]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/execute.c
cgroup: s/cgroups? ?v?([0-9])/cgroup v\1/gI
[thirdparty/systemd.git] / src / core / execute.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <errno.h>
4 #include <fcntl.h>
5 #include <glob.h>
6 #include <grp.h>
7 #include <poll.h>
8 #include <signal.h>
9 #include <string.h>
10 #include <sys/capability.h>
11 #include <sys/eventfd.h>
12 #include <sys/mman.h>
13 #include <sys/personality.h>
14 #include <sys/prctl.h>
15 #include <sys/shm.h>
16 #include <sys/socket.h>
17 #include <sys/stat.h>
18 #include <sys/types.h>
19 #include <sys/un.h>
20 #include <unistd.h>
21 #include <utmpx.h>
22
23 #if HAVE_PAM
24 #include <security/pam_appl.h>
25 #endif
26
27 #if HAVE_SELINUX
28 #include <selinux/selinux.h>
29 #endif
30
31 #if HAVE_SECCOMP
32 #include <seccomp.h>
33 #endif
34
35 #if HAVE_APPARMOR
36 #include <sys/apparmor.h>
37 #endif
38
39 #include "sd-messages.h"
40
41 #include "af-list.h"
42 #include "alloc-util.h"
43 #if HAVE_APPARMOR
44 #include "apparmor-util.h"
45 #endif
46 #include "async.h"
47 #include "barrier.h"
48 #include "cap-list.h"
49 #include "capability-util.h"
50 #include "chown-recursive.h"
51 #include "cpu-set-util.h"
52 #include "def.h"
53 #include "env-file.h"
54 #include "env-util.h"
55 #include "errno-list.h"
56 #include "execute.h"
57 #include "exit-status.h"
58 #include "fd-util.h"
59 #include "format-util.h"
60 #include "fs-util.h"
61 #include "glob-util.h"
62 #include "io-util.h"
63 #include "ioprio.h"
64 #include "label.h"
65 #include "log.h"
66 #include "macro.h"
67 #include "manager.h"
68 #include "missing.h"
69 #include "mkdir.h"
70 #include "namespace.h"
71 #include "parse-util.h"
72 #include "path-util.h"
73 #include "process-util.h"
74 #include "rlimit-util.h"
75 #include "rm-rf.h"
76 #if HAVE_SECCOMP
77 #include "seccomp-util.h"
78 #endif
79 #include "securebits-util.h"
80 #include "selinux-util.h"
81 #include "signal-util.h"
82 #include "smack-util.h"
83 #include "socket-util.h"
84 #include "special.h"
85 #include "stat-util.h"
86 #include "string-table.h"
87 #include "string-util.h"
88 #include "strv.h"
89 #include "syslog-util.h"
90 #include "terminal-util.h"
91 #include "umask-util.h"
92 #include "unit.h"
93 #include "user-util.h"
94 #include "util.h"
95 #include "utmp-wtmp.h"
96
97 #define IDLE_TIMEOUT_USEC (5*USEC_PER_SEC)
98 #define IDLE_TIMEOUT2_USEC (1*USEC_PER_SEC)
99
100 /* This assumes there is a 'tty' group */
101 #define TTY_MODE 0620
102
103 #define SNDBUF_SIZE (8*1024*1024)
104
105 static int shift_fds(int fds[], size_t n_fds) {
106 int start, restart_from;
107
108 if (n_fds <= 0)
109 return 0;
110
111 /* Modifies the fds array! (sorts it) */
112
113 assert(fds);
114
115 start = 0;
116 for (;;) {
117 int i;
118
119 restart_from = -1;
120
121 for (i = start; i < (int) n_fds; i++) {
122 int nfd;
123
124 /* Already at right index? */
125 if (fds[i] == i+3)
126 continue;
127
128 nfd = fcntl(fds[i], F_DUPFD, i + 3);
129 if (nfd < 0)
130 return -errno;
131
132 safe_close(fds[i]);
133 fds[i] = nfd;
134
135 /* Hmm, the fd we wanted isn't free? Then
136 * let's remember that and try again from here */
137 if (nfd != i+3 && restart_from < 0)
138 restart_from = i;
139 }
140
141 if (restart_from < 0)
142 break;
143
144 start = restart_from;
145 }
146
147 return 0;
148 }
149
150 static int flags_fds(const int fds[], size_t n_socket_fds, size_t n_storage_fds, bool nonblock) {
151 size_t i, n_fds;
152 int r;
153
154 n_fds = n_socket_fds + n_storage_fds;
155 if (n_fds <= 0)
156 return 0;
157
158 assert(fds);
159
160 /* Drops/Sets O_NONBLOCK and FD_CLOEXEC from the file flags.
161 * O_NONBLOCK only applies to socket activation though. */
162
163 for (i = 0; i < n_fds; i++) {
164
165 if (i < n_socket_fds) {
166 r = fd_nonblock(fds[i], nonblock);
167 if (r < 0)
168 return r;
169 }
170
171 /* We unconditionally drop FD_CLOEXEC from the fds,
172 * since after all we want to pass these fds to our
173 * children */
174
175 r = fd_cloexec(fds[i], false);
176 if (r < 0)
177 return r;
178 }
179
180 return 0;
181 }
182
183 static const char *exec_context_tty_path(const ExecContext *context) {
184 assert(context);
185
186 if (context->stdio_as_fds)
187 return NULL;
188
189 if (context->tty_path)
190 return context->tty_path;
191
192 return "/dev/console";
193 }
194
195 static void exec_context_tty_reset(const ExecContext *context, const ExecParameters *p) {
196 const char *path;
197
198 assert(context);
199
200 path = exec_context_tty_path(context);
201
202 if (context->tty_vhangup) {
203 if (p && p->stdin_fd >= 0)
204 (void) terminal_vhangup_fd(p->stdin_fd);
205 else if (path)
206 (void) terminal_vhangup(path);
207 }
208
209 if (context->tty_reset) {
210 if (p && p->stdin_fd >= 0)
211 (void) reset_terminal_fd(p->stdin_fd, true);
212 else if (path)
213 (void) reset_terminal(path);
214 }
215
216 if (context->tty_vt_disallocate && path)
217 (void) vt_disallocate(path);
218 }
219
220 static bool is_terminal_input(ExecInput i) {
221 return IN_SET(i,
222 EXEC_INPUT_TTY,
223 EXEC_INPUT_TTY_FORCE,
224 EXEC_INPUT_TTY_FAIL);
225 }
226
227 static bool is_terminal_output(ExecOutput o) {
228 return IN_SET(o,
229 EXEC_OUTPUT_TTY,
230 EXEC_OUTPUT_SYSLOG_AND_CONSOLE,
231 EXEC_OUTPUT_KMSG_AND_CONSOLE,
232 EXEC_OUTPUT_JOURNAL_AND_CONSOLE);
233 }
234
235 static bool is_syslog_output(ExecOutput o) {
236 return IN_SET(o,
237 EXEC_OUTPUT_SYSLOG,
238 EXEC_OUTPUT_SYSLOG_AND_CONSOLE);
239 }
240
241 static bool is_kmsg_output(ExecOutput o) {
242 return IN_SET(o,
243 EXEC_OUTPUT_KMSG,
244 EXEC_OUTPUT_KMSG_AND_CONSOLE);
245 }
246
247 static bool exec_context_needs_term(const ExecContext *c) {
248 assert(c);
249
250 /* Return true if the execution context suggests we should set $TERM to something useful. */
251
252 if (is_terminal_input(c->std_input))
253 return true;
254
255 if (is_terminal_output(c->std_output))
256 return true;
257
258 if (is_terminal_output(c->std_error))
259 return true;
260
261 return !!c->tty_path;
262 }
263
264 static int open_null_as(int flags, int nfd) {
265 int fd;
266
267 assert(nfd >= 0);
268
269 fd = open("/dev/null", flags|O_NOCTTY);
270 if (fd < 0)
271 return -errno;
272
273 return move_fd(fd, nfd, false);
274 }
275
276 static int connect_journal_socket(int fd, uid_t uid, gid_t gid) {
277 static const union sockaddr_union sa = {
278 .un.sun_family = AF_UNIX,
279 .un.sun_path = "/run/systemd/journal/stdout",
280 };
281 uid_t olduid = UID_INVALID;
282 gid_t oldgid = GID_INVALID;
283 int r;
284
285 if (gid_is_valid(gid)) {
286 oldgid = getgid();
287
288 if (setegid(gid) < 0)
289 return -errno;
290 }
291
292 if (uid_is_valid(uid)) {
293 olduid = getuid();
294
295 if (seteuid(uid) < 0) {
296 r = -errno;
297 goto restore_gid;
298 }
299 }
300
301 r = connect(fd, &sa.sa, SOCKADDR_UN_LEN(sa.un)) < 0 ? -errno : 0;
302
303 /* If we fail to restore the uid or gid, things will likely
304 fail later on. This should only happen if an LSM interferes. */
305
306 if (uid_is_valid(uid))
307 (void) seteuid(olduid);
308
309 restore_gid:
310 if (gid_is_valid(gid))
311 (void) setegid(oldgid);
312
313 return r;
314 }
315
316 static int connect_logger_as(
317 const Unit *unit,
318 const ExecContext *context,
319 const ExecParameters *params,
320 ExecOutput output,
321 const char *ident,
322 int nfd,
323 uid_t uid,
324 gid_t gid) {
325
326 _cleanup_close_ int fd = -1;
327 int r;
328
329 assert(context);
330 assert(params);
331 assert(output < _EXEC_OUTPUT_MAX);
332 assert(ident);
333 assert(nfd >= 0);
334
335 fd = socket(AF_UNIX, SOCK_STREAM, 0);
336 if (fd < 0)
337 return -errno;
338
339 r = connect_journal_socket(fd, uid, gid);
340 if (r < 0)
341 return r;
342
343 if (shutdown(fd, SHUT_RD) < 0)
344 return -errno;
345
346 (void) fd_inc_sndbuf(fd, SNDBUF_SIZE);
347
348 if (dprintf(fd,
349 "%s\n"
350 "%s\n"
351 "%i\n"
352 "%i\n"
353 "%i\n"
354 "%i\n"
355 "%i\n",
356 context->syslog_identifier ?: ident,
357 params->flags & EXEC_PASS_LOG_UNIT ? unit->id : "",
358 context->syslog_priority,
359 !!context->syslog_level_prefix,
360 is_syslog_output(output),
361 is_kmsg_output(output),
362 is_terminal_output(output)) < 0)
363 return -errno;
364
365 return move_fd(TAKE_FD(fd), nfd, false);
366 }
367
368 static int open_terminal_as(const char *path, int flags, int nfd) {
369 int fd;
370
371 assert(path);
372 assert(nfd >= 0);
373
374 fd = open_terminal(path, flags | O_NOCTTY);
375 if (fd < 0)
376 return fd;
377
378 return move_fd(fd, nfd, false);
379 }
380
381 static int acquire_path(const char *path, int flags, mode_t mode) {
382 union sockaddr_union sa = {};
383 _cleanup_close_ int fd = -1;
384 int r, salen;
385
386 assert(path);
387
388 if (IN_SET(flags & O_ACCMODE, O_WRONLY, O_RDWR))
389 flags |= O_CREAT;
390
391 fd = open(path, flags|O_NOCTTY, mode);
392 if (fd >= 0)
393 return TAKE_FD(fd);
394
395 if (errno != ENXIO) /* ENXIO is returned when we try to open() an AF_UNIX file system socket on Linux */
396 return -errno;
397 if (strlen(path) >= sizeof(sa.un.sun_path)) /* Too long, can't be a UNIX socket */
398 return -ENXIO;
399
400 /* So, it appears the specified path could be an AF_UNIX socket. Let's see if we can connect to it. */
401
402 fd = socket(AF_UNIX, SOCK_STREAM, 0);
403 if (fd < 0)
404 return -errno;
405
406 salen = sockaddr_un_set_path(&sa.un, path);
407 if (salen < 0)
408 return salen;
409
410 if (connect(fd, &sa.sa, salen) < 0)
411 return errno == EINVAL ? -ENXIO : -errno; /* Propagate initial error if we get EINVAL, i.e. we have
412 * indication that his wasn't an AF_UNIX socket after all */
413
414 if ((flags & O_ACCMODE) == O_RDONLY)
415 r = shutdown(fd, SHUT_WR);
416 else if ((flags & O_ACCMODE) == O_WRONLY)
417 r = shutdown(fd, SHUT_RD);
418 else
419 return TAKE_FD(fd);
420 if (r < 0)
421 return -errno;
422
423 return TAKE_FD(fd);
424 }
425
426 static int fixup_input(
427 const ExecContext *context,
428 int socket_fd,
429 bool apply_tty_stdin) {
430
431 ExecInput std_input;
432
433 assert(context);
434
435 std_input = context->std_input;
436
437 if (is_terminal_input(std_input) && !apply_tty_stdin)
438 return EXEC_INPUT_NULL;
439
440 if (std_input == EXEC_INPUT_SOCKET && socket_fd < 0)
441 return EXEC_INPUT_NULL;
442
443 if (std_input == EXEC_INPUT_DATA && context->stdin_data_size == 0)
444 return EXEC_INPUT_NULL;
445
446 return std_input;
447 }
448
449 static int fixup_output(ExecOutput std_output, int socket_fd) {
450
451 if (std_output == EXEC_OUTPUT_SOCKET && socket_fd < 0)
452 return EXEC_OUTPUT_INHERIT;
453
454 return std_output;
455 }
456
457 static int setup_input(
458 const ExecContext *context,
459 const ExecParameters *params,
460 int socket_fd,
461 int named_iofds[3]) {
462
463 ExecInput i;
464
465 assert(context);
466 assert(params);
467
468 if (params->stdin_fd >= 0) {
469 if (dup2(params->stdin_fd, STDIN_FILENO) < 0)
470 return -errno;
471
472 /* Try to make this the controlling tty, if it is a tty, and reset it */
473 if (isatty(STDIN_FILENO)) {
474 (void) ioctl(STDIN_FILENO, TIOCSCTTY, context->std_input == EXEC_INPUT_TTY_FORCE);
475 (void) reset_terminal_fd(STDIN_FILENO, true);
476 }
477
478 return STDIN_FILENO;
479 }
480
481 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
482
483 switch (i) {
484
485 case EXEC_INPUT_NULL:
486 return open_null_as(O_RDONLY, STDIN_FILENO);
487
488 case EXEC_INPUT_TTY:
489 case EXEC_INPUT_TTY_FORCE:
490 case EXEC_INPUT_TTY_FAIL: {
491 int fd;
492
493 fd = acquire_terminal(exec_context_tty_path(context),
494 i == EXEC_INPUT_TTY_FAIL ? ACQUIRE_TERMINAL_TRY :
495 i == EXEC_INPUT_TTY_FORCE ? ACQUIRE_TERMINAL_FORCE :
496 ACQUIRE_TERMINAL_WAIT,
497 USEC_INFINITY);
498 if (fd < 0)
499 return fd;
500
501 return move_fd(fd, STDIN_FILENO, false);
502 }
503
504 case EXEC_INPUT_SOCKET:
505 assert(socket_fd >= 0);
506
507 return dup2(socket_fd, STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
508
509 case EXEC_INPUT_NAMED_FD:
510 assert(named_iofds[STDIN_FILENO] >= 0);
511
512 (void) fd_nonblock(named_iofds[STDIN_FILENO], false);
513 return dup2(named_iofds[STDIN_FILENO], STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
514
515 case EXEC_INPUT_DATA: {
516 int fd;
517
518 fd = acquire_data_fd(context->stdin_data, context->stdin_data_size, 0);
519 if (fd < 0)
520 return fd;
521
522 return move_fd(fd, STDIN_FILENO, false);
523 }
524
525 case EXEC_INPUT_FILE: {
526 bool rw;
527 int fd;
528
529 assert(context->stdio_file[STDIN_FILENO]);
530
531 rw = (context->std_output == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDOUT_FILENO])) ||
532 (context->std_error == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDERR_FILENO]));
533
534 fd = acquire_path(context->stdio_file[STDIN_FILENO], rw ? O_RDWR : O_RDONLY, 0666 & ~context->umask);
535 if (fd < 0)
536 return fd;
537
538 return move_fd(fd, STDIN_FILENO, false);
539 }
540
541 default:
542 assert_not_reached("Unknown input type");
543 }
544 }
545
546 static bool can_inherit_stderr_from_stdout(
547 const ExecContext *context,
548 ExecOutput o,
549 ExecOutput e) {
550
551 assert(context);
552
553 /* Returns true, if given the specified STDERR and STDOUT output we can directly dup() the stdout fd to the
554 * stderr fd */
555
556 if (e == EXEC_OUTPUT_INHERIT)
557 return true;
558 if (e != o)
559 return false;
560
561 if (e == EXEC_OUTPUT_NAMED_FD)
562 return streq_ptr(context->stdio_fdname[STDOUT_FILENO], context->stdio_fdname[STDERR_FILENO]);
563
564 if (IN_SET(e, EXEC_OUTPUT_FILE, EXEC_OUTPUT_FILE_APPEND))
565 return streq_ptr(context->stdio_file[STDOUT_FILENO], context->stdio_file[STDERR_FILENO]);
566
567 return true;
568 }
569
570 static int setup_output(
571 const Unit *unit,
572 const ExecContext *context,
573 const ExecParameters *params,
574 int fileno,
575 int socket_fd,
576 int named_iofds[3],
577 const char *ident,
578 uid_t uid,
579 gid_t gid,
580 dev_t *journal_stream_dev,
581 ino_t *journal_stream_ino) {
582
583 ExecOutput o;
584 ExecInput i;
585 int r;
586
587 assert(unit);
588 assert(context);
589 assert(params);
590 assert(ident);
591 assert(journal_stream_dev);
592 assert(journal_stream_ino);
593
594 if (fileno == STDOUT_FILENO && params->stdout_fd >= 0) {
595
596 if (dup2(params->stdout_fd, STDOUT_FILENO) < 0)
597 return -errno;
598
599 return STDOUT_FILENO;
600 }
601
602 if (fileno == STDERR_FILENO && params->stderr_fd >= 0) {
603 if (dup2(params->stderr_fd, STDERR_FILENO) < 0)
604 return -errno;
605
606 return STDERR_FILENO;
607 }
608
609 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
610 o = fixup_output(context->std_output, socket_fd);
611
612 if (fileno == STDERR_FILENO) {
613 ExecOutput e;
614 e = fixup_output(context->std_error, socket_fd);
615
616 /* This expects the input and output are already set up */
617
618 /* Don't change the stderr file descriptor if we inherit all
619 * the way and are not on a tty */
620 if (e == EXEC_OUTPUT_INHERIT &&
621 o == EXEC_OUTPUT_INHERIT &&
622 i == EXEC_INPUT_NULL &&
623 !is_terminal_input(context->std_input) &&
624 getppid () != 1)
625 return fileno;
626
627 /* Duplicate from stdout if possible */
628 if (can_inherit_stderr_from_stdout(context, o, e))
629 return dup2(STDOUT_FILENO, fileno) < 0 ? -errno : fileno;
630
631 o = e;
632
633 } else if (o == EXEC_OUTPUT_INHERIT) {
634 /* If input got downgraded, inherit the original value */
635 if (i == EXEC_INPUT_NULL && is_terminal_input(context->std_input))
636 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
637
638 /* If the input is connected to anything that's not a /dev/null or a data fd, inherit that... */
639 if (!IN_SET(i, EXEC_INPUT_NULL, EXEC_INPUT_DATA))
640 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
641
642 /* If we are not started from PID 1 we just inherit STDOUT from our parent process. */
643 if (getppid() != 1)
644 return fileno;
645
646 /* We need to open /dev/null here anew, to get the right access mode. */
647 return open_null_as(O_WRONLY, fileno);
648 }
649
650 switch (o) {
651
652 case EXEC_OUTPUT_NULL:
653 return open_null_as(O_WRONLY, fileno);
654
655 case EXEC_OUTPUT_TTY:
656 if (is_terminal_input(i))
657 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
658
659 /* We don't reset the terminal if this is just about output */
660 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
661
662 case EXEC_OUTPUT_SYSLOG:
663 case EXEC_OUTPUT_SYSLOG_AND_CONSOLE:
664 case EXEC_OUTPUT_KMSG:
665 case EXEC_OUTPUT_KMSG_AND_CONSOLE:
666 case EXEC_OUTPUT_JOURNAL:
667 case EXEC_OUTPUT_JOURNAL_AND_CONSOLE:
668 r = connect_logger_as(unit, context, params, o, ident, fileno, uid, gid);
669 if (r < 0) {
670 log_unit_warning_errno(unit, r, "Failed to connect %s to the journal socket, ignoring: %m", fileno == STDOUT_FILENO ? "stdout" : "stderr");
671 r = open_null_as(O_WRONLY, fileno);
672 } else {
673 struct stat st;
674
675 /* If we connected this fd to the journal via a stream, patch the device/inode into the passed
676 * parameters, but only then. This is useful so that we can set $JOURNAL_STREAM that permits
677 * services to detect whether they are connected to the journal or not.
