
4403 *exit_status = EXIT_APPARMOR_PROFILE;
4404 return log_unit_error_errno(unit, errno, "Failed to prepare AppArmor profile change to %s: %m", context->apparmor_profile);
4405 }
4406 }
4407 #endif
4408
4409 /* PR_GET_SECUREBITS is not privileged, while PR_SET_SECUREBITS is. So to suppress potential EPERMs
4410 * we'll try not to call PR_SET_SECUREBITS unless necessary. Setting securebits requires
4411 * CAP_SETPCAP. */
4412 if (prctl(PR_GET_SECUREBITS) != secure_bits) {
4413 /* CAP_SETPCAP is required to set securebits. This capability is raised into the
4414 * effective set here.
4415 * The effective set is overwritten during execve with the following values:
4416 * - ambient set (for non-root processes)
4417 * - (inheritable | bounding) set for root processes)
4418 *
4419 * Hence there is no security impact to raise it in the effective set before execve
4420 */
4421 r = capability_gain_cap_setpcap(NULL);
4422 if (r < 0) {
4423 *exit_status = EXIT_CAPABILITIES;
4424 return log_unit_error_errno(unit, r, "Failed to gain CAP_SETPCAP for setting secure bits");
4425 }
4426 if (prctl(PR_SET_SECUREBITS, secure_bits) < 0) {
4427 *exit_status = EXIT_SECUREBITS;
4428 return log_unit_error_errno(unit, errno, "Failed to set process secure bits: %m");
4429 }
4430 }
4431
4432 if (context_has_no_new_privileges(context))
4433 if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) < 0) {
4434 *exit_status = EXIT_NO_NEW_PRIVILEGES;
4435 return log_unit_error_errno(unit, errno, "Failed to disable new privileges: %m");
4436 }
4437
4438 #if HAVE_SECCOMP
4439 r = apply_address_families(unit, context);
4440 if (r < 0) {
4441 *exit_status = EXIT_ADDRESS_FAMILIES;
4442 return log_unit_error_errno(unit, r, "Failed to restrict address families: %m");
4443 }
4444
4445 r = apply_memory_deny_write_execute(unit, context);
4446 if (r < 0) {
4447 *exit_status = EXIT_SECCOMP;
4448 return log_unit_error_errno(unit, r, "Failed to disable writing to executable memory: %m");
4449 }
4450
4451 r = apply_restrict_realtime(unit, context);
4452 if (r < 0) {
4453 *exit_status = EXIT_SECCOMP;
4454 return log_unit_error_errno(unit, r, "Failed to apply realtime restrictions: %m");
4455 }
4456
4457 r = apply_restrict_suid_sgid(unit, context);
4458 if (r < 0) {
4459 *exit_status = EXIT_SECCOMP;
4460 return log_unit_error_errno(unit, r, "Failed to apply SUID/SGID restrictions: %m");
4461 }
4462
4463 r = apply_restrict_namespaces(unit, context);
4464 if (r < 0) {
4465 *exit_status = EXIT_SECCOMP;
4466 return log_unit_error_errno(unit, r, "Failed to apply namespace restrictions: %m");
4467 }
4468
4469 r = apply_protect_sysctl(unit, context);
4470 if (r < 0) {
4471 *exit_status = EXIT_SECCOMP;
4472 return log_unit_error_errno(unit, r, "Failed to apply sysctl restrictions: %m");
4473 }
4474
4475 r = apply_protect_kernel_modules(unit, context);
4476 if (r < 0) {
4477 *exit_status = EXIT_SECCOMP;
4478 return log_unit_error_errno(unit, r, "Failed to apply module loading restrictions: %m");
4479 }
4480
4481 r = apply_protect_kernel_logs(unit, context);
4482 if (r < 0) {
4483 *exit_status = EXIT_SECCOMP;
4484 return log_unit_error_errno(unit, r, "Failed to apply kernel log restrictions: %m");
4485 }
4486
4487 r = apply_protect_clock(unit, context);
4488 if (r < 0) {
4489 *exit_status = EXIT_SECCOMP;
4490 return log_unit_error_errno(unit, r, "Failed to apply clock restrictions: %m");
4491 }
4492
4493 r = apply_private_devices(unit, context);
4494 if (r < 0) {
4495 *exit_status = EXIT_SECCOMP;
4496 return log_unit_error_errno(unit, r, "Failed to set up private devices: %m");
4497 }
4498
4499 r = apply_syscall_archs(unit, context);
4500 if (r < 0) {
4501 *exit_status = EXIT_SECCOMP;
4502 return log_unit_error_errno(unit, r, "Failed to apply syscall architecture restrictions: %m");
4503 }
4504
4505 r = apply_lock_personality(unit, context);
4506 if (r < 0) {
4507 *exit_status = EXIT_SECCOMP;
4508 return log_unit_error_errno(unit, r, "Failed to lock personalities: %m");
4509 }
4510
4511 r = apply_syscall_log(unit, context);
4512 if (r < 0) {
4513 *exit_status = EXIT_SECCOMP;
4514 return log_unit_error_errno(unit, r, "Failed to apply system call log filters: %m");
4515 }
4516
4517 /* This really should remain the last step before the execve(), to make sure our own code is unaffected
4518 * by the filter as little as possible. */
4519 r = apply_syscall_filter(unit, context, needs_ambient_hack);
4520 if (r < 0) {
4521 *exit_status = EXIT_SECCOMP;
4522 return log_unit_error_errno(unit, r, "Failed to apply system call filters: %m");
4523 }
4524 #endif
4525 }
4526
4527 if (!strv_isempty(context->unset_environment)) {
4528 char **ee = NULL;
4529
4530 ee = strv_env_delete(accum_env, 1, context->unset_environment);
4531 if (!ee) {
4532 *exit_status = EXIT_MEMORY;
4533 return log_oom();
4534 }
4535
4536 strv_free_and_replace(accum_env, ee);
4537 }
4538
4539 if (!FLAGS_SET(command->flags, EXEC_COMMAND_NO_ENV_EXPAND)) {
4540 replaced_argv = replace_env_argv(command->argv, accum_env);
4541 if (!replaced_argv) {
4542 *exit_status = EXIT_MEMORY;
4543 return log_oom();
4544 }
4545 final_argv = replaced_argv;
4546 } else
4547 final_argv = command->argv;
4548
4549 if (DEBUG_LOGGING) {
4550 _cleanup_free_ char *line;
4551
4552 line = exec_command_line(final_argv);
4553 if (line)
4554 log_struct(LOG_DEBUG,
4555 "EXECUTABLE=%s", executable,
4556 LOG_UNIT_MESSAGE(unit, "Executing: %s", line),
4557 LOG_UNIT_ID(unit),
4558 LOG_UNIT_INVOCATION_ID(unit));
4559 }
4560
4561 if (exec_fd >= 0) {
4562 uint8_t hot = 1;
4563
4564 /* We have finished with all our initializations. Let's now let the manager know that. From this point
4565 * on, if the manager sees POLLHUP on the exec_fd, then execve() was successful. */
4566
4567 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
4568 *exit_status = EXIT_EXEC;
4569 return log_unit_error_errno(unit, errno, "Failed to enable exec_fd: %m");
4570 }
4571 }
4572
4573 execve(executable, final_argv, accum_env);
4574 r = -errno;
4575
4576 if (exec_fd >= 0) {
4577 uint8_t hot = 0;
4578
4579 /* The execve() failed. This means the exec_fd is still open. Which means we need to tell the manager
4580 * that POLLHUP on it no longer means execve() succeeded. */
4581
4582 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
4583 *exit_status = EXIT_EXEC;
4584 return log_unit_error_errno(unit, errno, "Failed to disable exec_fd: %m");
4585 }
4586 }
4587
4588 *exit_status = EXIT_EXEC;
4589 return log_unit_error_errno(unit, r, "Failed to execute %s: %m", executable);
4590 }
4591
4592 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l);
4593 static int exec_context_named_iofds(const ExecContext *c, const ExecParameters *p, int named_iofds[static 3]);
4594
4595 int exec_spawn(Unit *unit,
4596 ExecCommand *command,
4597 const ExecContext *context,
4598 const ExecParameters *params,
4599 ExecRuntime *runtime,
4600 DynamicCreds *dcreds,
4601 pid_t *ret) {
4602
4603 int socket_fd, r, named_iofds[3] = { -1, -1, -1 }, *fds = NULL;
4604 _cleanup_free_ char *subcgroup_path = NULL;
4605 _cleanup_strv_free_ char **files_env = NULL;
4606 size_t n_storage_fds = 0, n_socket_fds = 0;
4607 _cleanup_free_ char *line = NULL;
4608 pid_t pid;
4609
4610 assert(unit);
4611 assert(command);
4612 assert(context);
4613 assert(ret);
4614 assert(params);
4615 assert(params->fds || (params->n_socket_fds + params->n_storage_fds <= 0));
4616
4617 if (context->std_input == EXEC_INPUT_SOCKET ||
