]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/execute.c
e90c3ac4f38942fb9051e1c5a5a1c0ad205b41bd
[thirdparty/systemd.git] / src / core / execute.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <errno.h>
4 #include <fcntl.h>
5 #include <glob.h>
6 #include <grp.h>
7 #include <poll.h>
8 #include <signal.h>
9 #include <string.h>
10 #include <sys/capability.h>
11 #include <sys/eventfd.h>
12 #include <sys/mman.h>
13 #include <sys/personality.h>
14 #include <sys/prctl.h>
15 #include <sys/shm.h>
16 #include <sys/socket.h>
17 #include <sys/stat.h>
18 #include <sys/types.h>
19 #include <sys/un.h>
20 #include <unistd.h>
21 #include <utmpx.h>
22
23 #if HAVE_PAM
24 #include <security/pam_appl.h>
25 #endif
26
27 #if HAVE_SELINUX
28 #include <selinux/selinux.h>
29 #endif
30
31 #if HAVE_SECCOMP
32 #include <seccomp.h>
33 #endif
34
35 #if HAVE_APPARMOR
36 #include <sys/apparmor.h>
37 #endif
38
39 #include "sd-messages.h"
40
41 #include "af-list.h"
42 #include "alloc-util.h"
43 #if HAVE_APPARMOR
44 #include "apparmor-util.h"
45 #endif
46 #include "async.h"
47 #include "barrier.h"
48 #include "cap-list.h"
49 #include "capability-util.h"
50 #include "chown-recursive.h"
51 #include "cpu-set-util.h"
52 #include "def.h"
53 #include "env-file.h"
54 #include "env-util.h"
55 #include "errno-list.h"
56 #include "execute.h"
57 #include "exit-status.h"
58 #include "fd-util.h"
59 #include "format-util.h"
60 #include "fs-util.h"
61 #include "glob-util.h"
62 #include "io-util.h"
63 #include "ioprio.h"
64 #include "label.h"
65 #include "log.h"
66 #include "macro.h"
67 #include "manager.h"
68 #include "memory-util.h"
69 #include "missing.h"
70 #include "mkdir.h"
71 #include "namespace.h"
72 #include "parse-util.h"
73 #include "path-util.h"
74 #include "process-util.h"
75 #include "rlimit-util.h"
76 #include "rm-rf.h"
77 #if HAVE_SECCOMP
78 #include "seccomp-util.h"
79 #endif
80 #include "securebits-util.h"
81 #include "selinux-util.h"
82 #include "signal-util.h"
83 #include "smack-util.h"
84 #include "socket-util.h"
85 #include "special.h"
86 #include "stat-util.h"
87 #include "string-table.h"
88 #include "string-util.h"
89 #include "strv.h"
90 #include "syslog-util.h"
91 #include "terminal-util.h"
92 #include "umask-util.h"
93 #include "unit.h"
94 #include "user-util.h"
95 #include "utmp-wtmp.h"
96
97 #define IDLE_TIMEOUT_USEC (5*USEC_PER_SEC)
98 #define IDLE_TIMEOUT2_USEC (1*USEC_PER_SEC)
99
100 /* This assumes there is a 'tty' group */
101 #define TTY_MODE 0620
102
103 #define SNDBUF_SIZE (8*1024*1024)
104
105 static int shift_fds(int fds[], size_t n_fds) {
106 int start, restart_from;
107
108 if (n_fds <= 0)
109 return 0;
110
111 /* Modifies the fds array! (sorts it) */
112
113 assert(fds);
114
115 start = 0;
116 for (;;) {
117 int i;
118
119 restart_from = -1;
120
121 for (i = start; i < (int) n_fds; i++) {
122 int nfd;
123
124 /* Already at right index? */
125 if (fds[i] == i+3)
126 continue;
127
128 nfd = fcntl(fds[i], F_DUPFD, i + 3);
129 if (nfd < 0)
130 return -errno;
131
132 safe_close(fds[i]);
133 fds[i] = nfd;
134
135 /* Hmm, the fd we wanted isn't free? Then
136 * let's remember that and try again from here */
137 if (nfd != i+3 && restart_from < 0)
138 restart_from = i;
139 }
140
141 if (restart_from < 0)
142 break;
143
144 start = restart_from;
145 }
146
147 return 0;
148 }
149
150 static int flags_fds(const int fds[], size_t n_socket_fds, size_t n_storage_fds, bool nonblock) {
151 size_t i, n_fds;
152 int r;
153
154 n_fds = n_socket_fds + n_storage_fds;
155 if (n_fds <= 0)
156 return 0;
157
158 assert(fds);
159
160 /* Drops/Sets O_NONBLOCK and FD_CLOEXEC from the file flags.
161 * O_NONBLOCK only applies to socket activation though. */
162
163 for (i = 0; i < n_fds; i++) {
164
165 if (i < n_socket_fds) {
166 r = fd_nonblock(fds[i], nonblock);
167 if (r < 0)
168 return r;
169 }
170
171 /* We unconditionally drop FD_CLOEXEC from the fds,
172 * since after all we want to pass these fds to our
173 * children */
174
175 r = fd_cloexec(fds[i], false);
176 if (r < 0)
177 return r;
178 }
179
180 return 0;
181 }
182
183 static const char *exec_context_tty_path(const ExecContext *context) {
184 assert(context);
185
186 if (context->stdio_as_fds)
187 return NULL;
188
189 if (context->tty_path)
190 return context->tty_path;
191
192 return "/dev/console";
193 }
194
195 static void exec_context_tty_reset(const ExecContext *context, const ExecParameters *p) {
196 const char *path;
197
198 assert(context);
199
200 path = exec_context_tty_path(context);
201
202 if (context->tty_vhangup) {
203 if (p && p->stdin_fd >= 0)
204 (void) terminal_vhangup_fd(p->stdin_fd);
205 else if (path)
206 (void) terminal_vhangup(path);
207 }
208
209 if (context->tty_reset) {
210 if (p && p->stdin_fd >= 0)
211 (void) reset_terminal_fd(p->stdin_fd, true);
212 else if (path)
213 (void) reset_terminal(path);
214 }
215
216 if (context->tty_vt_disallocate && path)
217 (void) vt_disallocate(path);
218 }
219
220 static bool is_terminal_input(ExecInput i) {
221 return IN_SET(i,
222 EXEC_INPUT_TTY,
223 EXEC_INPUT_TTY_FORCE,
224 EXEC_INPUT_TTY_FAIL);
225 }
226
227 static bool is_terminal_output(ExecOutput o) {
228 return IN_SET(o,
229 EXEC_OUTPUT_TTY,
230 EXEC_OUTPUT_SYSLOG_AND_CONSOLE,
231 EXEC_OUTPUT_KMSG_AND_CONSOLE,
232 EXEC_OUTPUT_JOURNAL_AND_CONSOLE);
233 }
234
235 static bool is_syslog_output(ExecOutput o) {
236 return IN_SET(o,
237 EXEC_OUTPUT_SYSLOG,
238 EXEC_OUTPUT_SYSLOG_AND_CONSOLE);
239 }
240
241 static bool is_kmsg_output(ExecOutput o) {
242 return IN_SET(o,
243 EXEC_OUTPUT_KMSG,
244 EXEC_OUTPUT_KMSG_AND_CONSOLE);
245 }
246
247 static bool exec_context_needs_term(const ExecContext *c) {
248 assert(c);
249
250 /* Return true if the execution context suggests we should set $TERM to something useful. */
251
252 if (is_terminal_input(c->std_input))
253 return true;
254
255 if (is_terminal_output(c->std_output))
256 return true;
257
258 if (is_terminal_output(c->std_error))
259 return true;
260
261 return !!c->tty_path;
262 }
263
264 static int open_null_as(int flags, int nfd) {
265 int fd;
266
267 assert(nfd >= 0);
268
269 fd = open("/dev/null", flags|O_NOCTTY);
270 if (fd < 0)
271 return -errno;
272
273 return move_fd(fd, nfd, false);
274 }
275
276 static int connect_journal_socket(int fd, uid_t uid, gid_t gid) {
277 static const union sockaddr_union sa = {
278 .un.sun_family = AF_UNIX,
279 .un.sun_path = "/run/systemd/journal/stdout",
280 };
281 uid_t olduid = UID_INVALID;
282 gid_t oldgid = GID_INVALID;
283 int r;
284
285 if (gid_is_valid(gid)) {
286 oldgid = getgid();
287
288 if (setegid(gid) < 0)
289 return -errno;
290 }
291
292 if (uid_is_valid(uid)) {
293 olduid = getuid();
294
295 if (seteuid(uid) < 0) {
296 r = -errno;
297 goto restore_gid;
298 }
299 }
300
301 r = connect(fd, &sa.sa, SOCKADDR_UN_LEN(sa.un)) < 0 ? -errno : 0;
302
303 /* If we fail to restore the uid or gid, things will likely
304 fail later on. This should only happen if an LSM interferes. */
305
306 if (uid_is_valid(uid))
307 (void) seteuid(olduid);
308
309 restore_gid:
310 if (gid_is_valid(gid))
311 (void) setegid(oldgid);
312
313 return r;
314 }
315
316 static int connect_logger_as(
317 const Unit *unit,
318 const ExecContext *context,
319 const ExecParameters *params,
320 ExecOutput output,
321 const char *ident,
322 int nfd,
323 uid_t uid,
324 gid_t gid) {
325
326 _cleanup_close_ int fd = -1;
327 int r;
328
329 assert(context);
330 assert(params);
331 assert(output < _EXEC_OUTPUT_MAX);
332 assert(ident);
333 assert(nfd >= 0);
334
335 fd = socket(AF_UNIX, SOCK_STREAM, 0);
336 if (fd < 0)
337 return -errno;
338
339 r = connect_journal_socket(fd, uid, gid);
340 if (r < 0)
341 return r;
342
343 if (shutdown(fd, SHUT_RD) < 0)
344 return -errno;
345
346 (void) fd_inc_sndbuf(fd, SNDBUF_SIZE);
347
348 if (dprintf(fd,
349 "%s\n"
350 "%s\n"
351 "%i\n"
352 "%i\n"
353 "%i\n"
354 "%i\n"
355 "%i\n",
356 context->syslog_identifier ?: ident,
357 params->flags & EXEC_PASS_LOG_UNIT ? unit->id : "",
358 context->syslog_priority,
359 !!context->syslog_level_prefix,
360 is_syslog_output(output),
361 is_kmsg_output(output),
362 is_terminal_output(output)) < 0)
363 return -errno;
364
365 return move_fd(TAKE_FD(fd), nfd, false);
366 }
367
368 static int open_terminal_as(const char *path, int flags, int nfd) {
369 int fd;
370
371 assert(path);
372 assert(nfd >= 0);
373
374 fd = open_terminal(path, flags | O_NOCTTY);
375 if (fd < 0)
376 return fd;
377
378 return move_fd(fd, nfd, false);
379 }
380
381 static int acquire_path(const char *path, int flags, mode_t mode) {
382 union sockaddr_union sa = {};
383 _cleanup_close_ int fd = -1;
384 int r, salen;
385
386 assert(path);
387
388 if (IN_SET(flags & O_ACCMODE, O_WRONLY, O_RDWR))
389 flags |= O_CREAT;
390
391 fd = open(path, flags|O_NOCTTY, mode);
392 if (fd >= 0)
393 return TAKE_FD(fd);
394
395 if (errno != ENXIO) /* ENXIO is returned when we try to open() an AF_UNIX file system socket on Linux */
396 return -errno;
397 if (strlen(path) >= sizeof(sa.un.sun_path)) /* Too long, can't be a UNIX socket */
398 return -ENXIO;
399
400 /* So, it appears the specified path could be an AF_UNIX socket. Let's see if we can connect to it. */
401
402 fd = socket(AF_UNIX, SOCK_STREAM, 0);
403 if (fd < 0)
404 return -errno;
405
406 salen = sockaddr_un_set_path(&sa.un, path);
407 if (salen < 0)
408 return salen;
409
410 if (connect(fd, &sa.sa, salen) < 0)
411 return errno == EINVAL ? -ENXIO : -errno; /* Propagate initial error if we get EINVAL, i.e. we have
412 * indication that his wasn't an AF_UNIX socket after all */
413
414 if ((flags & O_ACCMODE) == O_RDONLY)
415 r = shutdown(fd, SHUT_WR);
416 else if ((flags & O_ACCMODE) == O_WRONLY)
417 r = shutdown(fd, SHUT_RD);
418 else
419 return TAKE_FD(fd);
420 if (r < 0)
421 return -errno;
422
423 return TAKE_FD(fd);
424 }
425
426 static int fixup_input(
427 const ExecContext *context,
428 int socket_fd,
429 bool apply_tty_stdin) {
430
431 ExecInput std_input;
432
433 assert(context);
434
435 std_input = context->std_input;
436
437 if (is_terminal_input(std_input) && !apply_tty_stdin)
438 return EXEC_INPUT_NULL;
439
440 if (std_input == EXEC_INPUT_SOCKET && socket_fd < 0)
441 return EXEC_INPUT_NULL;
442
443 if (std_input == EXEC_INPUT_DATA && context->stdin_data_size == 0)
444 return EXEC_INPUT_NULL;
445
446 return std_input;
447 }
448
449 static int fixup_output(ExecOutput std_output, int socket_fd) {
450
451 if (std_output == EXEC_OUTPUT_SOCKET && socket_fd < 0)
452 return EXEC_OUTPUT_INHERIT;
453
454 return std_output;
455 }
456
457 static int setup_input(
458 const ExecContext *context,
459 const ExecParameters *params,
460 int socket_fd,
461 int named_iofds[3]) {
462
463 ExecInput i;
464
465 assert(context);
466 assert(params);
467
468 if (params->stdin_fd >= 0) {
469 if (dup2(params->stdin_fd, STDIN_FILENO) < 0)
470 return -errno;
471
472 /* Try to make this the controlling tty, if it is a tty, and reset it */
473 if (isatty(STDIN_FILENO)) {
474 (void) ioctl(STDIN_FILENO, TIOCSCTTY, context->std_input == EXEC_INPUT_TTY_FORCE);
475 (void) reset_terminal_fd(STDIN_FILENO, true);
476 }
477
478 return STDIN_FILENO;
479 }
480
481 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
482
483 switch (i) {
484
485 case EXEC_INPUT_NULL:
486 return open_null_as(O_RDONLY, STDIN_FILENO);
487
488 case EXEC_INPUT_TTY:
489 case EXEC_INPUT_TTY_FORCE:
490 case EXEC_INPUT_TTY_FAIL: {
491 int fd;
492
493 fd = acquire_terminal(exec_context_tty_path(context),
494 i == EXEC_INPUT_TTY_FAIL ? ACQUIRE_TERMINAL_TRY :
495 i == EXEC_INPUT_TTY_FORCE ? ACQUIRE_TERMINAL_FORCE :
496 ACQUIRE_TERMINAL_WAIT,
497 USEC_INFINITY);
498 if (fd < 0)
499 return fd;
500
501 return move_fd(fd, STDIN_FILENO, false);
502 }
503
504 case EXEC_INPUT_SOCKET:
505 assert(socket_fd >= 0);
506
507 return dup2(socket_fd, STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
508
509 case EXEC_INPUT_NAMED_FD:
510 assert(named_iofds[STDIN_FILENO] >= 0);
511
512 (void) fd_nonblock(named_iofds[STDIN_FILENO], false);
513 return dup2(named_iofds[STDIN_FILENO], STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
514
515 case EXEC_INPUT_DATA: {
516 int fd;
517
518 fd = acquire_data_fd(context->stdin_data, context->stdin_data_size, 0);
519 if (fd < 0)
520 return fd;
521
522 return move_fd(fd, STDIN_FILENO, false);
523 }
524
525 case EXEC_INPUT_FILE: {
526 bool rw;
527 int fd;
528
529 assert(context->stdio_file[STDIN_FILENO]);
530
531 rw = (context->std_output == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDOUT_FILENO])) ||
532 (context->std_error == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDERR_FILENO]));
533
534 fd = acquire_path(context->stdio_file[STDIN_FILENO], rw ? O_RDWR : O_RDONLY, 0666 & ~context->umask);
535 if (fd < 0)
536 return fd;
537
538 return move_fd(fd, STDIN_FILENO, false);
539 }
540
541 default:
542 assert_not_reached("Unknown input type");