678 *
679 * If both stdout and stderr are connected to a stream then let's make sure to store the data
680 * about STDERR as that's usually the best way to do logging. */
681
682 if (fstat(fileno, &st) >= 0 &&
683 (*journal_stream_ino == 0 || fileno == STDERR_FILENO)) {
684 *journal_stream_dev = st.st_dev;
685 *journal_stream_ino = st.st_ino;
686 }
687 }
688 return r;
689
690 case EXEC_OUTPUT_SOCKET:
691 assert(socket_fd >= 0);
692
693 return dup2(socket_fd, fileno) < 0 ? -errno : fileno;
694
695 case EXEC_OUTPUT_NAMED_FD:
696 assert(named_iofds[fileno] >= 0);
697
698 (void) fd_nonblock(named_iofds[fileno], false);
699 return dup2(named_iofds[fileno], fileno) < 0 ? -errno : fileno;
700
701 case EXEC_OUTPUT_FILE:
702 case EXEC_OUTPUT_FILE_APPEND: {
703 bool rw;
704 int fd, flags;
705
706 assert(context->stdio_file[fileno]);
707
708 rw = context->std_input == EXEC_INPUT_FILE &&
709 streq_ptr(context->stdio_file[fileno], context->stdio_file[STDIN_FILENO]);
710
711 if (rw)
712 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
713
714 flags = O_WRONLY;
715 if (o == EXEC_OUTPUT_FILE_APPEND)
716 flags |= O_APPEND;
717
718 fd = acquire_path(context->stdio_file[fileno], flags, 0666 & ~context->umask);
719 if (fd < 0)
720 return fd;
721
722 return move_fd(fd, fileno, 0);
723 }
724
725 default:
726 assert_not_reached("Unknown error type");
727 }
728 }
729
730 static int chown_terminal(int fd, uid_t uid) {
731 struct stat st;
732
733 assert(fd >= 0);
734
735 /* Before we chown/chmod the TTY, let's ensure this is actually a tty */
736 if (isatty(fd) < 1)
737 return 0;
738
739 /* This might fail. What matters are the results. */
740 (void) fchown(fd, uid, -1);
741 (void) fchmod(fd, TTY_MODE);
742
743 if (fstat(fd, &st) < 0)
744 return -errno;
745
746 if (st.st_uid != uid || (st.st_mode & 0777) != TTY_MODE)
747 return -EPERM;
748
749 return 0;
750 }
751
752 static int setup_confirm_stdio(const char *vc, int *_saved_stdin, int *_saved_stdout) {
753 _cleanup_close_ int fd = -1, saved_stdin = -1, saved_stdout = -1;
754 int r;
755
756 assert(_saved_stdin);
757 assert(_saved_stdout);
758
759 saved_stdin = fcntl(STDIN_FILENO, F_DUPFD, 3);
760 if (saved_stdin < 0)
761 return -errno;
762
763 saved_stdout = fcntl(STDOUT_FILENO, F_DUPFD, 3);
764 if (saved_stdout < 0)
765 return -errno;
766
767 fd = acquire_terminal(vc, ACQUIRE_TERMINAL_WAIT, DEFAULT_CONFIRM_USEC);
768 if (fd < 0)
769 return fd;
770
771 r = chown_terminal(fd, getuid());
772 if (r < 0)
773 return r;
774
775 r = reset_terminal_fd(fd, true);
776 if (r < 0)
777 return r;
778
779 r = rearrange_stdio(fd, fd, STDERR_FILENO);
780 fd = -1;
781 if (r < 0)
782 return r;
783
784 *_saved_stdin = saved_stdin;
785 *_saved_stdout = saved_stdout;
786
787 saved_stdin = saved_stdout = -1;
788
789 return 0;
790 }
791
792 static void write_confirm_error_fd(int err, int fd, const Unit *u) {
793 assert(err < 0);
794
795 if (err == -ETIMEDOUT)
796 dprintf(fd, "Confirmation question timed out for %s, assuming positive response.\n", u->id);
797 else {
798 errno = -err;
799 dprintf(fd, "Couldn't ask confirmation for %s: %m, assuming positive response.\n", u->id);
800 }
801 }
802
803 static void write_confirm_error(int err, const char *vc, const Unit *u) {
804 _cleanup_close_ int fd = -1;
805
806 assert(vc);
807
808 fd = open_terminal(vc, O_WRONLY|O_NOCTTY|O_CLOEXEC);
809 if (fd < 0)
810 return;
811
812 write_confirm_error_fd(err, fd, u);
813 }
814
815 static int restore_confirm_stdio(int *saved_stdin, int *saved_stdout) {
816 int r = 0;
817
818 assert(saved_stdin);
819 assert(saved_stdout);
820
821 release_terminal();
822
823 if (*saved_stdin >= 0)
824 if (dup2(*saved_stdin, STDIN_FILENO) < 0)
825 r = -errno;
826
827 if (*saved_stdout >= 0)
828 if (dup2(*saved_stdout, STDOUT_FILENO) < 0)
829 r = -errno;
830
831 *saved_stdin = safe_close(*saved_stdin);
832 *saved_stdout = safe_close(*saved_stdout);
833
834 return r;
835 }
836
837 enum {
838 CONFIRM_PRETEND_FAILURE = -1,
839 CONFIRM_PRETEND_SUCCESS = 0,
840 CONFIRM_EXECUTE = 1,
841 };
842
843 static int ask_for_confirmation(const char *vc, Unit *u, const char *cmdline) {
844 int saved_stdout = -1, saved_stdin = -1, r;
845 _cleanup_free_ char *e = NULL;
846 char c;
847
848 /* For any internal errors, assume a positive response. */
849 r = setup_confirm_stdio(vc, &saved_stdin, &saved_stdout);
850 if (r < 0) {
851 write_confirm_error(r, vc, u);
852 return CONFIRM_EXECUTE;
853 }
854
855 /* confirm_spawn might have been disabled while we were sleeping. */
856 if (manager_is_confirm_spawn_disabled(u->manager)) {
857 r = 1;
858 goto restore_stdio;
859 }
860
861 e = ellipsize(cmdline, 60, 100);
862 if (!e) {
863 log_oom();
864 r = CONFIRM_EXECUTE;
865 goto restore_stdio;
866 }
867
868 for (;;) {
869 r = ask_char(&c, "yfshiDjcn", "Execute %s? [y, f, s – h for help] ", e);
870 if (r < 0) {
871 write_confirm_error_fd(r, STDOUT_FILENO, u);
872 r = CONFIRM_EXECUTE;
873 goto restore_stdio;
874 }
875
876 switch (c) {
877 case 'c':
878 printf("Resuming normal execution.\n");
879 manager_disable_confirm_spawn();
880 r = 1;
881 break;
882 case 'D':
883 unit_dump(u, stdout, " ");
884 continue; /* ask again */
885 case 'f':
886 printf("Failing execution.\n");
887 r = CONFIRM_PRETEND_FAILURE;
888 break;
889 case 'h':
890 printf(" c - continue, proceed without asking anymore\n"
891 " D - dump, show the state of the unit\n"
892 " f - fail, don't execute the command and pretend it failed\n"
893 " h - help\n"
894 " i - info, show a short summary of the unit\n"
895 " j - jobs, show jobs that are in progress\n"
896 " s - skip, don't execute the command and pretend it succeeded\n"
897 " y - yes, execute the command\n");
898 continue; /* ask again */
899 case 'i':
900 printf(" Description: %s\n"
901 " Unit: %s\n"
902 " Command: %s\n",
903 u->id, u->description, cmdline);
904 continue; /* ask again */
905 case 'j':
906 manager_dump_jobs(u->manager, stdout, " ");
907 continue; /* ask again */
908 case 'n':
909 /* 'n' was removed in favor of 'f'. */
910 printf("Didn't understand 'n', did you mean 'f'?\n");
911 continue; /* ask again */
912 case 's':
913 printf("Skipping execution.\n");
914 r = CONFIRM_PRETEND_SUCCESS;
915 break;
916 case 'y':
917 r = CONFIRM_EXECUTE;
918 break;
919 default:
920 assert_not_reached("Unhandled choice");
921 }
922 break;
923 }
924
925 restore_stdio:
926 restore_confirm_stdio(&saved_stdin, &saved_stdout);
927 return r;
928 }
929
930 static int get_fixed_user(const ExecContext *c, const char **user,
931 uid_t *uid, gid_t *gid,
932 const char **home, const char **shell) {
933 int r;
934 const char *name;
935
936 assert(c);
937
938 if (!c->user)
939 return 0;
940
941 /* Note that we don't set $HOME or $SHELL if they are not particularly enlightening anyway
942 * (i.e. are "/" or "/bin/nologin"). */
943
944 name = c->user;
945 r = get_user_creds(&name, uid, gid, home, shell, USER_CREDS_CLEAN);
946 if (r < 0)
947 return r;
948
949 *user = name;
950 return 0;
951 }
952
953 static int get_fixed_group(const ExecContext *c, const char **group, gid_t *gid) {
954 int r;
955 const char *name;
956
957 assert(c);
958
959 if (!c->group)
960 return 0;
961
962 name = c->group;
963 r = get_group_creds(&name, gid, 0);
964 if (r < 0)
965 return r;
966
967 *group = name;
968 return 0;
969 }
970
971 static int get_supplementary_groups(const ExecContext *c, const char *user,
972 const char *group, gid_t gid,
973 gid_t **supplementary_gids, int *ngids) {
974 char **i;
975 int r, k = 0;
976 int ngroups_max;
977 bool keep_groups = false;
978 gid_t *groups = NULL;
979 _cleanup_free_ gid_t *l_gids = NULL;
980
981 assert(c);
982
983 /*
984 * If user is given, then lookup GID and supplementary groups list.
985 * We avoid NSS lookups for gid=0. Also we have to initialize groups
986 * here and as early as possible so we keep the list of supplementary
987 * groups of the caller.
988 */
989 if (user && gid_is_valid(gid) && gid != 0) {
990 /* First step, initialize groups from /etc/groups */
991 if (initgroups(user, gid) < 0)
992 return -errno;
993
994 keep_groups = true;
995 }
996
997 if (strv_isempty(c->supplementary_groups))
998 return 0;
999
1000 /*
1001 * If SupplementaryGroups= was passed then NGROUPS_MAX has to
1002 * be positive, otherwise fail.
1003 */
1004 errno = 0;
1005 ngroups_max = (int) sysconf(_SC_NGROUPS_MAX);
1006 if (ngroups_max <= 0) {
1007 if (errno > 0)
1008 return -errno;
1009 else
1010 return -EOPNOTSUPP; /* For all other values */
1011 }
1012
1013 l_gids = new(gid_t, ngroups_max);
1014 if (!l_gids)
1015 return -ENOMEM;
1016
1017 if (keep_groups) {
1018 /*
1019 * Lookup the list of groups that the user belongs to, we
1020 * avoid NSS lookups here too for gid=0.
1021 */
1022 k = ngroups_max;
1023 if (getgrouplist(user, gid, l_gids, &k) < 0)
1024 return -EINVAL;
1025 } else
1026 k = 0;
1027
1028 STRV_FOREACH(i, c->supplementary_groups) {
1029 const char *g;
1030
1031 if (k >= ngroups_max)
1032 return -E2BIG;
1033
1034 g = *i;
1035 r = get_group_creds(&g, l_gids+k, 0);
1036 if (r < 0)
1037 return r;
1038
1039 k++;
1040 }
1041
1042 /*
1043 * Sets ngids to zero to drop all supplementary groups, happens
1044 * when we are under root and SupplementaryGroups= is empty.
1045 */
1046 if (k == 0) {
1047 *ngids = 0;
1048 return 0;
1049 }
1050
1051 /* Otherwise get the final list of supplementary groups */
1052 groups = memdup(l_gids, sizeof(gid_t) * k);
1053 if (!groups)
1054 return -ENOMEM;
1055
1056 *supplementary_gids = groups;
1057 *ngids = k;
1058
1059 groups = NULL;
1060
1061 return 0;
1062 }
1063
1064 static int enforce_groups(gid_t gid, const gid_t *supplementary_gids, int ngids) {
1065 int r;
1066
1067 /* Handle SupplementaryGroups= if it is not empty */
1068 if (ngids > 0) {
1069 r = maybe_setgroups(ngids, supplementary_gids);
1070 if (r < 0)
1071 return r;
1072 }
1073
1074 if (gid_is_valid(gid)) {
1075 /* Then set our gids */
1076 if (setresgid(gid, gid, gid) < 0)
1077 return -errno;
1078 }
1079
1080 return 0;
1081 }
1082
1083 static int enforce_user(const ExecContext *context, uid_t uid) {
1084 assert(context);
1085
1086 if (!uid_is_valid(uid))
1087 return 0;
1088
1089 /* Sets (but doesn't look up) the uid and make sure we keep the
1090 * capabilities while doing so. */
1091
1092 if (context->capability_ambient_set != 0) {
1093
1094 /* First step: If we need to keep capabilities but
1095 * drop privileges we need to make sure we keep our
1096 * caps, while we drop privileges. */
1097 if (uid != 0) {
1098 int sb = context->secure_bits | 1<<SECURE_KEEP_CAPS;
1099
1100 if (prctl(PR_GET_SECUREBITS) != sb)
1101 if (prctl(PR_SET_SECUREBITS, sb) < 0)
1102 return -errno;
1103 }
1104 }
1105
1106 /* Second step: actually set the uids */
1107 if (setresuid(uid, uid, uid) < 0)
1108 return -errno;
1109
1110 /* At this point we should have all necessary capabilities but
1111 are otherwise a normal user. However, the caps might got
1112 corrupted due to the setresuid() so we need clean them up
1113 later. This is done outside of this call. */
1114
1115 return 0;
1116 }
1117
1118 #if HAVE_PAM
1119
1120 static int null_conv(
1121 int num_msg,
1122 const struct pam_message **msg,
1123 struct pam_response **resp,
1124 void *appdata_ptr) {
1125
1126 /* We don't support conversations */
1127
1128 return PAM_CONV_ERR;
1129 }
1130
1131 #endif
1132
1133 static int setup_pam(
1134 const char *name,
1135 const char *user,
1136 uid_t uid,
1137 gid_t gid,
1138 const char *tty,
1139 char ***env,
1140 int fds[], size_t n_fds) {
1141
1142 #if HAVE_PAM
1143
1144 static const struct pam_conv conv = {
1145 .conv = null_conv,
1146 .appdata_ptr = NULL
1147 };
1148
1149 _cleanup_(barrier_destroy) Barrier barrier = BARRIER_NULL;
1150 pam_handle_t *handle = NULL;
1151 sigset_t old_ss;
1152 int pam_code = PAM_SUCCESS, r;
1153 char **nv, **e = NULL;
1154 bool close_session = false;
1155 pid_t pam_pid = 0, parent_pid;
1156 int flags = 0;
1157
1158 assert(name);
1159 assert(user);
1160 assert(env);
1161
1162 /* We set up PAM in the parent process, then fork. The child
1163 * will then stay around until killed via PR_GET_PDEATHSIG or
1164 * systemd via the cgroup logic. It will then remove the PAM
1165 * session again. The parent process will exec() the actual
1166 * daemon. We do things this way to ensure that the main PID
1167 * of the daemon is the one we initially fork()ed. */
1168
1169 r = barrier_create(&barrier);
1170 if (r < 0)
1171 goto fail;
1172
1173 if (log_get_max_level() < LOG_DEBUG)
1174 flags |= PAM_SILENT;
1175
1176 pam_code = pam_start(name, user, &conv, &handle);
1177 if (pam_code != PAM_SUCCESS) {
1178 handle = NULL;
1179 goto fail;
1180 }
1181
1182 if (!tty) {
1183 _cleanup_free_ char *q = NULL;
1184
1185 /* Hmm, so no TTY was explicitly passed, but an fd passed to us directly might be a TTY. Let's figure
1186 * out if that's the case, and read the TTY off it. */
1187
1188 if (getttyname_malloc(STDIN_FILENO, &q) >= 0)
1189 tty = strjoina("/dev/", q);
1190 }
1191
1192 if (tty) {
1193 pam_code = pam_set_item(handle, PAM_TTY, tty);
1194 if (pam_code != PAM_SUCCESS)
1195 goto fail;
1196 }
1197
1198 STRV_FOREACH(nv, *env) {
1199 pam_code = pam_putenv(handle, *nv);
1200 if (pam_code != PAM_SUCCESS)
1201 goto fail;
1202 }
1203
1204 pam_code = pam_acct_mgmt(handle, flags);
1205 if (pam_code != PAM_SUCCESS)
1206 goto fail;
1207
1208 pam_code = pam_open_session(handle, flags);
1209 if (pam_code != PAM_SUCCESS)
1210 goto fail;
1211
1212 close_session = true;
1213
1214 e = pam_getenvlist(handle);
1215 if (!e) {
1216 pam_code = PAM_BUF_ERR;
1217 goto fail;
1218 }
1219
1220 /* Block SIGTERM, so that we know that it won't get lost in
1221 * the child */
1222
1223 assert_se(sigprocmask_many(SIG_BLOCK, &old_ss, SIGTERM, -1) >= 0);
1224
1225 parent_pid = getpid_cached();
1226
1227 r = safe_fork("(sd-pam)", 0, &pam_pid);
1228 if (r < 0)
1229 goto fail;
1230 if (r == 0) {
1231 int sig, ret = EXIT_PAM;
1232
1233 /* The child's job is to reset the PAM session on
1234 * termination */
1235 barrier_set_role(&barrier, BARRIER_CHILD);
1236
1237 /* Make sure we don't keep open the passed fds in this child. We assume that otherwise only those fds
1238 * are open here that have been opened by PAM. */
1239 (void) close_many(fds, n_fds);
1240
1241 /* Drop privileges - we don't need any to pam_close_session
1242 * and this will make PR_SET_PDEATHSIG work in most cases.
1243 * If this fails, ignore the error - but expect sd-pam threads
1244 * to fail to exit normally */
1245
1246 r = maybe_setgroups(0, NULL);
1247 if (r < 0)
1248 log_warning_errno(r, "Failed to setgroups() in sd-pam: %m");
1249 if (setresgid(gid, gid, gid) < 0)
1250 log_warning_errno(errno, "Failed to setresgid() in sd-pam: %m");
1251 if (setresuid(uid, uid, uid) < 0)
1252 log_warning_errno(errno, "Failed to setresuid() in sd-pam: %m");
1253
1254 (void) ignore_signals(SIGPIPE, -1);
1255
1256 /* Wait until our parent died. This will only work if
1257 * the above setresuid() succeeds, otherwise the kernel
1258 * will not allow unprivileged parents kill their privileged
1259 * children this way. We rely on the control groups kill logic
1260 * to do the rest for us. */
1261 if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0)
1262 goto child_finish;
1263
1264 /* Tell the parent that our setup is done. This is especially
1265 * important regarding dropping privileges. Otherwise, unit
1266 * setup might race against our setresuid(2) call.
1267 *
1268 * If the parent aborted, we'll detect this below, hence ignore
1269 * return failure here. */
1270 (void) barrier_place(&barrier);
1271
1272 /* Check if our parent process might already have died? */
1273 if (getppid() == parent_pid) {
1274 sigset_t ss;
1275
1276 assert_se(sigemptyset(&ss) >= 0);
1277 assert_se(sigaddset(&ss, SIGTERM) >= 0);
1278
1279 for (;;) {
1280 if (sigwait(&ss, &sig) < 0) {
1281 if (errno == EINTR)
1282 continue;
1283
1284 goto child_finish;
1285 }
1286
1287 assert(sig == SIGTERM);
1288 break;
1289 }
1290 }
1291
1292 /* If our parent died we'll end the session */
1293 if (getppid() != parent_pid) {
1294 pam_code = pam_close_session(handle, flags);
1295 if (pam_code != PAM_SUCCESS)
1296 goto child_finish;
1297 }
1298
1299 ret = 0;
1300
1301 child_finish:
1302 pam_end(handle, pam_code | flags);
1303 _exit(ret);
1304 }
1305
1306 barrier_set_role(&barrier, BARRIER_PARENT);
1307
1308 /* If the child was forked off successfully it will do all the
1309 * cleanups, so forget about the handle here. */
1310 handle = NULL;
1311
1312 /* Unblock SIGTERM again in the parent */
1313 assert_se(sigprocmask(SIG_SETMASK, &old_ss, NULL) >= 0);
1314
1315 /* We close the log explicitly here, since the PAM modules
1316 * might have opened it, but we don't want this fd around. */
1317 closelog();
1318
1319 /* Synchronously wait for the child to initialize. We don't care for
1320 * errors as we cannot recover. However, warn loudly if it happens. */
1321 if (!barrier_place_and_sync(&barrier))
1322 log_error("PAM initialization failed");
1323
1324 return strv_free_and_replace(*env, e);
1325
1326 fail:
1327 if (pam_code != PAM_SUCCESS) {
1328 log_error("PAM failed: %s", pam_strerror(handle, pam_code));
1329 r = -EPERM; /* PAM errors do not map to errno */
1330 } else
1331 log_error_errno(r, "PAM failed: %m");
1332
1333 if (handle) {
1334 if (close_session)
1335 pam_code = pam_close_session(handle, flags);
1336
1337 pam_end(handle, pam_code | flags);
1338 }
1339
1340 strv_free(e);
1341 closelog();
1342
1343 return r;
1344 #else
1345 return 0;
1346 #endif
1347 }
1348
1349 static void rename_process_from_path(const char *path) {
1350 char process_name[11];
1351 const char *p;
1352 size_t l;
1353
1354 /* This resulting string must fit in 10 chars (i.e. the length
1355 * of "/sbin/init") to look pretty in /bin/ps */
1356
1357 p = basename(path);
1358 if (isempty(p)) {
1359 rename_process("(...)");
1360 return;
1361 }
1362
1363 l = strlen(p);
1364 if (l > 8) {
1365 /* The end of the process name is usually more
1366 * interesting, since the first bit might just be
1367 * "systemd-" */
1368 p = p + l - 8;
1369 l = 8;
1370 }
1371
1372 process_name[0] = '(';
1373 memcpy(process_name+1, p, l);
1374 process_name[1+l] = ')';
1375 process_name[1+l+1] = 0;
1376
1377 rename_process(process_name);
1378 }
1379
1380 static bool context_has_address_families(const ExecContext *c) {
1381 assert(c);
1382
1383 return c->address_families_whitelist ||
1384 !set_isempty(c->address_families);
1385 }
1386
1387 static bool context_has_syscall_filters(const ExecContext *c) {
1388 assert(c);
1389
1390 return c->syscall_whitelist ||
1391 !hashmap_isempty(c->syscall_filter);
1392 }
1393
1394 static bool context_has_no_new_privileges(const ExecContext *c) {
1395 assert(c);
1396
1397 if (c->no_new_privileges)
1398 return true;
1399
1400 if (have_effective_cap(CAP_SYS_ADMIN)) /* if we are privileged, we don't need NNP */
1401 return false;
1402
1403 /* We need NNP if we have any form of seccomp and are unprivileged */
1404 return context_has_address_families(c) ||
1405 c->memory_deny_write_execute ||
1406 c->restrict_realtime ||
1407 exec_context_restrict_namespaces_set(c) ||
1408 c->protect_kernel_tunables ||
1409 c->protect_kernel_modules ||
1410 c->private_devices ||
1411 context_has_syscall_filters(c) ||
1412 !set_isempty(c->syscall_archs) ||
1413 c->lock_personality;
1414 }
1415
1416 #if HAVE_SECCOMP
1417
1418 static bool skip_seccomp_unavailable(const Unit* u, const char* msg) {
1419
1420 if (is_seccomp_available())
1421 return false;
1422
1423 log_unit_debug(u, "SECCOMP features not detected in the kernel, skipping %s", msg);
1424 return true;
1425 }
1426
1427 static int apply_syscall_filter(const Unit* u, const ExecContext *c, bool needs_ambient_hack) {