4618 context->std_output == EXEC_OUTPUT_SOCKET ||
4619 context->std_error == EXEC_OUTPUT_SOCKET) {
4620
4621 if (params->n_socket_fds > 1) {
4622 log_unit_error(unit, "Got more than one socket.");
4623 return -EINVAL;
4624 }
4625
4626 if (params->n_socket_fds == 0) {
4627 log_unit_error(unit, "Got no socket.");
4628 return -EINVAL;
4629 }
4630
4631 socket_fd = params->fds[0];
4632 } else {
4633 socket_fd = -1;
4634 fds = params->fds;
4635 n_socket_fds = params->n_socket_fds;
4636 n_storage_fds = params->n_storage_fds;
4637 }
4638
4639 r = exec_context_named_iofds(context, params, named_iofds);
4640 if (r < 0)
4641 return log_unit_error_errno(unit, r, "Failed to load a named file descriptor: %m");
4642
4643 r = exec_context_load_environment(unit, context, &files_env);
4644 if (r < 0)
4645 return log_unit_error_errno(unit, r, "Failed to load environment files: %m");
4646
4647 line = exec_command_line(command->argv);
4648 if (!line)
4649 return log_oom();
4650
4651 /* Fork with up-to-date SELinux label database, so the child inherits the up-to-date db
4652 and, until the next SELinux policy changes, we save further reloads in future children. */
4653 mac_selinux_maybe_reload();
4654
4655 log_struct(LOG_DEBUG,
4656 LOG_UNIT_MESSAGE(unit, "About to execute %s", line),
4657 "EXECUTABLE=%s", command->path, /* We won't know the real executable path until we create
4658 the mount namespace in the child, but we want to log
4659 from the parent, so we need to use the (possibly
4660 inaccurate) path here. */
4661 LOG_UNIT_ID(unit),
4662 LOG_UNIT_INVOCATION_ID(unit));
4663
4664 if (params->cgroup_path) {
4665 r = exec_parameters_get_cgroup_path(params, &subcgroup_path);
4666 if (r < 0)
4667 return log_unit_error_errno(unit, r, "Failed to acquire subcgroup path: %m");
4668 if (r > 0) { /* We are using a child cgroup */
4669 r = cg_create(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path);
4670 if (r < 0)
4671 return log_unit_error_errno(unit, r, "Failed to create control group '%s': %m", subcgroup_path);
4672 }
4673 }
4674
4675 pid = fork();
4676 if (pid < 0)
4677 return log_unit_error_errno(unit, errno, "Failed to fork: %m");
4678
4679 if (pid == 0) {
4680 int exit_status = EXIT_SUCCESS;
4681
4682 r = exec_child(unit,
4683 command,
4684 context,
4685 params,
4686 runtime,
4687 dcreds,
4688 socket_fd,
4689 named_iofds,
4690 fds,
4691 n_socket_fds,
4692 n_storage_fds,
4693 files_env,
4694 unit->manager->user_lookup_fds[1],
4695 &exit_status);
4696
4697 if (r < 0) {
4698 const char *status =
4699 exit_status_to_string(exit_status,
4700 EXIT_STATUS_LIBC | EXIT_STATUS_SYSTEMD);
4701
4702 log_struct_errno(LOG_ERR, r,
4703 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
4704 LOG_UNIT_ID(unit),
4705 LOG_UNIT_INVOCATION_ID(unit),
4706 LOG_UNIT_MESSAGE(unit, "Failed at step %s spawning %s: %m",
4707 status, command->path),
4708 "EXECUTABLE=%s", command->path);
4709 }
4710
4711 _exit(exit_status);
4712 }
4713
4714 log_unit_debug(unit, "Forked %s as "PID_FMT, command->path, pid);
4715
4716 /* We add the new process to the cgroup both in the child (so that we can be sure that no user code is ever
4717 * executed outside of the cgroup) and in the parent (so that we can be sure that when we kill the cgroup the
4718 * process will be killed too). */
4719 if (subcgroup_path)
4720 (void) cg_attach(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path, pid);
4721
4722 exec_status_start(&command->exec_status, pid);
4723
4724 *ret = pid;
4725 return 0;
4726 }
4727
4728 void exec_context_init(ExecContext *c) {
4729 assert(c);
4730
4731 c->umask = 0022;
4732 c->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 0);
4733 c->cpu_sched_policy = SCHED_OTHER;
4734 c->syslog_priority = LOG_DAEMON|LOG_INFO;
4735 c->syslog_level_prefix = true;
4736 c->ignore_sigpipe = true;
4737 c->timer_slack_nsec = NSEC_INFINITY;
4738 c->personality = PERSONALITY_INVALID;
4739 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
4740 c->directories[t].mode = 0755;
4741 c->timeout_clean_usec = USEC_INFINITY;
4742 c->capability_bounding_set = CAP_ALL;
4743 assert_cc(NAMESPACE_FLAGS_INITIAL != NAMESPACE_FLAGS_ALL);
4744 c->restrict_namespaces = NAMESPACE_FLAGS_INITIAL;
4745 c->log_level_max = -1;
4746 #if HAVE_SECCOMP
4747 c->syscall_errno = SECCOMP_ERROR_NUMBER_KILL;
4748 #endif
4749 numa_policy_reset(&c->numa_policy);
4750 }
4751
4752 void exec_context_done(ExecContext *c) {
4753 assert(c);
4754
4755 c->environment = strv_free(c->environment);
4756 c->environment_files = strv_free(c->environment_files);
4757 c->pass_environment = strv_free(c->pass_environment);
4758 c->unset_environment = strv_free(c->unset_environment);
4759
4760 rlimit_free_all(c->rlimit);
4761
4762 for (size_t l = 0; l < 3; l++) {
4763 c->stdio_fdname[l] = mfree(c->stdio_fdname[l]);
4764 c->stdio_file[l] = mfree(c->stdio_file[l]);
4765 }
4766
4767 c->working_directory = mfree(c->working_directory);
4768 c->root_directory = mfree(c->root_directory);
4769 c->root_image = mfree(c->root_image);
4770 c->root_image_options = mount_options_free_all(c->root_image_options);
4771 c->root_hash = mfree(c->root_hash);
4772 c->root_hash_size = 0;
4773 c->root_hash_path = mfree(c->root_hash_path);
4774 c->root_hash_sig = mfree(c->root_hash_sig);
4775 c->root_hash_sig_size = 0;
4776 c->root_hash_sig_path = mfree(c->root_hash_sig_path);
4777 c->root_verity = mfree(c->root_verity);
4778 c->tty_path = mfree(c->tty_path);
4779 c->syslog_identifier = mfree(c->syslog_identifier);
4780 c->user = mfree(c->user);
4781 c->group = mfree(c->group);
4782
4783 c->supplementary_groups = strv_free(c->supplementary_groups);
4784
4785 c->pam_name = mfree(c->pam_name);
4786
4787 c->read_only_paths = strv_free(c->read_only_paths);
4788 c->read_write_paths = strv_free(c->read_write_paths);
4789 c->inaccessible_paths = strv_free(c->inaccessible_paths);
4790
4791 bind_mount_free_many(c->bind_mounts, c->n_bind_mounts);
4792 c->bind_mounts = NULL;
4793 c->n_bind_mounts = 0;
4794 temporary_filesystem_free_many(c->temporary_filesystems, c->n_temporary_filesystems);
4795 c->temporary_filesystems = NULL;
4796 c->n_temporary_filesystems = 0;
4797 c->mount_images = mount_image_free_many(c->mount_images, &c->n_mount_images);
4798
4799 cpu_set_reset(&c->cpu_set);
4800 numa_policy_reset(&c->numa_policy);
4801
4802 c->utmp_id = mfree(c->utmp_id);
4803 c->selinux_context = mfree(c->selinux_context);
4804 c->apparmor_profile = mfree(c->apparmor_profile);
4805 c->smack_process_label = mfree(c->smack_process_label);
4806
4807 c->syscall_filter = hashmap_free(c->syscall_filter);
4808 c->syscall_archs = set_free(c->syscall_archs);
4809 c->address_families = set_free(c->address_families);
4810
4811 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
4812 c->directories[t].paths = strv_free(c->directories[t].paths);
4813
4814 c->log_level_max = -1;
4815
4816 exec_context_free_log_extra_fields(c);
4817
4818 c->log_ratelimit_interval_usec = 0;
4819 c->log_ratelimit_burst = 0;
4820
4821 c->stdin_data = mfree(c->stdin_data);
4822 c->stdin_data_size = 0;
4823
4824 c->network_namespace_path = mfree(c->network_namespace_path);
4825
4826 c->log_namespace = mfree(c->log_namespace);
4827
4828 c->load_credentials = strv_free(c->load_credentials);
4829 c->set_credentials = hashmap_free(c->set_credentials);
4830 }
4831
4832 int exec_context_destroy_runtime_directory(const ExecContext *c, const char *runtime_prefix) {
4833 char **i;
4834
4835 assert(c);
4836