543 }
544 }
545
546 static bool can_inherit_stderr_from_stdout(
547 const ExecContext *context,
548 ExecOutput o,
549 ExecOutput e) {
550
551 assert(context);
552
553 /* Returns true, if given the specified STDERR and STDOUT output we can directly dup() the stdout fd to the
554 * stderr fd */
555
556 if (e == EXEC_OUTPUT_INHERIT)
557 return true;
558 if (e != o)
559 return false;
560
561 if (e == EXEC_OUTPUT_NAMED_FD)
562 return streq_ptr(context->stdio_fdname[STDOUT_FILENO], context->stdio_fdname[STDERR_FILENO]);
563
564 if (IN_SET(e, EXEC_OUTPUT_FILE, EXEC_OUTPUT_FILE_APPEND))
565 return streq_ptr(context->stdio_file[STDOUT_FILENO], context->stdio_file[STDERR_FILENO]);
566
567 return true;
568 }
569
570 static int setup_output(
571 const Unit *unit,
572 const ExecContext *context,
573 const ExecParameters *params,
574 int fileno,
575 int socket_fd,
576 int named_iofds[3],
577 const char *ident,
578 uid_t uid,
579 gid_t gid,
580 dev_t *journal_stream_dev,
581 ino_t *journal_stream_ino) {
582
583 ExecOutput o;
584 ExecInput i;
585 int r;
586
587 assert(unit);
588 assert(context);
589 assert(params);
590 assert(ident);
591 assert(journal_stream_dev);
592 assert(journal_stream_ino);
593
594 if (fileno == STDOUT_FILENO && params->stdout_fd >= 0) {
595
596 if (dup2(params->stdout_fd, STDOUT_FILENO) < 0)
597 return -errno;
598
599 return STDOUT_FILENO;
600 }
601
602 if (fileno == STDERR_FILENO && params->stderr_fd >= 0) {
603 if (dup2(params->stderr_fd, STDERR_FILENO) < 0)
604 return -errno;
605
606 return STDERR_FILENO;
607 }
608
609 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
610 o = fixup_output(context->std_output, socket_fd);
611
612 if (fileno == STDERR_FILENO) {
613 ExecOutput e;
614 e = fixup_output(context->std_error, socket_fd);
615
616 /* This expects the input and output are already set up */
617
618 /* Don't change the stderr file descriptor if we inherit all
619 * the way and are not on a tty */
620 if (e == EXEC_OUTPUT_INHERIT &&
621 o == EXEC_OUTPUT_INHERIT &&
622 i == EXEC_INPUT_NULL &&
623 !is_terminal_input(context->std_input) &&
624 getppid () != 1)
625 return fileno;
626
627 /* Duplicate from stdout if possible */
628 if (can_inherit_stderr_from_stdout(context, o, e))
629 return dup2(STDOUT_FILENO, fileno) < 0 ? -errno : fileno;
630
631 o = e;
632
633 } else if (o == EXEC_OUTPUT_INHERIT) {
634 /* If input got downgraded, inherit the original value */
635 if (i == EXEC_INPUT_NULL && is_terminal_input(context->std_input))
636 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
637
638 /* If the input is connected to anything that's not a /dev/null or a data fd, inherit that... */
639 if (!IN_SET(i, EXEC_INPUT_NULL, EXEC_INPUT_DATA))
640 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
641
642 /* If we are not started from PID 1 we just inherit STDOUT from our parent process. */
643 if (getppid() != 1)
644 return fileno;
645
646 /* We need to open /dev/null here anew, to get the right access mode. */
647 return open_null_as(O_WRONLY, fileno);
648 }
649
650 switch (o) {
651
652 case EXEC_OUTPUT_NULL:
653 return open_null_as(O_WRONLY, fileno);
654
655 case EXEC_OUTPUT_TTY:
656 if (is_terminal_input(i))
657 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
658
659 /* We don't reset the terminal if this is just about output */
660 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
661
662 case EXEC_OUTPUT_SYSLOG:
663 case EXEC_OUTPUT_SYSLOG_AND_CONSOLE:
664 case EXEC_OUTPUT_KMSG:
665 case EXEC_OUTPUT_KMSG_AND_CONSOLE:
666 case EXEC_OUTPUT_JOURNAL:
667 case EXEC_OUTPUT_JOURNAL_AND_CONSOLE:
668 r = connect_logger_as(unit, context, params, o, ident, fileno, uid, gid);
669 if (r < 0) {
670 log_unit_warning_errno(unit, r, "Failed to connect %s to the journal socket, ignoring: %m", fileno == STDOUT_FILENO ? "stdout" : "stderr");
671 r = open_null_as(O_WRONLY, fileno);
672 } else {
673 struct stat st;
674
675 /* If we connected this fd to the journal via a stream, patch the device/inode into the passed
676 * parameters, but only then. This is useful so that we can set $JOURNAL_STREAM that permits
677 * services to detect whether they are connected to the journal or not.
678 *
679 * If both stdout and stderr are connected to a stream then let's make sure to store the data
680 * about STDERR as that's usually the best way to do logging. */
681
682 if (fstat(fileno, &st) >= 0 &&
683 (*journal_stream_ino == 0 || fileno == STDERR_FILENO)) {
684 *journal_stream_dev = st.st_dev;
685 *journal_stream_ino = st.st_ino;
686 }
687 }
688 return r;
689
690 case EXEC_OUTPUT_SOCKET:
691 assert(socket_fd >= 0);
692
693 return dup2(socket_fd, fileno) < 0 ? -errno : fileno;
694
695 case EXEC_OUTPUT_NAMED_FD:
696 assert(named_iofds[fileno] >= 0);
697
698 (void) fd_nonblock(named_iofds[fileno], false);
699 return dup2(named_iofds[fileno], fileno) < 0 ? -errno : fileno;
700
701 case EXEC_OUTPUT_FILE:
702 case EXEC_OUTPUT_FILE_APPEND: {
703 bool rw;
704 int fd, flags;
705
706 assert(context->stdio_file[fileno]);
707
708 rw = context->std_input == EXEC_INPUT_FILE &&
709 streq_ptr(context->stdio_file[fileno], context->stdio_file[STDIN_FILENO]);
710
711 if (rw)
712 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
713
714 flags = O_WRONLY;
715 if (o == EXEC_OUTPUT_FILE_APPEND)
716 flags |= O_APPEND;
717
718 fd = acquire_path(context->stdio_file[fileno], flags, 0666 & ~context->umask);
719 if (fd < 0)
720 return fd;
721
722 return move_fd(fd, fileno, 0);
723 }
724
725 default:
726 assert_not_reached("Unknown error type");
727 }
728 }
729
730 static int chown_terminal(int fd, uid_t uid) {
731 struct stat st;
732
733 assert(fd >= 0);
734
735 /* Before we chown/chmod the TTY, let's ensure this is actually a tty */
736 if (isatty(fd) < 1)
737 return 0;
738
739 /* This might fail. What matters are the results. */
740 (void) fchown(fd, uid, -1);
741 (void) fchmod(fd, TTY_MODE);
742
743 if (fstat(fd, &st) < 0)
744 return -errno;
745
746 if (st.st_uid != uid || (st.st_mode & 0777) != TTY_MODE)
747 return -EPERM;
748
749 return 0;
750 }
751
752 static int setup_confirm_stdio(const char *vc, int *_saved_stdin, int *_saved_stdout) {
753 _cleanup_close_ int fd = -1, saved_stdin = -1, saved_stdout = -1;
754 int r;
755
756 assert(_saved_stdin);
757 assert(_saved_stdout);
758
759 saved_stdin = fcntl(STDIN_FILENO, F_DUPFD, 3);
760 if (saved_stdin < 0)
761 return -errno;
762
763 saved_stdout = fcntl(STDOUT_FILENO, F_DUPFD, 3);
764 if (saved_stdout < 0)
765 return -errno;
766
767 fd = acquire_terminal(vc, ACQUIRE_TERMINAL_WAIT, DEFAULT_CONFIRM_USEC);
768 if (fd < 0)
769 return fd;
770
771 r = chown_terminal(fd, getuid());
772 if (r < 0)
773 return r;
774
775 r = reset_terminal_fd(fd, true);
776 if (r < 0)
777 return r;
778
779 r = rearrange_stdio(fd, fd, STDERR_FILENO);
780 fd = -1;
781 if (r < 0)
782 return r;
783
784 *_saved_stdin = saved_stdin;
785 *_saved_stdout = saved_stdout;
786
787 saved_stdin = saved_stdout = -1;
788
789 return 0;
790 }
791
792 static void write_confirm_error_fd(int err, int fd, const Unit *u) {
793 assert(err < 0);
794
795 if (err == -ETIMEDOUT)
796 dprintf(fd, "Confirmation question timed out for %s, assuming positive response.\n", u->id);
797 else {
798 errno = -err;
799 dprintf(fd, "Couldn't ask confirmation for %s: %m, assuming positive response.\n", u->id);
800 }
801 }
802
803 static void write_confirm_error(int err, const char *vc, const Unit *u) {
804 _cleanup_close_ int fd = -1;
805
806 assert(vc);
807
808 fd = open_terminal(vc, O_WRONLY|O_NOCTTY|O_CLOEXEC);
809 if (fd < 0)
810 return;
811
812 write_confirm_error_fd(err, fd, u);
813 }
814
815 static int restore_confirm_stdio(int *saved_stdin, int *saved_stdout) {
816 int r = 0;
817
818 assert(saved_stdin);
819 assert(saved_stdout);
820
821 release_terminal();
822
823 if (*saved_stdin >= 0)
824 if (dup2(*saved_stdin, STDIN_FILENO) < 0)
825 r = -errno;
826
827 if (*saved_stdout >= 0)
828 if (dup2(*saved_stdout, STDOUT_FILENO) < 0)
829 r = -errno;
830
831 *saved_stdin = safe_close(*saved_stdin);
832 *saved_stdout = safe_close(*saved_stdout);
833
834 return r;
835 }
836
837 enum {
838 CONFIRM_PRETEND_FAILURE = -1,
839 CONFIRM_PRETEND_SUCCESS = 0,
840 CONFIRM_EXECUTE = 1,
841 };
842
843 static int ask_for_confirmation(const char *vc, Unit *u, const char *cmdline) {
844 int saved_stdout = -1, saved_stdin = -1, r;
845 _cleanup_free_ char *e = NULL;
846 char c;
847
848 /* For any internal errors, assume a positive response. */
849 r = setup_confirm_stdio(vc, &saved_stdin, &saved_stdout);
850 if (r < 0) {
851 write_confirm_error(r, vc, u);
852 return CONFIRM_EXECUTE;
853 }
854
855 /* confirm_spawn might have been disabled while we were sleeping. */
856 if (manager_is_confirm_spawn_disabled(u->manager)) {
857 r = 1;
858 goto restore_stdio;
859 }
860
861 e = ellipsize(cmdline, 60, 100);
862 if (!e) {
863 log_oom();
864 r = CONFIRM_EXECUTE;
865 goto restore_stdio;
866 }
867
868 for (;;) {
869 r = ask_char(&c, "yfshiDjcn", "Execute %s? [y, f, s – h for help] ", e);
870 if (r < 0) {
871 write_confirm_error_fd(r, STDOUT_FILENO, u);
872 r = CONFIRM_EXECUTE;
873 goto restore_stdio;
874 }
875
876 switch (c) {
877 case 'c':
878 printf("Resuming normal execution.\n");
879 manager_disable_confirm_spawn();
880 r = 1;
881 break;
882 case 'D':
883 unit_dump(u, stdout, " ");
884 continue; /* ask again */
885 case 'f':
886 printf("Failing execution.\n");
887 r = CONFIRM_PRETEND_FAILURE;
888 break;
889 case 'h':
890 printf(" c - continue, proceed without asking anymore\n"
891 " D - dump, show the state of the unit\n"
892 " f - fail, don't execute the command and pretend it failed\n"
893 " h - help\n"
894 " i - info, show a short summary of the unit\n"
895 " j - jobs, show jobs that are in progress\n"
896 " s - skip, don't execute the command and pretend it succeeded\n"
897 " y - yes, execute the command\n");
898 continue; /* ask again */
899 case 'i':
900 printf(" Description: %s\n"
901 " Unit: %s\n"
902 " Command: %s\n",
903 u->id, u->description, cmdline);
904 continue; /* ask again */
905 case 'j':
906 manager_dump_jobs(u->manager, stdout, " ");
907 continue; /* ask again */
908 case 'n':
909 /* 'n' was removed in favor of 'f'. */
910 printf("Didn't understand 'n', did you mean 'f'?\n");
911 continue; /* ask again */
912 case 's':
913 printf("Skipping execution.\n");
914 r = CONFIRM_PRETEND_SUCCESS;
915 break;
916 case 'y':
917 r = CONFIRM_EXECUTE;
918 break;
919 default:
920 assert_not_reached("Unhandled choice");
921 }
922 break;
923 }
924
925 restore_stdio:
926 restore_confirm_stdio(&saved_stdin, &saved_stdout);
927 return r;
928 }
929
930 static int get_fixed_user(const ExecContext *c, const char **user,
931 uid_t *uid, gid_t *gid,
932 const char **home, const char **shell) {
933 int r;
934 const char *name;
935
936 assert(c);
937
938 if (!c->user)
939 return 0;
940
941 /* Note that we don't set $HOME or $SHELL if they are not particularly enlightening anyway
942 * (i.e. are "/" or "/bin/nologin"). */
943
944 name = c->user;
945 r = get_user_creds(&name, uid, gid, home, shell, USER_CREDS_CLEAN);
946 if (r < 0)
947 return r;
948
949 *user = name;
950 return 0;
951 }
952
953 static int get_fixed_group(const ExecContext *c, const char **group, gid_t *gid) {
954 int r;
955 const char *name;
956
957 assert(c);
958
959 if (!c->group)
960 return 0;
961
962 name = c->group;
963 r = get_group_creds(&name, gid, 0);
964 if (r < 0)
965 return r;
966
967 *group = name;
968 return 0;
969 }
970
971 static int get_supplementary_groups(const ExecContext *c, const char *user,
972 const char *group, gid_t gid,
973 gid_t **supplementary_gids, int *ngids) {
974 char **i;
975 int r, k = 0;
976 int ngroups_max;
977 bool keep_groups = false;
978 gid_t *groups = NULL;
979 _cleanup_free_ gid_t *l_gids = NULL;
980
981 assert(c);
982
983 /*
984 * If user is given, then lookup GID and supplementary groups list.
985 * We avoid NSS lookups for gid=0. Also we have to initialize groups
986 * here and as early as possible so we keep the list of supplementary
987 * groups of the caller.
988 */
989 if (user && gid_is_valid(gid) && gid != 0) {
990 /* First step, initialize groups from /etc/groups */
991 if (initgroups(user, gid) < 0)
992 return -errno;
993
994 keep_groups = true;
995 }
996
997 if (strv_isempty(c->supplementary_groups))
998 return 0;
999
1000 /*
1001 * If SupplementaryGroups= was passed then NGROUPS_MAX has to
1002 * be positive, otherwise fail.
1003 */
1004 errno = 0;
1005 ngroups_max = (int) sysconf(_SC_NGROUPS_MAX);
1006 if (ngroups_max <= 0) {
1007 if (errno > 0)
1008 return -errno;
1009 else
1010 return -EOPNOTSUPP; /* For all other values */
1011 }
1012
1013 l_gids = new(gid_t, ngroups_max);
1014 if (!l_gids)
1015 return -ENOMEM;
1016
1017 if (keep_groups) {
1018 /*
1019 * Lookup the list of groups that the user belongs to, we
1020 * avoid NSS lookups here too for gid=0.