1428 uint32_t negative_action, default_action, action;
1429 int r;
1430
1431 assert(u);
1432 assert(c);
1433
1434 if (!context_has_syscall_filters(c))
1435 return 0;
1436
1437 if (skip_seccomp_unavailable(u, "SystemCallFilter="))
1438 return 0;
1439
1440 negative_action = c->syscall_errno == 0 ? SCMP_ACT_KILL : SCMP_ACT_ERRNO(c->syscall_errno);
1441
1442 if (c->syscall_whitelist) {
1443 default_action = negative_action;
1444 action = SCMP_ACT_ALLOW;
1445 } else {
1446 default_action = SCMP_ACT_ALLOW;
1447 action = negative_action;
1448 }
1449
1450 if (needs_ambient_hack) {
1451 r = seccomp_filter_set_add(c->syscall_filter, c->syscall_whitelist, syscall_filter_sets + SYSCALL_FILTER_SET_SETUID);
1452 if (r < 0)
1453 return r;
1454 }
1455
1456 return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_filter, action, false);
1457 }
1458
1459 static int apply_syscall_archs(const Unit *u, const ExecContext *c) {
1460 assert(u);
1461 assert(c);
1462
1463 if (set_isempty(c->syscall_archs))
1464 return 0;
1465
1466 if (skip_seccomp_unavailable(u, "SystemCallArchitectures="))
1467 return 0;
1468
1469 return seccomp_restrict_archs(c->syscall_archs);
1470 }
1471
1472 static int apply_address_families(const Unit* u, const ExecContext *c) {
1473 assert(u);
1474 assert(c);
1475
1476 if (!context_has_address_families(c))
1477 return 0;
1478
1479 if (skip_seccomp_unavailable(u, "RestrictAddressFamilies="))
1480 return 0;
1481
1482 return seccomp_restrict_address_families(c->address_families, c->address_families_whitelist);
1483 }
1484
1485 static int apply_memory_deny_write_execute(const Unit* u, const ExecContext *c) {
1486 assert(u);
1487 assert(c);
1488
1489 if (!c->memory_deny_write_execute)
1490 return 0;
1491
1492 if (skip_seccomp_unavailable(u, "MemoryDenyWriteExecute="))
1493 return 0;
1494
1495 return seccomp_memory_deny_write_execute();
1496 }
1497
1498 static int apply_restrict_realtime(const Unit* u, const ExecContext *c) {
1499 assert(u);
1500 assert(c);
1501
1502 if (!c->restrict_realtime)
1503 return 0;
1504
1505 if (skip_seccomp_unavailable(u, "RestrictRealtime="))
1506 return 0;
1507
1508 return seccomp_restrict_realtime();
1509 }
1510
1511 static int apply_protect_sysctl(const Unit *u, const ExecContext *c) {
1512 assert(u);
1513 assert(c);
1514
1515 /* Turn off the legacy sysctl() system call. Many distributions turn this off while building the kernel, but
1516 * let's protect even those systems where this is left on in the kernel. */
1517
1518 if (!c->protect_kernel_tunables)
1519 return 0;
1520
1521 if (skip_seccomp_unavailable(u, "ProtectKernelTunables="))
1522 return 0;
1523
1524 return seccomp_protect_sysctl();
1525 }
1526
1527 static int apply_protect_kernel_modules(const Unit *u, const ExecContext *c) {
1528 assert(u);
1529 assert(c);
1530
1531 /* Turn off module syscalls on ProtectKernelModules=yes */
1532
1533 if (!c->protect_kernel_modules)
1534 return 0;
1535
1536 if (skip_seccomp_unavailable(u, "ProtectKernelModules="))
1537 return 0;
1538
1539 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_MODULE, SCMP_ACT_ERRNO(EPERM), false);
1540 }
1541
1542 static int apply_private_devices(const Unit *u, const ExecContext *c) {
1543 assert(u);
1544 assert(c);
1545
1546 /* If PrivateDevices= is set, also turn off iopl and all @raw-io syscalls. */
1547
1548 if (!c->private_devices)
1549 return 0;
1550
1551 if (skip_seccomp_unavailable(u, "PrivateDevices="))
1552 return 0;
1553
1554 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_RAW_IO, SCMP_ACT_ERRNO(EPERM), false);
1555 }
1556
1557 static int apply_restrict_namespaces(const Unit *u, const ExecContext *c) {
1558 assert(u);
1559 assert(c);
1560
1561 if (!exec_context_restrict_namespaces_set(c))
1562 return 0;
1563
1564 if (skip_seccomp_unavailable(u, "RestrictNamespaces="))
1565 return 0;
1566
1567 return seccomp_restrict_namespaces(c->restrict_namespaces);
1568 }
1569
1570 static int apply_lock_personality(const Unit* u, const ExecContext *c) {
1571 unsigned long personality;
1572 int r;
1573
1574 assert(u);
1575 assert(c);
1576
1577 if (!c->lock_personality)
1578 return 0;
1579
1580 if (skip_seccomp_unavailable(u, "LockPersonality="))
1581 return 0;
1582
1583 personality = c->personality;
1584
1585 /* If personality is not specified, use either PER_LINUX or PER_LINUX32 depending on what is currently set. */
1586 if (personality == PERSONALITY_INVALID) {
1587
1588 r = opinionated_personality(&personality);
1589 if (r < 0)
1590 return r;
1591 }
1592
1593 return seccomp_lock_personality(personality);
1594 }
1595
1596 #endif
1597
1598 static void do_idle_pipe_dance(int idle_pipe[4]) {
1599 assert(idle_pipe);
1600
1601 idle_pipe[1] = safe_close(idle_pipe[1]);
1602 idle_pipe[2] = safe_close(idle_pipe[2]);
1603
1604 if (idle_pipe[0] >= 0) {
1605 int r;
1606
1607 r = fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT_USEC);
1608
1609 if (idle_pipe[3] >= 0 && r == 0 /* timeout */) {
1610 ssize_t n;
1611
1612 /* Signal systemd that we are bored and want to continue. */
1613 n = write(idle_pipe[3], "x", 1);
1614 if (n > 0)
1615 /* Wait for systemd to react to the signal above. */
1616 fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT2_USEC);
1617 }
1618
1619 idle_pipe[0] = safe_close(idle_pipe[0]);
1620
1621 }
1622
1623 idle_pipe[3] = safe_close(idle_pipe[3]);
1624 }
1625
1626 static const char *exec_directory_env_name_to_string(ExecDirectoryType t);
1627
1628 static int build_environment(
1629 const Unit *u,
1630 const ExecContext *c,
1631 const ExecParameters *p,
1632 size_t n_fds,
1633 const char *home,
1634 const char *username,
1635 const char *shell,
1636 dev_t journal_stream_dev,
1637 ino_t journal_stream_ino,
1638 char ***ret) {
1639
1640 _cleanup_strv_free_ char **our_env = NULL;
1641 ExecDirectoryType t;
1642 size_t n_env = 0;
1643 char *x;
1644
1645 assert(u);
1646 assert(c);
1647 assert(p);
1648 assert(ret);
1649
1650 our_env = new0(char*, 14 + _EXEC_DIRECTORY_TYPE_MAX);
1651 if (!our_env)
1652 return -ENOMEM;
1653
1654 if (n_fds > 0) {
1655 _cleanup_free_ char *joined = NULL;
1656
1657 if (asprintf(&x, "LISTEN_PID="PID_FMT, getpid_cached()) < 0)
1658 return -ENOMEM;
1659 our_env[n_env++] = x;
1660
1661 if (asprintf(&x, "LISTEN_FDS=%zu", n_fds) < 0)
1662 return -ENOMEM;
1663 our_env[n_env++] = x;
1664
1665 joined = strv_join(p->fd_names, ":");
1666 if (!joined)
1667 return -ENOMEM;
1668
1669 x = strjoin("LISTEN_FDNAMES=", joined);
1670 if (!x)
1671 return -ENOMEM;
1672 our_env[n_env++] = x;
1673 }
1674
1675 if ((p->flags & EXEC_SET_WATCHDOG) && p->watchdog_usec > 0) {
1676 if (asprintf(&x, "WATCHDOG_PID="PID_FMT, getpid_cached()) < 0)
1677 return -ENOMEM;
1678 our_env[n_env++] = x;
1679
1680 if (asprintf(&x, "WATCHDOG_USEC="USEC_FMT, p->watchdog_usec) < 0)
1681 return -ENOMEM;
1682 our_env[n_env++] = x;
1683 }
1684
1685 /* If this is D-Bus, tell the nss-systemd module, since it relies on being able to use D-Bus look up dynamic
1686 * users via PID 1, possibly dead-locking the dbus daemon. This way it will not use D-Bus to resolve names, but
1687 * check the database directly. */
1688 if (p->flags & EXEC_NSS_BYPASS_BUS) {
1689 x = strdup("SYSTEMD_NSS_BYPASS_BUS=1");
1690 if (!x)
1691 return -ENOMEM;
1692 our_env[n_env++] = x;
1693 }
1694
1695 if (home) {
1696 x = strappend("HOME=", home);
1697 if (!x)
1698 return -ENOMEM;
1699 our_env[n_env++] = x;
1700 }
1701
1702 if (username) {
1703 x = strappend("LOGNAME=", username);
1704 if (!x)
1705 return -ENOMEM;
1706 our_env[n_env++] = x;
1707
1708 x = strappend("USER=", username);
1709 if (!x)
1710 return -ENOMEM;
1711 our_env[n_env++] = x;
1712 }
1713
1714 if (shell) {
1715 x = strappend("SHELL=", shell);
1716 if (!x)
1717 return -ENOMEM;
1718 our_env[n_env++] = x;
1719 }
1720
1721 if (!sd_id128_is_null(u->invocation_id)) {
1722 if (asprintf(&x, "INVOCATION_ID=" SD_ID128_FORMAT_STR, SD_ID128_FORMAT_VAL(u->invocation_id)) < 0)
1723 return -ENOMEM;
1724
1725 our_env[n_env++] = x;
1726 }
1727
1728 if (exec_context_needs_term(c)) {
1729 const char *tty_path, *term = NULL;
1730
1731 tty_path = exec_context_tty_path(c);
1732
1733 /* If we are forked off PID 1 and we are supposed to operate on /dev/console, then let's try to inherit
1734 * the $TERM set for PID 1. This is useful for containers so that the $TERM the container manager
1735 * passes to PID 1 ends up all the way in the console login shown. */
1736
1737 if (path_equal(tty_path, "/dev/console") && getppid() == 1)
1738 term = getenv("TERM");
1739 if (!term)
1740 term = default_term_for_tty(tty_path);
1741
1742 x = strappend("TERM=", term);
1743 if (!x)
1744 return -ENOMEM;
1745 our_env[n_env++] = x;
1746 }
1747
1748 if (journal_stream_dev != 0 && journal_stream_ino != 0) {
1749 if (asprintf(&x, "JOURNAL_STREAM=" DEV_FMT ":" INO_FMT, journal_stream_dev, journal_stream_ino) < 0)
1750 return -ENOMEM;
1751
1752 our_env[n_env++] = x;
1753 }
1754
1755 for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
1756 _cleanup_free_ char *pre = NULL, *joined = NULL;
1757 const char *n;
1758
1759 if (!p->prefix[t])
1760 continue;
1761
1762 if (strv_isempty(c->directories[t].paths))
1763 continue;
1764
1765 n = exec_directory_env_name_to_string(t);
1766 if (!n)
1767 continue;
1768
1769 pre = strjoin(p->prefix[t], "/");
1770 if (!pre)
1771 return -ENOMEM;
1772
1773 joined = strv_join_prefix(c->directories[t].paths, ":", pre);
1774 if (!joined)
1775 return -ENOMEM;
1776
1777 x = strjoin(n, "=", joined);
1778 if (!x)
1779 return -ENOMEM;
1780
1781 our_env[n_env++] = x;
1782 }
1783
1784 our_env[n_env++] = NULL;
1785 assert(n_env <= 14 + _EXEC_DIRECTORY_TYPE_MAX);
1786
1787 *ret = TAKE_PTR(our_env);
1788
1789 return 0;
1790 }
1791
1792 static int build_pass_environment(const ExecContext *c, char ***ret) {
1793 _cleanup_strv_free_ char **pass_env = NULL;
1794 size_t n_env = 0, n_bufsize = 0;
1795 char **i;
1796
1797 STRV_FOREACH(i, c->pass_environment) {
1798 _cleanup_free_ char *x = NULL;
1799 char *v;
1800
1801 v = getenv(*i);
1802 if (!v)
1803 continue;
1804 x = strjoin(*i, "=", v);
1805 if (!x)
1806 return -ENOMEM;
1807
1808 if (!GREEDY_REALLOC(pass_env, n_bufsize, n_env + 2))
1809 return -ENOMEM;
1810
1811 pass_env[n_env++] = TAKE_PTR(x);
1812 pass_env[n_env] = NULL;
1813 }
1814
1815 *ret = TAKE_PTR(pass_env);
1816
1817 return 0;
1818 }
1819
1820 static bool exec_needs_mount_namespace(
1821 const ExecContext *context,
1822 const ExecParameters *params,
1823 const ExecRuntime *runtime) {
1824
1825 assert(context);
1826 assert(params);
1827
1828 if (context->root_image)
1829 return true;
1830
1831 if (!strv_isempty(context->read_write_paths) ||
1832 !strv_isempty(context->read_only_paths) ||
1833 !strv_isempty(context->inaccessible_paths))
1834 return true;
1835
1836 if (context->n_bind_mounts > 0)
1837 return true;
1838
1839 if (context->n_temporary_filesystems > 0)
1840 return true;
1841
1842 if (context->mount_flags != 0)
1843 return true;
1844
1845 if (context->private_tmp && runtime && (runtime->tmp_dir || runtime->var_tmp_dir))
1846 return true;
1847
1848 if (context->private_devices ||
1849 context->private_mounts ||
1850 context->protect_system != PROTECT_SYSTEM_NO ||
1851 context->protect_home != PROTECT_HOME_NO ||
1852 context->protect_kernel_tunables ||
1853 context->protect_kernel_modules ||
1854 context->protect_control_groups)
1855 return true;
1856
1857 if (context->root_directory) {
1858 ExecDirectoryType t;
1859
1860 if (context->mount_apivfs)
1861 return true;
1862
1863 for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
1864 if (!params->prefix[t])
1865 continue;
1866
1867 if (!strv_isempty(context->directories[t].paths))
1868 return true;
1869 }
1870 }
1871
1872 if (context->dynamic_user &&
1873 (!strv_isempty(context->directories[EXEC_DIRECTORY_STATE].paths) ||
1874 !strv_isempty(context->directories[EXEC_DIRECTORY_CACHE].paths) ||
1875 !strv_isempty(context->directories[EXEC_DIRECTORY_LOGS].paths)))
1876 return true;
1877
1878 return false;
1879 }
1880
1881 static int setup_private_users(uid_t uid, gid_t gid) {
1882 _cleanup_free_ char *uid_map = NULL, *gid_map = NULL;
1883 _cleanup_close_pair_ int errno_pipe[2] = { -1, -1 };
1884 _cleanup_close_ int unshare_ready_fd = -1;
1885 _cleanup_(sigkill_waitp) pid_t pid = 0;
1886 uint64_t c = 1;
1887 ssize_t n;
1888 int r;
1889
1890 /* Set up a user namespace and map root to root, the selected UID/GID to itself, and everything else to
1891 * nobody. In order to be able to write this mapping we need CAP_SETUID in the original user namespace, which
1892 * we however lack after opening the user namespace. To work around this we fork() a temporary child process,
1893 * which waits for the parent to create the new user namespace while staying in the original namespace. The
1894 * child then writes the UID mapping, under full privileges. The parent waits for the child to finish and
1895 * continues execution normally. */
1896
1897 if (uid != 0 && uid_is_valid(uid)) {
1898 r = asprintf(&uid_map,
1899 "0 0 1\n" /* Map root → root */
1900 UID_FMT " " UID_FMT " 1\n", /* Map $UID → $UID */
1901 uid, uid);
1902 if (r < 0)
1903 return -ENOMEM;
1904 } else {
1905 uid_map = strdup("0 0 1\n"); /* The case where the above is the same */
1906 if (!uid_map)
1907 return -ENOMEM;
1908 }
1909
1910 if (gid != 0 && gid_is_valid(gid)) {
1911 r = asprintf(&gid_map,
1912 "0 0 1\n" /* Map root → root */
1913 GID_FMT " " GID_FMT " 1\n", /* Map $GID → $GID */
1914 gid, gid);
1915 if (r < 0)
1916 return -ENOMEM;
1917 } else {
1918 gid_map = strdup("0 0 1\n"); /* The case where the above is the same */
1919 if (!gid_map)
1920 return -ENOMEM;
1921 }
1922
1923 /* Create a communication channel so that the parent can tell the child when it finished creating the user
1924 * namespace. */
1925 unshare_ready_fd = eventfd(0, EFD_CLOEXEC);
1926 if (unshare_ready_fd < 0)
1927 return -errno;
1928
1929 /* Create a communication channel so that the child can tell the parent a proper error code in case it
1930 * failed. */
1931 if (pipe2(errno_pipe, O_CLOEXEC) < 0)
1932 return -errno;
1933
1934 r = safe_fork("(sd-userns)", FORK_RESET_SIGNALS|FORK_DEATHSIG, &pid);
1935 if (r < 0)
1936 return r;
1937 if (r == 0) {
1938 _cleanup_close_ int fd = -1;
1939 const char *a;
1940 pid_t ppid;
1941
1942 /* Child process, running in the original user namespace. Let's update the parent's UID/GID map from
1943 * here, after the parent opened its own user namespace. */
1944
1945 ppid = getppid();
1946 errno_pipe[0] = safe_close(errno_pipe[0]);
1947
1948 /* Wait until the parent unshared the user namespace */
1949 if (read(unshare_ready_fd, &c, sizeof(c)) < 0) {
1950 r = -errno;
1951 goto child_fail;
1952 }
1953
1954 /* Disable the setgroups() system call in the child user namespace, for good. */
1955 a = procfs_file_alloca(ppid, "setgroups");
1956 fd = open(a, O_WRONLY|O_CLOEXEC);
1957 if (fd < 0) {
1958 if (errno != ENOENT) {
1959 r = -errno;
1960 goto child_fail;
1961 }
1962
1963 /* If the file is missing the kernel is too old, let's continue anyway. */
1964 } else {
1965 if (write(fd, "deny\n", 5) < 0) {
1966 r = -errno;
1967 goto child_fail;
1968 }
1969
1970 fd = safe_close(fd);
1971 }
1972
1973 /* First write the GID map */
1974 a = procfs_file_alloca(ppid, "gid_map");
1975 fd = open(a, O_WRONLY|O_CLOEXEC);
1976 if (fd < 0) {
1977 r = -errno;
1978 goto child_fail;
1979 }
1980 if (write(fd, gid_map, strlen(gid_map)) < 0) {
1981 r = -errno;
1982 goto child_fail;
1983 }
1984 fd = safe_close(fd);
1985
1986 /* The write the UID map */
1987 a = procfs_file_alloca(ppid, "uid_map");
1988 fd = open(a, O_WRONLY|O_CLOEXEC);
1989 if (fd < 0) {
1990 r = -errno;
1991 goto child_fail;
1992 }
1993 if (write(fd, uid_map, strlen(uid_map)) < 0) {
1994 r = -errno;
1995 goto child_fail;
1996 }
1997
1998 _exit(EXIT_SUCCESS);
1999
2000 child_fail:
2001 (void) write(errno_pipe[1], &r, sizeof(r));
2002 _exit(EXIT_FAILURE);
2003 }
2004
2005 errno_pipe[1] = safe_close(errno_pipe[1]);
2006
2007 if (unshare(CLONE_NEWUSER) < 0)
2008 return -errno;
2009
2010 /* Let the child know that the namespace is ready now */
2011 if (write(unshare_ready_fd, &c, sizeof(c)) < 0)
2012 return -errno;
2013
2014 /* Try to read an error code from the child */
2015 n = read(errno_pipe[0], &r, sizeof(r));
2016 if (n < 0)
2017 return -errno;
2018 if (n == sizeof(r)) { /* an error code was sent to us */
2019 if (r < 0)
2020 return r;
2021 return -EIO;
2022 }
2023 if (n != 0) /* on success we should have read 0 bytes */
2024 return -EIO;
2025
2026 r = wait_for_terminate_and_check("(sd-userns)", pid, 0);
2027 pid = 0;
2028 if (r < 0)
2029 return r;
2030 if (r != EXIT_SUCCESS) /* If something strange happened with the child, let's consider this fatal, too */
2031 return -EIO;
2032
2033 return 0;
2034 }
2035
2036 static int setup_exec_directory(
2037 const ExecContext *context,
2038 const ExecParameters *params,
2039 uid_t uid,
2040 gid_t gid,
2041 ExecDirectoryType type,
2042 int *exit_status) {
2043
2044 static const int exit_status_table[_EXEC_DIRECTORY_TYPE_MAX] = {
2045 [EXEC_DIRECTORY_RUNTIME] = EXIT_RUNTIME_DIRECTORY,
2046 [EXEC_DIRECTORY_STATE] = EXIT_STATE_DIRECTORY,
2047 [EXEC_DIRECTORY_CACHE] = EXIT_CACHE_DIRECTORY,
2048 [EXEC_DIRECTORY_LOGS] = EXIT_LOGS_DIRECTORY,
2049 [EXEC_DIRECTORY_CONFIGURATION] = EXIT_CONFIGURATION_DIRECTORY,
2050 };
2051 char **rt;
2052 int r;
2053
2054 assert(context);
2055 assert(params);
2056 assert(type >= 0 && type < _EXEC_DIRECTORY_TYPE_MAX);
2057 assert(exit_status);
2058
2059 if (!params->prefix[type])
2060 return 0;
2061
2062 if (params->flags & EXEC_CHOWN_DIRECTORIES) {
2063 if (!uid_is_valid(uid))
2064 uid = 0;
2065 if (!gid_is_valid(gid))
2066 gid = 0;
2067 }
2068
2069 STRV_FOREACH(rt, context->directories[type].paths) {
2070 _cleanup_free_ char *p = NULL, *pp = NULL;
2071
2072 p = strjoin(params->prefix[type], "/", *rt);
2073 if (!p) {
2074 r = -ENOMEM;
2075 goto fail;
2076 }
2077
2078 r = mkdir_parents_label(p, 0755);
2079 if (r < 0)
2080 goto fail;
2081
2082 if (context->dynamic_user &&
2083 !IN_SET(type, EXEC_DIRECTORY_RUNTIME, EXEC_DIRECTORY_CONFIGURATION)) {
2084 _cleanup_free_ char *private_root = NULL;
2085
2086 /* So, here's one extra complication when dealing with DynamicUser=1 units. In that case we
2087 * want to avoid leaving a directory around fully accessible that is owned by a dynamic user
2088 * whose UID is later on reused. To lock this down we use the same trick used by container
2089 * managers to prohibit host users to get access to files of the same UID in containers: we
2090 * place everything inside a directory that has an access mode of 0700 and is owned root:root,
2091 * so that it acts as security boundary for unprivileged host code. We then use fs namespacing
2092 * to make this directory permeable for the service itself.
2093 *
2094 * Specifically: for a service which wants a special directory "foo/" we first create a
2095 * directory "private/" with access mode 0700 owned by root:root. Then we place "foo" inside of
2096 * that directory (i.e. "private/foo/"), and make "foo" a symlink to "private/foo". This way,
2097 * privileged host users can access "foo/" as usual, but unprivileged host users can't look
2098 * into it. Inside of the namespaceof the container "private/" is replaced by a more liberally
2099 * accessible tmpfs, into which the host's "private/foo/" is mounted under the same name, thus
2100 * disabling the access boundary for the service and making sure it only gets access to the
2101 * dirs it needs but no others. Tricky? Yes, absolutely, but it works!
2102 *
2103 * Note that we don't do this for EXEC_DIRECTORY_CONFIGURATION as that's assumed not to be
2104 * owned by the service itself.