4837 if (!runtime_prefix)
4838 return 0;
4839
4840 STRV_FOREACH(i, c->directories[EXEC_DIRECTORY_RUNTIME].paths) {
4841 _cleanup_free_ char *p;
4842
4843 if (exec_directory_is_private(c, EXEC_DIRECTORY_RUNTIME))
4844 p = path_join(runtime_prefix, "private", *i);
4845 else
4846 p = path_join(runtime_prefix, *i);
4847 if (!p)
4848 return -ENOMEM;
4849
4850 /* We execute this synchronously, since we need to be sure this is gone when we start the
4851 * service next. */
4852 (void) rm_rf(p, REMOVE_ROOT);
4853 }
4854
4855 return 0;
4856 }
4857
4858 int exec_context_destroy_credentials(const ExecContext *c, const char *runtime_prefix, const char *unit) {
4859 _cleanup_free_ char *p = NULL;
4860
4861 assert(c);
4862
4863 if (!runtime_prefix || !unit)
4864 return 0;
4865
4866 p = path_join(runtime_prefix, "credentials", unit);
4867 if (!p)
4868 return -ENOMEM;
4869
4870 /* This is either a tmpfs/ramfs of its own, or a plain directory. Either way, let's first try to
4871 * unmount it, and afterwards remove the mount point */
4872 (void) umount2(p, MNT_DETACH|UMOUNT_NOFOLLOW);
4873 (void) rm_rf(p, REMOVE_ROOT|REMOVE_CHMOD);
4874
4875 return 0;
4876 }
4877
4878 static void exec_command_done(ExecCommand *c) {
4879 assert(c);
4880
4881 c->path = mfree(c->path);
4882 c->argv = strv_free(c->argv);
4883 }
4884
4885 void exec_command_done_array(ExecCommand *c, size_t n) {
4886 size_t i;
4887
4888 for (i = 0; i < n; i++)
4889 exec_command_done(c+i);
4890 }
4891
4892 ExecCommand* exec_command_free_list(ExecCommand *c) {
4893 ExecCommand *i;
4894
4895 while ((i = c)) {
4896 LIST_REMOVE(command, c, i);
4897 exec_command_done(i);
4898 free(i);
4899 }
4900
4901 return NULL;
4902 }
4903
4904 void exec_command_free_array(ExecCommand **c, size_t n) {
4905 for (size_t i = 0; i < n; i++)
4906 c[i] = exec_command_free_list(c[i]);
4907 }
4908
4909 void exec_command_reset_status_array(ExecCommand *c, size_t n) {
4910 for (size_t i = 0; i < n; i++)
4911 exec_status_reset(&c[i].exec_status);
4912 }
4913
4914 void exec_command_reset_status_list_array(ExecCommand **c, size_t n) {
4915 for (size_t i = 0; i < n; i++) {
4916 ExecCommand *z;
4917
4918 LIST_FOREACH(command, z, c[i])
4919 exec_status_reset(&z->exec_status);
4920 }
4921 }
4922
4923 typedef struct InvalidEnvInfo {
4924 const Unit *unit;
4925 const char *path;
4926 } InvalidEnvInfo;
4927
4928 static void invalid_env(const char *p, void *userdata) {
4929 InvalidEnvInfo *info = userdata;
4930
4931 log_unit_error(info->unit, "Ignoring invalid environment assignment '%s': %s", p, info->path);
4932 }
4933
4934 const char* exec_context_fdname(const ExecContext *c, int fd_index) {
4935 assert(c);
4936
4937 switch (fd_index) {
4938
4939 case STDIN_FILENO:
4940 if (c->std_input != EXEC_INPUT_NAMED_FD)
4941 return NULL;
4942
4943 return c->stdio_fdname[STDIN_FILENO] ?: "stdin";
4944
4945 case STDOUT_FILENO:
4946 if (c->std_output != EXEC_OUTPUT_NAMED_FD)
4947 return NULL;
4948
4949 return c->stdio_fdname[STDOUT_FILENO] ?: "stdout";
4950
4951 case STDERR_FILENO:
4952 if (c->std_error != EXEC_OUTPUT_NAMED_FD)
4953 return NULL;
4954
4955 return c->stdio_fdname[STDERR_FILENO] ?: "stderr";
4956
4957 default:
4958 return NULL;
4959 }
4960 }
4961
4962 static int exec_context_named_iofds(
4963 const ExecContext *c,
4964 const ExecParameters *p,
4965 int named_iofds[static 3]) {
4966
4967 size_t targets;
4968 const char* stdio_fdname[3];
4969 size_t n_fds;
4970
4971 assert(c);
4972 assert(p);
4973 assert(named_iofds);
4974
4975 targets = (c->std_input == EXEC_INPUT_NAMED_FD) +
4976 (c->std_output == EXEC_OUTPUT_NAMED_FD) +
4977 (c->std_error == EXEC_OUTPUT_NAMED_FD);
4978
4979 for (size_t i = 0; i < 3; i++)
4980 stdio_fdname[i] = exec_context_fdname(c, i);
4981
4982 n_fds = p->n_storage_fds + p->n_socket_fds;
4983
4984 for (size_t i = 0; i < n_fds && targets > 0; i++)
4985 if (named_iofds[STDIN_FILENO] < 0 &&
4986 c->std_input == EXEC_INPUT_NAMED_FD &&
4987 stdio_fdname[STDIN_FILENO] &&
4988 streq(p->fd_names[i], stdio_fdname[STDIN_FILENO])) {
4989
4990 named_iofds[STDIN_FILENO] = p->fds[i];
4991 targets--;
4992
4993 } else if (named_iofds[STDOUT_FILENO] < 0 &&
4994 c->std_output == EXEC_OUTPUT_NAMED_FD &&
4995 stdio_fdname[STDOUT_FILENO] &&
4996 streq(p->fd_names[i], stdio_fdname[STDOUT_FILENO])) {
4997
4998 named_iofds[STDOUT_FILENO] = p->fds[i];
4999 targets--;
5000
5001 } else if (named_iofds[STDERR_FILENO] < 0 &&
5002 c->std_error == EXEC_OUTPUT_NAMED_FD &&
5003 stdio_fdname[STDERR_FILENO] &&
5004 streq(p->fd_names[i], stdio_fdname[STDERR_FILENO])) {
5005
5006 named_iofds[STDERR_FILENO] = p->fds[i];
5007 targets--;
5008 }
5009
5010 return targets == 0 ? 0 : -ENOENT;
5011 }
5012
5013 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l) {
5014 char **i, **r = NULL;
5015
5016 assert(c);
5017 assert(l);
5018
5019 STRV_FOREACH(i, c->environment_files) {
5020 char *fn;
5021 int k;
5022 bool ignore = false;
5023 char **p;
5024 _cleanup_globfree_ glob_t pglob = {};
5025
5026 fn = *i;
5027
5028 if (fn[0] == '-') {
5029 ignore = true;
5030 fn++;
5031 }
5032
5033 if (!path_is_absolute(fn)) {
5034 if (ignore)
5035 continue;
5036
5037 strv_free(r);
5038 return -EINVAL;
5039 }
5040
5041 /* Filename supports globbing, take all matching files */
5042 k = safe_glob(fn, 0, &pglob);
5043 if (k < 0) {
5044 if (ignore)
5045 continue;
5046
5047 strv_free(r);
5048 return k;
5049 }
5050
5051 /* When we don't match anything, -ENOENT should be returned */
5052 assert(pglob.gl_pathc > 0);
5053
5054 for (unsigned n = 0; n < pglob.gl_pathc; n++) {
5055 k = load_env_file(NULL, pglob.gl_pathv[n], &p);
5056 if (k < 0) {
5057 if (ignore)
5058 continue;
5059
5060 strv_free(r);
5061 return k;
5062 }
5063 /* Log invalid environment variables with filename */
5064 if (p) {
5065 InvalidEnvInfo info = {
5066 .unit = unit,
5067 .path = pglob.gl_pathv[n]
5068 };
5069
5070 p = strv_env_clean_with_callback(p, invalid_env, &info);
5071 }
5072
5073 if (!r)
5074 r = p;
5075 else {
5076 char **m;
5077
5078 m = strv_env_merge(2, r, p);
5079 strv_free(r);
5080 strv_free(p);
5081 if (!m)
5082 return -ENOMEM;
5083
5084 r = m;
5085 }
5086 }
5087 }
5088
5089 *l = r;
5090
5091 return 0;
5092 }
5093
5094 static bool tty_may_match_dev_console(const char *tty) {
5095 _cleanup_free_ char *resolved = NULL;
5096
5097 if (!tty)
5098 return true;
5099
5100 tty = skip_dev_prefix(tty);
5101
5102 /* trivial identity? */
5103 if (streq(tty, "console"))
5104 return true;
5105
5106 if (resolve_dev_console(&resolved) < 0)
5107 return true; /* if we could not resolve, assume it may */
5108
5109 /* "tty0" means the active VC, so it may be the same sometimes */
5110 return path_equal(resolved, tty) || (streq(resolved, "tty0") && tty_is_vc(tty));
5111 }
5112
5113 static bool exec_context_may_touch_tty(const ExecContext *ec) {
5114 assert(ec);
5115
5116 return ec->tty_reset ||
5117 ec->tty_vhangup ||
5118 ec->tty_vt_disallocate ||
5119 is_terminal_input(ec->std_input) ||
5120 is_terminal_output(ec->std_output) ||
5121 is_terminal_output(ec->std_error);
5122 }
5123
5124 bool exec_context_may_touch_console(const ExecContext *ec) {
5125
5126 return exec_context_may_touch_tty(ec) &&
5127 tty_may_match_dev_console(exec_context_tty_path(ec));
5128 }
5129
5130 static void strv_fprintf(FILE *f, char **l) {
5131 char **g;
5132
5133 assert(f);
5134
5135 STRV_FOREACH(g, l)
5136 fprintf(f, " %s", *g);
5137 }
5138
5139 void exec_context_dump(const ExecContext *c, FILE* f, const char *prefix) {