1021 */
1022 k = ngroups_max;
1023 if (getgrouplist(user, gid, l_gids, &k) < 0)
1024 return -EINVAL;
1025 } else
1026 k = 0;
1027
1028 STRV_FOREACH(i, c->supplementary_groups) {
1029 const char *g;
1030
1031 if (k >= ngroups_max)
1032 return -E2BIG;
1033
1034 g = *i;
1035 r = get_group_creds(&g, l_gids+k, 0);
1036 if (r < 0)
1037 return r;
1038
1039 k++;
1040 }
1041
1042 /*
1043 * Sets ngids to zero to drop all supplementary groups, happens
1044 * when we are under root and SupplementaryGroups= is empty.
1045 */
1046 if (k == 0) {
1047 *ngids = 0;
1048 return 0;
1049 }
1050
1051 /* Otherwise get the final list of supplementary groups */
1052 groups = memdup(l_gids, sizeof(gid_t) * k);
1053 if (!groups)
1054 return -ENOMEM;
1055
1056 *supplementary_gids = groups;
1057 *ngids = k;
1058
1059 groups = NULL;
1060
1061 return 0;
1062 }
1063
1064 static int enforce_groups(gid_t gid, const gid_t *supplementary_gids, int ngids) {
1065 int r;
1066
1067 /* Handle SupplementaryGroups= if it is not empty */
1068 if (ngids > 0) {
1069 r = maybe_setgroups(ngids, supplementary_gids);
1070 if (r < 0)
1071 return r;
1072 }
1073
1074 if (gid_is_valid(gid)) {
1075 /* Then set our gids */
1076 if (setresgid(gid, gid, gid) < 0)
1077 return -errno;
1078 }
1079
1080 return 0;
1081 }
1082
1083 static int enforce_user(const ExecContext *context, uid_t uid) {
1084 assert(context);
1085
1086 if (!uid_is_valid(uid))
1087 return 0;
1088
1089 /* Sets (but doesn't look up) the uid and make sure we keep the
1090 * capabilities while doing so. */
1091
1092 if (context->capability_ambient_set != 0) {
1093
1094 /* First step: If we need to keep capabilities but
1095 * drop privileges we need to make sure we keep our
1096 * caps, while we drop privileges. */
1097 if (uid != 0) {
1098 int sb = context->secure_bits | 1<<SECURE_KEEP_CAPS;
1099
1100 if (prctl(PR_GET_SECUREBITS) != sb)
1101 if (prctl(PR_SET_SECUREBITS, sb) < 0)
1102 return -errno;
1103 }
1104 }
1105
1106 /* Second step: actually set the uids */
1107 if (setresuid(uid, uid, uid) < 0)
1108 return -errno;
1109
1110 /* At this point we should have all necessary capabilities but
1111 are otherwise a normal user. However, the caps might got
1112 corrupted due to the setresuid() so we need clean them up
1113 later. This is done outside of this call. */
1114
1115 return 0;
1116 }
1117
1118 #if HAVE_PAM
1119
1120 static int null_conv(
1121 int num_msg,
1122 const struct pam_message **msg,
1123 struct pam_response **resp,
1124 void *appdata_ptr) {
1125
1126 /* We don't support conversations */
1127
1128 return PAM_CONV_ERR;
1129 }
1130
1131 #endif
1132
1133 static int setup_pam(
1134 const char *name,
1135 const char *user,
1136 uid_t uid,
1137 gid_t gid,
1138 const char *tty,
1139 char ***env,
1140 int fds[], size_t n_fds) {
1141
1142 #if HAVE_PAM
1143
1144 static const struct pam_conv conv = {
1145 .conv = null_conv,
1146 .appdata_ptr = NULL
1147 };
1148
1149 _cleanup_(barrier_destroy) Barrier barrier = BARRIER_NULL;
1150 pam_handle_t *handle = NULL;
1151 sigset_t old_ss;
1152 int pam_code = PAM_SUCCESS, r;
1153 char **nv, **e = NULL;
1154 bool close_session = false;
1155 pid_t pam_pid = 0, parent_pid;
1156 int flags = 0;
1157
1158 assert(name);
1159 assert(user);
1160 assert(env);
1161
1162 /* We set up PAM in the parent process, then fork. The child
1163 * will then stay around until killed via PR_GET_PDEATHSIG or
1164 * systemd via the cgroup logic. It will then remove the PAM
1165 * session again. The parent process will exec() the actual
1166 * daemon. We do things this way to ensure that the main PID
1167 * of the daemon is the one we initially fork()ed. */
1168
1169 r = barrier_create(&barrier);
1170 if (r < 0)
1171 goto fail;
1172
1173 if (log_get_max_level() < LOG_DEBUG)
1174 flags |= PAM_SILENT;
1175
1176 pam_code = pam_start(name, user, &conv, &handle);
1177 if (pam_code != PAM_SUCCESS) {
1178 handle = NULL;
1179 goto fail;
1180 }
1181
1182 if (!tty) {
1183 _cleanup_free_ char *q = NULL;
1184
1185 /* Hmm, so no TTY was explicitly passed, but an fd passed to us directly might be a TTY. Let's figure
1186 * out if that's the case, and read the TTY off it. */
1187
1188 if (getttyname_malloc(STDIN_FILENO, &q) >= 0)
1189 tty = strjoina("/dev/", q);
1190 }
1191
1192 if (tty) {
1193 pam_code = pam_set_item(handle, PAM_TTY, tty);
1194 if (pam_code != PAM_SUCCESS)
1195 goto fail;
1196 }
1197
1198 STRV_FOREACH(nv, *env) {
1199 pam_code = pam_putenv(handle, *nv);
1200 if (pam_code != PAM_SUCCESS)
1201 goto fail;
1202 }
1203
1204 pam_code = pam_acct_mgmt(handle, flags);
1205 if (pam_code != PAM_SUCCESS)
1206 goto fail;
1207
1208 pam_code = pam_open_session(handle, flags);
1209 if (pam_code != PAM_SUCCESS)
1210 goto fail;
1211
1212 close_session = true;
1213
1214 e = pam_getenvlist(handle);
1215 if (!e) {
1216 pam_code = PAM_BUF_ERR;
1217 goto fail;
1218 }
1219
1220 /* Block SIGTERM, so that we know that it won't get lost in
1221 * the child */
1222
1223 assert_se(sigprocmask_many(SIG_BLOCK, &old_ss, SIGTERM, -1) >= 0);
1224
1225 parent_pid = getpid_cached();
1226
1227 r = safe_fork("(sd-pam)", 0, &pam_pid);
1228 if (r < 0)
1229 goto fail;
1230 if (r == 0) {
1231 int sig, ret = EXIT_PAM;
1232
1233 /* The child's job is to reset the PAM session on
1234 * termination */
1235 barrier_set_role(&barrier, BARRIER_CHILD);
1236
1237 /* Make sure we don't keep open the passed fds in this child. We assume that otherwise only those fds
1238 * are open here that have been opened by PAM. */
1239 (void) close_many(fds, n_fds);
1240
1241 /* Drop privileges - we don't need any to pam_close_session
1242 * and this will make PR_SET_PDEATHSIG work in most cases.
1243 * If this fails, ignore the error - but expect sd-pam threads
1244 * to fail to exit normally */
1245
1246 r = maybe_setgroups(0, NULL);
1247 if (r < 0)
1248 log_warning_errno(r, "Failed to setgroups() in sd-pam: %m");
1249 if (setresgid(gid, gid, gid) < 0)
1250 log_warning_errno(errno, "Failed to setresgid() in sd-pam: %m");
1251 if (setresuid(uid, uid, uid) < 0)
1252 log_warning_errno(errno, "Failed to setresuid() in sd-pam: %m");
1253
1254 (void) ignore_signals(SIGPIPE, -1);
1255
1256 /* Wait until our parent died. This will only work if
1257 * the above setresuid() succeeds, otherwise the kernel
1258 * will not allow unprivileged parents kill their privileged
1259 * children this way. We rely on the control groups kill logic
1260 * to do the rest for us. */
1261 if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0)
1262 goto child_finish;
1263
1264 /* Tell the parent that our setup is done. This is especially
1265 * important regarding dropping privileges. Otherwise, unit
1266 * setup might race against our setresuid(2) call.
1267 *
1268 * If the parent aborted, we'll detect this below, hence ignore
1269 * return failure here. */
1270 (void) barrier_place(&barrier);
1271
1272 /* Check if our parent process might already have died? */
1273 if (getppid() == parent_pid) {
1274 sigset_t ss;
1275
1276 assert_se(sigemptyset(&ss) >= 0);
1277 assert_se(sigaddset(&ss, SIGTERM) >= 0);
1278
1279 for (;;) {
1280 if (sigwait(&ss, &sig) < 0) {
1281 if (errno == EINTR)
1282 continue;
1283
1284 goto child_finish;
1285 }
1286
1287 assert(sig == SIGTERM);
1288 break;
1289 }
1290 }
1291
1292 /* If our parent died we'll end the session */
1293 if (getppid() != parent_pid) {
1294 pam_code = pam_close_session(handle, flags);
1295 if (pam_code != PAM_SUCCESS)
1296 goto child_finish;
1297 }
1298
1299 ret = 0;
1300
1301 child_finish:
1302 pam_end(handle, pam_code | flags);
1303 _exit(ret);
1304 }
1305
1306 barrier_set_role(&barrier, BARRIER_PARENT);
1307
1308 /* If the child was forked off successfully it will do all the
1309 * cleanups, so forget about the handle here. */
1310 handle = NULL;
1311
1312 /* Unblock SIGTERM again in the parent */
1313 assert_se(sigprocmask(SIG_SETMASK, &old_ss, NULL) >= 0);
1314
1315 /* We close the log explicitly here, since the PAM modules
1316 * might have opened it, but we don't want this fd around. */
1317 closelog();
1318
1319 /* Synchronously wait for the child to initialize. We don't care for
1320 * errors as we cannot recover. However, warn loudly if it happens. */
1321 if (!barrier_place_and_sync(&barrier))
1322 log_error("PAM initialization failed");
1323
1324 return strv_free_and_replace(*env, e);
1325
1326 fail:
1327 if (pam_code != PAM_SUCCESS) {
1328 log_error("PAM failed: %s", pam_strerror(handle, pam_code));
1329 r = -EPERM; /* PAM errors do not map to errno */
1330 } else
1331 log_error_errno(r, "PAM failed: %m");
1332
1333 if (handle) {
1334 if (close_session)
1335 pam_code = pam_close_session(handle, flags);
1336
1337 pam_end(handle, pam_code | flags);
1338 }
1339
1340 strv_free(e);
1341 closelog();
1342
1343 return r;
1344 #else
1345 return 0;
1346 #endif
1347 }
1348
1349 static void rename_process_from_path(const char *path) {
1350 char process_name[11];
1351 const char *p;
1352 size_t l;
1353
1354 /* This resulting string must fit in 10 chars (i.e. the length
1355 * of "/sbin/init") to look pretty in /bin/ps */
1356
1357 p = basename(path);
1358 if (isempty(p)) {
1359 rename_process("(...)");
1360 return;
1361 }
1362
1363 l = strlen(p);
1364 if (l > 8) {
1365 /* The end of the process name is usually more
1366 * interesting, since the first bit might just be
1367 * "systemd-" */
1368 p = p + l - 8;
1369 l = 8;
1370 }
1371
1372 process_name[0] = '(';
1373 memcpy(process_name+1, p, l);
1374 process_name[1+l] = ')';
1375 process_name[1+l+1] = 0;
1376
1377 rename_process(process_name);
1378 }
1379
1380 static bool context_has_address_families(const ExecContext *c) {
1381 assert(c);
1382
1383 return c->address_families_whitelist ||
1384 !set_isempty(c->address_families);
1385 }
1386
1387 static bool context_has_syscall_filters(const ExecContext *c) {
1388 assert(c);
1389
1390 return c->syscall_whitelist ||
1391 !hashmap_isempty(c->syscall_filter);
1392 }
1393
1394 static bool context_has_no_new_privileges(const ExecContext *c) {
1395 assert(c);
1396
1397 if (c->no_new_privileges)
1398 return true;
1399
1400 if (have_effective_cap(CAP_SYS_ADMIN)) /* if we are privileged, we don't need NNP */
1401 return false;
1402
1403 /* We need NNP if we have any form of seccomp and are unprivileged */
1404 return context_has_address_families(c) ||
1405 c->memory_deny_write_execute ||
1406 c->restrict_realtime ||
1407 c->restrict_suid_sgid ||
1408 exec_context_restrict_namespaces_set(c) ||
1409 c->protect_kernel_tunables ||
1410 c->protect_kernel_modules ||
1411 c->private_devices ||
1412 context_has_syscall_filters(c) ||
1413 !set_isempty(c->syscall_archs) ||
1414 c->lock_personality ||
1415 c->protect_hostname;
1416 }
1417
1418 #if HAVE_SECCOMP
1419
1420 static bool skip_seccomp_unavailable(const Unit* u, const char* msg) {
1421
1422 if (is_seccomp_available())
1423 return false;
1424
1425 log_unit_debug(u, "SECCOMP features not detected in the kernel, skipping %s", msg);
1426 return true;
1427 }
1428
1429 static int apply_syscall_filter(const Unit* u, const ExecContext *c, bool needs_ambient_hack) {
1430 uint32_t negative_action, default_action, action;
1431 int r;
1432
1433 assert(u);
1434 assert(c);
1435
1436 if (!context_has_syscall_filters(c))
1437 return 0;
1438
1439 if (skip_seccomp_unavailable(u, "SystemCallFilter="))
1440 return 0;
1441
1442 negative_action = c->syscall_errno == 0 ? scmp_act_kill_process() : SCMP_ACT_ERRNO(c->syscall_errno);
1443
1444 if (c->syscall_whitelist) {
1445 default_action = negative_action;
1446 action = SCMP_ACT_ALLOW;
1447 } else {
1448 default_action = SCMP_ACT_ALLOW;
1449 action = negative_action;
1450 }
1451
1452 if (needs_ambient_hack) {
1453 r = seccomp_filter_set_add(c->syscall_filter, c->syscall_whitelist, syscall_filter_sets + SYSCALL_FILTER_SET_SETUID);
1454 if (r < 0)
1455 return r;
1456 }
1457
1458 return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_filter, action, false);
1459 }
1460
1461 static int apply_syscall_archs(const Unit *u, const ExecContext *c) {
1462 assert(u);
1463 assert(c);
1464
1465 if (set_isempty(c->syscall_archs))
1466 return 0;
1467
1468 if (skip_seccomp_unavailable(u, "SystemCallArchitectures="))
1469 return 0;
1470
1471 return seccomp_restrict_archs(c->syscall_archs);
1472 }
1473
1474 static int apply_address_families(const Unit* u, const ExecContext *c) {
1475 assert(u);
1476 assert(c);
1477
1478 if (!context_has_address_families(c))
1479 return 0;
1480
1481 if (skip_seccomp_unavailable(u, "RestrictAddressFamilies="))
1482 return 0;
1483
1484 return seccomp_restrict_address_families(c->address_families, c->address_families_whitelist);
1485 }
1486
1487 static int apply_memory_deny_write_execute(const Unit* u, const ExecContext *c) {
1488 assert(u);
1489 assert(c);
1490
1491 if (!c->memory_deny_write_execute)
1492 return 0;
1493
1494 if (skip_seccomp_unavailable(u, "MemoryDenyWriteExecute="))
1495 return 0;
1496
1497 return seccomp_memory_deny_write_execute();
1498 }
1499
1500 static int apply_restrict_realtime(const Unit* u, const ExecContext *c) {
1501 assert(u);
1502 assert(c);
1503
1504 if (!c->restrict_realtime)
1505 return 0;
1506
1507 if (skip_seccomp_unavailable(u, "RestrictRealtime="))
1508 return 0;
1509
1510 return seccomp_restrict_realtime();
1511 }
1512
1513 static int apply_restrict_suid_sgid(const Unit* u, const ExecContext *c) {
1514 assert(u);
1515 assert(c);
1516
1517 if (!c->restrict_suid_sgid)
1518 return 0;
1519
1520 if (skip_seccomp_unavailable(u, "RestrictSUIDSGID="))
1521 return 0;
1522
1523 return seccomp_restrict_suid_sgid();
1524 }
1525
1526 static int apply_protect_sysctl(const Unit *u, const ExecContext *c) {
1527 assert(u);
1528 assert(c);
1529
1530 /* Turn off the legacy sysctl() system call. Many distributions turn this off while building the kernel, but