2105 * Also, note that we don't do this for EXEC_DIRECTORY_RUNTIME as that's often used for sharing
2106 * files or sockets with other services. */
2107
2108 private_root = strjoin(params->prefix[type], "/private");
2109 if (!private_root) {
2110 r = -ENOMEM;
2111 goto fail;
2112 }
2113
2114 /* First set up private root if it doesn't exist yet, with access mode 0700 and owned by root:root */
2115 r = mkdir_safe_label(private_root, 0700, 0, 0, MKDIR_WARN_MODE);
2116 if (r < 0)
2117 goto fail;
2118
2119 pp = strjoin(private_root, "/", *rt);
2120 if (!pp) {
2121 r = -ENOMEM;
2122 goto fail;
2123 }
2124
2125 /* Create all directories between the configured directory and this private root, and mark them 0755 */
2126 r = mkdir_parents_label(pp, 0755);
2127 if (r < 0)
2128 goto fail;
2129
2130 if (is_dir(p, false) > 0 &&
2131 (laccess(pp, F_OK) < 0 && errno == ENOENT)) {
2132
2133 /* Hmm, the private directory doesn't exist yet, but the normal one exists? If so, move
2134 * it over. Most likely the service has been upgraded from one that didn't use
2135 * DynamicUser=1, to one that does. */
2136
2137 if (rename(p, pp) < 0) {
2138 r = -errno;
2139 goto fail;
2140 }
2141 } else {
2142 /* Otherwise, create the actual directory for the service */
2143
2144 r = mkdir_label(pp, context->directories[type].mode);
2145 if (r < 0 && r != -EEXIST)
2146 goto fail;
2147 }
2148
2149 /* And link it up from the original place */
2150 r = symlink_idempotent(pp, p, true);
2151 if (r < 0)
2152 goto fail;
2153
2154 /* Lock down the access mode */
2155 if (chmod(pp, context->directories[type].mode) < 0) {
2156 r = -errno;
2157 goto fail;
2158 }
2159 } else {
2160 r = mkdir_label(p, context->directories[type].mode);
2161 if (r < 0 && r != -EEXIST)
2162 goto fail;
2163 if (r == -EEXIST && !context->dynamic_user)
2164 continue;
2165 }
2166
2167 /* Don't change the owner of the configuration directory, as in the common case it is not written to by
2168 * a service, and shall not be writable. */
2169 if (type == EXEC_DIRECTORY_CONFIGURATION)
2170 continue;
2171
2172 /* Then, change the ownership of the whole tree, if necessary */
2173 r = path_chown_recursive(pp ?: p, uid, gid);
2174 if (r < 0)
2175 goto fail;
2176 }
2177
2178 return 0;
2179
2180 fail:
2181 *exit_status = exit_status_table[type];
2182 return r;
2183 }
2184
2185 #if ENABLE_SMACK
2186 static int setup_smack(
2187 const ExecContext *context,
2188 const ExecCommand *command) {
2189
2190 int r;
2191
2192 assert(context);
2193 assert(command);
2194
2195 if (context->smack_process_label) {
2196 r = mac_smack_apply_pid(0, context->smack_process_label);
2197 if (r < 0)
2198 return r;
2199 }
2200 #ifdef SMACK_DEFAULT_PROCESS_LABEL
2201 else {
2202 _cleanup_free_ char *exec_label = NULL;
2203
2204 r = mac_smack_read(command->path, SMACK_ATTR_EXEC, &exec_label);
2205 if (r < 0 && !IN_SET(r, -ENODATA, -EOPNOTSUPP))
2206 return r;
2207
2208 r = mac_smack_apply_pid(0, exec_label ? : SMACK_DEFAULT_PROCESS_LABEL);
2209 if (r < 0)
2210 return r;
2211 }
2212 #endif
2213
2214 return 0;
2215 }
2216 #endif
2217
2218 static int compile_bind_mounts(
2219 const ExecContext *context,
2220 const ExecParameters *params,
2221 BindMount **ret_bind_mounts,
2222 size_t *ret_n_bind_mounts,
2223 char ***ret_empty_directories) {
2224
2225 _cleanup_strv_free_ char **empty_directories = NULL;
2226 BindMount *bind_mounts;
2227 size_t n, h = 0, i;
2228 ExecDirectoryType t;
2229 int r;
2230
2231 assert(context);
2232 assert(params);
2233 assert(ret_bind_mounts);
2234 assert(ret_n_bind_mounts);
2235 assert(ret_empty_directories);
2236
2237 n = context->n_bind_mounts;
2238 for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2239 if (!params->prefix[t])
2240 continue;
2241
2242 n += strv_length(context->directories[t].paths);
2243 }
2244
2245 if (n <= 0) {
2246 *ret_bind_mounts = NULL;
2247 *ret_n_bind_mounts = 0;
2248 *ret_empty_directories = NULL;
2249 return 0;
2250 }
2251
2252 bind_mounts = new(BindMount, n);
2253 if (!bind_mounts)
2254 return -ENOMEM;
2255
2256 for (i = 0; i < context->n_bind_mounts; i++) {
2257 BindMount *item = context->bind_mounts + i;
2258 char *s, *d;
2259
2260 s = strdup(item->source);
2261 if (!s) {
2262 r = -ENOMEM;
2263 goto finish;
2264 }
2265
2266 d = strdup(item->destination);
2267 if (!d) {
2268 free(s);
2269 r = -ENOMEM;
2270 goto finish;
2271 }
2272
2273 bind_mounts[h++] = (BindMount) {
2274 .source = s,
2275 .destination = d,
2276 .read_only = item->read_only,
2277 .recursive = item->recursive,
2278 .ignore_enoent = item->ignore_enoent,
2279 };
2280 }
2281
2282 for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2283 char **suffix;
2284
2285 if (!params->prefix[t])
2286 continue;
2287
2288 if (strv_isempty(context->directories[t].paths))
2289 continue;
2290
2291 if (context->dynamic_user &&
2292 !IN_SET(t, EXEC_DIRECTORY_RUNTIME, EXEC_DIRECTORY_CONFIGURATION) &&
2293 !(context->root_directory || context->root_image)) {
2294 char *private_root;
2295
2296 /* So this is for a dynamic user, and we need to make sure the process can access its own
2297 * directory. For that we overmount the usually inaccessible "private" subdirectory with a
2298 * tmpfs that makes it accessible and is empty except for the submounts we do this for. */
2299
2300 private_root = strjoin(params->prefix[t], "/private");
2301 if (!private_root) {
2302 r = -ENOMEM;
2303 goto finish;
2304 }
2305
2306 r = strv_consume(&empty_directories, private_root);
2307 if (r < 0)
2308 goto finish;
2309 }
2310
2311 STRV_FOREACH(suffix, context->directories[t].paths) {
2312 char *s, *d;
2313
2314 if (context->dynamic_user &&
2315 !IN_SET(t, EXEC_DIRECTORY_RUNTIME, EXEC_DIRECTORY_CONFIGURATION))
2316 s = strjoin(params->prefix[t], "/private/", *suffix);
2317 else
2318 s = strjoin(params->prefix[t], "/", *suffix);
2319 if (!s) {
2320 r = -ENOMEM;
2321 goto finish;
2322 }
2323
2324 if (context->dynamic_user &&
2325 !IN_SET(t, EXEC_DIRECTORY_RUNTIME, EXEC_DIRECTORY_CONFIGURATION) &&
2326 (context->root_directory || context->root_image))
2327 /* When RootDirectory= or RootImage= are set, then the symbolic link to the private
2328 * directory is not created on the root directory. So, let's bind-mount the directory
2329 * on the 'non-private' place. */
2330 d = strjoin(params->prefix[t], "/", *suffix);
2331 else
2332 d = strdup(s);
2333 if (!d) {
2334 free(s);
2335 r = -ENOMEM;
2336 goto finish;
2337 }
2338
2339 bind_mounts[h++] = (BindMount) {
2340 .source = s,
2341 .destination = d,
2342 .read_only = false,
2343 .recursive = true,
2344 .ignore_enoent = false,
2345 };
2346 }
2347 }
2348
2349 assert(h == n);
2350
2351 *ret_bind_mounts = bind_mounts;
2352 *ret_n_bind_mounts = n;
2353 *ret_empty_directories = TAKE_PTR(empty_directories);
2354
2355 return (int) n;
2356
2357 finish:
2358 bind_mount_free_many(bind_mounts, h);
2359 return r;
2360 }
2361
2362 static int apply_mount_namespace(
2363 const Unit *u,
2364 const ExecCommand *command,
2365 const ExecContext *context,
2366 const ExecParameters *params,
2367 const ExecRuntime *runtime) {
2368
2369 _cleanup_strv_free_ char **empty_directories = NULL;
2370 char *tmp = NULL, *var = NULL;
2371 const char *root_dir = NULL, *root_image = NULL;
2372 NamespaceInfo ns_info;
2373 bool needs_sandboxing;
2374 BindMount *bind_mounts = NULL;
2375 size_t n_bind_mounts = 0;
2376 int r;
2377
2378 assert(context);
2379
2380 /* The runtime struct only contains the parent of the private /tmp,
2381 * which is non-accessible to world users. Inside of it there's a /tmp
2382 * that is sticky, and that's the one we want to use here. */
2383
2384 if (context->private_tmp && runtime) {
2385 if (runtime->tmp_dir)
2386 tmp = strjoina(runtime->tmp_dir, "/tmp");
2387 if (runtime->var_tmp_dir)
2388 var = strjoina(runtime->var_tmp_dir, "/tmp");
2389 }
2390
2391 if (params->flags & EXEC_APPLY_CHROOT) {
2392 root_image = context->root_image;
2393
2394 if (!root_image)
2395 root_dir = context->root_directory;
2396 }
2397
2398 r = compile_bind_mounts(context, params, &bind_mounts, &n_bind_mounts, &empty_directories);
2399 if (r < 0)
2400 return r;
2401
2402 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & EXEC_COMMAND_FULLY_PRIVILEGED);
2403 if (needs_sandboxing)
2404 ns_info = (NamespaceInfo) {
2405 .ignore_protect_paths = false,
2406 .private_dev = context->private_devices,
2407 .protect_control_groups = context->protect_control_groups,
2408 .protect_kernel_tunables = context->protect_kernel_tunables,
2409 .protect_kernel_modules = context->protect_kernel_modules,
2410 .mount_apivfs = context->mount_apivfs,
2411 .private_mounts = context->private_mounts,
2412 };
2413 else if (!context->dynamic_user && root_dir)
2414 /*
2415 * If DynamicUser=no and RootDirectory= is set then lets pass a relaxed
2416 * sandbox info, otherwise enforce it, don't ignore protected paths and
2417 * fail if we are enable to apply the sandbox inside the mount namespace.
2418 */
2419 ns_info = (NamespaceInfo) {
2420 .ignore_protect_paths = true,
2421 };
2422 else
2423 ns_info = (NamespaceInfo) {};
2424
2425 r = setup_namespace(root_dir, root_image,
2426 &ns_info, context->read_write_paths,
2427 needs_sandboxing ? context->read_only_paths : NULL,
2428 needs_sandboxing ? context->inaccessible_paths : NULL,
2429 empty_directories,
2430 bind_mounts,
2431 n_bind_mounts,
2432 context->temporary_filesystems,
2433 context->n_temporary_filesystems,
2434 tmp,
2435 var,
2436 needs_sandboxing ? context->protect_home : PROTECT_HOME_NO,
2437 needs_sandboxing ? context->protect_system : PROTECT_SYSTEM_NO,
2438 context->mount_flags,
2439 DISSECT_IMAGE_DISCARD_ON_LOOP);
2440
2441 bind_mount_free_many(bind_mounts, n_bind_mounts);
2442
2443 /* If we couldn't set up the namespace this is probably due to a missing capability. setup_namespace() reports
2444 * that with a special, recognizable error ENOANO. In this case, silently proceeed, but only if exclusively
2445 * sandboxing options were used, i.e. nothing such as RootDirectory= or BindMount= that would result in a
2446 * completely different execution environment. */
2447 if (r == -ENOANO) {
2448 if (n_bind_mounts == 0 &&
2449 context->n_temporary_filesystems == 0 &&
2450 !root_dir && !root_image &&
2451 !context->dynamic_user) {
2452 log_unit_debug(u, "Failed to set up namespace, assuming containerized execution and ignoring.");
2453 return 0;
2454 }
2455
2456 log_unit_debug(u, "Failed to set up namespace, and refusing to continue since the selected namespacing options alter mount environment non-trivially.\n"
2457 "Bind mounts: %zu, temporary filesystems: %zu, root directory: %s, root image: %s, dynamic user: %s",
2458 n_bind_mounts, context->n_temporary_filesystems, yes_no(root_dir), yes_no(root_image), yes_no(context->dynamic_user));
2459
2460 return -EOPNOTSUPP;
2461 }
2462
2463 return r;
2464 }
2465
2466 static int apply_working_directory(
2467 const ExecContext *context,
2468 const ExecParameters *params,
2469 const char *home,
2470 const bool needs_mount_ns,
2471 int *exit_status) {
2472
2473 const char *d, *wd;
2474
2475 assert(context);
2476 assert(exit_status);
2477
2478 if (context->working_directory_home) {
2479
2480 if (!home) {
2481 *exit_status = EXIT_CHDIR;
2482 return -ENXIO;
2483 }
2484
2485 wd = home;
2486
2487 } else if (context->working_directory)
2488 wd = context->working_directory;
2489 else
2490 wd = "/";
2491
2492 if (params->flags & EXEC_APPLY_CHROOT) {
2493 if (!needs_mount_ns && context->root_directory)
2494 if (chroot(context->root_directory) < 0) {
2495 *exit_status = EXIT_CHROOT;
2496 return -errno;
2497 }
2498
2499 d = wd;
2500 } else
2501 d = prefix_roota(context->root_directory, wd);
2502
2503 if (chdir(d) < 0 && !context->working_directory_missing_ok) {
2504 *exit_status = EXIT_CHDIR;
2505 return -errno;
2506 }
2507
2508 return 0;
2509 }
2510
2511 static int setup_keyring(
2512 const Unit *u,
2513 const ExecContext *context,
2514 const ExecParameters *p,
2515 uid_t uid, gid_t gid) {
2516
2517 key_serial_t keyring;
2518 int r = 0;
2519 uid_t saved_uid;
2520 gid_t saved_gid;
2521
2522 assert(u);
2523 assert(context);
2524 assert(p);
2525
2526 /* Let's set up a new per-service "session" kernel keyring for each system service. This has the benefit that
2527 * each service runs with its own keyring shared among all processes of the service, but with no hook-up beyond
2528 * that scope, and in particular no link to the per-UID keyring. If we don't do this the keyring will be
2529 * automatically created on-demand and then linked to the per-UID keyring, by the kernel. The kernel's built-in
2530 * on-demand behaviour is very appropriate for login users, but probably not so much for system services, where
2531 * UIDs are not necessarily specific to a service but reused (at least in the case of UID 0). */
2532
2533 if (context->keyring_mode == EXEC_KEYRING_INHERIT)
2534 return 0;
2535
2536 /* Acquiring a reference to the user keyring is nasty. We briefly change identity in order to get things set up
2537 * properly by the kernel. If we don't do that then we can't create it atomically, and that sucks for parallel
2538 * execution. This mimics what pam_keyinit does, too. Setting up session keyring, to be owned by the right user
2539 * & group is just as nasty as acquiring a reference to the user keyring. */
2540
2541 saved_uid = getuid();
2542 saved_gid = getgid();
2543
2544 if (gid_is_valid(gid) && gid != saved_gid) {
2545 if (setregid(gid, -1) < 0)
2546 return log_unit_error_errno(u, errno, "Failed to change GID for user keyring: %m");
2547 }
2548
2549 if (uid_is_valid(uid) && uid != saved_uid) {
2550 if (setreuid(uid, -1) < 0) {
2551 r = log_unit_error_errno(u, errno, "Failed to change UID for user keyring: %m");
2552 goto out;
2553 }
2554 }
2555
2556 keyring = keyctl(KEYCTL_JOIN_SESSION_KEYRING, 0, 0, 0, 0);
2557 if (keyring == -1) {
2558 if (errno == ENOSYS)
2559 log_unit_debug_errno(u, errno, "Kernel keyring not supported, ignoring.");
2560 else if (IN_SET(errno, EACCES, EPERM))
2561 log_unit_debug_errno(u, errno, "Kernel keyring access prohibited, ignoring.");
2562 else if (errno == EDQUOT)
2563 log_unit_debug_errno(u, errno, "Out of kernel keyrings to allocate, ignoring.");
2564 else
2565 r = log_unit_error_errno(u, errno, "Setting up kernel keyring failed: %m");
2566
2567 goto out;
2568 }
2569
2570 /* When requested link the user keyring into the session keyring. */
2571 if (context->keyring_mode == EXEC_KEYRING_SHARED) {
2572
2573 if (keyctl(KEYCTL_LINK,
2574 KEY_SPEC_USER_KEYRING,
2575 KEY_SPEC_SESSION_KEYRING, 0, 0) < 0) {
2576 r = log_unit_error_errno(u, errno, "Failed to link user keyring into session keyring: %m");
2577 goto out;
2578 }
2579 }
2580
2581 /* Restore uid/gid back */
2582 if (uid_is_valid(uid) && uid != saved_uid) {
2583 if (setreuid(saved_uid, -1) < 0) {
2584 r = log_unit_error_errno(u, errno, "Failed to change UID back for user keyring: %m");
2585 goto out;
2586 }
2587 }
2588
2589 if (gid_is_valid(gid) && gid != saved_gid) {
2590 if (setregid(saved_gid, -1) < 0)
2591 return log_unit_error_errno(u, errno, "Failed to change GID back for user keyring: %m");
2592 }
2593
2594 /* Populate they keyring with the invocation ID by default, as original saved_uid. */
2595 if (!sd_id128_is_null(u->invocation_id)) {
2596 key_serial_t key;
2597
2598 key = add_key("user", "invocation_id", &u->invocation_id, sizeof(u->invocation_id), KEY_SPEC_SESSION_KEYRING);
2599 if (key == -1)
2600 log_unit_debug_errno(u, errno, "Failed to add invocation ID to keyring, ignoring: %m");
2601 else {
2602 if (keyctl(KEYCTL_SETPERM, key,
2603 KEY_POS_VIEW|KEY_POS_READ|KEY_POS_SEARCH|
2604 KEY_USR_VIEW|KEY_USR_READ|KEY_USR_SEARCH, 0, 0) < 0)
2605 r = log_unit_error_errno(u, errno, "Failed to restrict invocation ID permission: %m");
2606 }
2607 }
2608
2609 out:
2610 /* Revert back uid & gid for the the last time, and exit */
2611 /* no extra logging, as only the first already reported error matters */
2612 if (getuid() != saved_uid)
2613 (void) setreuid(saved_uid, -1);
2614
2615 if (getgid() != saved_gid)
2616 (void) setregid(saved_gid, -1);
2617
2618 return r;
2619 }
2620
2621 static void append_socket_pair(int *array, size_t *n, const int pair[2]) {
2622 assert(array);
2623 assert(n);
2624
2625 if (!pair)
2626 return;
2627
2628 if (pair[0] >= 0)
2629 array[(*n)++] = pair[0];
2630 if (pair[1] >= 0)
2631 array[(*n)++] = pair[1];
2632 }
2633
2634 static int close_remaining_fds(
2635 const ExecParameters *params,
2636 const ExecRuntime *runtime,
2637 const DynamicCreds *dcreds,
2638 int user_lookup_fd,
2639 int socket_fd,
2640 int exec_fd,
2641 int *fds, size_t n_fds) {
2642
2643 size_t n_dont_close = 0;
2644 int dont_close[n_fds + 12];
2645
2646 assert(params);
2647
2648 if (params->stdin_fd >= 0)
2649 dont_close[n_dont_close++] = params->stdin_fd;
2650 if (params->stdout_fd >= 0)
2651 dont_close[n_dont_close++] = params->stdout_fd;
2652 if (params->stderr_fd >= 0)
2653 dont_close[n_dont_close++] = params->stderr_fd;
2654
2655 if (socket_fd >= 0)
2656 dont_close[n_dont_close++] = socket_fd;
2657 if (exec_fd >= 0)
2658 dont_close[n_dont_close++] = exec_fd;
2659 if (n_fds > 0) {
2660 memcpy(dont_close + n_dont_close, fds, sizeof(int) * n_fds);
2661 n_dont_close += n_fds;
2662 }
2663
2664 if (runtime)
2665 append_socket_pair(dont_close, &n_dont_close, runtime->netns_storage_socket);
2666
2667 if (dcreds) {
2668 if (dcreds->user)
2669 append_socket_pair(dont_close, &n_dont_close, dcreds->user->storage_socket);
2670 if (dcreds->group)
2671 append_socket_pair(dont_close, &n_dont_close, dcreds->group->storage_socket);
2672 }
2673
2674 if (user_lookup_fd >= 0)
2675 dont_close[n_dont_close++] = user_lookup_fd;
2676
2677 return close_all_fds(dont_close, n_dont_close);
2678 }
2679
2680 static int send_user_lookup(
2681 Unit *unit,
2682 int user_lookup_fd,
2683 uid_t uid,
2684 gid_t gid) {
2685
2686 assert(unit);
2687
2688 /* Send the resolved UID/GID to PID 1 after we learnt it. We send a single datagram, containing the UID/GID
2689 * data as well as the unit name. Note that we suppress sending this if no user/group to resolve was
2690 * specified. */
2691
2692 if (user_lookup_fd < 0)
2693 return 0;
2694
2695 if (!uid_is_valid(uid) && !gid_is_valid(gid))
2696 return 0;
2697
2698 if (writev(user_lookup_fd,
2699 (struct iovec[]) {
2700 IOVEC_INIT(&uid, sizeof(uid)),
2701 IOVEC_INIT(&gid, sizeof(gid)),
2702 IOVEC_INIT_STRING(unit->id) }, 3) < 0)
2703 return -errno;
2704
2705 return 0;
2706 }
2707
2708 static int acquire_home(const ExecContext *c, uid_t uid, const char** home, char **buf) {
2709 int r;
2710
2711 assert(c);
2712 assert(home);
2713 assert(buf);
2714
2715 /* If WorkingDirectory=~ is set, try to acquire a usable home directory. */
2716
2717 if (*home)
2718 return 0;
2719
2720 if (!c->working_directory_home)
2721 return 0;
2722
2723 if (uid == 0) {
2724 /* Hardcode /root as home directory for UID 0 */
2725 *home = "/root";
2726 return 1;
2727 }
2728
2729 r = get_home_dir(buf);
2730 if (r < 0)
2731 return r;
2732
2733 *home = *buf;
2734 return 1;
2735 }
2736
2737 static int compile_suggested_paths(const ExecContext *c, const ExecParameters *p, char ***ret) {
2738 _cleanup_strv_free_ char ** list = NULL;
2739 ExecDirectoryType t;
2740 int r;
2741
2742 assert(c);
2743 assert(p);
2744 assert(ret);
2745
2746 assert(c->dynamic_user);
2747