5140 char **e, **d, buf_clean[FORMAT_TIMESPAN_MAX];
5141 int r;
5142
5143 assert(c);
5144 assert(f);
5145
5146 prefix = strempty(prefix);
5147
5148 fprintf(f,
5149 "%sUMask: %04o\n"
5150 "%sWorkingDirectory: %s\n"
5151 "%sRootDirectory: %s\n"
5152 "%sNonBlocking: %s\n"
5153 "%sPrivateTmp: %s\n"
5154 "%sPrivateDevices: %s\n"
5155 "%sProtectKernelTunables: %s\n"
5156 "%sProtectKernelModules: %s\n"
5157 "%sProtectKernelLogs: %s\n"
5158 "%sProtectClock: %s\n"
5159 "%sProtectControlGroups: %s\n"
5160 "%sPrivateNetwork: %s\n"
5161 "%sPrivateUsers: %s\n"
5162 "%sProtectHome: %s\n"
5163 "%sProtectSystem: %s\n"
5164 "%sMountAPIVFS: %s\n"
5165 "%sIgnoreSIGPIPE: %s\n"
5166 "%sMemoryDenyWriteExecute: %s\n"
5167 "%sRestrictRealtime: %s\n"
5168 "%sRestrictSUIDSGID: %s\n"
5169 "%sKeyringMode: %s\n"
5170 "%sProtectHostname: %s\n"
5171 "%sProtectProc: %s\n"
5172 "%sProcSubset: %s\n",
5173 prefix, c->umask,
5174 prefix, c->working_directory ? c->working_directory : "/",
5175 prefix, c->root_directory ? c->root_directory : "/",
5176 prefix, yes_no(c->non_blocking),
5177 prefix, yes_no(c->private_tmp),
5178 prefix, yes_no(c->private_devices),
5179 prefix, yes_no(c->protect_kernel_tunables),
5180 prefix, yes_no(c->protect_kernel_modules),
5181 prefix, yes_no(c->protect_kernel_logs),
5182 prefix, yes_no(c->protect_clock),
5183 prefix, yes_no(c->protect_control_groups),
5184 prefix, yes_no(c->private_network),
5185 prefix, yes_no(c->private_users),
5186 prefix, protect_home_to_string(c->protect_home),
5187 prefix, protect_system_to_string(c->protect_system),
5188 prefix, yes_no(exec_context_get_effective_mount_apivfs(c)),
5189 prefix, yes_no(c->ignore_sigpipe),
5190 prefix, yes_no(c->memory_deny_write_execute),
5191 prefix, yes_no(c->restrict_realtime),
5192 prefix, yes_no(c->restrict_suid_sgid),
5193 prefix, exec_keyring_mode_to_string(c->keyring_mode),
5194 prefix, yes_no(c->protect_hostname),
5195 prefix, protect_proc_to_string(c->protect_proc),
5196 prefix, proc_subset_to_string(c->proc_subset));
5197
5198 if (c->root_image)
5199 fprintf(f, "%sRootImage: %s\n", prefix, c->root_image);
5200
5201 if (c->root_image_options) {
5202 MountOptions *o;
5203
5204 fprintf(f, "%sRootImageOptions:", prefix);
5205 LIST_FOREACH(mount_options, o, c->root_image_options)
5206 if (!isempty(o->options))
5207 fprintf(f, " %s:%s",
5208 partition_designator_to_string(o->partition_designator),
5209 o->options);
5210 fprintf(f, "\n");
5211 }
5212
5213 if (c->root_hash) {
5214 _cleanup_free_ char *encoded = NULL;
5215 encoded = hexmem(c->root_hash, c->root_hash_size);
5216 if (encoded)
5217 fprintf(f, "%sRootHash: %s\n", prefix, encoded);
5218 }
5219
5220 if (c->root_hash_path)
5221 fprintf(f, "%sRootHash: %s\n", prefix, c->root_hash_path);
5222
5223 if (c->root_hash_sig) {
5224 _cleanup_free_ char *encoded = NULL;
5225 ssize_t len;
5226 len = base64mem(c->root_hash_sig, c->root_hash_sig_size, &encoded);
5227 if (len)
5228 fprintf(f, "%sRootHashSignature: base64:%s\n", prefix, encoded);
5229 }
5230
5231 if (c->root_hash_sig_path)
5232 fprintf(f, "%sRootHashSignature: %s\n", prefix, c->root_hash_sig_path);
5233
5234 if (c->root_verity)
5235 fprintf(f, "%sRootVerity: %s\n", prefix, c->root_verity);
5236
5237 STRV_FOREACH(e, c->environment)
5238 fprintf(f, "%sEnvironment: %s\n", prefix, *e);
5239
5240 STRV_FOREACH(e, c->environment_files)
5241 fprintf(f, "%sEnvironmentFile: %s\n", prefix, *e);
5242
5243 STRV_FOREACH(e, c->pass_environment)
5244 fprintf(f, "%sPassEnvironment: %s\n", prefix, *e);
5245
5246 STRV_FOREACH(e, c->unset_environment)
5247 fprintf(f, "%sUnsetEnvironment: %s\n", prefix, *e);
5248
5249 fprintf(f, "%sRuntimeDirectoryPreserve: %s\n", prefix, exec_preserve_mode_to_string(c->runtime_directory_preserve_mode));
5250
5251 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
5252 fprintf(f, "%s%sMode: %04o\n", prefix, exec_directory_type_to_string(dt), c->directories[dt].mode);
5253
5254 STRV_FOREACH(d, c->directories[dt].paths)
5255 fprintf(f, "%s%s: %s\n", prefix, exec_directory_type_to_string(dt), *d);
5256 }
5257
5258 fprintf(f,
5259 "%sTimeoutCleanSec: %s\n",
5260 prefix, format_timespan(buf_clean, sizeof(buf_clean), c->timeout_clean_usec, USEC_PER_SEC));
5261
5262 if (c->nice_set)
5263 fprintf(f,
5264 "%sNice: %i\n",
5265 prefix, c->nice);
5266
5267 if (c->oom_score_adjust_set)
5268 fprintf(f,
5269 "%sOOMScoreAdjust: %i\n",
5270 prefix, c->oom_score_adjust);
5271
5272 if (c->coredump_filter_set)
5273 fprintf(f,
5274 "%sCoredumpFilter: 0x%"PRIx64"\n",
5275 prefix, c->coredump_filter);
5276
5277 for (unsigned i = 0; i < RLIM_NLIMITS; i++)
5278 if (c->rlimit[i]) {
5279 fprintf(f, "%sLimit%s: " RLIM_FMT "\n",
5280 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_max);
5281 fprintf(f, "%sLimit%sSoft: " RLIM_FMT "\n",
5282 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_cur);
5283 }
5284
5285 if (c->ioprio_set) {
5286 _cleanup_free_ char *class_str = NULL;
5287
5288 r = ioprio_class_to_string_alloc(IOPRIO_PRIO_CLASS(c->ioprio), &class_str);
5289 if (r >= 0)
5290 fprintf(f, "%sIOSchedulingClass: %s\n", prefix, class_str);
5291
5292 fprintf(f, "%sIOPriority: %lu\n", prefix, IOPRIO_PRIO_DATA(c->ioprio));
5293 }
5294
5295 if (c->cpu_sched_set) {
5296 _cleanup_free_ char *policy_str = NULL;
5297
5298 r = sched_policy_to_string_alloc(c->cpu_sched_policy, &policy_str);
5299 if (r >= 0)
5300 fprintf(f, "%sCPUSchedulingPolicy: %s\n", prefix, policy_str);
5301
5302 fprintf(f,
5303 "%sCPUSchedulingPriority: %i\n"
5304 "%sCPUSchedulingResetOnFork: %s\n",
5305 prefix, c->cpu_sched_priority,
5306 prefix, yes_no(c->cpu_sched_reset_on_fork));
5307 }
5308
5309 if (c->cpu_set.set) {
5310 _cleanup_free_ char *affinity = NULL;
5311
5312 affinity = cpu_set_to_range_string(&c->cpu_set);
5313 fprintf(f, "%sCPUAffinity: %s\n", prefix, affinity);
5314 }
5315
5316 if (mpol_is_valid(numa_policy_get_type(&c->numa_policy))) {
5317 _cleanup_free_ char *nodes = NULL;
5318
5319 nodes = cpu_set_to_range_string(&c->numa_policy.nodes);
5320 fprintf(f, "%sNUMAPolicy: %s\n", prefix, mpol_to_string(numa_policy_get_type(&c->numa_policy)));
5321 fprintf(f, "%sNUMAMask: %s\n", prefix, strnull(nodes));
5322 }
5323
5324 if (c->timer_slack_nsec != NSEC_INFINITY)
5325 fprintf(f, "%sTimerSlackNSec: "NSEC_FMT "\n", prefix, c->timer_slack_nsec);
5326
5327 fprintf(f,
5328 "%sStandardInput: %s\n"
5329 "%sStandardOutput: %s\n"
5330 "%sStandardError: %s\n",
5331 prefix, exec_input_to_string(c->std_input),
5332 prefix, exec_output_to_string(c->std_output),
5333 prefix, exec_output_to_string(c->std_error));
5334
5335 if (c->std_input == EXEC_INPUT_NAMED_FD)
5336 fprintf(f, "%sStandardInputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDIN_FILENO]);
5337 if (c->std_output == EXEC_OUTPUT_NAMED_FD)
5338 fprintf(f, "%sStandardOutputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDOUT_FILENO]);
5339 if (c->std_error == EXEC_OUTPUT_NAMED_FD)
5340 fprintf(f, "%sStandardErrorFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDERR_FILENO]);
5341
5342 if (c->std_input == EXEC_INPUT_FILE)
5343 fprintf(f, "%sStandardInputFile: %s\n", prefix, c->stdio_file[STDIN_FILENO]);
5344 if (c->std_output == EXEC_OUTPUT_FILE)
5345 fprintf(f, "%sStandardOutputFile: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
5346 if (c->std_output == EXEC_OUTPUT_FILE_APPEND)
5347 fprintf(f, "%sStandardOutputFileToAppend: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
5348 if (c->std_error == EXEC_OUTPUT_FILE)