1531 * let's protect even those systems where this is left on in the kernel. */
1532
1533 if (!c->protect_kernel_tunables)
1534 return 0;
1535
1536 if (skip_seccomp_unavailable(u, "ProtectKernelTunables="))
1537 return 0;
1538
1539 return seccomp_protect_sysctl();
1540 }
1541
1542 static int apply_protect_kernel_modules(const Unit *u, const ExecContext *c) {
1543 assert(u);
1544 assert(c);
1545
1546 /* Turn off module syscalls on ProtectKernelModules=yes */
1547
1548 if (!c->protect_kernel_modules)
1549 return 0;
1550
1551 if (skip_seccomp_unavailable(u, "ProtectKernelModules="))
1552 return 0;
1553
1554 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_MODULE, SCMP_ACT_ERRNO(EPERM), false);
1555 }
1556
1557 static int apply_private_devices(const Unit *u, const ExecContext *c) {
1558 assert(u);
1559 assert(c);
1560
1561 /* If PrivateDevices= is set, also turn off iopl and all @raw-io syscalls. */
1562
1563 if (!c->private_devices)
1564 return 0;
1565
1566 if (skip_seccomp_unavailable(u, "PrivateDevices="))
1567 return 0;
1568
1569 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_RAW_IO, SCMP_ACT_ERRNO(EPERM), false);
1570 }
1571
1572 static int apply_restrict_namespaces(const Unit *u, const ExecContext *c) {
1573 assert(u);
1574 assert(c);
1575
1576 if (!exec_context_restrict_namespaces_set(c))
1577 return 0;
1578
1579 if (skip_seccomp_unavailable(u, "RestrictNamespaces="))
1580 return 0;
1581
1582 return seccomp_restrict_namespaces(c->restrict_namespaces);
1583 }
1584
1585 static int apply_lock_personality(const Unit* u, const ExecContext *c) {
1586 unsigned long personality;
1587 int r;
1588
1589 assert(u);
1590 assert(c);
1591
1592 if (!c->lock_personality)
1593 return 0;
1594
1595 if (skip_seccomp_unavailable(u, "LockPersonality="))
1596 return 0;
1597
1598 personality = c->personality;
1599
1600 /* If personality is not specified, use either PER_LINUX or PER_LINUX32 depending on what is currently set. */
1601 if (personality == PERSONALITY_INVALID) {
1602
1603 r = opinionated_personality(&personality);
1604 if (r < 0)
1605 return r;
1606 }
1607
1608 return seccomp_lock_personality(personality);
1609 }
1610
1611 #endif
1612
1613 static void do_idle_pipe_dance(int idle_pipe[static 4]) {
1614 assert(idle_pipe);
1615
1616 idle_pipe[1] = safe_close(idle_pipe[1]);
1617 idle_pipe[2] = safe_close(idle_pipe[2]);
1618
1619 if (idle_pipe[0] >= 0) {
1620 int r;
1621
1622 r = fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT_USEC);
1623
1624 if (idle_pipe[3] >= 0 && r == 0 /* timeout */) {
1625 ssize_t n;
1626
1627 /* Signal systemd that we are bored and want to continue. */
1628 n = write(idle_pipe[3], "x", 1);
1629 if (n > 0)
1630 /* Wait for systemd to react to the signal above. */
1631 fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT2_USEC);
1632 }
1633
1634 idle_pipe[0] = safe_close(idle_pipe[0]);
1635
1636 }
1637
1638 idle_pipe[3] = safe_close(idle_pipe[3]);
1639 }
1640
1641 static const char *exec_directory_env_name_to_string(ExecDirectoryType t);
1642
1643 static int build_environment(
1644 const Unit *u,
1645 const ExecContext *c,
1646 const ExecParameters *p,
1647 size_t n_fds,
1648 const char *home,
1649 const char *username,
1650 const char *shell,
1651 dev_t journal_stream_dev,
1652 ino_t journal_stream_ino,
1653 char ***ret) {
1654
1655 _cleanup_strv_free_ char **our_env = NULL;
1656 ExecDirectoryType t;
1657 size_t n_env = 0;
1658 char *x;
1659
1660 assert(u);
1661 assert(c);
1662 assert(p);
1663 assert(ret);
1664
1665 our_env = new0(char*, 14 + _EXEC_DIRECTORY_TYPE_MAX);
1666 if (!our_env)
1667 return -ENOMEM;
1668
1669 if (n_fds > 0) {
1670 _cleanup_free_ char *joined = NULL;
1671
1672 if (asprintf(&x, "LISTEN_PID="PID_FMT, getpid_cached()) < 0)
1673 return -ENOMEM;
1674 our_env[n_env++] = x;
1675
1676 if (asprintf(&x, "LISTEN_FDS=%zu", n_fds) < 0)
1677 return -ENOMEM;
1678 our_env[n_env++] = x;
1679
1680 joined = strv_join(p->fd_names, ":");
1681 if (!joined)
1682 return -ENOMEM;
1683
1684 x = strjoin("LISTEN_FDNAMES=", joined);
1685 if (!x)
1686 return -ENOMEM;
1687 our_env[n_env++] = x;
1688 }
1689
1690 if ((p->flags & EXEC_SET_WATCHDOG) && p->watchdog_usec > 0) {
1691 if (asprintf(&x, "WATCHDOG_PID="PID_FMT, getpid_cached()) < 0)
1692 return -ENOMEM;
1693 our_env[n_env++] = x;
1694
1695 if (asprintf(&x, "WATCHDOG_USEC="USEC_FMT, p->watchdog_usec) < 0)
1696 return -ENOMEM;
1697 our_env[n_env++] = x;
1698 }
1699
1700 /* If this is D-Bus, tell the nss-systemd module, since it relies on being able to use D-Bus look up dynamic
1701 * users via PID 1, possibly dead-locking the dbus daemon. This way it will not use D-Bus to resolve names, but
1702 * check the database directly. */
1703 if (p->flags & EXEC_NSS_BYPASS_BUS) {
1704 x = strdup("SYSTEMD_NSS_BYPASS_BUS=1");
1705 if (!x)
1706 return -ENOMEM;
1707 our_env[n_env++] = x;
1708 }
1709
1710 if (home) {
1711 x = strappend("HOME=", home);
1712 if (!x)
1713 return -ENOMEM;
1714
1715 path_simplify(x + 5, true);
1716 our_env[n_env++] = x;
1717 }
1718
1719 if (username) {
1720 x = strappend("LOGNAME=", username);
1721 if (!x)
1722 return -ENOMEM;
1723 our_env[n_env++] = x;
1724
1725 x = strappend("USER=", username);
1726 if (!x)
1727 return -ENOMEM;
1728 our_env[n_env++] = x;
1729 }
1730
1731 if (shell) {
1732 x = strappend("SHELL=", shell);
1733 if (!x)
1734 return -ENOMEM;
1735
1736 path_simplify(x + 6, true);
1737 our_env[n_env++] = x;
1738 }
1739
1740 if (!sd_id128_is_null(u->invocation_id)) {
1741 if (asprintf(&x, "INVOCATION_ID=" SD_ID128_FORMAT_STR, SD_ID128_FORMAT_VAL(u->invocation_id)) < 0)
1742 return -ENOMEM;
1743
1744 our_env[n_env++] = x;
1745 }
1746
1747 if (exec_context_needs_term(c)) {
1748 const char *tty_path, *term = NULL;
1749
1750 tty_path = exec_context_tty_path(c);
1751
1752 /* If we are forked off PID 1 and we are supposed to operate on /dev/console, then let's try to inherit
1753 * the $TERM set for PID 1. This is useful for containers so that the $TERM the container manager
1754 * passes to PID 1 ends up all the way in the console login shown. */
1755
1756 if (path_equal(tty_path, "/dev/console") && getppid() == 1)
1757 term = getenv("TERM");
1758 if (!term)
1759 term = default_term_for_tty(tty_path);
1760
1761 x = strappend("TERM=", term);
1762 if (!x)
1763 return -ENOMEM;
1764 our_env[n_env++] = x;
1765 }
1766
1767 if (journal_stream_dev != 0 && journal_stream_ino != 0) {
1768 if (asprintf(&x, "JOURNAL_STREAM=" DEV_FMT ":" INO_FMT, journal_stream_dev, journal_stream_ino) < 0)
1769 return -ENOMEM;
1770
1771 our_env[n_env++] = x;
1772 }
1773
1774 for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
1775 _cleanup_free_ char *pre = NULL, *joined = NULL;
1776 const char *n;
1777
1778 if (!p->prefix[t])
1779 continue;
1780
1781 if (strv_isempty(c->directories[t].paths))
1782 continue;
1783
1784 n = exec_directory_env_name_to_string(t);
1785 if (!n)
1786 continue;
1787
1788 pre = strjoin(p->prefix[t], "/");
1789 if (!pre)
1790 return -ENOMEM;
1791
1792 joined = strv_join_prefix(c->directories[t].paths, ":", pre);
1793 if (!joined)
1794 return -ENOMEM;
1795
1796 x = strjoin(n, "=", joined);
1797 if (!x)
1798 return -ENOMEM;
1799
1800 our_env[n_env++] = x;
1801 }
1802
1803 our_env[n_env++] = NULL;
1804 assert(n_env <= 14 + _EXEC_DIRECTORY_TYPE_MAX);
1805
1806 *ret = TAKE_PTR(our_env);
1807
1808 return 0;
1809 }
1810
1811 static int build_pass_environment(const ExecContext *c, char ***ret) {
1812 _cleanup_strv_free_ char **pass_env = NULL;
1813 size_t n_env = 0, n_bufsize = 0;
1814 char **i;
1815
1816 STRV_FOREACH(i, c->pass_environment) {
1817 _cleanup_free_ char *x = NULL;
1818 char *v;
1819
1820 v = getenv(*i);
1821 if (!v)
1822 continue;
1823 x = strjoin(*i, "=", v);
1824 if (!x)
1825 return -ENOMEM;
1826
1827 if (!GREEDY_REALLOC(pass_env, n_bufsize, n_env + 2))
1828 return -ENOMEM;
1829
1830 pass_env[n_env++] = TAKE_PTR(x);
1831 pass_env[n_env] = NULL;
1832 }
1833
1834 *ret = TAKE_PTR(pass_env);
1835
1836 return 0;
1837 }
1838
1839 static bool exec_needs_mount_namespace(
1840 const ExecContext *context,
1841 const ExecParameters *params,
1842 const ExecRuntime *runtime) {
1843
1844 assert(context);
1845 assert(params);
1846
1847 if (context->root_image)
1848 return true;
1849
1850 if (!strv_isempty(context->read_write_paths) ||
1851 !strv_isempty(context->read_only_paths) ||
1852 !strv_isempty(context->inaccessible_paths))
1853 return true;
1854
1855 if (context->n_bind_mounts > 0)
1856 return true;
1857
1858 if (context->n_temporary_filesystems > 0)
1859 return true;
1860
1861 if (!IN_SET(context->mount_flags, 0, MS_SHARED))
1862 return true;
1863
1864 if (context->private_tmp && runtime && (runtime->tmp_dir || runtime->var_tmp_dir))
1865 return true;
1866
1867 if (context->private_devices ||
1868 context->private_mounts ||
1869 context->protect_system != PROTECT_SYSTEM_NO ||
1870 context->protect_home != PROTECT_HOME_NO ||
1871 context->protect_kernel_tunables ||
1872 context->protect_kernel_modules ||
1873 context->protect_control_groups)
1874 return true;
1875
1876 if (context->root_directory) {
1877 ExecDirectoryType t;
1878
1879 if (context->mount_apivfs)
1880 return true;
1881
1882 for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
1883 if (!params->prefix[t])
1884 continue;
1885
1886 if (!strv_isempty(context->directories[t].paths))
1887 return true;
1888 }
1889 }
1890
1891 if (context->dynamic_user &&
1892 (!strv_isempty(context->directories[EXEC_DIRECTORY_STATE].paths) ||
1893 !strv_isempty(context->directories[EXEC_DIRECTORY_CACHE].paths) ||
1894 !strv_isempty(context->directories[EXEC_DIRECTORY_LOGS].paths)))
1895 return true;
1896
1897 return false;
1898 }
1899
1900 static int setup_private_users(uid_t uid, gid_t gid) {
1901 _cleanup_free_ char *uid_map = NULL, *gid_map = NULL;
1902 _cleanup_close_pair_ int errno_pipe[2] = { -1, -1 };
1903 _cleanup_close_ int unshare_ready_fd = -1;
1904 _cleanup_(sigkill_waitp) pid_t pid = 0;
1905 uint64_t c = 1;
1906 ssize_t n;
1907 int r;
1908
1909 /* Set up a user namespace and map root to root, the selected UID/GID to itself, and everything else to
1910 * nobody. In order to be able to write this mapping we need CAP_SETUID in the original user namespace, which
1911 * we however lack after opening the user namespace. To work around this we fork() a temporary child process,
1912 * which waits for the parent to create the new user namespace while staying in the original namespace. The
1913 * child then writes the UID mapping, under full privileges. The parent waits for the child to finish and
1914 * continues execution normally. */
1915
1916 if (uid != 0 && uid_is_valid(uid)) {
1917 r = asprintf(&uid_map,
1918 "0 0 1\n" /* Map root → root */
1919 UID_FMT " " UID_FMT " 1\n", /* Map $UID → $UID */
1920 uid, uid);
1921 if (r < 0)
1922 return -ENOMEM;
1923 } else {
1924 uid_map = strdup("0 0 1\n"); /* The case where the above is the same */
1925 if (!uid_map)
1926 return -ENOMEM;
1927 }
1928
1929 if (gid != 0 && gid_is_valid(gid)) {
1930 r = asprintf(&gid_map,
1931 "0 0 1\n" /* Map root → root */
1932 GID_FMT " " GID_FMT " 1\n", /* Map $GID → $GID */
1933 gid, gid);
1934 if (r < 0)
1935 return -ENOMEM;
1936 } else {
1937 gid_map = strdup("0 0 1\n"); /* The case where the above is the same */
1938 if (!gid_map)
1939 return -ENOMEM;
1940 }
1941
1942 /* Create a communication channel so that the parent can tell the child when it finished creating the user
1943 * namespace. */
1944 unshare_ready_fd = eventfd(0, EFD_CLOEXEC);
1945 if (unshare_ready_fd < 0)
1946 return -errno;
1947
1948 /* Create a communication channel so that the child can tell the parent a proper error code in case it
1949 * failed. */
1950 if (pipe2(errno_pipe, O_CLOEXEC) < 0)
1951 return -errno;
1952
1953 r = safe_fork("(sd-userns)", FORK_RESET_SIGNALS|FORK_DEATHSIG, &pid);
1954 if (r < 0)
1955 return r;
1956 if (r == 0) {
1957 _cleanup_close_ int fd = -1;
1958 const char *a;
1959 pid_t ppid;
1960
1961 /* Child process, running in the original user namespace. Let's update the parent's UID/GID map from
1962 * here, after the parent opened its own user namespace. */
1963
1964 ppid = getppid();
1965 errno_pipe[0] = safe_close(errno_pipe[0]);
1966
1967 /* Wait until the parent unshared the user namespace */
1968 if (read(unshare_ready_fd, &c, sizeof(c)) < 0) {
1969 r = -errno;
1970 goto child_fail;
1971 }
1972
1973 /* Disable the setgroups() system call in the child user namespace, for good. */
1974 a = procfs_file_alloca(ppid, "setgroups");
1975 fd = open(a, O_WRONLY|O_CLOEXEC);
1976 if (fd < 0) {
1977 if (errno != ENOENT) {
1978 r = -errno;
1979 goto child_fail;
1980 }
1981
1982 /* If the file is missing the kernel is too old, let's continue anyway. */
1983 } else {
1984 if (write(fd, "deny\n", 5) < 0) {
1985 r = -errno;
1986 goto child_fail;
1987 }
1988
1989 fd = safe_close(fd);
1990 }
1991
1992 /* First write the GID map */
1993 a = procfs_file_alloca(ppid, "gid_map");
1994 fd = open(a, O_WRONLY|O_CLOEXEC);
1995 if (fd < 0) {
1996 r = -errno;
1997 goto child_fail;
1998 }
1999 if (write(fd, gid_map, strlen(gid_map)) < 0) {
2000 r = -errno;
2001 goto child_fail;
2002 }
2003 fd = safe_close(fd);
2004
2005 /* The write the UID map */
2006 a = procfs_file_alloca(ppid, "uid_map");
2007 fd = open(a, O_WRONLY|O_CLOEXEC);
2008 if (fd < 0) {
2009 r = -errno;
2010 goto child_fail;
2011 }
2012 if (write(fd, uid_map, strlen(uid_map)) < 0) {
2013 r = -errno;
2014 goto child_fail;
2015 }
2016
2017 _exit(EXIT_SUCCESS);
2018
2019 child_fail:
2020 (void) write(errno_pipe[1], &r, sizeof(r));
2021 _exit(EXIT_FAILURE);
2022 }
2023
2024 errno_pipe[1] = safe_close(errno_pipe[1]);
2025
2026 if (unshare(CLONE_NEWUSER) < 0)
2027 return -errno;
2028