2748 /* Compile a list of paths that it might make sense to read the owning UID from to use as initial candidate for
2749 * dynamic UID allocation, in order to save us from doing costly recursive chown()s of the special
2750 * directories. */
2751
2752 for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2753 char **i;
2754
2755 if (t == EXEC_DIRECTORY_CONFIGURATION)
2756 continue;
2757
2758 if (!p->prefix[t])
2759 continue;
2760
2761 STRV_FOREACH(i, c->directories[t].paths) {
2762 char *e;
2763
2764 if (t == EXEC_DIRECTORY_RUNTIME)
2765 e = strjoin(p->prefix[t], "/", *i);
2766 else
2767 e = strjoin(p->prefix[t], "/private/", *i);
2768 if (!e)
2769 return -ENOMEM;
2770
2771 r = strv_consume(&list, e);
2772 if (r < 0)
2773 return r;
2774 }
2775 }
2776
2777 *ret = TAKE_PTR(list);
2778
2779 return 0;
2780 }
2781
2782 static char *exec_command_line(char **argv);
2783
2784 static int exec_parameters_get_cgroup_path(const ExecParameters *params, char **ret) {
2785 bool using_subcgroup;
2786 char *p;
2787
2788 assert(params);
2789 assert(ret);
2790
2791 if (!params->cgroup_path)
2792 return -EINVAL;
2793
2794 /* If we are called for a unit where cgroup delegation is on, and the payload created its own populated
2795 * subcgroup (which we expect it to do, after all it asked for delegation), then we cannot place the control
2796 * processes started after the main unit's process in the unit's main cgroup because it is now an inner one,
2797 * and inner cgroups may not contain processes. Hence, if delegation is on, and this is a control process,
2798 * let's use ".control" as subcgroup instead. Note that we do so only for ExecStartPost=, ExecReload=,
2799 * ExecStop=, ExecStopPost=, i.e. for the commands where the main process is already forked. For ExecStartPre=
2800 * this is not necessary, the cgroup is still empty. We distinguish these cases with the EXEC_CONTROL_CGROUP
2801 * flag, which is only passed for the former statements, not for the latter. */
2802
2803 using_subcgroup = FLAGS_SET(params->flags, EXEC_CONTROL_CGROUP|EXEC_CGROUP_DELEGATE|EXEC_IS_CONTROL);
2804 if (using_subcgroup)
2805 p = strjoin(params->cgroup_path, "/.control");
2806 else
2807 p = strdup(params->cgroup_path);
2808 if (!p)
2809 return -ENOMEM;
2810
2811 *ret = p;
2812 return using_subcgroup;
2813 }
2814
2815 static int exec_child(
2816 Unit *unit,
2817 const ExecCommand *command,
2818 const ExecContext *context,
2819 const ExecParameters *params,
2820 ExecRuntime *runtime,
2821 DynamicCreds *dcreds,
2822 int socket_fd,
2823 int named_iofds[3],
2824 int *fds,
2825 size_t n_socket_fds,
2826 size_t n_storage_fds,
2827 char **files_env,
2828 int user_lookup_fd,
2829 int *exit_status) {
2830
2831 _cleanup_strv_free_ char **our_env = NULL, **pass_env = NULL, **accum_env = NULL, **final_argv = NULL;
2832 int *fds_with_exec_fd, n_fds_with_exec_fd, r, ngids = 0, exec_fd = -1;
2833 _cleanup_free_ gid_t *supplementary_gids = NULL;
2834 const char *username = NULL, *groupname = NULL;
2835 _cleanup_free_ char *home_buffer = NULL;
2836 const char *home = NULL, *shell = NULL;
2837 dev_t journal_stream_dev = 0;
2838 ino_t journal_stream_ino = 0;
2839 bool needs_sandboxing, /* Do we need to set up full sandboxing? (i.e. all namespacing, all MAC stuff, caps, yadda yadda */
2840 needs_setuid, /* Do we need to do the actual setresuid()/setresgid() calls? */
2841 needs_mount_namespace, /* Do we need to set up a mount namespace for this kernel? */
2842 needs_ambient_hack; /* Do we need to apply the ambient capabilities hack? */
2843 #if HAVE_SELINUX
2844 _cleanup_free_ char *mac_selinux_context_net = NULL;
2845 bool use_selinux = false;
2846 #endif
2847 #if ENABLE_SMACK
2848 bool use_smack = false;
2849 #endif
2850 #if HAVE_APPARMOR
2851 bool use_apparmor = false;
2852 #endif
2853 uid_t uid = UID_INVALID;
2854 gid_t gid = GID_INVALID;
2855 size_t n_fds;
2856 ExecDirectoryType dt;
2857 int secure_bits;
2858
2859 assert(unit);
2860 assert(command);
2861 assert(context);
2862 assert(params);
2863 assert(exit_status);
2864
2865 rename_process_from_path(command->path);
2866
2867 /* We reset exactly these signals, since they are the
2868 * only ones we set to SIG_IGN in the main daemon. All
2869 * others we leave untouched because we set them to
2870 * SIG_DFL or a valid handler initially, both of which
2871 * will be demoted to SIG_DFL. */
2872 (void) default_signals(SIGNALS_CRASH_HANDLER,
2873 SIGNALS_IGNORE, -1);
2874
2875 if (context->ignore_sigpipe)
2876 (void) ignore_signals(SIGPIPE, -1);
2877
2878 r = reset_signal_mask();
2879 if (r < 0) {
2880 *exit_status = EXIT_SIGNAL_MASK;
2881 return log_unit_error_errno(unit, r, "Failed to set process signal mask: %m");
2882 }
2883
2884 if (params->idle_pipe)
2885 do_idle_pipe_dance(params->idle_pipe);
2886
2887 /* Close fds we don't need very early to make sure we don't block init reexecution because it cannot bind its
2888 * sockets. Among the fds we close are the logging fds, and we want to keep them closed, so that we don't have
2889 * any fds open we don't really want open during the transition. In order to make logging work, we switch the
2890 * log subsystem into open_when_needed mode, so that it reopens the logs on every single log call. */
2891
2892 log_forget_fds();
2893 log_set_open_when_needed(true);
2894
2895 /* In case anything used libc syslog(), close this here, too */
2896 closelog();
2897
2898 n_fds = n_socket_fds + n_storage_fds;
2899 r = close_remaining_fds(params, runtime, dcreds, user_lookup_fd, socket_fd, params->exec_fd, fds, n_fds);
2900 if (r < 0) {
2901 *exit_status = EXIT_FDS;
2902 return log_unit_error_errno(unit, r, "Failed to close unwanted file descriptors: %m");
2903 }
2904
2905 if (!context->same_pgrp)
2906 if (setsid() < 0) {
2907 *exit_status = EXIT_SETSID;
2908 return log_unit_error_errno(unit, errno, "Failed to create new process session: %m");
2909 }
2910
2911 exec_context_tty_reset(context, params);
2912
2913 if (unit_shall_confirm_spawn(unit)) {
2914 const char *vc = params->confirm_spawn;
2915 _cleanup_free_ char *cmdline = NULL;
2916
2917 cmdline = exec_command_line(command->argv);
2918 if (!cmdline) {
2919 *exit_status = EXIT_MEMORY;
2920 return log_oom();
2921 }
2922
2923 r = ask_for_confirmation(vc, unit, cmdline);
2924 if (r != CONFIRM_EXECUTE) {
2925 if (r == CONFIRM_PRETEND_SUCCESS) {
2926 *exit_status = EXIT_SUCCESS;
2927 return 0;
2928 }
2929 *exit_status = EXIT_CONFIRM;
2930 log_unit_error(unit, "Execution cancelled by the user");
2931 return -ECANCELED;
2932 }
2933 }
2934
2935 /* We are about to invoke NSS and PAM modules. Let's tell them what we are doing here, maybe they care. This is
2936 * used by nss-resolve to disable itself when we are about to start systemd-resolved, to avoid deadlocks. Note
2937 * that these env vars do not survive the execve(), which means they really only apply to the PAM and NSS
2938 * invocations themselves. Also note that while we'll only invoke NSS modules involved in user management they
2939 * might internally call into other NSS modules that are involved in hostname resolution, we never know. */
2940 if (setenv("SYSTEMD_ACTIVATION_UNIT", unit->id, true) != 0 ||
2941 setenv("SYSTEMD_ACTIVATION_SCOPE", MANAGER_IS_SYSTEM(unit->manager) ? "system" : "user", true) != 0) {
2942 *exit_status = EXIT_MEMORY;
2943 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
2944 }
2945
2946 if (context->dynamic_user && dcreds) {
2947 _cleanup_strv_free_ char **suggested_paths = NULL;
2948
2949 /* On top of that, make sure we bypass our own NSS module nss-systemd comprehensively for any NSS
2950 * checks, if DynamicUser=1 is used, as we shouldn't create a feedback loop with ourselves here.*/
2951 if (putenv((char*) "SYSTEMD_NSS_DYNAMIC_BYPASS=1") != 0) {
2952 *exit_status = EXIT_USER;
2953 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
2954 }
2955
2956 r = compile_suggested_paths(context, params, &suggested_paths);
2957 if (r < 0) {
2958 *exit_status = EXIT_MEMORY;
2959 return log_oom();
2960 }
2961
2962 r = dynamic_creds_realize(dcreds, suggested_paths, &uid, &gid);
2963 if (r < 0) {
2964 *exit_status = EXIT_USER;
2965 if (r == -EILSEQ) {
2966 log_unit_error(unit, "Failed to update dynamic user credentials: User or group with specified name already exists.");
2967 return -EOPNOTSUPP;
2968 }
2969 return log_unit_error_errno(unit, r, "Failed to update dynamic user credentials: %m");
2970 }
2971
2972 if (!uid_is_valid(uid)) {
2973 *exit_status = EXIT_USER;
2974 log_unit_error(unit, "UID validation failed for \""UID_FMT"\"", uid);
2975 return -ESRCH;
2976 }
2977
2978 if (!gid_is_valid(gid)) {
2979 *exit_status = EXIT_USER;
2980 log_unit_error(unit, "GID validation failed for \""GID_FMT"\"", gid);
2981 return -ESRCH;
2982 }
2983
2984 if (dcreds->user)
2985 username = dcreds->user->name;
2986
2987 } else {
2988 r = get_fixed_user(context, &username, &uid, &gid, &home, &shell);
2989 if (r < 0) {
2990 *exit_status = EXIT_USER;
2991 return log_unit_error_errno(unit, r, "Failed to determine user credentials: %m");
2992 }
2993
2994 r = get_fixed_group(context, &groupname, &gid);
2995 if (r < 0) {
2996 *exit_status = EXIT_GROUP;
2997 return log_unit_error_errno(unit, r, "Failed to determine group credentials: %m");
2998 }
2999 }
3000
3001 /* Initialize user supplementary groups and get SupplementaryGroups= ones */
3002 r = get_supplementary_groups(context, username, groupname, gid,
3003 &supplementary_gids, &ngids);
3004 if (r < 0) {
3005 *exit_status = EXIT_GROUP;
3006 return log_unit_error_errno(unit, r, "Failed to determine supplementary groups: %m");
3007 }
3008
3009 r = send_user_lookup(unit, user_lookup_fd, uid, gid);
3010 if (r < 0) {
3011 *exit_status = EXIT_USER;
3012 return log_unit_error_errno(unit, r, "Failed to send user credentials to PID1: %m");
3013 }
3014
3015 user_lookup_fd = safe_close(user_lookup_fd);
3016
3017 r = acquire_home(context, uid, &home, &home_buffer);
3018 if (r < 0) {
3019 *exit_status = EXIT_CHDIR;
3020 return log_unit_error_errno(unit, r, "Failed to determine $HOME for user: %m");
3021 }
3022
3023 /* If a socket is connected to STDIN/STDOUT/STDERR, we
3024 * must sure to drop O_NONBLOCK */
3025 if (socket_fd >= 0)
3026 (void) fd_nonblock(socket_fd, false);
3027
3028 /* Journald will try to look-up our cgroup in order to populate _SYSTEMD_CGROUP and _SYSTEMD_UNIT fields.
3029 * Hence we need to migrate to the target cgroup from init.scope before connecting to journald */
3030 if (params->cgroup_path) {
3031 _cleanup_free_ char *p = NULL;
3032
3033 r = exec_parameters_get_cgroup_path(params, &p);
3034 if (r < 0) {
3035 *exit_status = EXIT_CGROUP;
3036 return log_unit_error_errno(unit, r, "Failed to acquire cgroup path: %m");
3037 }
3038
3039 r = cg_attach_everywhere(params->cgroup_supported, p, 0, NULL, NULL);
3040 if (r < 0) {
3041 *exit_status = EXIT_CGROUP;
3042 return log_unit_error_errno(unit, r, "Failed to attach to cgroup %s: %m", p);
3043 }
3044 }
3045
3046 r = setup_input(context, params, socket_fd, named_iofds);
3047 if (r < 0) {
3048 *exit_status = EXIT_STDIN;
3049 return log_unit_error_errno(unit, r, "Failed to set up standard input: %m");
3050 }
3051
3052 r = setup_output(unit, context, params, STDOUT_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
3053 if (r < 0) {
3054 *exit_status = EXIT_STDOUT;
3055 return log_unit_error_errno(unit, r, "Failed to set up standard output: %m");
3056 }
3057
3058 r = setup_output(unit, context, params, STDERR_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
3059 if (r < 0) {
3060 *exit_status = EXIT_STDERR;
3061 return log_unit_error_errno(unit, r, "Failed to set up standard error output: %m");
3062 }
3063
3064 if (context->oom_score_adjust_set) {
3065 /* When we can't make this change due to EPERM, then let's silently skip over it. User namespaces
3066 * prohibit write access to this file, and we shouldn't trip up over that. */
3067 r = set_oom_score_adjust(context->oom_score_adjust);
3068 if (IN_SET(r, -EPERM, -EACCES))
3069 log_unit_debug_errno(unit, r, "Failed to adjust OOM setting, assuming containerized execution, ignoring: %m");
3070 else if (r < 0) {
3071 *exit_status = EXIT_OOM_ADJUST;
3072 return log_unit_error_errno(unit, r, "Failed to adjust OOM setting: %m");
3073 }
3074 }
3075
3076 if (context->nice_set)
3077 if (setpriority(PRIO_PROCESS, 0, context->nice) < 0) {
3078 *exit_status = EXIT_NICE;
3079 return log_unit_error_errno(unit, errno, "Failed to set up process scheduling priority (nice level): %m");
3080 }
3081
3082 if (context->cpu_sched_set) {
3083 struct sched_param param = {
3084 .sched_priority = context->cpu_sched_priority,
3085 };
3086
3087 r = sched_setscheduler(0,
3088 context->cpu_sched_policy |
3089 (context->cpu_sched_reset_on_fork ?
3090 SCHED_RESET_ON_FORK : 0),
3091 &param);
3092 if (r < 0) {
3093 *exit_status = EXIT_SETSCHEDULER;
3094 return log_unit_error_errno(unit, errno, "Failed to set up CPU scheduling: %m");
3095 }
3096 }
3097
3098 if (context->cpuset)
3099 if (sched_setaffinity(0, CPU_ALLOC_SIZE(context->cpuset_ncpus), context->cpuset) < 0) {
3100 *exit_status = EXIT_CPUAFFINITY;
3101 return log_unit_error_errno(unit, errno, "Failed to set up CPU affinity: %m");
3102 }
3103
3104 if (context->ioprio_set)
3105 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, context->ioprio) < 0) {
3106 *exit_status = EXIT_IOPRIO;
3107 return log_unit_error_errno(unit, errno, "Failed to set up IO scheduling priority: %m");
3108 }
3109
3110 if (context->timer_slack_nsec != NSEC_INFINITY)
3111 if (prctl(PR_SET_TIMERSLACK, context->timer_slack_nsec) < 0) {
3112 *exit_status = EXIT_TIMERSLACK;
3113 return log_unit_error_errno(unit, errno, "Failed to set up timer slack: %m");
3114 }
3115
3116 if (context->personality != PERSONALITY_INVALID) {
3117 r = safe_personality(context->personality);
3118 if (r < 0) {
3119 *exit_status = EXIT_PERSONALITY;
3120 return log_unit_error_errno(unit, r, "Failed to set up execution domain (personality): %m");
3121 }
3122 }
3123
3124 if (context->utmp_id)
3125 utmp_put_init_process(context->utmp_id, getpid_cached(), getsid(0),
3126 context->tty_path,
3127 context->utmp_mode == EXEC_UTMP_INIT ? INIT_PROCESS :
3128 context->utmp_mode == EXEC_UTMP_LOGIN ? LOGIN_PROCESS :
3129 USER_PROCESS,
3130 username);
3131
3132 if (context->user) {
3133 r = chown_terminal(STDIN_FILENO, uid);
3134 if (r < 0) {
3135 *exit_status = EXIT_STDIN;
3136 return log_unit_error_errno(unit, r, "Failed to change ownership of terminal: %m");
3137 }
3138 }
3139
3140 /* If delegation is enabled we'll pass ownership of the cgroup to the user of the new process. On cgroup v1
3141 * this is only about systemd's own hierarchy, i.e. not the controller hierarchies, simply because that's not
3142 * safe. On cgroup v2 there's only one hierarchy anyway, and delegation is safe there, hence in that case only
3143 * touch a single hierarchy too. */
3144 if (params->cgroup_path && context->user && (params->flags & EXEC_CGROUP_DELEGATE)) {
3145 r = cg_set_access(SYSTEMD_CGROUP_CONTROLLER, params->cgroup_path, uid, gid);
3146 if (r < 0) {
3147 *exit_status = EXIT_CGROUP;
3148 return log_unit_error_errno(unit, r, "Failed to adjust control group access: %m");
3149 }
3150 }
3151
3152 for (dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
3153 r = setup_exec_directory(context, params, uid, gid, dt, exit_status);
3154 if (r < 0)
3155 return log_unit_error_errno(unit, r, "Failed to set up special execution directory in %s: %m", params->prefix[dt]);
3156 }
3157
3158 r = build_environment(
3159 unit,
3160 context,
3161 params,
3162 n_fds,
3163 home,
3164 username,
3165 shell,
3166 journal_stream_dev,
3167 journal_stream_ino,
3168 &our_env);
3169 if (r < 0) {
3170 *exit_status = EXIT_MEMORY;
3171 return log_oom();
3172 }
3173
3174 r = build_pass_environment(context, &pass_env);
3175 if (r < 0) {
3176 *exit_status = EXIT_MEMORY;
3177 return log_oom();
3178 }
3179
3180 accum_env = strv_env_merge(5,
3181 params->environment,
3182 our_env,
3183 pass_env,
3184 context->environment,
3185 files_env,
3186 NULL);
3187 if (!accum_env) {
3188 *exit_status = EXIT_MEMORY;
3189 return log_oom();
3190 }
3191 accum_env = strv_env_clean(accum_env);
3192
3193 (void) umask(context->umask);
3194
3195 r = setup_keyring(unit, context, params, uid, gid);
3196 if (r < 0) {
3197 *exit_status = EXIT_KEYRING;
3198 return log_unit_error_errno(unit, r, "Failed to set up kernel keyring: %m");
3199 }
3200
3201 /* We need sandboxing if the caller asked us to apply it and the command isn't explicitly excepted from it */
3202 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & EXEC_COMMAND_FULLY_PRIVILEGED);
3203
3204 /* We need the ambient capability hack, if the caller asked us to apply it and the command is marked for it, and the kernel doesn't actually support ambient caps */
3205 needs_ambient_hack = (params->flags & EXEC_APPLY_SANDBOXING) && (command->flags & EXEC_COMMAND_AMBIENT_MAGIC) && !ambient_capabilities_supported();
3206
3207 /* We need setresuid() if the caller asked us to apply sandboxing and the command isn't explicitly excepted from either whole sandboxing or just setresuid() itself, and the ambient hack is not desired */
3208 if (needs_ambient_hack)
3209 needs_setuid = false;
3210 else
3211 needs_setuid = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & (EXEC_COMMAND_FULLY_PRIVILEGED|EXEC_COMMAND_NO_SETUID));
3212
3213 if (needs_sandboxing) {
3214 /* MAC enablement checks need to be done before a new mount ns is created, as they rely on /sys being
3215 * present. The actual MAC context application will happen later, as late as possible, to avoid
3216 * impacting our own code paths. */
3217
3218 #if HAVE_SELINUX
3219 use_selinux = mac_selinux_use();
3220 #endif
3221 #if ENABLE_SMACK
3222 use_smack = mac_smack_use();
3223 #endif
3224 #if HAVE_APPARMOR
3225 use_apparmor = mac_apparmor_use();
3226 #endif
3227 }
3228
3229 if (needs_setuid) {
3230 if (context->pam_name && username) {
3231 r = setup_pam(context->pam_name, username, uid, gid, context->tty_path, &accum_env, fds, n_fds);
3232 if (r < 0) {
3233 *exit_status = EXIT_PAM;
3234 return log_unit_error_errno(unit, r, "Failed to set up PAM session: %m");
3235 }
3236 }
3237 }
3238
3239 if (context->private_network && runtime && runtime->netns_storage_socket[0] >= 0) {
3240 if (ns_type_supported(NAMESPACE_NET)) {
3241 r = setup_netns(runtime->netns_storage_socket);
3242 if (r < 0) {
3243 *exit_status = EXIT_NETWORK;
3244 return log_unit_error_errno(unit, r, "Failed to set up network namespacing: %m");
3245 }
3246 } else
3247 log_unit_warning(unit, "PrivateNetwork=yes is configured, but the kernel does not support network namespaces, ignoring.");
3248 }
3249
3250 needs_mount_namespace = exec_needs_mount_namespace(context, params, runtime);
3251 if (needs_mount_namespace) {
3252 r = apply_mount_namespace(unit, command, context, params, runtime);
3253 if (r < 0) {
3254 *exit_status = EXIT_NAMESPACE;
3255 return log_unit_error_errno(unit, r, "Failed to set up mount namespacing: %m");
3256 }
3257 }
3258
3259 /* Drop groups as early as possbile */
3260 if (needs_setuid) {
3261 r = enforce_groups(gid, supplementary_gids, ngids);
3262 if (r < 0) {
3263 *exit_status = EXIT_GROUP;
3264 return log_unit_error_errno(unit, r, "Changing group credentials failed: %m");
3265 }
3266 }
3267
3268 if (needs_sandboxing) {
3269 #if HAVE_SELINUX
3270 if (use_selinux && params->selinux_context_net && socket_fd >= 0) {