5349 fprintf(f, "%sStandardErrorFile: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
5350 if (c->std_error == EXEC_OUTPUT_FILE_APPEND)
5351 fprintf(f, "%sStandardErrorFileToAppend: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
5352
5353 if (c->tty_path)
5354 fprintf(f,
5355 "%sTTYPath: %s\n"
5356 "%sTTYReset: %s\n"
5357 "%sTTYVHangup: %s\n"
5358 "%sTTYVTDisallocate: %s\n",
5359 prefix, c->tty_path,
5360 prefix, yes_no(c->tty_reset),
5361 prefix, yes_no(c->tty_vhangup),
5362 prefix, yes_no(c->tty_vt_disallocate));
5363
5364 if (IN_SET(c->std_output,
5365 EXEC_OUTPUT_KMSG,
5366 EXEC_OUTPUT_JOURNAL,
5367 EXEC_OUTPUT_KMSG_AND_CONSOLE,
5368 EXEC_OUTPUT_JOURNAL_AND_CONSOLE) ||
5369 IN_SET(c->std_error,
5370 EXEC_OUTPUT_KMSG,
5371 EXEC_OUTPUT_JOURNAL,
5372 EXEC_OUTPUT_KMSG_AND_CONSOLE,
5373 EXEC_OUTPUT_JOURNAL_AND_CONSOLE)) {
5374
5375 _cleanup_free_ char *fac_str = NULL, *lvl_str = NULL;
5376
5377 r = log_facility_unshifted_to_string_alloc(c->syslog_priority >> 3, &fac_str);
5378 if (r >= 0)
5379 fprintf(f, "%sSyslogFacility: %s\n", prefix, fac_str);
5380
5381 r = log_level_to_string_alloc(LOG_PRI(c->syslog_priority), &lvl_str);
5382 if (r >= 0)
5383 fprintf(f, "%sSyslogLevel: %s\n", prefix, lvl_str);
5384 }
5385
5386 if (c->log_level_max >= 0) {
5387 _cleanup_free_ char *t = NULL;
5388
5389 (void) log_level_to_string_alloc(c->log_level_max, &t);
5390
5391 fprintf(f, "%sLogLevelMax: %s\n", prefix, strna(t));
5392 }
5393
5394 if (c->log_ratelimit_interval_usec > 0) {
5395 char buf_timespan[FORMAT_TIMESPAN_MAX];
5396
5397 fprintf(f,
5398 "%sLogRateLimitIntervalSec: %s\n",
5399 prefix, format_timespan(buf_timespan, sizeof(buf_timespan), c->log_ratelimit_interval_usec, USEC_PER_SEC));
5400 }
5401
5402 if (c->log_ratelimit_burst > 0)
5403 fprintf(f, "%sLogRateLimitBurst: %u\n", prefix, c->log_ratelimit_burst);
5404
5405 for (size_t j = 0; j < c->n_log_extra_fields; j++) {
5406 fprintf(f, "%sLogExtraFields: ", prefix);
5407 fwrite(c->log_extra_fields[j].iov_base,
5408 1, c->log_extra_fields[j].iov_len,
5409 f);
5410 fputc('\n', f);
5411 }
5412
5413 if (c->log_namespace)
5414 fprintf(f, "%sLogNamespace: %s\n", prefix, c->log_namespace);
5415
5416 if (c->secure_bits) {
5417 _cleanup_free_ char *str = NULL;
5418
5419 r = secure_bits_to_string_alloc(c->secure_bits, &str);
5420 if (r >= 0)
5421 fprintf(f, "%sSecure Bits: %s\n", prefix, str);
5422 }
5423
5424 if (c->capability_bounding_set != CAP_ALL) {
5425 _cleanup_free_ char *str = NULL;
5426
5427 r = capability_set_to_string_alloc(c->capability_bounding_set, &str);
5428 if (r >= 0)
5429 fprintf(f, "%sCapabilityBoundingSet: %s\n", prefix, str);
5430 }
5431
5432 if (c->capability_ambient_set != 0) {
5433 _cleanup_free_ char *str = NULL;
5434
5435 r = capability_set_to_string_alloc(c->capability_ambient_set, &str);
5436 if (r >= 0)
5437 fprintf(f, "%sAmbientCapabilities: %s\n", prefix, str);
5438 }
5439
5440 if (c->user)
5441 fprintf(f, "%sUser: %s\n", prefix, c->user);
5442 if (c->group)
5443 fprintf(f, "%sGroup: %s\n", prefix, c->group);
5444
5445 fprintf(f, "%sDynamicUser: %s\n", prefix, yes_no(c->dynamic_user));
5446
5447 if (!strv_isempty(c->supplementary_groups)) {
5448 fprintf(f, "%sSupplementaryGroups:", prefix);
5449 strv_fprintf(f, c->supplementary_groups);
5450 fputs("\n", f);
5451 }
5452
5453 if (c->pam_name)
5454 fprintf(f, "%sPAMName: %s\n", prefix, c->pam_name);
5455
5456 if (!strv_isempty(c->read_write_paths)) {
5457 fprintf(f, "%sReadWritePaths:", prefix);
5458 strv_fprintf(f, c->read_write_paths);
5459 fputs("\n", f);
5460 }
5461
5462 if (!strv_isempty(c->read_only_paths)) {
5463 fprintf(f, "%sReadOnlyPaths:", prefix);
5464 strv_fprintf(f, c->read_only_paths);
5465 fputs("\n", f);
5466 }
5467
5468 if (!strv_isempty(c->inaccessible_paths)) {
5469 fprintf(f, "%sInaccessiblePaths:", prefix);
5470 strv_fprintf(f, c->inaccessible_paths);
5471 fputs("\n", f);
5472 }
5473
5474 for (size_t i = 0; i < c->n_bind_mounts; i++)
5475 fprintf(f, "%s%s: %s%s:%s:%s\n", prefix,
5476 c->bind_mounts[i].read_only ? "BindReadOnlyPaths" : "BindPaths",
5477 c->bind_mounts[i].ignore_enoent ? "-": "",
5478 c->bind_mounts[i].source,
5479 c->bind_mounts[i].destination,
5480 c->bind_mounts[i].recursive ? "rbind" : "norbind");
5481
5482 for (size_t i = 0; i < c->n_temporary_filesystems; i++) {
5483 const TemporaryFileSystem *t = c->temporary_filesystems + i;
5484
5485 fprintf(f, "%sTemporaryFileSystem: %s%s%s\n", prefix,
5486 t->path,
5487 isempty(t->options) ? "" : ":",
5488 strempty(t->options));
5489 }
5490
5491 if (c->utmp_id)
5492 fprintf(f,
5493 "%sUtmpIdentifier: %s\n",
5494 prefix, c->utmp_id);
5495
5496 if (c->selinux_context)
5497 fprintf(f,
5498 "%sSELinuxContext: %s%s\n",
5499 prefix, c->selinux_context_ignore ? "-" : "", c->selinux_context);
5500
5501 if (c->apparmor_profile)
5502 fprintf(f,
5503 "%sAppArmorProfile: %s%s\n",
5504 prefix, c->apparmor_profile_ignore ? "-" : "", c->apparmor_profile);
5505
5506 if (c->smack_process_label)
5507 fprintf(f,
5508 "%sSmackProcessLabel: %s%s\n",
5509 prefix, c->smack_process_label_ignore ? "-" : "", c->smack_process_label);
5510
5511 if (c->personality != PERSONALITY_INVALID)
5512 fprintf(f,
5513 "%sPersonality: %s\n",
5514 prefix, strna(personality_to_string(c->personality)));
5515
5516 fprintf(f,
5517 "%sLockPersonality: %s\n",
5518 prefix, yes_no(c->lock_personality));
5519
5520 if (c->syscall_filter) {
5521 #if HAVE_SECCOMP
5522 void *id, *val;
5523 bool first = true;
5524 #endif
5525
5526 fprintf(f,
5527 "%sSystemCallFilter: ",
5528 prefix);
5529
5530 if (!c->syscall_allow_list)
5531 fputc('~', f);
5532
5533 #if HAVE_SECCOMP
5534 HASHMAP_FOREACH_KEY(val, id, c->syscall_filter) {
5535 _cleanup_free_ char *name = NULL;
5536 const char *errno_name = NULL;
5537 int num = PTR_TO_INT(val);
5538
5539 if (first)
5540 first = false;
5541 else
5542 fputc(' ', f);
5543
5544 name = seccomp_syscall_resolve_num_arch(SCMP_ARCH_NATIVE, PTR_TO_INT(id) - 1);
5545 fputs(strna(name), f);
5546
5547 if (num >= 0) {
5548 errno_name = seccomp_errno_or_action_to_string(num);
5549 if (errno_name)
5550 fprintf(f, ":%s", errno_name);
5551 else
5552 fprintf(f, ":%d", num);
5553 }
5554 }
5555 #endif
5556
5557 fputc('\n', f);
5558 }
5559
5560 if (c->syscall_archs) {
5561 #if HAVE_SECCOMP
5562 void *id;
5563 #endif
5564
5565 fprintf(f,
5566 "%sSystemCallArchitectures:",
5567 prefix);
5568
5569 #if HAVE_SECCOMP
5570 SET_FOREACH(id, c->syscall_archs)
5571 fprintf(f, " %s", strna(seccomp_arch_to_string(PTR_TO_UINT32(id) - 1)));
5572 #endif
5573 fputc('\n', f);
5574 }
5575
5576 if (exec_context_restrict_namespaces_set(c)) {
5577 _cleanup_free_ char *s = NULL;
5578
5579 r = namespace_flags_to_string(c->restrict_namespaces, &s);
5580 if (r >= 0)
5581 fprintf(f, "%sRestrictNamespaces: %s\n",
5582 prefix, strna(s));
5583 }
5584
5585 if (c->network_namespace_path)
5586 fprintf(f,
5587 "%sNetworkNamespacePath: %s\n",
5588 prefix, c->network_namespace_path);
5589
5590 if (c->syscall_errno > 0) {
5591 #if HAVE_SECCOMP
5592 const char *errno_name;
5593 #endif
5594
5595 fprintf(f, "%sSystemCallErrorNumber: ", prefix);
5596
5597 #if HAVE_SECCOMP
5598 errno_name = seccomp_errno_or_action_to_string(c->syscall_errno);
5599 if (errno_name)
5600 fputs(errno_name, f);
5601 else
5602 fprintf(f, "%d", c->syscall_errno);
5603 #endif
5604 fputc('\n', f);
5605 }
5606
5607 for (size_t i = 0; i < c->n_mount_images; i++) {
5608 MountOptions *o;
5609
5610 fprintf(f, "%sMountImages: %s%s:%s%s", prefix,