2029 /* Let the child know that the namespace is ready now */
2030 if (write(unshare_ready_fd, &c, sizeof(c)) < 0)
2031 return -errno;
2032
2033 /* Try to read an error code from the child */
2034 n = read(errno_pipe[0], &r, sizeof(r));
2035 if (n < 0)
2036 return -errno;
2037 if (n == sizeof(r)) { /* an error code was sent to us */
2038 if (r < 0)
2039 return r;
2040 return -EIO;
2041 }
2042 if (n != 0) /* on success we should have read 0 bytes */
2043 return -EIO;
2044
2045 r = wait_for_terminate_and_check("(sd-userns)", pid, 0);
2046 pid = 0;
2047 if (r < 0)
2048 return r;
2049 if (r != EXIT_SUCCESS) /* If something strange happened with the child, let's consider this fatal, too */
2050 return -EIO;
2051
2052 return 0;
2053 }
2054
2055 static int setup_exec_directory(
2056 const ExecContext *context,
2057 const ExecParameters *params,
2058 uid_t uid,
2059 gid_t gid,
2060 ExecDirectoryType type,
2061 int *exit_status) {
2062
2063 static const int exit_status_table[_EXEC_DIRECTORY_TYPE_MAX] = {
2064 [EXEC_DIRECTORY_RUNTIME] = EXIT_RUNTIME_DIRECTORY,
2065 [EXEC_DIRECTORY_STATE] = EXIT_STATE_DIRECTORY,
2066 [EXEC_DIRECTORY_CACHE] = EXIT_CACHE_DIRECTORY,
2067 [EXEC_DIRECTORY_LOGS] = EXIT_LOGS_DIRECTORY,
2068 [EXEC_DIRECTORY_CONFIGURATION] = EXIT_CONFIGURATION_DIRECTORY,
2069 };
2070 char **rt;
2071 int r;
2072
2073 assert(context);
2074 assert(params);
2075 assert(type >= 0 && type < _EXEC_DIRECTORY_TYPE_MAX);
2076 assert(exit_status);
2077
2078 if (!params->prefix[type])
2079 return 0;
2080
2081 if (params->flags & EXEC_CHOWN_DIRECTORIES) {
2082 if (!uid_is_valid(uid))
2083 uid = 0;
2084 if (!gid_is_valid(gid))
2085 gid = 0;
2086 }
2087
2088 STRV_FOREACH(rt, context->directories[type].paths) {
2089 _cleanup_free_ char *p = NULL, *pp = NULL;
2090
2091 p = path_join(params->prefix[type], *rt);
2092 if (!p) {
2093 r = -ENOMEM;
2094 goto fail;
2095 }
2096
2097 r = mkdir_parents_label(p, 0755);
2098 if (r < 0)
2099 goto fail;
2100
2101 if (context->dynamic_user &&
2102 (!IN_SET(type, EXEC_DIRECTORY_RUNTIME, EXEC_DIRECTORY_CONFIGURATION) ||
2103 (type == EXEC_DIRECTORY_RUNTIME && context->runtime_directory_preserve_mode != EXEC_PRESERVE_NO))) {
2104 _cleanup_free_ char *private_root = NULL;
2105
2106 /* So, here's one extra complication when dealing with DynamicUser=1 units. In that case we
2107 * want to avoid leaving a directory around fully accessible that is owned by a dynamic user
2108 * whose UID is later on reused. To lock this down we use the same trick used by container
2109 * managers to prohibit host users to get access to files of the same UID in containers: we
2110 * place everything inside a directory that has an access mode of 0700 and is owned root:root,
2111 * so that it acts as security boundary for unprivileged host code. We then use fs namespacing
2112 * to make this directory permeable for the service itself.
2113 *
2114 * Specifically: for a service which wants a special directory "foo/" we first create a
2115 * directory "private/" with access mode 0700 owned by root:root. Then we place "foo" inside of
2116 * that directory (i.e. "private/foo/"), and make "foo" a symlink to "private/foo". This way,
2117 * privileged host users can access "foo/" as usual, but unprivileged host users can't look
2118 * into it. Inside of the namespaceof the container "private/" is replaced by a more liberally
2119 * accessible tmpfs, into which the host's "private/foo/" is mounted under the same name, thus
2120 * disabling the access boundary for the service and making sure it only gets access to the
2121 * dirs it needs but no others. Tricky? Yes, absolutely, but it works!
2122 *
2123 * Note that we don't do this for EXEC_DIRECTORY_CONFIGURATION as that's assumed not to be
2124 * owned by the service itself.
2125 * Also, note that we don't do this for EXEC_DIRECTORY_RUNTIME as that's often used for sharing
2126 * files or sockets with other services. */
2127
2128 private_root = path_join(params->prefix[type], "private");
2129 if (!private_root) {
2130 r = -ENOMEM;
2131 goto fail;
2132 }
2133
2134 /* First set up private root if it doesn't exist yet, with access mode 0700 and owned by root:root */
2135 r = mkdir_safe_label(private_root, 0700, 0, 0, MKDIR_WARN_MODE);
2136 if (r < 0)
2137 goto fail;
2138
2139 pp = path_join(private_root, *rt);
2140 if (!pp) {
2141 r = -ENOMEM;
2142 goto fail;
2143 }
2144
2145 /* Create all directories between the configured directory and this private root, and mark them 0755 */
2146 r = mkdir_parents_label(pp, 0755);
2147 if (r < 0)
2148 goto fail;
2149
2150 if (is_dir(p, false) > 0 &&
2151 (laccess(pp, F_OK) < 0 && errno == ENOENT)) {
2152
2153 /* Hmm, the private directory doesn't exist yet, but the normal one exists? If so, move
2154 * it over. Most likely the service has been upgraded from one that didn't use
2155 * DynamicUser=1, to one that does. */
2156
2157 if (rename(p, pp) < 0) {
2158 r = -errno;
2159 goto fail;
2160 }
2161 } else {
2162 /* Otherwise, create the actual directory for the service */
2163
2164 r = mkdir_label(pp, context->directories[type].mode);
2165 if (r < 0 && r != -EEXIST)
2166 goto fail;
2167 }
2168
2169 /* And link it up from the original place */
2170 r = symlink_idempotent(pp, p, true);
2171 if (r < 0)
2172 goto fail;
2173
2174 } else {
2175 r = mkdir_label(p, context->directories[type].mode);
2176 if (r < 0) {
2177 if (r != -EEXIST)
2178 goto fail;
2179
2180 if (type == EXEC_DIRECTORY_CONFIGURATION) {
2181 struct stat st;
2182
2183 /* Don't change the owner/access mode of the configuration directory,
2184 * as in the common case it is not written to by a service, and shall
2185 * not be writable. */
2186
2187 if (stat(p, &st) < 0) {
2188 r = -errno;
2189 goto fail;
2190 }
2191
2192 /* Still complain if the access mode doesn't match */
2193 if (((st.st_mode ^ context->directories[type].mode) & 07777) != 0)
2194 log_warning("%s \'%s\' already exists but the mode is different. "
2195 "(File system: %o %sMode: %o)",
2196 exec_directory_type_to_string(type), *rt,
2197 st.st_mode & 07777, exec_directory_type_to_string(type), context->directories[type].mode & 07777);
2198
2199 continue;
2200 }
2201 }
2202 }
2203
2204 /* Lock down the access mode (we use chmod_and_chown() to make this idempotent. We don't
2205 * specify UID/GID here, so that path_chown_recursive() can optimize things depending on the
2206 * current UID/GID ownership.) */
2207 r = chmod_and_chown(pp ?: p, context->directories[type].mode, UID_INVALID, GID_INVALID);
2208 if (r < 0)
2209 goto fail;
2210
2211 /* Then, change the ownership of the whole tree, if necessary. When dynamic users are used we
2212 * drop the suid/sgid bits, since we really don't want SUID/SGID files for dynamic UID/GID
2213 * assignments to exist.*/
2214 r = path_chown_recursive(pp ?: p, uid, gid, context->dynamic_user ? 01777 : 07777);
2215 if (r < 0)
2216 goto fail;
2217 }
2218
2219 return 0;
2220
2221 fail:
2222 *exit_status = exit_status_table[type];
2223 return r;
2224 }
2225
2226 #if ENABLE_SMACK
2227 static int setup_smack(
2228 const ExecContext *context,
2229 const ExecCommand *command) {
2230
2231 int r;
2232
2233 assert(context);
2234 assert(command);
2235
2236 if (context->smack_process_label) {
2237 r = mac_smack_apply_pid(0, context->smack_process_label);
2238 if (r < 0)
2239 return r;
2240 }
2241 #ifdef SMACK_DEFAULT_PROCESS_LABEL
2242 else {
2243 _cleanup_free_ char *exec_label = NULL;
2244
2245 r = mac_smack_read(command->path, SMACK_ATTR_EXEC, &exec_label);
2246 if (r < 0 && !IN_SET(r, -ENODATA, -EOPNOTSUPP))
2247 return r;
2248
2249 r = mac_smack_apply_pid(0, exec_label ? : SMACK_DEFAULT_PROCESS_LABEL);
2250 if (r < 0)
2251 return r;
2252 }
2253 #endif
2254
2255 return 0;
2256 }
2257 #endif
2258
2259 static int compile_bind_mounts(
2260 const ExecContext *context,
2261 const ExecParameters *params,
2262 BindMount **ret_bind_mounts,
2263 size_t *ret_n_bind_mounts,
2264 char ***ret_empty_directories) {
2265
2266 _cleanup_strv_free_ char **empty_directories = NULL;
2267 BindMount *bind_mounts;
2268 size_t n, h = 0, i;
2269 ExecDirectoryType t;
2270 int r;
2271
2272 assert(context);
2273 assert(params);
2274 assert(ret_bind_mounts);
2275 assert(ret_n_bind_mounts);
2276 assert(ret_empty_directories);
2277
2278 n = context->n_bind_mounts;
2279 for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2280 if (!params->prefix[t])
2281 continue;
2282
2283 n += strv_length(context->directories[t].paths);
2284 }
2285
2286 if (n <= 0) {
2287 *ret_bind_mounts = NULL;
2288 *ret_n_bind_mounts = 0;
2289 *ret_empty_directories = NULL;
2290 return 0;
2291 }
2292
2293 bind_mounts = new(BindMount, n);
2294 if (!bind_mounts)
2295 return -ENOMEM;
2296
2297 for (i = 0; i < context->n_bind_mounts; i++) {
2298 BindMount *item = context->bind_mounts + i;
2299 char *s, *d;
2300
2301 s = strdup(item->source);
2302 if (!s) {
2303 r = -ENOMEM;
2304 goto finish;
2305 }
2306
2307 d = strdup(item->destination);
2308 if (!d) {
2309 free(s);
2310 r = -ENOMEM;
2311 goto finish;
2312 }
2313
2314 bind_mounts[h++] = (BindMount) {
2315 .source = s,
2316 .destination = d,
2317 .read_only = item->read_only,
2318 .recursive = item->recursive,
2319 .ignore_enoent = item->ignore_enoent,
2320 };
2321 }
2322
2323 for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2324 char **suffix;
2325
2326 if (!params->prefix[t])
2327 continue;
2328
2329 if (strv_isempty(context->directories[t].paths))
2330 continue;
2331
2332 if (context->dynamic_user &&
2333 !IN_SET(t, EXEC_DIRECTORY_RUNTIME, EXEC_DIRECTORY_CONFIGURATION) &&
2334 !(context->root_directory || context->root_image)) {
2335 char *private_root;
2336
2337 /* So this is for a dynamic user, and we need to make sure the process can access its own
2338 * directory. For that we overmount the usually inaccessible "private" subdirectory with a
2339 * tmpfs that makes it accessible and is empty except for the submounts we do this for. */
2340
2341 private_root = strjoin(params->prefix[t], "/private");
2342 if (!private_root) {
2343 r = -ENOMEM;
2344 goto finish;
2345 }
2346
2347 r = strv_consume(&empty_directories, private_root);
2348 if (r < 0)
2349 goto finish;
2350 }
2351
2352 STRV_FOREACH(suffix, context->directories[t].paths) {
2353 char *s, *d;
2354
2355 if (context->dynamic_user &&
2356 !IN_SET(t, EXEC_DIRECTORY_RUNTIME, EXEC_DIRECTORY_CONFIGURATION))
2357 s = strjoin(params->prefix[t], "/private/", *suffix);
2358 else
2359 s = strjoin(params->prefix[t], "/", *suffix);
2360 if (!s) {
2361 r = -ENOMEM;
2362 goto finish;
2363 }
2364
2365 if (context->dynamic_user &&
2366 !IN_SET(t, EXEC_DIRECTORY_RUNTIME, EXEC_DIRECTORY_CONFIGURATION) &&
2367 (context->root_directory || context->root_image))
2368 /* When RootDirectory= or RootImage= are set, then the symbolic link to the private
2369 * directory is not created on the root directory. So, let's bind-mount the directory
2370 * on the 'non-private' place. */
2371 d = strjoin(params->prefix[t], "/", *suffix);
2372 else
2373 d = strdup(s);
2374 if (!d) {
2375 free(s);
2376 r = -ENOMEM;
2377 goto finish;
2378 }
2379
2380 bind_mounts[h++] = (BindMount) {
2381 .source = s,
2382 .destination = d,
2383 .read_only = false,
2384 .nosuid = context->dynamic_user, /* don't allow suid/sgid when DynamicUser= is on */
2385 .recursive = true,
2386 .ignore_enoent = false,
2387 };
2388 }
2389 }
2390
2391 assert(h == n);
2392
2393 *ret_bind_mounts = bind_mounts;
2394 *ret_n_bind_mounts = n;
2395 *ret_empty_directories = TAKE_PTR(empty_directories);
2396
2397 return (int) n;
2398
2399 finish:
2400 bind_mount_free_many(bind_mounts, h);
2401 return r;
2402 }
2403
2404 static int apply_mount_namespace(
2405 const Unit *u,
2406 const ExecCommand *command,
2407 const ExecContext *context,
2408 const ExecParameters *params,
2409 const ExecRuntime *runtime,
2410 char **error_path) {
2411
2412 _cleanup_strv_free_ char **empty_directories = NULL;
2413 char *tmp = NULL, *var = NULL;
2414 const char *root_dir = NULL, *root_image = NULL;
2415 NamespaceInfo ns_info;
2416 bool needs_sandboxing;
2417 BindMount *bind_mounts = NULL;
2418 size_t n_bind_mounts = 0;
2419 int r;
2420
2421 assert(context);
2422
2423 /* The runtime struct only contains the parent of the private /tmp,
2424 * which is non-accessible to world users. Inside of it there's a /tmp
2425 * that is sticky, and that's the one we want to use here. */
2426
2427 if (context->private_tmp && runtime) {
2428 if (runtime->tmp_dir)
2429 tmp = strjoina(runtime->tmp_dir, "/tmp");
2430 if (runtime->var_tmp_dir)
2431 var = strjoina(runtime->var_tmp_dir, "/tmp");
2432 }
2433
2434 if (params->flags & EXEC_APPLY_CHROOT) {
2435 root_image = context->root_image;
2436
2437 if (!root_image)
2438 root_dir = context->root_directory;
2439 }
2440
2441 r = compile_bind_mounts(context, params, &bind_mounts, &n_bind_mounts, &empty_directories);
2442 if (r < 0)
2443 return r;
2444
2445 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & EXEC_COMMAND_FULLY_PRIVILEGED);
2446 if (needs_sandboxing)
2447 ns_info = (NamespaceInfo) {
2448 .ignore_protect_paths = false,
2449 .private_dev = context->private_devices,
2450 .protect_control_groups = context->protect_control_groups,
2451 .protect_kernel_tunables = context->protect_kernel_tunables,
2452 .protect_kernel_modules = context->protect_kernel_modules,
2453 .protect_hostname = context->protect_hostname,
2454 .mount_apivfs = context->mount_apivfs,
2455 .private_mounts = context->private_mounts,
2456 };
2457 else if (!context->dynamic_user && root_dir)
2458 /*
2459 * If DynamicUser=no and RootDirectory= is set then lets pass a relaxed
2460 * sandbox info, otherwise enforce it, don't ignore protected paths and
2461 * fail if we are enable to apply the sandbox inside the mount namespace.