3271 r = mac_selinux_get_child_mls_label(socket_fd, command->path, context->selinux_context, &mac_selinux_context_net);
3272 if (r < 0) {
3273 *exit_status = EXIT_SELINUX_CONTEXT;
3274 return log_unit_error_errno(unit, r, "Failed to determine SELinux context: %m");
3275 }
3276 }
3277 #endif
3278
3279 if (context->private_users) {
3280 r = setup_private_users(uid, gid);
3281 if (r < 0) {
3282 *exit_status = EXIT_USER;
3283 return log_unit_error_errno(unit, r, "Failed to set up user namespacing: %m");
3284 }
3285 }
3286 }
3287
3288 /* We repeat the fd closing here, to make sure that nothing is leaked from the PAM modules. Note that we are
3289 * more aggressive this time since socket_fd and the netns fds we don't need anymore. We do keep the exec_fd
3290 * however if we have it as we want to keep it open until the final execve(). */
3291
3292 if (params->exec_fd >= 0) {
3293 exec_fd = params->exec_fd;
3294
3295 if (exec_fd < 3 + (int) n_fds) {
3296 int moved_fd;
3297
3298 /* Let's move the exec fd far up, so that it's outside of the fd range we want to pass to the
3299 * process we are about to execute. */
3300
3301 moved_fd = fcntl(exec_fd, F_DUPFD_CLOEXEC, 3 + (int) n_fds);
3302 if (moved_fd < 0) {
3303 *exit_status = EXIT_FDS;
3304 return log_unit_error_errno(unit, errno, "Couldn't move exec fd up: %m");
3305 }
3306
3307 safe_close(exec_fd);
3308 exec_fd = moved_fd;
3309 } else {
3310 /* This fd should be FD_CLOEXEC already, but let's make sure. */
3311 r = fd_cloexec(exec_fd, true);
3312 if (r < 0) {
3313 *exit_status = EXIT_FDS;
3314 return log_unit_error_errno(unit, r, "Failed to make exec fd FD_CLOEXEC: %m");
3315 }
3316 }
3317
3318 fds_with_exec_fd = newa(int, n_fds + 1);
3319 memcpy_safe(fds_with_exec_fd, fds, n_fds * sizeof(int));
3320 fds_with_exec_fd[n_fds] = exec_fd;
3321 n_fds_with_exec_fd = n_fds + 1;
3322 } else {
3323 fds_with_exec_fd = fds;
3324 n_fds_with_exec_fd = n_fds;
3325 }
3326
3327 r = close_all_fds(fds_with_exec_fd, n_fds_with_exec_fd);
3328 if (r >= 0)
3329 r = shift_fds(fds, n_fds);
3330 if (r >= 0)
3331 r = flags_fds(fds, n_socket_fds, n_storage_fds, context->non_blocking);
3332 if (r < 0) {
3333 *exit_status = EXIT_FDS;
3334 return log_unit_error_errno(unit, r, "Failed to adjust passed file descriptors: %m");
3335 }
3336
3337 /* At this point, the fds we want to pass to the program are all ready and set up, with O_CLOEXEC turned off
3338 * and at the right fd numbers. The are no other fds open, with one exception: the exec_fd if it is defined,
3339 * and it has O_CLOEXEC set, after all we want it to be closed by the execve(), so that our parent knows we
3340 * came this far. */
3341
3342 secure_bits = context->secure_bits;
3343
3344 if (needs_sandboxing) {
3345 uint64_t bset;
3346 int which_failed;
3347
3348 r = setrlimit_closest_all((const struct rlimit* const *) context->rlimit, &which_failed);
3349 if (r < 0) {
3350 *exit_status = EXIT_LIMITS;
3351 return log_unit_error_errno(unit, r, "Failed to adjust resource limit RLIMIT_%s: %m", rlimit_to_string(which_failed));
3352 }
3353
3354 /* Set the RTPRIO resource limit to 0, but only if nothing else was explicitly requested. */
3355 if (context->restrict_realtime && !context->rlimit[RLIMIT_RTPRIO]) {
3356 if (setrlimit(RLIMIT_RTPRIO, &RLIMIT_MAKE_CONST(0)) < 0) {
3357 *exit_status = EXIT_LIMITS;
3358 return log_unit_error_errno(unit, errno, "Failed to adjust RLIMIT_RTPRIO resource limit: %m");
3359 }
3360 }
3361
3362 #if ENABLE_SMACK
3363 /* LSM Smack needs the capability CAP_MAC_ADMIN to change the current execution security context of the
3364 * process. This is the latest place before dropping capabilities. Other MAC context are set later. */
3365 if (use_smack) {
3366 r = setup_smack(context, command);
3367 if (r < 0) {
3368 *exit_status = EXIT_SMACK_PROCESS_LABEL;
3369 return log_unit_error_errno(unit, r, "Failed to set SMACK process label: %m");
3370 }
3371 }
3372 #endif
3373
3374 bset = context->capability_bounding_set;
3375 /* If the ambient caps hack is enabled (which means the kernel can't do them, and the user asked for
3376 * our magic fallback), then let's add some extra caps, so that the service can drop privs of its own,
3377 * instead of us doing that */
3378 if (needs_ambient_hack)
3379 bset |= (UINT64_C(1) << CAP_SETPCAP) |
3380 (UINT64_C(1) << CAP_SETUID) |
3381 (UINT64_C(1) << CAP_SETGID);
3382
3383 if (!cap_test_all(bset)) {
3384 r = capability_bounding_set_drop(bset, false);
3385 if (r < 0) {
3386 *exit_status = EXIT_CAPABILITIES;
3387 return log_unit_error_errno(unit, r, "Failed to drop capabilities: %m");
3388 }
3389 }
3390
3391 /* This is done before enforce_user, but ambient set
3392 * does not survive over setresuid() if keep_caps is not set. */
3393 if (!needs_ambient_hack &&
3394 context->capability_ambient_set != 0) {
3395 r = capability_ambient_set_apply(context->capability_ambient_set, true);
3396 if (r < 0) {
3397 *exit_status = EXIT_CAPABILITIES;
3398 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (before UID change): %m");
3399 }
3400 }
3401 }
3402
3403 if (needs_setuid) {
3404 if (context->user) {
3405 r = enforce_user(context, uid);
3406 if (r < 0) {
3407 *exit_status = EXIT_USER;
3408 return log_unit_error_errno(unit, r, "Failed to change UID to " UID_FMT ": %m", uid);
3409 }
3410
3411 if (!needs_ambient_hack &&
3412 context->capability_ambient_set != 0) {
3413
3414 /* Fix the ambient capabilities after user change. */
3415 r = capability_ambient_set_apply(context->capability_ambient_set, false);
3416 if (r < 0) {
3417 *exit_status = EXIT_CAPABILITIES;
3418 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (after UID change): %m");
3419 }
3420
3421 /* If we were asked to change user and ambient capabilities
3422 * were requested, we had to add keep-caps to the securebits
3423 * so that we would maintain the inherited capability set
3424 * through the setresuid(). Make sure that the bit is added
3425 * also to the context secure_bits so that we don't try to
3426 * drop the bit away next. */
3427
3428 secure_bits |= 1<<SECURE_KEEP_CAPS;
3429 }
3430 }
3431 }
3432
3433 /* Apply working directory here, because the working directory might be on NFS and only the user running
3434 * this service might have the correct privilege to change to the working directory */
3435 r = apply_working_directory(context, params, home, needs_mount_namespace, exit_status);
3436 if (r < 0)
3437 return log_unit_error_errno(unit, r, "Changing to the requested working directory failed: %m");
3438
3439 if (needs_sandboxing) {
3440 /* Apply other MAC contexts late, but before seccomp syscall filtering, as those should really be last to
3441 * influence our own codepaths as little as possible. Moreover, applying MAC contexts usually requires
3442 * syscalls that are subject to seccomp filtering, hence should probably be applied before the syscalls
3443 * are restricted. */
3444
3445 #if HAVE_SELINUX
3446 if (use_selinux) {
3447 char *exec_context = mac_selinux_context_net ?: context->selinux_context;
3448
3449 if (exec_context) {
3450 r = setexeccon(exec_context);
3451 if (r < 0) {
3452 *exit_status = EXIT_SELINUX_CONTEXT;
3453 return log_unit_error_errno(unit, r, "Failed to change SELinux context to %s: %m", exec_context);
3454 }
3455 }
3456 }
3457 #endif
3458
3459 #if HAVE_APPARMOR
3460 if (use_apparmor && context->apparmor_profile) {
3461 r = aa_change_onexec(context->apparmor_profile);
3462 if (r < 0 && !context->apparmor_profile_ignore) {
3463 *exit_status = EXIT_APPARMOR_PROFILE;
3464 return log_unit_error_errno(unit, errno, "Failed to prepare AppArmor profile change to %s: %m", context->apparmor_profile);
3465 }
3466 }
3467 #endif
3468
3469 /* PR_GET_SECUREBITS is not privileged, while PR_SET_SECUREBITS is. So to suppress potential EPERMs
3470 * we'll try not to call PR_SET_SECUREBITS unless necessary. */
3471 if (prctl(PR_GET_SECUREBITS) != secure_bits)
3472 if (prctl(PR_SET_SECUREBITS, secure_bits) < 0) {
3473 *exit_status = EXIT_SECUREBITS;
3474 return log_unit_error_errno(unit, errno, "Failed to set process secure bits: %m");
3475 }
3476
3477 if (context_has_no_new_privileges(context))
3478 if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) < 0) {
3479 *exit_status = EXIT_NO_NEW_PRIVILEGES;
3480 return log_unit_error_errno(unit, errno, "Failed to disable new privileges: %m");
3481 }
3482
3483 #if HAVE_SECCOMP
3484 r = apply_address_families(unit, context);
3485 if (r < 0) {
3486 *exit_status = EXIT_ADDRESS_FAMILIES;
3487 return log_unit_error_errno(unit, r, "Failed to restrict address families: %m");
3488 }
3489
3490 r = apply_memory_deny_write_execute(unit, context);
3491 if (r < 0) {
3492 *exit_status = EXIT_SECCOMP;
3493 return log_unit_error_errno(unit, r, "Failed to disable writing to executable memory: %m");
3494 }
3495
3496 r = apply_restrict_realtime(unit, context);
3497 if (r < 0) {
3498 *exit_status = EXIT_SECCOMP;
3499 return log_unit_error_errno(unit, r, "Failed to apply realtime restrictions: %m");
3500 }
3501
3502 r = apply_restrict_namespaces(unit, context);
3503 if (r < 0) {
3504 *exit_status = EXIT_SECCOMP;
3505 return log_unit_error_errno(unit, r, "Failed to apply namespace restrictions: %m");
3506 }
3507
3508 r = apply_protect_sysctl(unit, context);
3509 if (r < 0) {
3510 *exit_status = EXIT_SECCOMP;
3511 return log_unit_error_errno(unit, r, "Failed to apply sysctl restrictions: %m");
3512 }
3513
3514 r = apply_protect_kernel_modules(unit, context);
3515 if (r < 0) {
3516 *exit_status = EXIT_SECCOMP;
3517 return log_unit_error_errno(unit, r, "Failed to apply module loading restrictions: %m");
3518 }
3519
3520 r = apply_private_devices(unit, context);
3521 if (r < 0) {
3522 *exit_status = EXIT_SECCOMP;
3523 return log_unit_error_errno(unit, r, "Failed to set up private devices: %m");
3524 }
3525
3526 r = apply_syscall_archs(unit, context);
3527 if (r < 0) {
3528 *exit_status = EXIT_SECCOMP;
3529 return log_unit_error_errno(unit, r, "Failed to apply syscall architecture restrictions: %m");
3530 }
3531
3532 r = apply_lock_personality(unit, context);
3533 if (r < 0) {
3534 *exit_status = EXIT_SECCOMP;
3535 return log_unit_error_errno(unit, r, "Failed to lock personalities: %m");
3536 }
3537
3538 /* This really should remain the last step before the execve(), to make sure our own code is unaffected
3539 * by the filter as little as possible. */
3540 r = apply_syscall_filter(unit, context, needs_ambient_hack);
3541 if (r < 0) {
3542 *exit_status = EXIT_SECCOMP;
3543 return log_unit_error_errno(unit, r, "Failed to apply system call filters: %m");
3544 }
3545 #endif
3546 }
3547
3548 if (!strv_isempty(context->unset_environment)) {
3549 char **ee = NULL;
3550
3551 ee = strv_env_delete(accum_env, 1, context->unset_environment);
3552 if (!ee) {
3553 *exit_status = EXIT_MEMORY;
3554 return log_oom();
3555 }
3556
3557 strv_free_and_replace(accum_env, ee);
3558 }
3559
3560 final_argv = replace_env_argv(command->argv, accum_env);
3561 if (!final_argv) {
3562 *exit_status = EXIT_MEMORY;
3563 return log_oom();
3564 }
3565
3566 if (DEBUG_LOGGING) {
3567 _cleanup_free_ char *line;
3568
3569 line = exec_command_line(final_argv);
3570 if (line)
3571 log_struct(LOG_DEBUG,
3572 "EXECUTABLE=%s", command->path,
3573 LOG_UNIT_MESSAGE(unit, "Executing: %s", line),
3574 LOG_UNIT_ID(unit),
3575 LOG_UNIT_INVOCATION_ID(unit));
3576 }
3577
3578 if (exec_fd >= 0) {
3579 uint8_t hot = 1;
3580
3581 /* We have finished with all our initializations. Let's now let the manager know that. From this point
3582 * on, if the manager sees POLLHUP on the exec_fd, then execve() was successful. */
3583
3584 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
3585 *exit_status = EXIT_EXEC;
3586 return log_unit_error_errno(unit, errno, "Failed to enable exec_fd: %m");
3587 }
3588 }
3589
3590 execve(command->path, final_argv, accum_env);
3591 r = -errno;
3592
3593 if (exec_fd >= 0) {
3594 uint8_t hot = 0;
3595
3596 /* The execve() failed. This means the exec_fd is still open. Which means we need to tell the manager
3597 * that POLLHUP on it no longer means execve() succeeded. */
3598
3599 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
3600 *exit_status = EXIT_EXEC;
3601 return log_unit_error_errno(unit, errno, "Failed to disable exec_fd: %m");
3602 }
3603 }
3604
3605 if (r == -ENOENT && (command->flags & EXEC_COMMAND_IGNORE_FAILURE)) {
3606 log_struct_errno(LOG_INFO, r,
3607 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
3608 LOG_UNIT_ID(unit),
3609 LOG_UNIT_INVOCATION_ID(unit),
3610 LOG_UNIT_MESSAGE(unit, "Executable %s missing, skipping: %m",
3611 command->path),
3612 "EXECUTABLE=%s", command->path);
3613 return 0;
3614 }
3615
3616 *exit_status = EXIT_EXEC;
3617 return log_unit_error_errno(unit, r, "Failed to execute command: %m");
3618 }
3619
3620 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l);
3621 static int exec_context_named_iofds(const ExecContext *c, const ExecParameters *p, int named_iofds[3]);
3622
3623 int exec_spawn(Unit *unit,
3624 ExecCommand *command,
3625 const ExecContext *context,
3626 const ExecParameters *params,
3627 ExecRuntime *runtime,
3628 DynamicCreds *dcreds,
3629 pid_t *ret) {
3630
3631 int socket_fd, r, named_iofds[3] = { -1, -1, -1 }, *fds = NULL;
3632 _cleanup_free_ char *subcgroup_path = NULL;
3633 _cleanup_strv_free_ char **files_env = NULL;
3634 size_t n_storage_fds = 0, n_socket_fds = 0;
3635 _cleanup_free_ char *line = NULL;
3636 pid_t pid;
3637
3638 assert(unit);
3639 assert(command);
3640 assert(context);
3641 assert(ret);
3642 assert(params);
3643 assert(params->fds || (params->n_socket_fds + params->n_storage_fds <= 0));
3644
3645 if (context->std_input == EXEC_INPUT_SOCKET ||
3646 context->std_output == EXEC_OUTPUT_SOCKET ||
3647 context->std_error == EXEC_OUTPUT_SOCKET) {
3648
3649 if (params->n_socket_fds > 1) {
3650 log_unit_error(unit, "Got more than one socket.");
3651 return -EINVAL;
3652 }
3653
3654 if (params->n_socket_fds == 0) {
3655 log_unit_error(unit, "Got no socket.");
3656 return -EINVAL;
3657 }
3658
3659 socket_fd = params->fds[0];
3660 } else {
3661 socket_fd = -1;
3662 fds = params->fds;
3663 n_socket_fds = params->n_socket_fds;
3664 n_storage_fds = params->n_storage_fds;
3665 }
3666
3667 r = exec_context_named_iofds(context, params, named_iofds);
3668 if (r < 0)
3669 return log_unit_error_errno(unit, r, "Failed to load a named file descriptor: %m");
3670
3671 r = exec_context_load_environment(unit, context, &files_env);
3672 if (r < 0)
3673 return log_unit_error_errno(unit, r, "Failed to load environment files: %m");
3674
3675 line = exec_command_line(command->argv);
3676 if (!line)
3677 return log_oom();
3678
3679 log_struct(LOG_DEBUG,
3680 LOG_UNIT_MESSAGE(unit, "About to execute: %s", line),
3681 "EXECUTABLE=%s", command->path,
3682 LOG_UNIT_ID(unit),
3683 LOG_UNIT_INVOCATION_ID(unit));
3684
3685 if (params->cgroup_path) {
3686 r = exec_parameters_get_cgroup_path(params, &subcgroup_path);
3687 if (r < 0)
3688 return log_unit_error_errno(unit, r, "Failed to acquire subcgroup path: %m");
3689 if (r > 0) { /* We are using a child cgroup */
3690 r = cg_create(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path);
3691 if (r < 0)
3692 return log_unit_error_errno(unit, r, "Failed to create control group '%s': %m", subcgroup_path);
3693 }
3694 }
3695
3696 pid = fork();
3697 if (pid < 0)
3698 return log_unit_error_errno(unit, errno, "Failed to fork: %m");
3699
3700 if (pid == 0) {
3701 int exit_status = EXIT_SUCCESS;
3702
3703 r = exec_child(unit,
3704 command,
3705 context,
3706 params,
3707 runtime,
3708 dcreds,
3709 socket_fd,
3710 named_iofds,
3711 fds,
3712 n_socket_fds,
3713 n_storage_fds,
3714 files_env,
3715 unit->manager->user_lookup_fds[1],
3716 &exit_status);
3717
3718 if (r < 0)
3719 log_struct_errno(LOG_ERR, r,
3720 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
3721 LOG_UNIT_ID(unit),
3722 LOG_UNIT_INVOCATION_ID(unit),
3723 LOG_UNIT_MESSAGE(unit, "Failed at step %s spawning %s: %m",
3724 exit_status_to_string(exit_status, EXIT_STATUS_SYSTEMD),
3725 command->path),
3726 "EXECUTABLE=%s", command->path);
3727
3728 _exit(exit_status);
3729 }
3730
3731 log_unit_debug(unit, "Forked %s as "PID_FMT, command->path, pid);
3732
3733 /* We add the new process to the cgroup both in the child (so that we can be sure that no user code is ever
3734 * executed outside of the cgroup) and in the parent (so that we can be sure that when we kill the cgroup the
3735 * process will be killed too). */
3736 if (subcgroup_path)
3737 (void) cg_attach(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path, pid);
3738
3739 exec_status_start(&command->exec_status, pid);
3740
3741 *ret = pid;
3742 return 0;
3743 }
3744
3745 void exec_context_init(ExecContext *c) {
3746 ExecDirectoryType i;
3747
3748 assert(c);
3749
3750 c->umask = 0022;
3751 c->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 0);
3752 c->cpu_sched_policy = SCHED_OTHER;
3753 c->syslog_priority = LOG_DAEMON|LOG_INFO;
3754 c->syslog_level_prefix = true;
3755 c->ignore_sigpipe = true;
3756 c->timer_slack_nsec = NSEC_INFINITY;
3757 c->personality = PERSONALITY_INVALID;
3758 for (i = 0; i < _EXEC_DIRECTORY_TYPE_MAX; i++)
3759 c->directories[i].mode = 0755;
3760 c->capability_bounding_set = CAP_ALL;
3761 assert_cc(NAMESPACE_FLAGS_INITIAL != NAMESPACE_FLAGS_ALL);
3762 c->restrict_namespaces = NAMESPACE_FLAGS_INITIAL;
3763 c->log_level_max = -1;
3764 }
3765
3766 void exec_context_done(ExecContext *c) {
3767 ExecDirectoryType i;
3768 size_t l;
3769
3770 assert(c);
3771
3772 c->environment = strv_free(c->environment);
3773 c->environment_files = strv_free(c->environment_files);
3774 c->pass_environment = strv_free(c->pass_environment);
3775 c->unset_environment = strv_free(c->unset_environment);
3776
3777 rlimit_free_all(c->rlimit);
3778
3779 for (l = 0; l < 3; l++) {
3780 c->stdio_fdname[l] = mfree(c->stdio_fdname[l]);
3781 c->stdio_file[l] = mfree(c->stdio_file[l]);
3782 }
3783
3784 c->working_directory = mfree(c->working_directory);
3785 c->root_directory = mfree(c->root_directory);
3786 c->root_image = mfree(c->root_image);
3787 c->tty_path = mfree(c->tty_path);
3788 c->syslog_identifier = mfree(c->syslog_identifier);
3789 c->user = mfree(c->user);
3790 c->group = mfree(c->group);
3791
3792 c->supplementary_groups = strv_free(c->supplementary_groups);
3793
3794 c->pam_name = mfree(c->pam_name);
3795
3796 c->read_only_paths = strv_free(c->read_only_paths);
3797 c->read_write_paths = strv_free(c->read_write_paths);
3798 c->inaccessible_paths = strv_free(c->inaccessible_paths);
3799
3800 bind_mount_free_many(c->bind_mounts, c->n_bind_mounts);
3801 c->bind_mounts = NULL;
3802 c->n_bind_mounts = 0;
3803 temporary_filesystem_free_many(c->temporary_filesystems, c->n_temporary_filesystems);
3804 c->temporary_filesystems = NULL;
3805 c->n_temporary_filesystems = 0;
3806
3807 c->cpuset = cpu_set_mfree(c->cpuset);
3808
3809 c->utmp_id = mfree(c->utmp_id);
3810 c->selinux_context = mfree(c->selinux_context);
3811 c->apparmor_profile = mfree(c->apparmor_profile);
3812 c->smack_process_label = mfree(c->smack_process_label);
3813
3814 c->syscall_filter = hashmap_free(c->syscall_filter);
3815 c->syscall_archs = set_free(c->syscall_archs);
3816 c->address_families = set_free(c->address_families);
3817
3818 for (i = 0; i < _EXEC_DIRECTORY_TYPE_MAX; i++)