5611 c->mount_images[i].ignore_enoent ? "-": "",
5612 c->mount_images[i].source,
5613 c->mount_images[i].destination,
5614 LIST_IS_EMPTY(c->mount_images[i].mount_options) ? "": ":");
5615 LIST_FOREACH(mount_options, o, c->mount_images[i].mount_options)
5616 fprintf(f, "%s:%s",
5617 partition_designator_to_string(o->partition_designator),
5618 o->options);
5619 fprintf(f, "\n");
5620 }
5621 }
5622
5623 bool exec_context_maintains_privileges(const ExecContext *c) {
5624 assert(c);
5625
5626 /* Returns true if the process forked off would run under
5627 * an unchanged UID or as root. */
5628
5629 if (!c->user)
5630 return true;
5631
5632 if (streq(c->user, "root") || streq(c->user, "0"))
5633 return true;
5634
5635 return false;
5636 }
5637
5638 int exec_context_get_effective_ioprio(const ExecContext *c) {
5639 int p;
5640
5641 assert(c);
5642
5643 if (c->ioprio_set)
5644 return c->ioprio;
5645
5646 p = ioprio_get(IOPRIO_WHO_PROCESS, 0);
5647 if (p < 0)
5648 return IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 4);
5649
5650 return p;
5651 }
5652
5653 bool exec_context_get_effective_mount_apivfs(const ExecContext *c) {
5654 assert(c);
5655
5656 /* Explicit setting wins */
5657 if (c->mount_apivfs_set)
5658 return c->mount_apivfs;
5659
5660 /* Default to "yes" if root directory or image are specified */
5661 if (c->root_image || !empty_or_root(c->root_directory))
5662 return true;
5663
5664 return false;
5665 }
5666
5667 void exec_context_free_log_extra_fields(ExecContext *c) {
5668 assert(c);
5669
5670 for (size_t l = 0; l < c->n_log_extra_fields; l++)
5671 free(c->log_extra_fields[l].iov_base);
5672 c->log_extra_fields = mfree(c->log_extra_fields);
5673 c->n_log_extra_fields = 0;
5674 }
5675
5676 void exec_context_revert_tty(ExecContext *c) {
5677 int r;
5678
5679 assert(c);
5680
5681 /* First, reset the TTY (possibly kicking everybody else from the TTY) */
5682 exec_context_tty_reset(c, NULL);
5683
5684 /* And then undo what chown_terminal() did earlier. Note that we only do this if we have a path
5685 * configured. If the TTY was passed to us as file descriptor we assume the TTY is opened and managed
5686 * by whoever passed it to us and thus knows better when and how to chmod()/chown() it back. */
5687
5688 if (exec_context_may_touch_tty(c)) {
5689 const char *path;
5690
5691 path = exec_context_tty_path(c);
5692 if (path) {
5693 r = chmod_and_chown(path, TTY_MODE, 0, TTY_GID);
5694 if (r < 0 && r != -ENOENT)
5695 log_warning_errno(r, "Failed to reset TTY ownership/access mode of %s, ignoring: %m", path);
5696 }
5697 }
5698 }
5699
5700 int exec_context_get_clean_directories(
5701 ExecContext *c,
5702 char **prefix,
5703 ExecCleanMask mask,
5704 char ***ret) {
5705
5706 _cleanup_strv_free_ char **l = NULL;
5707 int r;
5708
5709 assert(c);
5710 assert(prefix);
5711 assert(ret);
5712
5713 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
5714 char **i;
5715
5716 if (!FLAGS_SET(mask, 1U << t))
5717 continue;
5718
5719 if (!prefix[t])
5720 continue;
5721
5722 STRV_FOREACH(i, c->directories[t].paths) {
5723 char *j;
5724
5725 j = path_join(prefix[t], *i);
5726 if (!j)
5727 return -ENOMEM;
5728
5729 r = strv_consume(&l, j);
5730 if (r < 0)
5731 return r;
5732
5733 /* Also remove private directories unconditionally. */
5734 if (t != EXEC_DIRECTORY_CONFIGURATION) {
5735 j = path_join(prefix[t], "private", *i);
5736 if (!j)
5737 return -ENOMEM;
5738
5739 r = strv_consume(&l, j);
5740 if (r < 0)
5741 return r;
5742 }
5743 }
5744 }
5745
5746 *ret = TAKE_PTR(l);
5747 return 0;
5748 }
5749
5750 int exec_context_get_clean_mask(ExecContext *c, ExecCleanMask *ret) {
5751 ExecCleanMask mask = 0;
5752
5753 assert(c);
5754 assert(ret);
5755
5756 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
5757 if (!strv_isempty(c->directories[t].paths))
5758 mask |= 1U << t;
5759
5760 *ret = mask;
5761 return 0;
5762 }
5763
5764 void exec_status_start(ExecStatus *s, pid_t pid) {
5765 assert(s);
5766
5767 *s = (ExecStatus) {
5768 .pid = pid,
5769 };
5770
5771 dual_timestamp_get(&s->start_timestamp);
5772 }
5773
5774 void exec_status_exit(ExecStatus *s, const ExecContext *context, pid_t pid, int code, int status) {
5775 assert(s);
5776
5777 if (s->pid != pid) {
5778 *s = (ExecStatus) {
5779 .pid = pid,
5780 };
5781 }
5782
5783 dual_timestamp_get(&s->exit_timestamp);
5784
5785 s->code = code;
5786 s->status = status;
5787
5788 if (context && context->utmp_id)
5789 (void) utmp_put_dead_process(context->utmp_id, pid, code, status);
5790 }
5791
5792 void exec_status_reset(ExecStatus *s) {
5793 assert(s);
5794
5795 *s = (ExecStatus) {};
5796 }
5797
5798 void exec_status_dump(const ExecStatus *s, FILE *f, const char *prefix) {
5799 char buf[FORMAT_TIMESTAMP_MAX];
5800
5801 assert(s);
5802 assert(f);
5803
5804 if (s->pid <= 0)
5805 return;
5806
5807 prefix = strempty(prefix);
5808
5809 fprintf(f,
5810 "%sPID: "PID_FMT"\n",
5811 prefix, s->pid);
5812
5813 if (dual_timestamp_is_set(&s->start_timestamp))
5814 fprintf(f,
5815 "%sStart Timestamp: %s\n",
5816 prefix, format_timestamp(buf, sizeof(buf), s->start_timestamp.realtime));
5817
5818 if (dual_timestamp_is_set(&s->exit_timestamp))
5819 fprintf(f,
5820 "%sExit Timestamp: %s\n"
5821 "%sExit Code: %s\n"
5822 "%sExit Status: %i\n",
5823 prefix, format_timestamp(buf, sizeof(buf), s->exit_timestamp.realtime),
5824 prefix, sigchld_code_to_string(s->code),
5825 prefix, s->status);
5826 }
5827
5828 static char *exec_command_line(char **argv) {
5829 size_t k;
5830 char *n, *p, **a;
5831 bool first = true;
5832
5833 assert(argv);
5834
5835 k = 1;
5836 STRV_FOREACH(a, argv)
5837 k += strlen(*a)+3;
5838
5839 n = new(char, k);
5840 if (!n)
5841 return NULL;
5842
5843 p = n;
5844 STRV_FOREACH(a, argv) {
5845
5846 if (!first)
5847 *(p++) = ' ';
5848 else
5849 first = false;
5850
5851 if (strpbrk(*a, WHITESPACE)) {
5852 *(p++) = '\'';
5853 p = stpcpy(p, *a);
5854 *(p++) = '\'';
5855 } else
5856 p = stpcpy(p, *a);
5857
5858 }
5859
5860 *p = 0;
5861
5862 /* FIXME: this doesn't really handle arguments that have
5863 * spaces and ticks in them */
5864
5865 return n;
5866 }
5867
5868 static void exec_command_dump(ExecCommand *c, FILE *f, const char *prefix) {
5869 _cleanup_free_ char *cmd = NULL;
5870 const char *prefix2;
5871
5872 assert(c);
5873 assert(f);
5874
5875 prefix = strempty(prefix);
5876 prefix2 = strjoina(prefix, "\t");
5877
5878 cmd = exec_command_line(c->argv);
5879 fprintf(f,
5880 "%sCommand Line: %s\n",
5881 prefix, cmd ? cmd : strerror_safe(ENOMEM));
5882
5883 exec_status_dump(&c->exec_status, f, prefix2);
5884 }
5885
5886 void exec_command_dump_list(ExecCommand *c, FILE *f, const char *prefix) {
5887 assert(f);
5888
5889 prefix = strempty(prefix);
5890
5891 LIST_FOREACH(command, c, c)
5892 exec_command_dump(c, f, prefix);
5893 }
5894
5895 void exec_command_append_list(ExecCommand **l, ExecCommand *e) {
5896 ExecCommand *end;
5897
5898 assert(l);
5899 assert(e);
5900
5901 if (*l) {
5902 /* It's kind of important, that we keep the order here */
5903 LIST_FIND_TAIL(command, *l, end);
5904 LIST_INSERT_AFTER(command, *l, end, e);
5905 } else
5906 *l = e;
5907 }
5908
5909 int exec_command_set(ExecCommand *c, const char *path, ...) {
5910 va_list ap;
5911 char **l, *p;
5912
5913 assert(c);
5914 assert(path);
5915
5916 va_start(ap, path);
5917 l = strv_new_ap(path, ap);
5918 va_end(ap);
5919
5920 if (!l)
5921 return -ENOMEM;
5922
5923 p = strdup(path);
5924 if (!p) {
5925 strv_free(l);