2462 */
2463 ns_info = (NamespaceInfo) {
2464 .ignore_protect_paths = true,
2465 };
2466 else
2467 ns_info = (NamespaceInfo) {};
2468
2469 if (context->mount_flags == MS_SHARED)
2470 log_unit_debug(u, "shared mount propagation hidden by other fs namespacing unit settings: ignoring");
2471
2472 r = setup_namespace(root_dir, root_image,
2473 &ns_info, context->read_write_paths,
2474 needs_sandboxing ? context->read_only_paths : NULL,
2475 needs_sandboxing ? context->inaccessible_paths : NULL,
2476 empty_directories,
2477 bind_mounts,
2478 n_bind_mounts,
2479 context->temporary_filesystems,
2480 context->n_temporary_filesystems,
2481 tmp,
2482 var,
2483 needs_sandboxing ? context->protect_home : PROTECT_HOME_NO,
2484 needs_sandboxing ? context->protect_system : PROTECT_SYSTEM_NO,
2485 context->mount_flags,
2486 DISSECT_IMAGE_DISCARD_ON_LOOP,
2487 error_path);
2488
2489 bind_mount_free_many(bind_mounts, n_bind_mounts);
2490
2491 /* If we couldn't set up the namespace this is probably due to a missing capability. setup_namespace() reports
2492 * that with a special, recognizable error ENOANO. In this case, silently proceed, but only if exclusively
2493 * sandboxing options were used, i.e. nothing such as RootDirectory= or BindMount= that would result in a
2494 * completely different execution environment. */
2495 if (r == -ENOANO) {
2496 if (n_bind_mounts == 0 &&
2497 context->n_temporary_filesystems == 0 &&
2498 !root_dir && !root_image &&
2499 !context->dynamic_user) {
2500 log_unit_debug(u, "Failed to set up namespace, assuming containerized execution and ignoring.");
2501 return 0;
2502 }
2503
2504 log_unit_debug(u, "Failed to set up namespace, and refusing to continue since the selected namespacing options alter mount environment non-trivially.\n"
2505 "Bind mounts: %zu, temporary filesystems: %zu, root directory: %s, root image: %s, dynamic user: %s",
2506 n_bind_mounts, context->n_temporary_filesystems, yes_no(root_dir), yes_no(root_image), yes_no(context->dynamic_user));
2507
2508 return -EOPNOTSUPP;
2509 }
2510
2511 return r;
2512 }
2513
2514 static int apply_working_directory(
2515 const ExecContext *context,
2516 const ExecParameters *params,
2517 const char *home,
2518 const bool needs_mount_ns,
2519 int *exit_status) {
2520
2521 const char *d, *wd;
2522
2523 assert(context);
2524 assert(exit_status);
2525
2526 if (context->working_directory_home) {
2527
2528 if (!home) {
2529 *exit_status = EXIT_CHDIR;
2530 return -ENXIO;
2531 }
2532
2533 wd = home;
2534
2535 } else if (context->working_directory)
2536 wd = context->working_directory;
2537 else
2538 wd = "/";
2539
2540 if (params->flags & EXEC_APPLY_CHROOT) {
2541 if (!needs_mount_ns && context->root_directory)
2542 if (chroot(context->root_directory) < 0) {
2543 *exit_status = EXIT_CHROOT;
2544 return -errno;
2545 }
2546
2547 d = wd;
2548 } else
2549 d = prefix_roota(context->root_directory, wd);
2550
2551 if (chdir(d) < 0 && !context->working_directory_missing_ok) {
2552 *exit_status = EXIT_CHDIR;
2553 return -errno;
2554 }
2555
2556 return 0;
2557 }
2558
2559 static int setup_keyring(
2560 const Unit *u,
2561 const ExecContext *context,
2562 const ExecParameters *p,
2563 uid_t uid, gid_t gid) {
2564
2565 key_serial_t keyring;
2566 int r = 0;
2567 uid_t saved_uid;
2568 gid_t saved_gid;
2569
2570 assert(u);
2571 assert(context);
2572 assert(p);
2573
2574 /* Let's set up a new per-service "session" kernel keyring for each system service. This has the benefit that
2575 * each service runs with its own keyring shared among all processes of the service, but with no hook-up beyond
2576 * that scope, and in particular no link to the per-UID keyring. If we don't do this the keyring will be
2577 * automatically created on-demand and then linked to the per-UID keyring, by the kernel. The kernel's built-in
2578 * on-demand behaviour is very appropriate for login users, but probably not so much for system services, where
2579 * UIDs are not necessarily specific to a service but reused (at least in the case of UID 0). */
2580
2581 if (context->keyring_mode == EXEC_KEYRING_INHERIT)
2582 return 0;
2583
2584 /* Acquiring a reference to the user keyring is nasty. We briefly change identity in order to get things set up
2585 * properly by the kernel. If we don't do that then we can't create it atomically, and that sucks for parallel
2586 * execution. This mimics what pam_keyinit does, too. Setting up session keyring, to be owned by the right user
2587 * & group is just as nasty as acquiring a reference to the user keyring. */
2588
2589 saved_uid = getuid();
2590 saved_gid = getgid();
2591
2592 if (gid_is_valid(gid) && gid != saved_gid) {
2593 if (setregid(gid, -1) < 0)
2594 return log_unit_error_errno(u, errno, "Failed to change GID for user keyring: %m");
2595 }
2596
2597 if (uid_is_valid(uid) && uid != saved_uid) {
2598 if (setreuid(uid, -1) < 0) {
2599 r = log_unit_error_errno(u, errno, "Failed to change UID for user keyring: %m");
2600 goto out;
2601 }
2602 }
2603
2604 keyring = keyctl(KEYCTL_JOIN_SESSION_KEYRING, 0, 0, 0, 0);
2605 if (keyring == -1) {
2606 if (errno == ENOSYS)
2607 log_unit_debug_errno(u, errno, "Kernel keyring not supported, ignoring.");
2608 else if (IN_SET(errno, EACCES, EPERM))
2609 log_unit_debug_errno(u, errno, "Kernel keyring access prohibited, ignoring.");
2610 else if (errno == EDQUOT)
2611 log_unit_debug_errno(u, errno, "Out of kernel keyrings to allocate, ignoring.");
2612 else
2613 r = log_unit_error_errno(u, errno, "Setting up kernel keyring failed: %m");
2614
2615 goto out;
2616 }
2617
2618 /* When requested link the user keyring into the session keyring. */
2619 if (context->keyring_mode == EXEC_KEYRING_SHARED) {
2620
2621 if (keyctl(KEYCTL_LINK,
2622 KEY_SPEC_USER_KEYRING,
2623 KEY_SPEC_SESSION_KEYRING, 0, 0) < 0) {
2624 r = log_unit_error_errno(u, errno, "Failed to link user keyring into session keyring: %m");
2625 goto out;
2626 }
2627 }
2628
2629 /* Restore uid/gid back */
2630 if (uid_is_valid(uid) && uid != saved_uid) {
2631 if (setreuid(saved_uid, -1) < 0) {
2632 r = log_unit_error_errno(u, errno, "Failed to change UID back for user keyring: %m");
2633 goto out;
2634 }
2635 }
2636
2637 if (gid_is_valid(gid) && gid != saved_gid) {
2638 if (setregid(saved_gid, -1) < 0)
2639 return log_unit_error_errno(u, errno, "Failed to change GID back for user keyring: %m");
2640 }
2641
2642 /* Populate they keyring with the invocation ID by default, as original saved_uid. */
2643 if (!sd_id128_is_null(u->invocation_id)) {
2644 key_serial_t key;
2645
2646 key = add_key("user", "invocation_id", &u->invocation_id, sizeof(u->invocation_id), KEY_SPEC_SESSION_KEYRING);
2647 if (key == -1)
2648 log_unit_debug_errno(u, errno, "Failed to add invocation ID to keyring, ignoring: %m");
2649 else {
2650 if (keyctl(KEYCTL_SETPERM, key,
2651 KEY_POS_VIEW|KEY_POS_READ|KEY_POS_SEARCH|
2652 KEY_USR_VIEW|KEY_USR_READ|KEY_USR_SEARCH, 0, 0) < 0)
2653 r = log_unit_error_errno(u, errno, "Failed to restrict invocation ID permission: %m");
2654 }
2655 }
2656
2657 out:
2658 /* Revert back uid & gid for the the last time, and exit */
2659 /* no extra logging, as only the first already reported error matters */
2660 if (getuid() != saved_uid)
2661 (void) setreuid(saved_uid, -1);
2662
2663 if (getgid() != saved_gid)
2664 (void) setregid(saved_gid, -1);
2665
2666 return r;
2667 }
2668
2669 static void append_socket_pair(int *array, size_t *n, const int pair[static 2]) {
2670 assert(array);
2671 assert(n);
2672
2673 if (!pair)
2674 return;
2675
2676 if (pair[0] >= 0)
2677 array[(*n)++] = pair[0];
2678 if (pair[1] >= 0)
2679 array[(*n)++] = pair[1];
2680 }
2681
2682 static int close_remaining_fds(
2683 const ExecParameters *params,
2684 const ExecRuntime *runtime,
2685 const DynamicCreds *dcreds,
2686 int user_lookup_fd,
2687 int socket_fd,
2688 int exec_fd,
2689 int *fds, size_t n_fds) {
2690
2691 size_t n_dont_close = 0;
2692 int dont_close[n_fds + 12];
2693
2694 assert(params);
2695
2696 if (params->stdin_fd >= 0)
2697 dont_close[n_dont_close++] = params->stdin_fd;
2698 if (params->stdout_fd >= 0)
2699 dont_close[n_dont_close++] = params->stdout_fd;
2700 if (params->stderr_fd >= 0)
2701 dont_close[n_dont_close++] = params->stderr_fd;
2702
2703 if (socket_fd >= 0)
2704 dont_close[n_dont_close++] = socket_fd;
2705 if (exec_fd >= 0)
2706 dont_close[n_dont_close++] = exec_fd;
2707 if (n_fds > 0) {
2708 memcpy(dont_close + n_dont_close, fds, sizeof(int) * n_fds);
2709 n_dont_close += n_fds;
2710 }
2711
2712 if (runtime)
2713 append_socket_pair(dont_close, &n_dont_close, runtime->netns_storage_socket);
2714
2715 if (dcreds) {
2716 if (dcreds->user)
2717 append_socket_pair(dont_close, &n_dont_close, dcreds->user->storage_socket);
2718 if (dcreds->group)
2719 append_socket_pair(dont_close, &n_dont_close, dcreds->group->storage_socket);
2720 }
2721
2722 if (user_lookup_fd >= 0)
2723 dont_close[n_dont_close++] = user_lookup_fd;
2724
2725 return close_all_fds(dont_close, n_dont_close);
2726 }
2727
2728 static int send_user_lookup(
2729 Unit *unit,
2730 int user_lookup_fd,
2731 uid_t uid,
2732 gid_t gid) {
2733
2734 assert(unit);
2735
2736 /* Send the resolved UID/GID to PID 1 after we learnt it. We send a single datagram, containing the UID/GID
2737 * data as well as the unit name. Note that we suppress sending this if no user/group to resolve was
2738 * specified. */
2739
2740 if (user_lookup_fd < 0)
2741 return 0;
2742
2743 if (!uid_is_valid(uid) && !gid_is_valid(gid))
2744 return 0;
2745
2746 if (writev(user_lookup_fd,
2747 (struct iovec[]) {
2748 IOVEC_INIT(&uid, sizeof(uid)),
2749 IOVEC_INIT(&gid, sizeof(gid)),
2750 IOVEC_INIT_STRING(unit->id) }, 3) < 0)
2751 return -errno;
2752
2753 return 0;
2754 }
2755
2756 static int acquire_home(const ExecContext *c, uid_t uid, const char** home, char **buf) {
2757 int r;
2758
2759 assert(c);
2760 assert(home);
2761 assert(buf);
2762
2763 /* If WorkingDirectory=~ is set, try to acquire a usable home directory. */
2764
2765 if (*home)
2766 return 0;
2767
2768 if (!c->working_directory_home)
2769 return 0;
2770
2771 r = get_home_dir(buf);
2772 if (r < 0)
2773 return r;
2774
2775 *home = *buf;
2776 return 1;
2777 }
2778
2779 static int compile_suggested_paths(const ExecContext *c, const ExecParameters *p, char ***ret) {
2780 _cleanup_strv_free_ char ** list = NULL;
2781 ExecDirectoryType t;
2782 int r;
2783
2784 assert(c);
2785 assert(p);
2786 assert(ret);
2787
2788 assert(c->dynamic_user);
2789
2790 /* Compile a list of paths that it might make sense to read the owning UID from to use as initial candidate for
2791 * dynamic UID allocation, in order to save us from doing costly recursive chown()s of the special
2792 * directories. */
2793
2794 for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2795 char **i;
2796
2797 if (t == EXEC_DIRECTORY_CONFIGURATION)
2798 continue;
2799
2800 if (!p->prefix[t])
2801 continue;
2802
2803 STRV_FOREACH(i, c->directories[t].paths) {
2804 char *e;
2805
2806 if (t == EXEC_DIRECTORY_RUNTIME)
2807 e = strjoin(p->prefix[t], "/", *i);
2808 else
2809 e = strjoin(p->prefix[t], "/private/", *i);
2810 if (!e)
2811 return -ENOMEM;
2812
2813 r = strv_consume(&list, e);
2814 if (r < 0)
2815 return r;
2816 }
2817 }
2818
2819 *ret = TAKE_PTR(list);
2820
2821 return 0;
2822 }
2823
2824 static char *exec_command_line(char **argv);
2825
2826 static int exec_parameters_get_cgroup_path(const ExecParameters *params, char **ret) {
2827 bool using_subcgroup;
2828 char *p;
2829
2830 assert(params);
2831 assert(ret);
2832
2833 if (!params->cgroup_path)
2834 return -EINVAL;
2835
2836 /* If we are called for a unit where cgroup delegation is on, and the payload created its own populated
2837 * subcgroup (which we expect it to do, after all it asked for delegation), then we cannot place the control