3819 c->directories[i].paths = strv_free(c->directories[i].paths);
3820
3821 c->log_level_max = -1;
3822
3823 exec_context_free_log_extra_fields(c);
3824
3825 c->log_rate_limit_interval_usec = 0;
3826 c->log_rate_limit_burst = 0;
3827
3828 c->stdin_data = mfree(c->stdin_data);
3829 c->stdin_data_size = 0;
3830 }
3831
3832 int exec_context_destroy_runtime_directory(const ExecContext *c, const char *runtime_prefix) {
3833 char **i;
3834
3835 assert(c);
3836
3837 if (!runtime_prefix)
3838 return 0;
3839
3840 STRV_FOREACH(i, c->directories[EXEC_DIRECTORY_RUNTIME].paths) {
3841 _cleanup_free_ char *p;
3842
3843 p = strjoin(runtime_prefix, "/", *i);
3844 if (!p)
3845 return -ENOMEM;
3846
3847 /* We execute this synchronously, since we need to be sure this is gone when we start the service
3848 * next. */
3849 (void) rm_rf(p, REMOVE_ROOT);
3850 }
3851
3852 return 0;
3853 }
3854
3855 static void exec_command_done(ExecCommand *c) {
3856 assert(c);
3857
3858 c->path = mfree(c->path);
3859 c->argv = strv_free(c->argv);
3860 }
3861
3862 void exec_command_done_array(ExecCommand *c, size_t n) {
3863 size_t i;
3864
3865 for (i = 0; i < n; i++)
3866 exec_command_done(c+i);
3867 }
3868
3869 ExecCommand* exec_command_free_list(ExecCommand *c) {
3870 ExecCommand *i;
3871
3872 while ((i = c)) {
3873 LIST_REMOVE(command, c, i);
3874 exec_command_done(i);
3875 free(i);
3876 }
3877
3878 return NULL;
3879 }
3880
3881 void exec_command_free_array(ExecCommand **c, size_t n) {
3882 size_t i;
3883
3884 for (i = 0; i < n; i++)
3885 c[i] = exec_command_free_list(c[i]);
3886 }
3887
3888 void exec_command_reset_status_array(ExecCommand *c, size_t n) {
3889 size_t i;
3890
3891 for (i = 0; i < n; i++)
3892 exec_status_reset(&c[i].exec_status);
3893 }
3894
3895 void exec_command_reset_status_list_array(ExecCommand **c, size_t n) {
3896 size_t i;
3897
3898 for (i = 0; i < n; i++) {
3899 ExecCommand *z;
3900
3901 LIST_FOREACH(command, z, c[i])
3902 exec_status_reset(&z->exec_status);
3903 }
3904 }
3905
3906 typedef struct InvalidEnvInfo {
3907 const Unit *unit;
3908 const char *path;
3909 } InvalidEnvInfo;
3910
3911 static void invalid_env(const char *p, void *userdata) {
3912 InvalidEnvInfo *info = userdata;
3913
3914 log_unit_error(info->unit, "Ignoring invalid environment assignment '%s': %s", p, info->path);
3915 }
3916
3917 const char* exec_context_fdname(const ExecContext *c, int fd_index) {
3918 assert(c);
3919
3920 switch (fd_index) {
3921
3922 case STDIN_FILENO:
3923 if (c->std_input != EXEC_INPUT_NAMED_FD)
3924 return NULL;
3925
3926 return c->stdio_fdname[STDIN_FILENO] ?: "stdin";
3927
3928 case STDOUT_FILENO:
3929 if (c->std_output != EXEC_OUTPUT_NAMED_FD)
3930 return NULL;
3931
3932 return c->stdio_fdname[STDOUT_FILENO] ?: "stdout";
3933
3934 case STDERR_FILENO:
3935 if (c->std_error != EXEC_OUTPUT_NAMED_FD)
3936 return NULL;
3937
3938 return c->stdio_fdname[STDERR_FILENO] ?: "stderr";
3939
3940 default:
3941 return NULL;
3942 }
3943 }
3944
3945 static int exec_context_named_iofds(const ExecContext *c, const ExecParameters *p, int named_iofds[3]) {
3946 size_t i, targets;
3947 const char* stdio_fdname[3];
3948 size_t n_fds;
3949
3950 assert(c);
3951 assert(p);
3952
3953 targets = (c->std_input == EXEC_INPUT_NAMED_FD) +
3954 (c->std_output == EXEC_OUTPUT_NAMED_FD) +
3955 (c->std_error == EXEC_OUTPUT_NAMED_FD);
3956
3957 for (i = 0; i < 3; i++)
3958 stdio_fdname[i] = exec_context_fdname(c, i);
3959
3960 n_fds = p->n_storage_fds + p->n_socket_fds;
3961
3962 for (i = 0; i < n_fds && targets > 0; i++)
3963 if (named_iofds[STDIN_FILENO] < 0 &&
3964 c->std_input == EXEC_INPUT_NAMED_FD &&
3965 stdio_fdname[STDIN_FILENO] &&
3966 streq(p->fd_names[i], stdio_fdname[STDIN_FILENO])) {
3967
3968 named_iofds[STDIN_FILENO] = p->fds[i];
3969 targets--;
3970
3971 } else if (named_iofds[STDOUT_FILENO] < 0 &&
3972 c->std_output == EXEC_OUTPUT_NAMED_FD &&
3973 stdio_fdname[STDOUT_FILENO] &&
3974 streq(p->fd_names[i], stdio_fdname[STDOUT_FILENO])) {
3975
3976 named_iofds[STDOUT_FILENO] = p->fds[i];
3977 targets--;
3978
3979 } else if (named_iofds[STDERR_FILENO] < 0 &&
3980 c->std_error == EXEC_OUTPUT_NAMED_FD &&
3981 stdio_fdname[STDERR_FILENO] &&
3982 streq(p->fd_names[i], stdio_fdname[STDERR_FILENO])) {
3983
3984 named_iofds[STDERR_FILENO] = p->fds[i];
3985 targets--;
3986 }
3987
3988 return targets == 0 ? 0 : -ENOENT;
3989 }
3990
3991 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l) {
3992 char **i, **r = NULL;
3993
3994 assert(c);
3995 assert(l);
3996
3997 STRV_FOREACH(i, c->environment_files) {
3998 char *fn;
3999 int k;
4000 unsigned n;
4001 bool ignore = false;
4002 char **p;
4003 _cleanup_globfree_ glob_t pglob = {};
4004
4005 fn = *i;
4006
4007 if (fn[0] == '-') {
4008 ignore = true;
4009 fn++;
4010 }
4011
4012 if (!path_is_absolute(fn)) {
4013 if (ignore)
4014 continue;
4015
4016 strv_free(r);
4017 return -EINVAL;
4018 }
4019
4020 /* Filename supports globbing, take all matching files */
4021 k = safe_glob(fn, 0, &pglob);
4022 if (k < 0) {
4023 if (ignore)
4024 continue;
4025
4026 strv_free(r);
4027 return k;
4028 }
4029
4030 /* When we don't match anything, -ENOENT should be returned */
4031 assert(pglob.gl_pathc > 0);
4032
4033 for (n = 0; n < pglob.gl_pathc; n++) {
4034 k = load_env_file(NULL, pglob.gl_pathv[n], &p);
4035 if (k < 0) {
4036 if (ignore)
4037 continue;
4038
4039 strv_free(r);
4040 return k;
4041 }
4042 /* Log invalid environment variables with filename */
4043 if (p) {
4044 InvalidEnvInfo info = {
4045 .unit = unit,
4046 .path = pglob.gl_pathv[n]
4047 };
4048
4049 p = strv_env_clean_with_callback(p, invalid_env, &info);
4050 }
4051
4052 if (!r)
4053 r = p;
4054 else {
4055 char **m;
4056
4057 m = strv_env_merge(2, r, p);
4058 strv_free(r);
4059 strv_free(p);
4060 if (!m)
4061 return -ENOMEM;
4062
4063 r = m;
4064 }
4065 }
4066 }
4067
4068 *l = r;
4069
4070 return 0;
4071 }
4072
4073 static bool tty_may_match_dev_console(const char *tty) {
4074 _cleanup_free_ char *resolved = NULL;
4075
4076 if (!tty)
4077 return true;
4078
4079 tty = skip_dev_prefix(tty);
4080
4081 /* trivial identity? */
4082 if (streq(tty, "console"))
4083 return true;
4084
4085 if (resolve_dev_console(&resolved) < 0)
4086 return true; /* if we could not resolve, assume it may */
4087
4088 /* "tty0" means the active VC, so it may be the same sometimes */
4089 return streq(resolved, tty) || (streq(resolved, "tty0") && tty_is_vc(tty));
4090 }
4091
4092 bool exec_context_may_touch_console(const ExecContext *ec) {
4093
4094 return (ec->tty_reset ||
4095 ec->tty_vhangup ||
4096 ec->tty_vt_disallocate ||
4097 is_terminal_input(ec->std_input) ||
4098 is_terminal_output(ec->std_output) ||
4099 is_terminal_output(ec->std_error)) &&
4100 tty_may_match_dev_console(exec_context_tty_path(ec));
4101 }
4102
4103 static void strv_fprintf(FILE *f, char **l) {
4104 char **g;
4105
4106 assert(f);
4107
4108 STRV_FOREACH(g, l)
4109 fprintf(f, " %s", *g);
4110 }
4111
4112 void exec_context_dump(const ExecContext *c, FILE* f, const char *prefix) {
4113 ExecDirectoryType dt;
4114 char **e, **d;
4115 unsigned i;
4116 int r;
4117
4118 assert(c);
4119 assert(f);
4120
4121 prefix = strempty(prefix);
4122
4123 fprintf(f,
4124 "%sUMask: %04o\n"
4125 "%sWorkingDirectory: %s\n"
4126 "%sRootDirectory: %s\n"
4127 "%sNonBlocking: %s\n"
4128 "%sPrivateTmp: %s\n"
4129 "%sPrivateDevices: %s\n"
4130 "%sProtectKernelTunables: %s\n"
4131 "%sProtectKernelModules: %s\n"
4132 "%sProtectControlGroups: %s\n"
4133 "%sPrivateNetwork: %s\n"
4134 "%sPrivateUsers: %s\n"
4135 "%sProtectHome: %s\n"
4136 "%sProtectSystem: %s\n"
4137 "%sMountAPIVFS: %s\n"
4138 "%sIgnoreSIGPIPE: %s\n"
4139 "%sMemoryDenyWriteExecute: %s\n"
4140 "%sRestrictRealtime: %s\n"
4141 "%sKeyringMode: %s\n",
4142 prefix, c->umask,
4143 prefix, c->working_directory ? c->working_directory : "/",
4144 prefix, c->root_directory ? c->root_directory : "/",
4145 prefix, yes_no(c->non_blocking),
4146 prefix, yes_no(c->private_tmp),
4147 prefix, yes_no(c->private_devices),
4148 prefix, yes_no(c->protect_kernel_tunables),
4149 prefix, yes_no(c->protect_kernel_modules),
4150 prefix, yes_no(c->protect_control_groups),
4151 prefix, yes_no(c->private_network),
4152 prefix, yes_no(c->private_users),
4153 prefix, protect_home_to_string(c->protect_home),
4154 prefix, protect_system_to_string(c->protect_system),
4155 prefix, yes_no(c->mount_apivfs),
4156 prefix, yes_no(c->ignore_sigpipe),
4157 prefix, yes_no(c->memory_deny_write_execute),
4158 prefix, yes_no(c->restrict_realtime),
4159 prefix, exec_keyring_mode_to_string(c->keyring_mode));
4160
4161 if (c->root_image)
4162 fprintf(f, "%sRootImage: %s\n", prefix, c->root_image);
4163
4164 STRV_FOREACH(e, c->environment)
4165 fprintf(f, "%sEnvironment: %s\n", prefix, *e);
4166
4167 STRV_FOREACH(e, c->environment_files)
4168 fprintf(f, "%sEnvironmentFile: %s\n", prefix, *e);
4169
4170 STRV_FOREACH(e, c->pass_environment)
4171 fprintf(f, "%sPassEnvironment: %s\n", prefix, *e);
4172
4173 STRV_FOREACH(e, c->unset_environment)
4174 fprintf(f, "%sUnsetEnvironment: %s\n", prefix, *e);
4175
4176 fprintf(f, "%sRuntimeDirectoryPreserve: %s\n", prefix, exec_preserve_mode_to_string(c->runtime_directory_preserve_mode));
4177
4178 for (dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
4179 fprintf(f, "%s%sMode: %04o\n", prefix, exec_directory_type_to_string(dt), c->directories[dt].mode);
4180
4181 STRV_FOREACH(d, c->directories[dt].paths)
4182 fprintf(f, "%s%s: %s\n", prefix, exec_directory_type_to_string(dt), *d);
4183 }
4184
4185 if (c->nice_set)
4186 fprintf(f,
4187 "%sNice: %i\n",
4188 prefix, c->nice);
4189
4190 if (c->oom_score_adjust_set)
4191 fprintf(f,
4192 "%sOOMScoreAdjust: %i\n",
4193 prefix, c->oom_score_adjust);
4194
4195 for (i = 0; i < RLIM_NLIMITS; i++)
4196 if (c->rlimit[i]) {
4197 fprintf(f, "%sLimit%s: " RLIM_FMT "\n",
4198 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_max);
4199 fprintf(f, "%sLimit%sSoft: " RLIM_FMT "\n",
4200 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_cur);
4201 }
4202
4203 if (c->ioprio_set) {
4204 _cleanup_free_ char *class_str = NULL;
4205
4206 r = ioprio_class_to_string_alloc(IOPRIO_PRIO_CLASS(c->ioprio), &class_str);
4207 if (r >= 0)
4208 fprintf(f, "%sIOSchedulingClass: %s\n", prefix, class_str);
4209
4210 fprintf(f, "%sIOPriority: %lu\n", prefix, IOPRIO_PRIO_DATA(c->ioprio));
4211 }
4212
4213 if (c->cpu_sched_set) {
4214 _cleanup_free_ char *policy_str = NULL;
4215
4216 r = sched_policy_to_string_alloc(c->cpu_sched_policy, &policy_str);
4217 if (r >= 0)
4218 fprintf(f, "%sCPUSchedulingPolicy: %s\n", prefix, policy_str);
4219
4220 fprintf(f,
4221 "%sCPUSchedulingPriority: %i\n"
4222 "%sCPUSchedulingResetOnFork: %s\n",
4223 prefix, c->cpu_sched_priority,
4224 prefix, yes_no(c->cpu_sched_reset_on_fork));
4225 }
4226
4227 if (c->cpuset) {
4228 fprintf(f, "%sCPUAffinity:", prefix);
4229 for (i = 0; i < c->cpuset_ncpus; i++)
4230 if (CPU_ISSET_S(i, CPU_ALLOC_SIZE(c->cpuset_ncpus), c->cpuset))
4231 fprintf(f, " %u", i);
4232 fputs("\n", f);
4233 }
4234
4235 if (c->timer_slack_nsec != NSEC_INFINITY)
4236 fprintf(f, "%sTimerSlackNSec: "NSEC_FMT "\n", prefix, c->timer_slack_nsec);
4237
4238 fprintf(f,
4239 "%sStandardInput: %s\n"
4240 "%sStandardOutput: %s\n"
4241 "%sStandardError: %s\n",
4242 prefix, exec_input_to_string(c->std_input),
4243 prefix, exec_output_to_string(c->std_output),
4244 prefix, exec_output_to_string(c->std_error));
4245
4246 if (c->std_input == EXEC_INPUT_NAMED_FD)
4247 fprintf(f, "%sStandardInputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDIN_FILENO]);
4248 if (c->std_output == EXEC_OUTPUT_NAMED_FD)
4249 fprintf(f, "%sStandardOutputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDOUT_FILENO]);
4250 if (c->std_error == EXEC_OUTPUT_NAMED_FD)
4251 fprintf(f, "%sStandardErrorFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDERR_FILENO]);
4252
4253 if (c->std_input == EXEC_INPUT_FILE)
4254 fprintf(f, "%sStandardInputFile: %s\n", prefix, c->stdio_file[STDIN_FILENO]);
4255 if (c->std_output == EXEC_OUTPUT_FILE)
4256 fprintf(f, "%sStandardOutputFile: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
4257 if (c->std_output == EXEC_OUTPUT_FILE_APPEND)
4258 fprintf(f, "%sStandardOutputFileToAppend: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
4259 if (c->std_error == EXEC_OUTPUT_FILE)
4260 fprintf(f, "%sStandardErrorFile: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
4261 if (c->std_error == EXEC_OUTPUT_FILE_APPEND)
4262 fprintf(f, "%sStandardErrorFileToAppend: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
4263
4264 if (c->tty_path)
4265 fprintf(f,
4266 "%sTTYPath: %s\n"
4267 "%sTTYReset: %s\n"
4268 "%sTTYVHangup: %s\n"
4269 "%sTTYVTDisallocate: %s\n",
4270 prefix, c->tty_path,
4271 prefix, yes_no(c->tty_reset),
4272 prefix, yes_no(c->tty_vhangup),
4273 prefix, yes_no(c->tty_vt_disallocate));
4274
4275 if (IN_SET(c->std_output,
4276 EXEC_OUTPUT_SYSLOG,
4277 EXEC_OUTPUT_KMSG,
4278 EXEC_OUTPUT_JOURNAL,
4279 EXEC_OUTPUT_SYSLOG_AND_CONSOLE,
4280 EXEC_OUTPUT_KMSG_AND_CONSOLE,
4281 EXEC_OUTPUT_JOURNAL_AND_CONSOLE) ||
4282 IN_SET(c->std_error,
4283 EXEC_OUTPUT_SYSLOG,
4284 EXEC_OUTPUT_KMSG,
4285 EXEC_OUTPUT_JOURNAL,
4286 EXEC_OUTPUT_SYSLOG_AND_CONSOLE,
4287 EXEC_OUTPUT_KMSG_AND_CONSOLE,
4288 EXEC_OUTPUT_JOURNAL_AND_CONSOLE)) {
4289
4290 _cleanup_free_ char *fac_str = NULL, *lvl_str = NULL;
4291
4292 r = log_facility_unshifted_to_string_alloc(c->syslog_priority >> 3, &fac_str);
4293 if (r >= 0)
4294 fprintf(f, "%sSyslogFacility: %s\n", prefix, fac_str);
4295
4296 r = log_level_to_string_alloc(LOG_PRI(c->syslog_priority), &lvl_str);
4297 if (r >= 0)
4298 fprintf(f, "%sSyslogLevel: %s\n", prefix, lvl_str);
4299 }
4300
4301 if (c->log_level_max >= 0) {
4302 _cleanup_free_ char *t = NULL;
4303
4304 (void) log_level_to_string_alloc(c->log_level_max, &t);
4305
4306 fprintf(f, "%sLogLevelMax: %s\n", prefix, strna(t));
4307 }
4308
4309 if (c->log_rate_limit_interval_usec > 0) {
4310 char buf_timespan[FORMAT_TIMESPAN_MAX];
4311
4312 fprintf(f,
4313 "%sLogRateLimitIntervalSec: %s\n",
4314 prefix, format_timespan(buf_timespan, sizeof(buf_timespan), c->log_rate_limit_interval_usec, USEC_PER_SEC));
4315 }
4316
4317 if (c->log_rate_limit_burst > 0)
4318 fprintf(f, "%sLogRateLimitBurst: %u\n", prefix, c->log_rate_limit_burst);
4319
4320 if (c->n_log_extra_fields > 0) {
4321 size_t j;
4322
4323 for (j = 0; j < c->n_log_extra_fields; j++) {
4324 fprintf(f, "%sLogExtraFields: ", prefix);
4325 fwrite(c->log_extra_fields[j].iov_base,
4326 1, c->log_extra_fields[j].iov_len,
4327 f);
4328 fputc('\n', f);
4329 }
4330 }
4331
4332 if (c->secure_bits) {
4333 _cleanup_free_ char *str = NULL;
4334
4335 r = secure_bits_to_string_alloc(c->secure_bits, &str);
4336 if (r >= 0)
4337 fprintf(f, "%sSecure Bits: %s\n", prefix, str);
4338 }
4339
4340 if (c->capability_bounding_set != CAP_ALL) {
4341 _cleanup_free_ char *str = NULL;
4342
4343 r = capability_set_to_string_alloc(c->capability_bounding_set, &str);
4344 if (r >= 0)
4345 fprintf(f, "%sCapabilityBoundingSet: %s\n", prefix, str);
4346 }
4347
4348 if (c->capability_ambient_set != 0) {
4349 _cleanup_free_ char *str = NULL;
4350
4351 r = capability_set_to_string_alloc(c->capability_ambient_set, &str);
4352 if (r >= 0)
4353 fprintf(f, "%sAmbientCapabilities: %s\n", prefix, str);
4354 }
4355
4356 if (c->user)
4357 fprintf(f, "%sUser: %s\n", prefix, c->user);
4358 if (c->group)
4359 fprintf(f, "%sGroup: %s\n", prefix, c->group);
4360
4361 fprintf(f, "%sDynamicUser: %s\n", prefix, yes_no(c->dynamic_user));
4362
4363 if (!strv_isempty(c->supplementary_groups)) {
4364 fprintf(f, "%sSupplementaryGroups:", prefix);
4365 strv_fprintf(f, c->supplementary_groups);
4366 fputs("\n", f);
4367 }
4368
4369 if (c->pam_name)
4370 fprintf(f, "%sPAMName: %s\n", prefix, c->pam_name);
4371
4372 if (!strv_isempty(c->read_write_paths)) {
4373 fprintf(f, "%sReadWritePaths:", prefix);
4374 strv_fprintf(f, c->read_write_paths);
4375 fputs("\n", f);
4376 }
4377
4378 if (!strv_isempty(c->read_only_paths)) {
4379 fprintf(f, "%sReadOnlyPaths:", prefix);
4380 strv_fprintf(f, c->read_only_paths);
4381 fputs("\n", f);
4382 }
4383
4384 if (!strv_isempty(c->inaccessible_paths)) {
4385 fprintf(f, "%sInaccessiblePaths:", prefix);
4386 strv_fprintf(f, c->inaccessible_paths);
4387 fputs("\n", f);
4388 }
4389
4390 if (c->n_bind_mounts > 0)
4391 for (i = 0; i < c->n_bind_mounts; i++)
4392 fprintf(f, "%s%s: %s%s:%s:%s\n", prefix,
4393 c->bind_mounts[i].read_only ? "BindReadOnlyPaths" : "BindPaths",
4394 c->bind_mounts[i].ignore_enoent ? "-": "",
4395 c->bind_mounts[i].source,
4396 c->bind_mounts[i].destination,
4397 c->bind_mounts[i].recursive ? "rbind" : "norbind");
4398
4399 if (c->n_temporary_filesystems > 0)
4400 for (i = 0; i < c->n_temporary_filesystems; i++) {
4401 TemporaryFileSystem *t = c->temporary_filesystems + i;
4402
4403 fprintf(f, "%sTemporaryFileSystem: %s%s%s\n", prefix,
4404 t->path,
4405 isempty(t->options) ? "" : ":",
4406 strempty(t->options));
4407 }
4408
4409 if (c->utmp_id)
4410 fprintf(f,
4411 "%sUtmpIdentifier: %s\n",
4412 prefix, c->utmp_id);
4413
4414 if (c->selinux_context)
4415 fprintf(f,
4416 "%sSELinuxContext: %s%s\n",
4417 prefix, c->selinux_context_ignore ? "-" : "", c->selinux_context);
4418
4419 if (c->apparmor_profile)
4420 fprintf(f,
4421 "%sAppArmorProfile: %s%s\n",
4422 prefix, c->apparmor_profile_ignore ? "-" : "", c->apparmor_profile);
4423
4424 if (c->smack_process_label)
4425 fprintf(f,
4426 "%sSmackProcessLabel: %s%s\n",
4427 prefix, c->smack_process_label_ignore ? "-" : "", c->smack_process_label);
4428
4429 if (c->personality != PERSONALITY_INVALID)
4430 fprintf(f,
4431 "%sPersonality: %s\n",
4432 prefix, strna(personality_to_string(c->personality)));
4433
4434 fprintf(f,
4435 "%sLockPersonality: %s\n",
4436 prefix, yes_no(c->lock_personality));
4437
4438 if (c->syscall_filter) {
4439 #if HAVE_SECCOMP
4440 Iterator j;
4441 void *id, *val;
4442 bool first = true;
4443 #endif
4444
4445 fprintf(f,
4446 "%sSystemCallFilter: ",
4447 prefix);
4448
4449 if (!c->syscall_whitelist)
4450 fputc('~', f);
4451
4452 #if HAVE_SECCOMP
4453 HASHMAP_FOREACH_KEY(val, id, c->syscall_filter, j) {
4454 _cleanup_free_ char *name = NULL;
4455 const char *errno_name = NULL;
4456 int num = PTR_TO_INT(val);
4457
4458 if (first)
4459 first = false;
4460 else
4461 fputc(' ', f);
4462
4463 name = seccomp_syscall_resolve_num_arch(SCMP_ARCH_NATIVE, PTR_TO_INT(id) - 1);
4464 fputs(strna(name), f);
4465
4466 if (num >= 0) {
4467 errno_name = errno_to_name(num);
4468 if (errno_name)
4469 fprintf(f, ":%s", errno_name);
4470 else
4471 fprintf(f, ":%d", num);
4472 }
4473 }
4474 #endif
4475
4476 fputc('\n', f);
4477 }
4478
4479 if (c->syscall_archs) {
4480 #if HAVE_SECCOMP
4481 Iterator j;
4482 void *id;
4483 #endif
4484
4485 fprintf(f,
4486 "%sSystemCallArchitectures:",
4487 prefix);
4488
4489 #if HAVE_SECCOMP
4490 SET_FOREACH(id, c->syscall_archs, j)
4491 fprintf(f, " %s", strna(seccomp_arch_to_string(PTR_TO_UINT32(id) - 1)));
4492 #endif
4493 fputc('\n', f);
4494 }
4495
4496 if (exec_context_restrict_namespaces_set(c)) {
4497 _cleanup_free_ char *s = NULL;
4498
4499 r = namespace_flags_to_string(c->restrict_namespaces, &s);
4500 if (r >= 0)
4501 fprintf(f, "%sRestrictNamespaces: %s\n",
4502 prefix, s);
4503 }
4504
4505 if (c->syscall_errno > 0) {
4506 const char *errno_name;
4507
4508 fprintf(f, "%sSystemCallErrorNumber: ", prefix);
4509