5926 return -ENOMEM;
5927 }
5928
5929 free_and_replace(c->path, p);
5930
5931 return strv_free_and_replace(c->argv, l);
5932 }
5933
5934 int exec_command_append(ExecCommand *c, const char *path, ...) {
5935 _cleanup_strv_free_ char **l = NULL;
5936 va_list ap;
5937 int r;
5938
5939 assert(c);
5940 assert(path);
5941
5942 va_start(ap, path);
5943 l = strv_new_ap(path, ap);
5944 va_end(ap);
5945
5946 if (!l)
5947 return -ENOMEM;
5948
5949 r = strv_extend_strv(&c->argv, l, false);
5950 if (r < 0)
5951 return r;
5952
5953 return 0;
5954 }
5955
5956 static void *remove_tmpdir_thread(void *p) {
5957 _cleanup_free_ char *path = p;
5958
5959 (void) rm_rf(path, REMOVE_ROOT|REMOVE_PHYSICAL);
5960 return NULL;
5961 }
5962
5963 static ExecRuntime* exec_runtime_free(ExecRuntime *rt, bool destroy) {
5964 int r;
5965
5966 if (!rt)
5967 return NULL;
5968
5969 if (rt->manager)
5970 (void) hashmap_remove(rt->manager->exec_runtime_by_id, rt->id);
5971
5972 /* When destroy is true, then rm_rf tmp_dir and var_tmp_dir. */
5973
5974 if (destroy && rt->tmp_dir && !streq(rt->tmp_dir, RUN_SYSTEMD_EMPTY)) {
5975 log_debug("Spawning thread to nuke %s", rt->tmp_dir);
5976
5977 r = asynchronous_job(remove_tmpdir_thread, rt->tmp_dir);
5978 if (r < 0)
5979 log_warning_errno(r, "Failed to nuke %s: %m", rt->tmp_dir);
5980 else
5981 rt->tmp_dir = NULL;
5982 }
5983
5984 if (destroy && rt->var_tmp_dir && !streq(rt->var_tmp_dir, RUN_SYSTEMD_EMPTY)) {
5985 log_debug("Spawning thread to nuke %s", rt->var_tmp_dir);
5986
5987 r = asynchronous_job(remove_tmpdir_thread, rt->var_tmp_dir);
5988 if (r < 0)
5989 log_warning_errno(r, "Failed to nuke %s: %m", rt->var_tmp_dir);
5990 else
5991 rt->var_tmp_dir = NULL;
5992 }
5993
5994 rt->id = mfree(rt->id);
5995 rt->tmp_dir = mfree(rt->tmp_dir);
5996 rt->var_tmp_dir = mfree(rt->var_tmp_dir);
5997 safe_close_pair(rt->netns_storage_socket);
5998 return mfree(rt);
5999 }
6000
6001 static void exec_runtime_freep(ExecRuntime **rt) {
6002 (void) exec_runtime_free(*rt, false);
6003 }
6004
6005 static int exec_runtime_allocate(ExecRuntime **ret, const char *id) {
6006 _cleanup_free_ char *id_copy = NULL;
6007 ExecRuntime *n;
6008
6009 assert(ret);
6010
6011 id_copy = strdup(id);
6012 if (!id_copy)
6013 return -ENOMEM;
6014
6015 n = new(ExecRuntime, 1);
6016 if (!n)
6017 return -ENOMEM;
6018
6019 *n = (ExecRuntime) {
6020 .id = TAKE_PTR(id_copy),
6021 .netns_storage_socket = { -1, -1 },
6022 };
6023
6024 *ret = n;
6025 return 0;
6026 }
6027
6028 static int exec_runtime_add(
6029 Manager *m,
6030 const char *id,
6031 char **tmp_dir,
6032 char **var_tmp_dir,
6033 int netns_storage_socket[2],
6034 ExecRuntime **ret) {
6035
6036 _cleanup_(exec_runtime_freep) ExecRuntime *rt = NULL;
6037 int r;
6038
6039 assert(m);
6040 assert(id);
6041
6042 /* tmp_dir, var_tmp_dir, netns_storage_socket fds are donated on success */
6043
6044 r = hashmap_ensure_allocated(&m->exec_runtime_by_id, &string_hash_ops);
6045 if (r < 0)
6046 return r;
6047
6048 r = exec_runtime_allocate(&rt, id);
6049 if (r < 0)
6050 return r;
6051
6052 r = hashmap_put(m->exec_runtime_by_id, rt->id, rt);
6053 if (r < 0)
6054 return r;
6055
6056 assert(!!rt->tmp_dir == !!rt->var_tmp_dir); /* We require both to be set together */
6057 rt->tmp_dir = TAKE_PTR(*tmp_dir);
6058 rt->var_tmp_dir = TAKE_PTR(*var_tmp_dir);
6059
6060 if (netns_storage_socket) {
6061 rt->netns_storage_socket[0] = TAKE_FD(netns_storage_socket[0]);
6062 rt->netns_storage_socket[1] = TAKE_FD(netns_storage_socket[1]);
6063 }
6064
6065 rt->manager = m;
6066
6067 if (ret)
6068 *ret = rt;
6069 /* do not remove created ExecRuntime object when the operation succeeds. */
6070 TAKE_PTR(rt);
6071 return 0;
6072 }
6073
6074 static int exec_runtime_make(Manager *m, const ExecContext *c, const char *id, ExecRuntime **ret) {
6075 _cleanup_(namespace_cleanup_tmpdirp) char *tmp_dir = NULL, *var_tmp_dir = NULL;
6076 _cleanup_close_pair_ int netns_storage_socket[2] = { -1, -1 };
6077 int r;
6078
6079 assert(m);
6080 assert(c);
6081 assert(id);
6082
6083 /* It is not necessary to create ExecRuntime object. */
6084 if (!c->private_network && !c->private_tmp && !c->network_namespace_path)
6085 return 0;
6086
6087 if (c->private_tmp &&
6088 !(prefixed_path_strv_contains(c->inaccessible_paths, "/tmp") &&
6089 (prefixed_path_strv_contains(c->inaccessible_paths, "/var/tmp") ||
6090 prefixed_path_strv_contains(c->inaccessible_paths, "/var")))) {
6091 r = setup_tmp_dirs(id, &tmp_dir, &var_tmp_dir);
6092 if (r < 0)
6093 return r;
6094 }
6095
6096 if (c->private_network || c->network_namespace_path) {
6097 if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, netns_storage_socket) < 0)
6098 return -errno;
6099 }
6100
6101 r = exec_runtime_add(m, id, &tmp_dir, &var_tmp_dir, netns_storage_socket, ret);
6102 if (r < 0)
6103 return r;
6104
6105 return 1;
6106 }
6107
6108 int exec_runtime_acquire(Manager *m, const ExecContext *c, const char *id, bool create, ExecRuntime **ret) {
6109 ExecRuntime *rt;
6110 int r;
6111
6112 assert(m);
6113 assert(id);
6114 assert(ret);
6115
6116 rt = hashmap_get(m->exec_runtime_by_id, id);
6117 if (rt)
6118 /* We already have a ExecRuntime object, let's increase the ref count and reuse it */
6119 goto ref;
6120
6121 if (!create)
6122 return 0;
6123
6124 /* If not found, then create a new object. */
6125 r = exec_runtime_make(m, c, id, &rt);
6126 if (r <= 0)
6127 /* When r == 0, it is not necessary to create ExecRuntime object. */
6128 return r;
6129
6130 ref:
6131 /* increment reference counter. */
6132 rt->n_ref++;
6133 *ret = rt;
6134 return 1;
6135 }
6136
6137 ExecRuntime *exec_runtime_unref(ExecRuntime *rt, bool destroy) {
6138 if (!rt)
6139 return NULL;
6140
6141 assert(rt->n_ref > 0);
6142
6143 rt->n_ref--;
6144 if (rt->n_ref > 0)
6145 return NULL;
6146
6147 return exec_runtime_free(rt, destroy);
6148 }
6149
6150 int exec_runtime_serialize(const Manager *m, FILE *f, FDSet *fds) {
6151 ExecRuntime *rt;
6152
6153 assert(m);
6154 assert(f);
6155 assert(fds);
6156
6157 HASHMAP_FOREACH(rt, m->exec_runtime_by_id) {
6158 fprintf(f, "exec-runtime=%s", rt->id);
6159
6160 if (rt->tmp_dir)
6161 fprintf(f, " tmp-dir=%s", rt->tmp_dir);
6162
6163 if (rt->var_tmp_dir)
6164 fprintf(f, " var-tmp-dir=%s", rt->var_tmp_dir);
6165
6166 if (rt->netns_storage_socket[0] >= 0) {
6167 int copy;
6168
6169 copy = fdset_put_dup(fds, rt->netns_storage_socket[0]);
6170 if (copy < 0)
6171 return copy;
6172
6173 fprintf(f, " netns-socket-0=%i", copy);
6174 }
6175
6176 if (rt->netns_storage_socket[1] >= 0) {
6177 int copy;
6178
6179 copy = fdset_put_dup(fds, rt->netns_storage_socket[1]);
6180 if (copy < 0)
6181 return copy;
6182
6183 fprintf(f, " netns-socket-1=%i", copy);
6184 }
6185
6186 fputc('\n', f);
6187 }
6188
6189 return 0;
6190 }
6191
6192 int exec_runtime_deserialize_compat(Unit *u, const char *key, const char *value, FDSet *fds) {
6193 _cleanup_(exec_runtime_freep) ExecRuntime *rt_create = NULL;
6194 ExecRuntime *rt;
6195 int r;
6196
6197 /* This is for the migration from old (v237 or earlier) deserialization text.
6198 * Due to the bug #7790, this may not work with the units that use JoinsNamespaceOf=.
6199 * Even if the ExecRuntime object originally created by the other unit, we cannot judge
6200 * so or not from the serialized text, then we always creates a new object owned by this. */
6201
6202 assert(u);
6203 assert(key);
6204 assert(value);
6205
6206 /* Manager manages ExecRuntime objects by the unit id.