2838 * processes started after the main unit's process in the unit's main cgroup because it is now an inner one,
2839 * and inner cgroups may not contain processes. Hence, if delegation is on, and this is a control process,
2840 * let's use ".control" as subcgroup instead. Note that we do so only for ExecStartPost=, ExecReload=,
2841 * ExecStop=, ExecStopPost=, i.e. for the commands where the main process is already forked. For ExecStartPre=
2842 * this is not necessary, the cgroup is still empty. We distinguish these cases with the EXEC_CONTROL_CGROUP
2843 * flag, which is only passed for the former statements, not for the latter. */
2844
2845 using_subcgroup = FLAGS_SET(params->flags, EXEC_CONTROL_CGROUP|EXEC_CGROUP_DELEGATE|EXEC_IS_CONTROL);
2846 if (using_subcgroup)
2847 p = strjoin(params->cgroup_path, "/.control");
2848 else
2849 p = strdup(params->cgroup_path);
2850 if (!p)
2851 return -ENOMEM;
2852
2853 *ret = p;
2854 return using_subcgroup;
2855 }
2856
2857 static int exec_child(
2858 Unit *unit,
2859 const ExecCommand *command,
2860 const ExecContext *context,
2861 const ExecParameters *params,
2862 ExecRuntime *runtime,
2863 DynamicCreds *dcreds,
2864 int socket_fd,
2865 int named_iofds[3],
2866 int *fds,
2867 size_t n_socket_fds,
2868 size_t n_storage_fds,
2869 char **files_env,
2870 int user_lookup_fd,
2871 int *exit_status) {
2872
2873 _cleanup_strv_free_ char **our_env = NULL, **pass_env = NULL, **accum_env = NULL, **replaced_argv = NULL;
2874 int *fds_with_exec_fd, n_fds_with_exec_fd, r, ngids = 0, exec_fd = -1;
2875 _cleanup_free_ gid_t *supplementary_gids = NULL;
2876 const char *username = NULL, *groupname = NULL;
2877 _cleanup_free_ char *home_buffer = NULL;
2878 const char *home = NULL, *shell = NULL;
2879 char **final_argv = NULL;
2880 dev_t journal_stream_dev = 0;
2881 ino_t journal_stream_ino = 0;
2882 bool needs_sandboxing, /* Do we need to set up full sandboxing? (i.e. all namespacing, all MAC stuff, caps, yadda yadda */
2883 needs_setuid, /* Do we need to do the actual setresuid()/setresgid() calls? */
2884 needs_mount_namespace, /* Do we need to set up a mount namespace for this kernel? */
2885 needs_ambient_hack; /* Do we need to apply the ambient capabilities hack? */
2886 #if HAVE_SELINUX
2887 _cleanup_free_ char *mac_selinux_context_net = NULL;
2888 bool use_selinux = false;
2889 #endif
2890 #if ENABLE_SMACK
2891 bool use_smack = false;
2892 #endif
2893 #if HAVE_APPARMOR
2894 bool use_apparmor = false;
2895 #endif
2896 uid_t uid = UID_INVALID;
2897 gid_t gid = GID_INVALID;
2898 size_t n_fds;
2899 ExecDirectoryType dt;
2900 int secure_bits;
2901
2902 assert(unit);
2903 assert(command);
2904 assert(context);
2905 assert(params);
2906 assert(exit_status);
2907
2908 rename_process_from_path(command->path);
2909
2910 /* We reset exactly these signals, since they are the
2911 * only ones we set to SIG_IGN in the main daemon. All
2912 * others we leave untouched because we set them to
2913 * SIG_DFL or a valid handler initially, both of which
2914 * will be demoted to SIG_DFL. */
2915 (void) default_signals(SIGNALS_CRASH_HANDLER,
2916 SIGNALS_IGNORE, -1);
2917
2918 if (context->ignore_sigpipe)
2919 (void) ignore_signals(SIGPIPE, -1);
2920
2921 r = reset_signal_mask();
2922 if (r < 0) {
2923 *exit_status = EXIT_SIGNAL_MASK;
2924 return log_unit_error_errno(unit, r, "Failed to set process signal mask: %m");
2925 }
2926
2927 if (params->idle_pipe)
2928 do_idle_pipe_dance(params->idle_pipe);
2929
2930 /* Close fds we don't need very early to make sure we don't block init reexecution because it cannot bind its
2931 * sockets. Among the fds we close are the logging fds, and we want to keep them closed, so that we don't have
2932 * any fds open we don't really want open during the transition. In order to make logging work, we switch the
2933 * log subsystem into open_when_needed mode, so that it reopens the logs on every single log call. */
2934
2935 log_forget_fds();
2936 log_set_open_when_needed(true);
2937
2938 /* In case anything used libc syslog(), close this here, too */
2939 closelog();
2940
2941 n_fds = n_socket_fds + n_storage_fds;
2942 r = close_remaining_fds(params, runtime, dcreds, user_lookup_fd, socket_fd, params->exec_fd, fds, n_fds);
2943 if (r < 0) {
2944 *exit_status = EXIT_FDS;
2945 return log_unit_error_errno(unit, r, "Failed to close unwanted file descriptors: %m");
2946 }
2947
2948 if (!context->same_pgrp)
2949 if (setsid() < 0) {
2950 *exit_status = EXIT_SETSID;
2951 return log_unit_error_errno(unit, errno, "Failed to create new process session: %m");
2952 }
2953
2954 exec_context_tty_reset(context, params);
2955
2956 if (unit_shall_confirm_spawn(unit)) {
2957 const char *vc = params->confirm_spawn;
2958 _cleanup_free_ char *cmdline = NULL;
2959
2960 cmdline = exec_command_line(command->argv);
2961 if (!cmdline) {
2962 *exit_status = EXIT_MEMORY;
2963 return log_oom();
2964 }
2965
2966 r = ask_for_confirmation(vc, unit, cmdline);
2967 if (r != CONFIRM_EXECUTE) {
2968 if (r == CONFIRM_PRETEND_SUCCESS) {
2969 *exit_status = EXIT_SUCCESS;
2970 return 0;
2971 }
2972 *exit_status = EXIT_CONFIRM;
2973 log_unit_error(unit, "Execution cancelled by the user");
2974 return -ECANCELED;
2975 }
2976 }
2977
2978 /* We are about to invoke NSS and PAM modules. Let's tell them what we are doing here, maybe they care. This is
2979 * used by nss-resolve to disable itself when we are about to start systemd-resolved, to avoid deadlocks. Note
2980 * that these env vars do not survive the execve(), which means they really only apply to the PAM and NSS
2981 * invocations themselves. Also note that while we'll only invoke NSS modules involved in user management they
2982 * might internally call into other NSS modules that are involved in hostname resolution, we never know. */
2983 if (setenv("SYSTEMD_ACTIVATION_UNIT", unit->id, true) != 0 ||
2984 setenv("SYSTEMD_ACTIVATION_SCOPE", MANAGER_IS_SYSTEM(unit->manager) ? "system" : "user", true) != 0) {
2985 *exit_status = EXIT_MEMORY;
2986 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
2987 }
2988
2989 if (context->dynamic_user && dcreds) {
2990 _cleanup_strv_free_ char **suggested_paths = NULL;
2991
2992 /* On top of that, make sure we bypass our own NSS module nss-systemd comprehensively for any NSS
2993 * checks, if DynamicUser=1 is used, as we shouldn't create a feedback loop with ourselves here.*/
2994 if (putenv((char*) "SYSTEMD_NSS_DYNAMIC_BYPASS=1") != 0) {
2995 *exit_status = EXIT_USER;
2996 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
2997 }
2998
2999 r = compile_suggested_paths(context, params, &suggested_paths);
3000 if (r < 0) {
3001 *exit_status = EXIT_MEMORY;
3002 return log_oom();
3003 }
3004
3005 r = dynamic_creds_realize(dcreds, suggested_paths, &uid, &gid);
3006 if (r < 0) {
3007 *exit_status = EXIT_USER;
3008 if (r == -EILSEQ) {
3009 log_unit_error(unit, "Failed to update dynamic user credentials: User or group with specified name already exists.");
3010 return -EOPNOTSUPP;
3011 }
3012 return log_unit_error_errno(unit, r, "Failed to update dynamic user credentials: %m");
3013 }
3014
3015 if (!uid_is_valid(uid)) {
3016 *exit_status = EXIT_USER;
3017 log_unit_error(unit, "UID validation failed for \""UID_FMT"\"", uid);
3018 return -ESRCH;
3019 }
3020
3021 if (!gid_is_valid(gid)) {
3022 *exit_status = EXIT_USER;
3023 log_unit_error(unit, "GID validation failed for \""GID_FMT"\"", gid);
3024 return -ESRCH;
3025 }
3026
3027 if (dcreds->user)
3028 username = dcreds->user->name;
3029
3030 } else {
3031 r = get_fixed_user(context, &username, &uid, &gid, &home, &shell);
3032 if (r < 0) {
3033 *exit_status = EXIT_USER;
3034 return log_unit_error_errno(unit, r, "Failed to determine user credentials: %m");
3035 }
3036
3037 r = get_fixed_group(context, &groupname, &gid);
3038 if (r < 0) {
3039 *exit_status = EXIT_GROUP;
3040 return log_unit_error_errno(unit, r, "Failed to determine group credentials: %m");
3041 }
3042 }
3043
3044 /* Initialize user supplementary groups and get SupplementaryGroups= ones */
3045 r = get_supplementary_groups(context, username, groupname, gid,
3046 &supplementary_gids, &ngids);
3047 if (r < 0) {
3048 *exit_status = EXIT_GROUP;
3049 return log_unit_error_errno(unit, r, "Failed to determine supplementary groups: %m");
3050 }
3051
3052 r = send_user_lookup(unit, user_lookup_fd, uid, gid);
3053 if (r < 0) {
3054 *exit_status = EXIT_USER;
3055 return log_unit_error_errno(unit, r, "Failed to send user credentials to PID1: %m");
3056 }
3057
3058 user_lookup_fd = safe_close(user_lookup_fd);
3059
3060 r = acquire_home(context, uid, &home, &home_buffer);
3061 if (r < 0) {
3062 *exit_status = EXIT_CHDIR;
3063 return log_unit_error_errno(unit, r, "Failed to determine $HOME for user: %m");
3064 }
3065
3066 /* If a socket is connected to STDIN/STDOUT/STDERR, we
3067 * must sure to drop O_NONBLOCK */
3068 if (socket_fd >= 0)
3069 (void) fd_nonblock(socket_fd, false);
3070
3071 /* Journald will try to look-up our cgroup in order to populate _SYSTEMD_CGROUP and _SYSTEMD_UNIT fields.
3072 * Hence we need to migrate to the target cgroup from init.scope before connecting to journald */
3073 if (params->cgroup_path) {
3074 _cleanup_free_ char *p = NULL;
3075
3076 r = exec_parameters_get_cgroup_path(params, &p);
3077 if (r < 0) {
3078 *exit_status = EXIT_CGROUP;
3079 return log_unit_error_errno(unit, r, "Failed to acquire cgroup path: %m");
3080 }
3081
3082 r = cg_attach_everywhere(params->cgroup_supported, p, 0, NULL, NULL);
3083 if (r < 0) {
3084 *exit_status = EXIT_CGROUP;
3085 return log_unit_error_errno(unit, r, "Failed to attach to cgroup %s: %m", p);
3086 }
3087 }
3088
3089 if (context->network_namespace_path && runtime && runtime->netns_storage_socket[0] >= 0) {
3090 r = open_netns_path(runtime->netns_storage_socket, context->network_namespace_path);
3091 if (r < 0) {
3092 *exit_status = EXIT_NETWORK;
3093 return log_unit_error_errno(unit, r, "Failed to open network namespace path %s: %m", context->network_namespace_path);
3094 }
3095 }
3096
3097 r = setup_input(context, params, socket_fd, named_iofds);
3098 if (r < 0) {
3099 *exit_status = EXIT_STDIN;
3100 return log_unit_error_errno(unit, r, "Failed to set up standard input: %m");
3101 }
3102
3103 r = setup_output(unit, context, params, STDOUT_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
3104 if (r < 0) {
3105 *exit_status = EXIT_STDOUT;
3106 return log_unit_error_errno(unit, r, "Failed to set up standard output: %m");
3107 }
3108
3109 r = setup_output(unit, context, params, STDERR_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
3110 if (r < 0) {
3111 *exit_status = EXIT_STDERR;
3112 return log_unit_error_errno(unit, r, "Failed to set up standard error output: %m");
3113 }
3114
3115 if (context->oom_score_adjust_set) {
3116 /* When we can't make this change due to EPERM, then let's silently skip over it. User namespaces
3117 * prohibit write access to this file, and we shouldn't trip up over that. */
3118 r = set_oom_score_adjust(context->oom_score_adjust);
3119 if (IN_SET(r, -EPERM, -EACCES))
3120 log_unit_debug_errno(unit, r, "Failed to adjust OOM setting, assuming containerized execution, ignoring: %m");
3121 else if (r < 0) {
3122 *exit_status = EXIT_OOM_ADJUST;
3123 return log_unit_error_errno(unit, r, "Failed to adjust OOM setting: %m");
3124 }
3125 }
3126
3127 if (context->nice_set)
3128 if (setpriority(PRIO_PROCESS, 0, context->nice) < 0) {
3129 *exit_status = EXIT_NICE;
3130 return log_unit_error_errno(unit, errno, "Failed to set up process scheduling priority (nice level): %m");
3131 }
3132
3133 if (context->cpu_sched_set) {
3134 struct sched_param param = {
3135 .sched_priority = context->cpu_sched_priority,
3136 };
3137
3138 r = sched_setscheduler(0,
3139 context->cpu_sched_policy |
3140 (context->cpu_sched_reset_on_fork ?