4510 errno_name = errno_to_name(c->syscall_errno);
4511 if (errno_name)
4512 fprintf(f, "%s\n", errno_name);
4513 else
4514 fprintf(f, "%d\n", c->syscall_errno);
4515 }
4516
4517 if (c->apparmor_profile)
4518 fprintf(f,
4519 "%sAppArmorProfile: %s%s\n",
4520 prefix, c->apparmor_profile_ignore ? "-" : "", c->apparmor_profile);
4521 }
4522
4523 bool exec_context_maintains_privileges(const ExecContext *c) {
4524 assert(c);
4525
4526 /* Returns true if the process forked off would run under
4527 * an unchanged UID or as root. */
4528
4529 if (!c->user)
4530 return true;
4531
4532 if (streq(c->user, "root") || streq(c->user, "0"))
4533 return true;
4534
4535 return false;
4536 }
4537
4538 int exec_context_get_effective_ioprio(const ExecContext *c) {
4539 int p;
4540
4541 assert(c);
4542
4543 if (c->ioprio_set)
4544 return c->ioprio;
4545
4546 p = ioprio_get(IOPRIO_WHO_PROCESS, 0);
4547 if (p < 0)
4548 return IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 4);
4549
4550 return p;
4551 }
4552
4553 void exec_context_free_log_extra_fields(ExecContext *c) {
4554 size_t l;
4555
4556 assert(c);
4557
4558 for (l = 0; l < c->n_log_extra_fields; l++)
4559 free(c->log_extra_fields[l].iov_base);
4560 c->log_extra_fields = mfree(c->log_extra_fields);
4561 c->n_log_extra_fields = 0;
4562 }
4563
4564 void exec_status_start(ExecStatus *s, pid_t pid) {
4565 assert(s);
4566
4567 *s = (ExecStatus) {
4568 .pid = pid,
4569 };
4570
4571 dual_timestamp_get(&s->start_timestamp);
4572 }
4573
4574 void exec_status_exit(ExecStatus *s, const ExecContext *context, pid_t pid, int code, int status) {
4575 assert(s);
4576
4577 if (s->pid != pid) {
4578 *s = (ExecStatus) {
4579 .pid = pid,
4580 };
4581 }
4582
4583 dual_timestamp_get(&s->exit_timestamp);
4584
4585 s->code = code;
4586 s->status = status;
4587
4588 if (context) {
4589 if (context->utmp_id)
4590 (void) utmp_put_dead_process(context->utmp_id, pid, code, status);
4591
4592 exec_context_tty_reset(context, NULL);
4593 }
4594 }
4595
4596 void exec_status_reset(ExecStatus *s) {
4597 assert(s);
4598
4599 *s = (ExecStatus) {};
4600 }
4601
4602 void exec_status_dump(const ExecStatus *s, FILE *f, const char *prefix) {
4603 char buf[FORMAT_TIMESTAMP_MAX];
4604
4605 assert(s);
4606 assert(f);
4607
4608 if (s->pid <= 0)
4609 return;
4610
4611 prefix = strempty(prefix);
4612
4613 fprintf(f,
4614 "%sPID: "PID_FMT"\n",
4615 prefix, s->pid);
4616
4617 if (dual_timestamp_is_set(&s->start_timestamp))
4618 fprintf(f,
4619 "%sStart Timestamp: %s\n",
4620 prefix, format_timestamp(buf, sizeof(buf), s->start_timestamp.realtime));
4621
4622 if (dual_timestamp_is_set(&s->exit_timestamp))
4623 fprintf(f,
4624 "%sExit Timestamp: %s\n"
4625 "%sExit Code: %s\n"
4626 "%sExit Status: %i\n",
4627 prefix, format_timestamp(buf, sizeof(buf), s->exit_timestamp.realtime),
4628 prefix, sigchld_code_to_string(s->code),
4629 prefix, s->status);
4630 }
4631
4632 static char *exec_command_line(char **argv) {
4633 size_t k;
4634 char *n, *p, **a;
4635 bool first = true;
4636
4637 assert(argv);
4638
4639 k = 1;
4640 STRV_FOREACH(a, argv)
4641 k += strlen(*a)+3;
4642
4643 n = new(char, k);
4644 if (!n)
4645 return NULL;
4646
4647 p = n;
4648 STRV_FOREACH(a, argv) {
4649
4650 if (!first)
4651 *(p++) = ' ';
4652 else
4653 first = false;
4654
4655 if (strpbrk(*a, WHITESPACE)) {
4656 *(p++) = '\'';
4657 p = stpcpy(p, *a);
4658 *(p++) = '\'';
4659 } else
4660 p = stpcpy(p, *a);
4661
4662 }
4663
4664 *p = 0;
4665
4666 /* FIXME: this doesn't really handle arguments that have
4667 * spaces and ticks in them */
4668
4669 return n;
4670 }
4671
4672 static void exec_command_dump(ExecCommand *c, FILE *f, const char *prefix) {
4673 _cleanup_free_ char *cmd = NULL;
4674 const char *prefix2;
4675
4676 assert(c);
4677 assert(f);
4678
4679 prefix = strempty(prefix);
4680 prefix2 = strjoina(prefix, "\t");
4681
4682 cmd = exec_command_line(c->argv);
4683 fprintf(f,
4684 "%sCommand Line: %s\n",
4685 prefix, cmd ? cmd : strerror(ENOMEM));
4686
4687 exec_status_dump(&c->exec_status, f, prefix2);
4688 }
4689
4690 void exec_command_dump_list(ExecCommand *c, FILE *f, const char *prefix) {
4691 assert(f);
4692
4693 prefix = strempty(prefix);
4694
4695 LIST_FOREACH(command, c, c)
4696 exec_command_dump(c, f, prefix);
4697 }
4698
4699 void exec_command_append_list(ExecCommand **l, ExecCommand *e) {
4700 ExecCommand *end;
4701
4702 assert(l);
4703 assert(e);
4704
4705 if (*l) {
4706 /* It's kind of important, that we keep the order here */
4707 LIST_FIND_TAIL(command, *l, end);
4708 LIST_INSERT_AFTER(command, *l, end, e);
4709 } else
4710 *l = e;
4711 }
4712
4713 int exec_command_set(ExecCommand *c, const char *path, ...) {
4714 va_list ap;
4715 char **l, *p;
4716
4717 assert(c);
4718 assert(path);
4719
4720 va_start(ap, path);
4721 l = strv_new_ap(path, ap);
4722 va_end(ap);
4723
4724 if (!l)
4725 return -ENOMEM;
4726
4727 p = strdup(path);
4728 if (!p) {
4729 strv_free(l);
4730 return -ENOMEM;
4731 }
4732
4733 free_and_replace(c->path, p);
4734
4735 return strv_free_and_replace(c->argv, l);
4736 }
4737
4738 int exec_command_append(ExecCommand *c, const char *path, ...) {
4739 _cleanup_strv_free_ char **l = NULL;
4740 va_list ap;
4741 int r;
4742
4743 assert(c);
4744 assert(path);
4745
4746 va_start(ap, path);
4747 l = strv_new_ap(path, ap);
4748 va_end(ap);
4749
4750 if (!l)
4751 return -ENOMEM;
4752
4753 r = strv_extend_strv(&c->argv, l, false);
4754 if (r < 0)
4755 return r;
4756
4757 return 0;
4758 }
4759
4760 static void *remove_tmpdir_thread(void *p) {
4761 _cleanup_free_ char *path = p;
4762
4763 (void) rm_rf(path, REMOVE_ROOT|REMOVE_PHYSICAL);
4764 return NULL;
4765 }
4766
4767 static ExecRuntime* exec_runtime_free(ExecRuntime *rt, bool destroy) {
4768 int r;
4769
4770 if (!rt)
4771 return NULL;
4772
4773 if (rt->manager)
4774 (void) hashmap_remove(rt->manager->exec_runtime_by_id, rt->id);
4775
4776 /* When destroy is true, then rm_rf tmp_dir and var_tmp_dir. */
4777 if (destroy && rt->tmp_dir) {
4778 log_debug("Spawning thread to nuke %s", rt->tmp_dir);
4779
4780 r = asynchronous_job(remove_tmpdir_thread, rt->tmp_dir);
4781 if (r < 0) {
4782 log_warning_errno(r, "Failed to nuke %s: %m", rt->tmp_dir);
4783 free(rt->tmp_dir);
4784 }
4785
4786 rt->tmp_dir = NULL;
4787 }
4788
4789 if (destroy && rt->var_tmp_dir) {
4790 log_debug("Spawning thread to nuke %s", rt->var_tmp_dir);
4791
4792 r = asynchronous_job(remove_tmpdir_thread, rt->var_tmp_dir);
4793 if (r < 0) {
4794 log_warning_errno(r, "Failed to nuke %s: %m", rt->var_tmp_dir);
4795 free(rt->var_tmp_dir);
4796 }
4797
4798 rt->var_tmp_dir = NULL;
4799 }
4800
4801 rt->id = mfree(rt->id);
4802 rt->tmp_dir = mfree(rt->tmp_dir);
4803 rt->var_tmp_dir = mfree(rt->var_tmp_dir);
4804 safe_close_pair(rt->netns_storage_socket);
4805 return mfree(rt);
4806 }
4807
4808 static void exec_runtime_freep(ExecRuntime **rt) {
4809 if (*rt)
4810 (void) exec_runtime_free(*rt, false);
4811 }
4812
4813 static int exec_runtime_allocate(ExecRuntime **rt) {
4814 assert(rt);
4815
4816 *rt = new0(ExecRuntime, 1);
4817 if (!*rt)
4818 return -ENOMEM;
4819
4820 (*rt)->netns_storage_socket[0] = (*rt)->netns_storage_socket[1] = -1;
4821 return 0;
4822 }
4823
4824 static int exec_runtime_add(
4825 Manager *m,
4826 const char *id,
4827 const char *tmp_dir,
4828 const char *var_tmp_dir,
4829 const int netns_storage_socket[2],
4830 ExecRuntime **ret) {
4831
4832 _cleanup_(exec_runtime_freep) ExecRuntime *rt = NULL;
4833 int r;
4834
4835 assert(m);
4836 assert(id);
4837
4838 r = hashmap_ensure_allocated(&m->exec_runtime_by_id, &string_hash_ops);
4839 if (r < 0)
4840 return r;
4841
4842 r = exec_runtime_allocate(&rt);
4843 if (r < 0)
4844 return r;
4845
4846 rt->id = strdup(id);
4847 if (!rt->id)
4848 return -ENOMEM;
4849
4850 if (tmp_dir) {
4851 rt->tmp_dir = strdup(tmp_dir);
4852 if (!rt->tmp_dir)
4853 return -ENOMEM;
4854
4855 /* When tmp_dir is set, then we require var_tmp_dir is also set. */
4856 assert(var_tmp_dir);
4857 rt->var_tmp_dir = strdup(var_tmp_dir);
4858 if (!rt->var_tmp_dir)
4859 return -ENOMEM;
4860 }
4861
4862 if (netns_storage_socket) {
4863 rt->netns_storage_socket[0] = netns_storage_socket[0];
4864 rt->netns_storage_socket[1] = netns_storage_socket[1];
4865 }
4866
4867 r = hashmap_put(m->exec_runtime_by_id, rt->id, rt);
4868 if (r < 0)
4869 return r;
4870
4871 rt->manager = m;
4872
4873 if (ret)
4874 *ret = rt;
4875
4876 /* do not remove created ExecRuntime object when the operation succeeds. */
4877 rt = NULL;
4878 return 0;
4879 }
4880
4881 static int exec_runtime_make(Manager *m, const ExecContext *c, const char *id, ExecRuntime **ret) {
4882 _cleanup_free_ char *tmp_dir = NULL, *var_tmp_dir = NULL;
4883 _cleanup_close_pair_ int netns_storage_socket[2] = {-1, -1};
4884 int r;
4885
4886 assert(m);
4887 assert(c);
4888 assert(id);
4889
4890 /* It is not necessary to create ExecRuntime object. */
4891 if (!c->private_network && !c->private_tmp)
4892 return 0;
4893
4894 if (c->private_tmp) {
4895 r = setup_tmp_dirs(id, &tmp_dir, &var_tmp_dir);
4896 if (r < 0)
4897 return r;
4898 }
4899
4900 if (c->private_network) {
4901 if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, netns_storage_socket) < 0)
4902 return -errno;
4903 }
4904
4905 r = exec_runtime_add(m, id, tmp_dir, var_tmp_dir, netns_storage_socket, ret);
4906 if (r < 0)
4907 return r;
4908
4909 /* Avoid cleanup */
4910 netns_storage_socket[0] = -1;
4911 netns_storage_socket[1] = -1;
4912 return 1;
4913 }
4914
4915 int exec_runtime_acquire(Manager *m, const ExecContext *c, const char *id, bool create, ExecRuntime **ret) {
4916 ExecRuntime *rt;
4917 int r;
4918
4919 assert(m);
4920 assert(id);
4921 assert(ret);
4922
4923 rt = hashmap_get(m->exec_runtime_by_id, id);
4924 if (rt)
4925 /* We already have a ExecRuntime object, let's increase the ref count and reuse it */
4926 goto ref;
4927
4928 if (!create)
4929 return 0;
4930
4931 /* If not found, then create a new object. */
4932 r = exec_runtime_make(m, c, id, &rt);
4933 if (r <= 0)
4934 /* When r == 0, it is not necessary to create ExecRuntime object. */
4935 return r;
4936
4937 ref:
4938 /* increment reference counter. */
4939 rt->n_ref++;
4940 *ret = rt;
4941 return 1;
4942 }
4943
4944 ExecRuntime *exec_runtime_unref(ExecRuntime *rt, bool destroy) {
4945 if (!rt)
4946 return NULL;
4947
4948 assert(rt->n_ref > 0);
4949
4950 rt->n_ref--;
4951 if (rt->n_ref > 0)
4952 return NULL;
4953
4954 return exec_runtime_free(rt, destroy);
4955 }
4956
4957 int exec_runtime_serialize(const Manager *m, FILE *f, FDSet *fds) {
4958 ExecRuntime *rt;
4959 Iterator i;
4960
4961 assert(m);
4962 assert(f);
4963 assert(fds);
4964
4965 HASHMAP_FOREACH(rt, m->exec_runtime_by_id, i) {
4966 fprintf(f, "exec-runtime=%s", rt->id);
4967
4968 if (rt->tmp_dir)
4969 fprintf(f, " tmp-dir=%s", rt->tmp_dir);
4970
4971 if (rt->var_tmp_dir)
4972 fprintf(f, " var-tmp-dir=%s", rt->var_tmp_dir);
4973
4974 if (rt->netns_storage_socket[0] >= 0) {
4975 int copy;
4976
4977 copy = fdset_put_dup(fds, rt->netns_storage_socket[0]);
4978 if (copy < 0)
4979 return copy;
4980
4981 fprintf(f, " netns-socket-0=%i", copy);
4982 }
4983
4984 if (rt->netns_storage_socket[1] >= 0) {
4985 int copy;
4986
4987 copy = fdset_put_dup(fds, rt->netns_storage_socket[1]);
4988 if (copy < 0)
4989 return copy;
4990
4991 fprintf(f, " netns-socket-1=%i", copy);
4992 }
4993
4994 fputc('\n', f);
4995 }
4996
4997 return 0;
4998 }
4999
5000 int exec_runtime_deserialize_compat(Unit *u, const char *key, const char *value, FDSet *fds) {
5001 _cleanup_(exec_runtime_freep) ExecRuntime *rt_create = NULL;
5002 ExecRuntime *rt;
5003 int r;
5004
5005 /* This is for the migration from old (v237 or earlier) deserialization text.
5006 * Due to the bug #7790, this may not work with the units that use JoinsNamespaceOf=.
5007 * Even if the ExecRuntime object originally created by the other unit, we cannot judge
5008 * so or not from the serialized text, then we always creates a new object owned by this. */
5009
5010 assert(u);
5011 assert(key);
5012 assert(value);
5013
5014 /* Manager manages ExecRuntime objects by the unit id.
5015 * So, we omit the serialized text when the unit does not have id (yet?)... */
5016 if (isempty(u->id)) {
5017 log_unit_debug(u, "Invocation ID not found. Dropping runtime parameter.");
5018 return 0;
5019 }
5020
5021 r = hashmap_ensure_allocated(&u->manager->exec_runtime_by_id, &string_hash_ops);
5022 if (r < 0) {
5023 log_unit_debug_errno(u, r, "Failed to allocate storage for runtime parameter: %m");
5024 return 0;
5025 }
5026
5027 rt = hashmap_get(u->manager->exec_runtime_by_id, u->id);
5028 if (!rt) {
5029 r = exec_runtime_allocate(&rt_create);
5030 if (r < 0)
5031 return log_oom();
5032
5033 rt_create->id = strdup(u->id);
5034 if (!rt_create->id)
5035 return log_oom();
5036
5037 rt = rt_create;
5038 }
5039
5040 if (streq(key, "tmp-dir")) {
5041 char *copy;
5042
5043 copy = strdup(value);
5044 if (!copy)
5045 return log_oom();
5046
5047 free_and_replace(rt->tmp_dir, copy);
5048
5049 } else if (streq(key, "var-tmp-dir")) {
5050 char *copy;
5051
5052 copy = strdup(value);
5053 if (!copy)
5054 return log_oom();
5055
5056 free_and_replace(rt->var_tmp_dir, copy);
5057
5058 } else if (streq(key, "netns-socket-0")) {
5059 int fd;
5060
5061 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
5062 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
5063 return 0;
5064 }
5065
5066 safe_close(rt->netns_storage_socket[0]);
5067 rt->netns_storage_socket[0] = fdset_remove(fds, fd);
5068
5069 } else if (streq(key, "netns-socket-1")) {
5070 int fd;
5071
5072 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
5073 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
5074 return 0;
5075 }
5076
5077 safe_close(rt->netns_storage_socket[1]);
5078 rt->netns_storage_socket[1] = fdset_remove(fds, fd);
5079 } else
5080 return 0;
5081
5082 /* If the object is newly created, then put it to the hashmap which manages ExecRuntime objects. */
5083 if (rt_create) {
5084 r = hashmap_put(u->manager->exec_runtime_by_id, rt_create->id, rt_create);
5085 if (r < 0) {
5086 log_unit_debug_errno(u, r, "Failed to put runtime parameter to manager's storage: %m");
5087 return 0;
5088 }
5089
5090 rt_create->manager = u->manager;
5091
5092 /* Avoid cleanup */
5093 rt_create = NULL;
5094 }
5095
5096 return 1;
5097 }
5098
5099 void exec_runtime_deserialize_one(Manager *m, const char *value, FDSet *fds) {
5100 char *id = NULL, *tmp_dir = NULL, *var_tmp_dir = NULL;
5101 int r, fd0 = -1, fd1 = -1;
5102 const char *p, *v = value;
5103 size_t n;
5104
5105 assert(m);
5106 assert(value);
5107 assert(fds);
5108
5109 n = strcspn(v, " ");
5110 id = strndupa(v, n);
5111 if (v[n] != ' ')
5112 goto finalize;
5113 p = v + n + 1;
5114
5115 v = startswith(p, "tmp-dir=");
5116 if (v) {
5117 n = strcspn(v, " ");
5118 tmp_dir = strndupa(v, n);
5119 if (v[n] != ' ')
5120 goto finalize;
5121 p = v + n + 1;
5122 }
5123
5124 v = startswith(p, "var-tmp-dir=");
5125 if (v) {
5126 n = strcspn(v, " ");
5127 var_tmp_dir = strndupa(v, n);
5128 if (v[n] != ' ')
5129 goto finalize;
5130 p = v + n + 1;
5131 }
5132
5133 v = startswith(p, "netns-socket-0=");
5134 if (v) {
5135 char *buf;
5136
5137 n = strcspn(v, " ");
5138 buf = strndupa(v, n);
5139 if (safe_atoi(buf, &fd0) < 0 || !fdset_contains(fds, fd0)) {
5140 log_debug("Unable to process exec-runtime netns fd specification.");
5141 return;
5142 }
5143 fd0 = fdset_remove(fds, fd0);
5144 if (v[n] != ' ')
5145 goto finalize;
5146 p = v + n + 1;
5147 }
5148
5149 v = startswith(p, "netns-socket-1=");
5150 if (v) {
5151 char *buf;
5152
5153 n = strcspn(v, " ");
5154 buf = strndupa(v, n);
5155 if (safe_atoi(buf, &fd1) < 0 || !fdset_contains(fds, fd1)) {
5156 log_debug("Unable to process exec-runtime netns fd specification.");
5157 return;
5158 }
5159 fd1 = fdset_remove(fds, fd1);
5160 }
5161
5162 finalize:
5163
5164 r = exec_runtime_add(m, id, tmp_dir, var_tmp_dir, (int[]) { fd0, fd1 }, NULL);
5165 if (r < 0)
5166 log_debug_errno(r, "Failed to add exec-runtime: %m");
5167 }
5168
5169 void exec_runtime_vacuum(Manager *m) {
5170 ExecRuntime *rt;
5171 Iterator i;
5172
5173 assert(m);
5174
5175 /* Free unreferenced ExecRuntime objects. This is used after manager deserialization process. */
5176
5177 HASHMAP_FOREACH(rt, m->exec_runtime_by_id, i) {
5178 if (rt->n_ref > 0)
5179 continue;
5180
5181 (void) exec_runtime_free(rt, false);
5182 }
5183 }
5184
5185 void exec_params_clear(ExecParameters *p) {
5186 if (!p)
5187 return;
5188
5189 strv_free(p->environment);
5190 }
5191
5192 static const char* const exec_input_table[_EXEC_INPUT_MAX] = {
5193 [EXEC_INPUT_NULL] = "null",
5194 [EXEC_INPUT_TTY] = "tty",
5195 [EXEC_INPUT_TTY_FORCE] = "tty-force",
5196 [EXEC_INPUT_TTY_FAIL] = "tty-fail",
5197 [EXEC_INPUT_SOCKET] = "socket",
5198 [EXEC_INPUT_NAMED_FD] = "fd",
5199 [EXEC_INPUT_DATA] = "data",
5200 [EXEC_INPUT_FILE] = "file",
5201 };
5202
5203 DEFINE_STRING_TABLE_LOOKUP(exec_input, ExecInput);
5204
5205 static const char* const exec_output_table[_EXEC_OUTPUT_MAX] = {
5206 [EXEC_OUTPUT_INHERIT] = "inherit",
5207 [EXEC_OUTPUT_NULL] = "null",
5208 [EXEC_OUTPUT_TTY] = "tty",
5209 [EXEC_OUTPUT_SYSLOG] = "syslog",
5210 [EXEC_OUTPUT_SYSLOG_AND_CONSOLE] = "syslog+console",
5211 [EXEC_OUTPUT_KMSG] = "kmsg",
5212 [EXEC_OUTPUT_KMSG_AND_CONSOLE] = "kmsg+console",
5213 [EXEC_OUTPUT_JOURNAL] = "journal",
5214 [EXEC_OUTPUT_JOURNAL_AND_CONSOLE] = "journal+console",
5215 [EXEC_OUTPUT_SOCKET] = "socket",
5216 [EXEC_OUTPUT_NAMED_FD] = "fd",
5217 [EXEC_OUTPUT_FILE] = "file",
5218 [EXEC_OUTPUT_FILE_APPEND] = "append",
5219 };
5220
5221 DEFINE_STRING_TABLE_LOOKUP(exec_output, ExecOutput);
5222
5223 static const char* const exec_utmp_mode_table[_EXEC_UTMP_MODE_MAX] = {
5224 [EXEC_UTMP_INIT] = "init",
5225 [EXEC_UTMP_LOGIN] = "login",
5226 [EXEC_UTMP_USER] = "user",
5227 };
5228
5229 DEFINE_STRING_TABLE_LOOKUP(exec_utmp_mode, ExecUtmpMode);
5230
5231 static const char* const exec_preserve_mode_table[_EXEC_PRESERVE_MODE_MAX] = {
5232 [EXEC_PRESERVE_NO] = "no",
5233 [EXEC_PRESERVE_YES] = "yes",
5234 [EXEC_PRESERVE_RESTART] = "restart",
5235 };
5236
5237 DEFINE_STRING_TABLE_LOOKUP_WITH_BOOLEAN(exec_preserve_mode, ExecPreserveMode, EXEC_PRESERVE_YES);
5238
5239 static const char* const exec_directory_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
5240 [EXEC_DIRECTORY_RUNTIME] = "RuntimeDirectory",
5241 [EXEC_DIRECTORY_STATE] = "StateDirectory",
5242 [EXEC_DIRECTORY_CACHE] = "CacheDirectory",
5243 [EXEC_DIRECTORY_LOGS] = "LogsDirectory",
5244 [EXEC_DIRECTORY_CONFIGURATION] = "ConfigurationDirectory",
5245 };
5246
5247 DEFINE_STRING_TABLE_LOOKUP(exec_directory_type, ExecDirectoryType);
5248
5249 static const char* const exec_directory_env_name_table[_EXEC_DIRECTORY_TYPE_MAX] = {
5250 [EXEC_DIRECTORY_RUNTIME] = "RUNTIME_DIRECTORY",
5251 [EXEC_DIRECTORY_STATE] = "STATE_DIRECTORY",
5252 [EXEC_DIRECTORY_CACHE] = "CACHE_DIRECTORY",
5253 [EXEC_DIRECTORY_LOGS] = "LOGS_DIRECTORY",
5254 [EXEC_DIRECTORY_CONFIGURATION] = "CONFIGURATION_DIRECTORY",
5255 };
5256
5257 DEFINE_PRIVATE_STRING_TABLE_LOOKUP_TO_STRING(exec_directory_env_name, ExecDirectoryType);
5258
5259 static const char* const exec_keyring_mode_table[_EXEC_KEYRING_MODE_MAX] = {
5260 [EXEC_KEYRING_INHERIT] = "inherit",
5261 [EXEC_KEYRING_PRIVATE] = "private",
5262 [EXEC_KEYRING_SHARED] = "shared",
5263 };
5264
5265 DEFINE_STRING_TABLE_LOOKUP(exec_keyring_mode, ExecKeyringMode);