6207 * So, we omit the serialized text when the unit does not have id (yet?)... */
6208 if (isempty(u->id)) {
6209 log_unit_debug(u, "Invocation ID not found. Dropping runtime parameter.");
6210 return 0;
6211 }
6212
6213 r = hashmap_ensure_allocated(&u->manager->exec_runtime_by_id, &string_hash_ops);
6214 if (r < 0) {
6215 log_unit_debug_errno(u, r, "Failed to allocate storage for runtime parameter: %m");
6216 return 0;
6217 }
6218
6219 rt = hashmap_get(u->manager->exec_runtime_by_id, u->id);
6220 if (!rt) {
6221 r = exec_runtime_allocate(&rt_create, u->id);
6222 if (r < 0)
6223 return log_oom();
6224
6225 rt = rt_create;
6226 }
6227
6228 if (streq(key, "tmp-dir")) {
6229 char *copy;
6230
6231 copy = strdup(value);
6232 if (!copy)
6233 return log_oom();
6234
6235 free_and_replace(rt->tmp_dir, copy);
6236
6237 } else if (streq(key, "var-tmp-dir")) {
6238 char *copy;
6239
6240 copy = strdup(value);
6241 if (!copy)
6242 return log_oom();
6243
6244 free_and_replace(rt->var_tmp_dir, copy);
6245
6246 } else if (streq(key, "netns-socket-0")) {
6247 int fd;
6248
6249 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
6250 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
6251 return 0;
6252 }
6253
6254 safe_close(rt->netns_storage_socket[0]);
6255 rt->netns_storage_socket[0] = fdset_remove(fds, fd);
6256
6257 } else if (streq(key, "netns-socket-1")) {
6258 int fd;
6259
6260 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
6261 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
6262 return 0;
6263 }
6264
6265 safe_close(rt->netns_storage_socket[1]);
6266 rt->netns_storage_socket[1] = fdset_remove(fds, fd);
6267 } else
6268 return 0;
6269
6270 /* If the object is newly created, then put it to the hashmap which manages ExecRuntime objects. */
6271 if (rt_create) {
6272 r = hashmap_put(u->manager->exec_runtime_by_id, rt_create->id, rt_create);
6273 if (r < 0) {
6274 log_unit_debug_errno(u, r, "Failed to put runtime parameter to manager's storage: %m");
6275 return 0;
6276 }
6277
6278 rt_create->manager = u->manager;
6279
6280 /* Avoid cleanup */
6281 TAKE_PTR(rt_create);
6282 }
6283
6284 return 1;
6285 }
6286
6287 int exec_runtime_deserialize_one(Manager *m, const char *value, FDSet *fds) {
6288 _cleanup_free_ char *tmp_dir = NULL, *var_tmp_dir = NULL;
6289 char *id = NULL;
6290 int r, fdpair[] = {-1, -1};
6291 const char *p, *v = value;
6292 size_t n;
6293
6294 assert(m);
6295 assert(value);
6296 assert(fds);
6297
6298 n = strcspn(v, " ");
6299 id = strndupa(v, n);
6300 if (v[n] != ' ')
6301 goto finalize;
6302 p = v + n + 1;
6303
6304 v = startswith(p, "tmp-dir=");
6305 if (v) {
6306 n = strcspn(v, " ");
6307 tmp_dir = strndup(v, n);
6308 if (!tmp_dir)
6309 return log_oom();
6310 if (v[n] != ' ')
6311 goto finalize;
6312 p = v + n + 1;
6313 }
6314
6315 v = startswith(p, "var-tmp-dir=");
6316 if (v) {
6317 n = strcspn(v, " ");
6318 var_tmp_dir = strndup(v, n);
6319 if (!var_tmp_dir)
6320 return log_oom();
6321 if (v[n] != ' ')
6322 goto finalize;
6323 p = v + n + 1;
6324 }
6325
6326 v = startswith(p, "netns-socket-0=");
6327 if (v) {
6328 char *buf;
6329
6330 n = strcspn(v, " ");
6331 buf = strndupa(v, n);
6332
6333 r = safe_atoi(buf, &fdpair[0]);
6334 if (r < 0)
6335 return log_debug_errno(r, "Unable to parse exec-runtime specification netns-socket-0=%s: %m", buf);
6336 if (!fdset_contains(fds, fdpair[0]))
6337 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
6338 "exec-runtime specification netns-socket-0= refers to unknown fd %d: %m", fdpair[0]);
6339 fdpair[0] = fdset_remove(fds, fdpair[0]);
6340 if (v[n] != ' ')
6341 goto finalize;
6342 p = v + n + 1;
6343 }
6344
6345 v = startswith(p, "netns-socket-1=");
6346 if (v) {
6347 char *buf;
6348
6349 n = strcspn(v, " ");
6350 buf = strndupa(v, n);
6351 r = safe_atoi(buf, &fdpair[1]);
6352 if (r < 0)
6353 return log_debug_errno(r, "Unable to parse exec-runtime specification netns-socket-1=%s: %m", buf);
6354 if (!fdset_contains(fds, fdpair[0]))
6355 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
6356 "exec-runtime specification netns-socket-1= refers to unknown fd %d: %m", fdpair[1]);
6357 fdpair[1] = fdset_remove(fds, fdpair[1]);
6358 }
6359
6360 finalize:
6361 r = exec_runtime_add(m, id, &tmp_dir, &var_tmp_dir, fdpair, NULL);
6362 if (r < 0)
6363 return log_debug_errno(r, "Failed to add exec-runtime: %m");
6364 return 0;
6365 }
6366
6367 void exec_runtime_vacuum(Manager *m) {
6368 ExecRuntime *rt;
6369
6370 assert(m);
6371
6372 /* Free unreferenced ExecRuntime objects. This is used after manager deserialization process. */
6373
6374 HASHMAP_FOREACH(rt, m->exec_runtime_by_id) {
6375 if (rt->n_ref > 0)
6376 continue;
6377
6378 (void) exec_runtime_free(rt, false);
6379 }
6380 }
6381
6382 void exec_params_clear(ExecParameters *p) {
6383 if (!p)
6384 return;
6385
6386 p->environment = strv_free(p->environment);
6387 p->fd_names = strv_free(p->fd_names);
6388 p->fds = mfree(p->fds);
6389 p->exec_fd = safe_close(p->exec_fd);
6390 }
6391
6392 ExecSetCredential *exec_set_credential_free(ExecSetCredential *sc) {
6393 if (!sc)
6394 return NULL;
6395
6396 free(sc->id);
6397 free(sc->data);
6398 return mfree(sc);
6399 }
6400
6401 DEFINE_HASH_OPS_WITH_VALUE_DESTRUCTOR(exec_set_credential_hash_ops, char, string_hash_func, string_compare_func, ExecSetCredential, exec_set_credential_free);
6402
6403 static const char* const exec_input_table[_EXEC_INPUT_MAX] = {
6404 [EXEC_INPUT_NULL] = "null",
6405 [EXEC_INPUT_TTY] = "tty",
6406 [EXEC_INPUT_TTY_FORCE] = "tty-force",
6407 [EXEC_INPUT_TTY_FAIL] = "tty-fail",
6408 [EXEC_INPUT_SOCKET] = "socket",
6409 [EXEC_INPUT_NAMED_FD] = "fd",
6410 [EXEC_INPUT_DATA] = "data",
6411 [EXEC_INPUT_FILE] = "file",
6412 };
6413
6414 DEFINE_STRING_TABLE_LOOKUP(exec_input, ExecInput);
6415
6416 static const char* const exec_output_table[_EXEC_OUTPUT_MAX] = {
6417 [EXEC_OUTPUT_INHERIT] = "inherit",
6418 [EXEC_OUTPUT_NULL] = "null",
6419 [EXEC_OUTPUT_TTY] = "tty",
6420 [EXEC_OUTPUT_KMSG] = "kmsg",
6421 [EXEC_OUTPUT_KMSG_AND_CONSOLE] = "kmsg+console",
6422 [EXEC_OUTPUT_JOURNAL] = "journal",
6423 [EXEC_OUTPUT_JOURNAL_AND_CONSOLE] = "journal+console",
6424 [EXEC_OUTPUT_SOCKET] = "socket",
6425 [EXEC_OUTPUT_NAMED_FD] = "fd",
6426 [EXEC_OUTPUT_FILE] = "file",
6427 [EXEC_OUTPUT_FILE_APPEND] = "append",
6428 };
6429
6430 DEFINE_STRING_TABLE_LOOKUP(exec_output, ExecOutput);
6431
6432 static const char* const exec_utmp_mode_table[_EXEC_UTMP_MODE_MAX] = {
6433 [EXEC_UTMP_INIT] = "init",
6434 [EXEC_UTMP_LOGIN] = "login",
6435 [EXEC_UTMP_USER] = "user",
6436 };
6437
6438 DEFINE_STRING_TABLE_LOOKUP(exec_utmp_mode, ExecUtmpMode);
6439
6440 static const char* const exec_preserve_mode_table[_EXEC_PRESERVE_MODE_MAX] = {
6441 [EXEC_PRESERVE_NO] = "no",
6442 [EXEC_PRESERVE_YES] = "yes",
6443 [EXEC_PRESERVE_RESTART] = "restart",
6444 };
6445
6446 DEFINE_STRING_TABLE_LOOKUP_WITH_BOOLEAN(exec_preserve_mode, ExecPreserveMode, EXEC_PRESERVE_YES);
6447
6448 /* This table maps ExecDirectoryType to the setting it is configured with in the unit */
6449 static const char* const exec_directory_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
6450 [EXEC_DIRECTORY_RUNTIME] = "RuntimeDirectory",
6451 [EXEC_DIRECTORY_STATE] = "StateDirectory",
6452 [EXEC_DIRECTORY_CACHE] = "CacheDirectory",
6453 [EXEC_DIRECTORY_LOGS] = "LogsDirectory",
6454 [EXEC_DIRECTORY_CONFIGURATION] = "ConfigurationDirectory",
6455 };
6456
6457 DEFINE_STRING_TABLE_LOOKUP(exec_directory_type, ExecDirectoryType);
6458
6459 /* And this table maps ExecDirectoryType too, but to a generic term identifying the type of resource. This
6460 * one is supposed to be generic enough to be used for unit types that don't use ExecContext and per-unit
6461 * directories, specifically .timer units with their timestamp touch file. */
6462 static const char* const exec_resource_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
6463 [EXEC_DIRECTORY_RUNTIME] = "runtime",
6464 [EXEC_DIRECTORY_STATE] = "state",
6465 [EXEC_DIRECTORY_CACHE] = "cache",
6466 [EXEC_DIRECTORY_LOGS] = "logs",
6467 [EXEC_DIRECTORY_CONFIGURATION] = "configuration",
6468 };
6469
6470 DEFINE_STRING_TABLE_LOOKUP(exec_resource_type, ExecDirectoryType);
6471
6472 /* And this table also maps ExecDirectoryType, to the environment variable we pass the selected directory to
6473 * the service payload in. */
6474 static const char* const exec_directory_env_name_table[_EXEC_DIRECTORY_TYPE_MAX] = {
6475 [EXEC_DIRECTORY_RUNTIME] = "RUNTIME_DIRECTORY",
6476 [EXEC_DIRECTORY_STATE] = "STATE_DIRECTORY",
6477 [EXEC_DIRECTORY_CACHE] = "CACHE_DIRECTORY",
6478 [EXEC_DIRECTORY_LOGS] = "LOGS_DIRECTORY",
6479 [EXEC_DIRECTORY_CONFIGURATION] = "CONFIGURATION_DIRECTORY",
6480 };
6481
6482 DEFINE_PRIVATE_STRING_TABLE_LOOKUP_TO_STRING(exec_directory_env_name, ExecDirectoryType);
6483
6484 static const char* const exec_keyring_mode_table[_EXEC_KEYRING_MODE_MAX] = {
6485 [EXEC_KEYRING_INHERIT] = "inherit",
6486 [EXEC_KEYRING_PRIVATE] = "private",
6487 [EXEC_KEYRING_SHARED] = "shared",
6488 };
6489
6490 DEFINE_STRING_TABLE_LOOKUP(exec_keyring_mode, ExecKeyringMode);