3141 SCHED_RESET_ON_FORK : 0),
3142 &param);
3143 if (r < 0) {
3144 *exit_status = EXIT_SETSCHEDULER;
3145 return log_unit_error_errno(unit, errno, "Failed to set up CPU scheduling: %m");
3146 }
3147 }
3148
3149 if (context->cpuset)
3150 if (sched_setaffinity(0, CPU_ALLOC_SIZE(context->cpuset_ncpus), context->cpuset) < 0) {
3151 *exit_status = EXIT_CPUAFFINITY;
3152 return log_unit_error_errno(unit, errno, "Failed to set up CPU affinity: %m");
3153 }
3154
3155 if (context->ioprio_set)
3156 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, context->ioprio) < 0) {
3157 *exit_status = EXIT_IOPRIO;
3158 return log_unit_error_errno(unit, errno, "Failed to set up IO scheduling priority: %m");
3159 }
3160
3161 if (context->timer_slack_nsec != NSEC_INFINITY)
3162 if (prctl(PR_SET_TIMERSLACK, context->timer_slack_nsec) < 0) {
3163 *exit_status = EXIT_TIMERSLACK;
3164 return log_unit_error_errno(unit, errno, "Failed to set up timer slack: %m");
3165 }
3166
3167 if (context->personality != PERSONALITY_INVALID) {
3168 r = safe_personality(context->personality);
3169 if (r < 0) {
3170 *exit_status = EXIT_PERSONALITY;
3171 return log_unit_error_errno(unit, r, "Failed to set up execution domain (personality): %m");
3172 }
3173 }
3174
3175 if (context->utmp_id)
3176 utmp_put_init_process(context->utmp_id, getpid_cached(), getsid(0),
3177 context->tty_path,
3178 context->utmp_mode == EXEC_UTMP_INIT ? INIT_PROCESS :
3179 context->utmp_mode == EXEC_UTMP_LOGIN ? LOGIN_PROCESS :
3180 USER_PROCESS,
3181 username);
3182
3183 if (uid_is_valid(uid)) {
3184 r = chown_terminal(STDIN_FILENO, uid);
3185 if (r < 0) {
3186 *exit_status = EXIT_STDIN;
3187 return log_unit_error_errno(unit, r, "Failed to change ownership of terminal: %m");
3188 }
3189 }
3190
3191 /* If delegation is enabled we'll pass ownership of the cgroup to the user of the new process. On cgroup v1
3192 * this is only about systemd's own hierarchy, i.e. not the controller hierarchies, simply because that's not
3193 * safe. On cgroup v2 there's only one hierarchy anyway, and delegation is safe there, hence in that case only
3194 * touch a single hierarchy too. */
3195 if (params->cgroup_path && context->user && (params->flags & EXEC_CGROUP_DELEGATE)) {
3196 r = cg_set_access(SYSTEMD_CGROUP_CONTROLLER, params->cgroup_path, uid, gid);
3197 if (r < 0) {
3198 *exit_status = EXIT_CGROUP;
3199 return log_unit_error_errno(unit, r, "Failed to adjust control group access: %m");
3200 }
3201 }
3202
3203 for (dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
3204 r = setup_exec_directory(context, params, uid, gid, dt, exit_status);
3205 if (r < 0)
3206 return log_unit_error_errno(unit, r, "Failed to set up special execution directory in %s: %m", params->prefix[dt]);
3207 }
3208
3209 r = build_environment(
3210 unit,
3211 context,
3212 params,
3213 n_fds,
3214 home,
3215 username,
3216 shell,
3217 journal_stream_dev,
3218 journal_stream_ino,
3219 &our_env);
3220 if (r < 0) {
3221 *exit_status = EXIT_MEMORY;
3222 return log_oom();
3223 }
3224
3225 r = build_pass_environment(context, &pass_env);
3226 if (r < 0) {
3227 *exit_status = EXIT_MEMORY;
3228 return log_oom();
3229 }
3230
3231 accum_env = strv_env_merge(5,
3232 params->environment,
3233 our_env,
3234 pass_env,
3235 context->environment,
3236 files_env,
3237 NULL);
3238 if (!accum_env) {
3239 *exit_status = EXIT_MEMORY;
3240 return log_oom();
3241 }
3242 accum_env = strv_env_clean(accum_env);
3243
3244 (void) umask(context->umask);
3245
3246 r = setup_keyring(unit, context, params, uid, gid);
3247 if (r < 0) {
3248 *exit_status = EXIT_KEYRING;
3249 return log_unit_error_errno(unit, r, "Failed to set up kernel keyring: %m");
3250 }
3251
3252 /* We need sandboxing if the caller asked us to apply it and the command isn't explicitly excepted from it */
3253 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & EXEC_COMMAND_FULLY_PRIVILEGED);
3254
3255 /* We need the ambient capability hack, if the caller asked us to apply it and the command is marked for it, and the kernel doesn't actually support ambient caps */
3256 needs_ambient_hack = (params->flags & EXEC_APPLY_SANDBOXING) && (command->flags & EXEC_COMMAND_AMBIENT_MAGIC) && !ambient_capabilities_supported();
3257
3258 /* We need setresuid() if the caller asked us to apply sandboxing and the command isn't explicitly excepted from either whole sandboxing or just setresuid() itself, and the ambient hack is not desired */
3259 if (needs_ambient_hack)
3260 needs_setuid = false;
3261 else
3262 needs_setuid = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & (EXEC_COMMAND_FULLY_PRIVILEGED|EXEC_COMMAND_NO_SETUID));
3263
3264 if (needs_sandboxing) {
3265 /* MAC enablement checks need to be done before a new mount ns is created, as they rely on /sys being
3266 * present. The actual MAC context application will happen later, as late as possible, to avoid
3267 * impacting our own code paths. */
3268
3269 #if HAVE_SELINUX
3270 use_selinux = mac_selinux_use();
3271 #endif
3272 #if ENABLE_SMACK
3273 use_smack = mac_smack_use();
3274 #endif
3275 #if HAVE_APPARMOR
3276 use_apparmor = mac_apparmor_use();
3277 #endif
3278 }
3279
3280 if (needs_sandboxing) {
3281 int which_failed;
3282
3283 /* Let's set the resource limits before we call into PAM, so that pam_limits wins over what
3284 * is set here. (See below.) */
3285
3286 r = setrlimit_closest_all((const struct rlimit* const *) context->rlimit, &which_failed);
3287 if (r < 0) {
3288 *exit_status = EXIT_LIMITS;
3289 return log_unit_error_errno(unit, r, "Failed to adjust resource limit RLIMIT_%s: %m", rlimit_to_string(which_failed));
3290 }
3291 }
3292
3293 if (needs_setuid) {
3294
3295 /* Let's call into PAM after we set up our own idea of resource limits to that pam_limits
3296 * wins here. (See above.) */
3297
3298 if (context->pam_name && username) {
3299 r = setup_pam(context->pam_name, username, uid, gid, context->tty_path, &accum_env, fds, n_fds);
3300 if (r < 0) {
3301 *exit_status = EXIT_PAM;
3302 return log_unit_error_errno(unit, r, "Failed to set up PAM session: %m");
3303 }
3304 }
3305 }
3306
3307 if ((context->private_network || context->network_namespace_path) && runtime && runtime->netns_storage_socket[0] >= 0) {
3308
3309 if (ns_type_supported(NAMESPACE_NET)) {
3310 r = setup_netns(runtime->netns_storage_socket);
3311 if (r < 0) {
3312 *exit_status = EXIT_NETWORK;
3313 return log_unit_error_errno(unit, r, "Failed to set up network namespacing: %m");
3314 }
3315 } else if (context->network_namespace_path) {
3316 *exit_status = EXIT_NETWORK;
3317 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP), "NetworkNamespacePath= is not supported, refusing.");
3318 } else
3319 log_unit_warning(unit, "PrivateNetwork=yes is configured, but the kernel does not support network namespaces, ignoring.");
3320 }
3321
3322 needs_mount_namespace = exec_needs_mount_namespace(context, params, runtime);
3323 if (needs_mount_namespace) {
3324 _cleanup_free_ char *error_path = NULL;
3325
3326 r = apply_mount_namespace(unit, command, context, params, runtime, &error_path);
3327 if (r < 0) {
3328 *exit_status = EXIT_NAMESPACE;
3329 return log_unit_error_errno(unit, r, "Failed to set up mount namespacing%s%s: %m",
3330 error_path ? ": " : "", strempty(error_path));
3331 }
3332 }
3333
3334 if (context->protect_hostname) {
3335 if (ns_type_supported(NAMESPACE_UTS)) {
3336 if (unshare(CLONE_NEWUTS) < 0) {
3337 *exit_status = EXIT_NAMESPACE;
3338 return log_unit_error_errno(unit, errno, "Failed to set up UTS namespacing: %m");
3339 }
3340 } else
3341 log_unit_warning(unit, "ProtectHostname=yes is configured, but the kernel does not support UTS namespaces, ignoring namespace setup.");
3342 #if HAVE_SECCOMP
3343 r = seccomp_protect_hostname();
3344 if (r < 0) {
3345 *exit_status = EXIT_SECCOMP;
3346 return log_unit_error_errno(unit, r, "Failed to apply hostname restrictions: %m");
3347 }
3348 #endif
3349 }
3350
3351 /* Drop groups as early as possbile */
3352 if (needs_setuid) {
3353 r = enforce_groups(gid, supplementary_gids, ngids);
3354 if (r < 0) {
3355 *exit_status = EXIT_GROUP;
3356 return log_unit_error_errno(unit, r, "Changing group credentials failed: %m");
3357 }
3358 }
3359
3360 if (needs_sandboxing) {
3361 #if HAVE_SELINUX
3362 if (use_selinux && params->selinux_context_net && socket_fd >= 0) {
3363 r = mac_selinux_get_child_mls_label(socket_fd, command->path, context->selinux_context, &mac_selinux_context_net);
3364 if (r < 0) {
3365 *exit_status = EXIT_SELINUX_CONTEXT;
3366 return log_unit_error_errno(unit, r, "Failed to determine SELinux context: %m");
3367 }
3368 }
3369 #endif
3370
3371 if (context->private_users) {
3372 r = setup_private_users(uid, gid);
3373 if (r < 0) {
3374 *exit_status = EXIT_USER;
3375 return log_unit_error_errno(unit, r, "Failed to set up user namespacing: %m");
3376 }
3377 }
3378 }
3379
3380 /* We repeat the fd closing here, to make sure that nothing is leaked from the PAM modules. Note that we are
3381 * more aggressive this time since socket_fd and the netns fds we don't need anymore. We do keep the exec_fd
3382 * however if we have it as we want to keep it open until the final execve(). */
3383
3384 if (params->exec_fd >= 0) {
3385 exec_fd = params->exec_fd;
3386
3387 if (exec_fd < 3 + (int) n_fds) {
3388 int moved_fd;
3389
3390 /* Let's move the exec fd far up, so that it's outside of the fd range we want to pass to the
3391 * process we are about to execute. */
3392
3393 moved_fd = fcntl(exec_fd, F_DUPFD_CLOEXEC, 3 + (int) n_fds);
3394 if (moved_fd < 0) {
3395 *exit_status = EXIT_FDS;
3396 return log_unit_error_errno(unit, errno, "Couldn't move exec fd up: %m");
3397 }
3398
3399 safe_close(exec_fd);
3400 exec_fd = moved_fd;
3401 } else {
3402 /* This fd should be FD_CLOEXEC already, but let's make sure. */
3403 r = fd_cloexec(exec_fd, true);
3404 if (r < 0) {
3405 *exit_status = EXIT_FDS;
3406 return log_unit_error_errno(unit, r, "Failed to make exec fd FD_CLOEXEC: %m");
3407 }
3408 }
3409
3410 fds_with_exec_fd = newa(int, n_fds + 1);
3411 memcpy_safe(fds_with_exec_fd, fds, n_fds * sizeof(int));
3412 fds_with_exec_fd[n_fds] = exec_fd;
3413 n_fds_with_exec_fd = n_fds + 1;
3414 } else {
3415 fds_with_exec_fd = fds;
3416 n_fds_with_exec_fd = n_fds;
3417 }
3418
3419 r = close_all_fds(fds_with_exec_fd, n_fds_with_exec_fd);
3420 if (r >= 0)
3421 r = shift_fds(fds, n_fds);
3422 if (r >= 0)
3423 r = flags_fds(fds, n_socket_fds, n_storage_fds, context->non_blocking);
3424 if (r < 0) {
3425 *exit_status = EXIT_FDS;
3426 return log_unit_error_errno(unit, r, "Failed to adjust passed file descriptors: %m");
3427 }
3428
3429 /* At this point, the fds we want to pass to the program are all ready and set up, with O_CLOEXEC turned off
3430 * and at the right fd numbers. The are no other fds open, with one exception: the exec_fd if it is defined,
3431 * and it has O_CLOEXEC set, after all we want it to be closed by the execve(), so that our parent knows we
3432 * came this far. */
3433
3434 secure_bits = context->secure_bits;
3435
3436 if (needs_sandboxing) {
3437 uint64_t bset;
3438
3439 /* Set the RTPRIO resource limit to 0, but only if nothing else was explicitly
3440 * requested. (Note this is placed after the general resource limit initialization, see
3441 * above, in order to take precedence.) */
3442 if (context->restrict_realtime && !context->rlimit[RLIMIT_RTPRIO]) {
3443 if (setrlimit(RLIMIT_RTPRIO, &RLIMIT_MAKE_CONST(0)) < 0) {
3444 *exit_status = EXIT_LIMITS;
3445 return log_unit_error_errno(unit, errno, "Failed to adjust RLIMIT_RTPRIO resource limit: %m");
3446 }
3447 }
3448
3449 #if ENABLE_SMACK
3450 /* LSM Smack needs the capability CAP_MAC_ADMIN to change the current execution security context of the
3451 * process. This is the latest place before dropping capabilities. Other MAC context are set later. */
3452 if (use_smack) {
3453 r = setup_smack(context, command);
3454 if (r < 0) {
3455 *exit_status = EXIT_SMACK_PROCESS_LABEL;
3456 return log_unit_error_errno(unit, r, "Failed to set SMACK process label: %m");
3457 }
3458 }
3459 #endif
3460
3461 bset = context->capability_bounding_set;
3462 /* If the ambient caps hack is enabled (which means the kernel can't do them, and the user asked for
3463 * our magic fallback), then let's add some extra caps, so that the service can drop privs of its own,
3464 * instead of us doing that */
3465 if (needs_ambient_hack)
3466 bset |= (UINT64_C(1) << CAP_SETPCAP) |
3467 (UINT64_C(1) << CAP_SETUID) |
3468 (UINT64_C(1) << CAP_SETGID);
3469
3470 if (!cap_test_all(bset)) {
3471 r = capability_bounding_set_drop(bset, false);
3472 if (r < 0) {
3473 *exit_status = EXIT_CAPABILITIES;
3474 return log_unit_error_errno(unit, r, "Failed to drop capabilities: %m");
3475 }
3476 }
3477
3478 /* This is done before enforce_user, but ambient set
3479 * does not survive over setresuid() if keep_caps is not set. */
3480 if (!needs_ambient_hack &&
3481 context->capability_ambient_set != 0) {
3482 r = capability_ambient_set_apply(context->capability_ambient_set, true);
3483 if (r < 0) {
3484 *exit_status = EXIT_CAPABILITIES;
3485 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (before UID change): %m");
3486 }
3487 }
3488 }
3489
3490 if (needs_setuid) {
3491 if (uid_is_valid(uid)) {
3492 r = enforce_user(context, uid);
3493 if (r < 0) {
3494 *exit_status = EXIT_USER;
3495 return log_unit_error_errno(unit, r, "Failed to change UID to " UID_FMT ": %m", uid);
3496 }
3497
3498 if (!needs_ambient_hack &&
3499 context->capability_ambient_set != 0) {
3500
3501 /* Fix the ambient capabilities after user change. */
3502 r = capability_ambient_set_apply(context->capability_ambient_set, false);
3503 if (r < 0) {
3504 *exit_status = EXIT_CAPABILITIES;
3505 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (after UID change): %m");
3506 }
3507
3508 /* If we were asked to change user and ambient capabilities
3509 * were requested, we had to add keep-caps to the securebits
3510 * so that we would maintain the inherited capability set
3511 * through the setresuid(). Make sure that the bit is added
3512 * also to the context secure_bits so that we don't try to
3513 * drop the bit away next. */
3514
3515 secure_bits |= 1<<SECURE_KEEP_CAPS;
3516 }
3517 }
3518 }
3519
3520 /* Apply working directory here, because the working directory might be on NFS and only the user running
3521 * this service might have the correct privilege to change to the working directory */
3522 r = apply_working_directory(context, params, home, needs_mount_namespace, exit_status);
3523 if (r < 0)
3524 return log_unit_error_errno(unit, r, "Changing to the requested working directory failed: %m");
3525
3526 if (needs_sandboxing) {
3527 /* Apply other MAC contexts late, but before seccomp syscall filtering, as those should really be last to
3528 * influence our own codepaths as little as possible. Moreover, applying MAC contexts usually requires
3529 * syscalls that are subject to seccomp filtering, hence should probably be applied before the syscalls
3530 * are restricted. */
3531
3532 #if HAVE_SELINUX
3533 if (use_selinux) {
3534 char *exec_context = mac_selinux_context_net ?: context->selinux_context;
3535
3536 if (exec_context) {
3537 r = setexeccon(exec_context);
3538 if (r < 0) {
3539 *exit_status = EXIT_SELINUX_CONTEXT;
3540 return log_unit_error_errno(unit, r, "Failed to change SELinux context to %s: %m", exec_context);
3541 }
3542 }
3543 }
3544 #endif
3545
3546 #if HAVE_APPARMOR
3547 if (use_apparmor && context->apparmor_profile) {
3548 r = aa_change_onexec(context->apparmor_profile);
3549 if (r < 0 && !context->apparmor_profile_ignore) {
3550 *exit_status = EXIT_APPARMOR_PROFILE;
3551 return log_unit_error_errno(unit, errno, "Failed to prepare AppArmor profile change to %s: %m", context->apparmor_profile);
3552 }
3553 }
3554 #endif
3555
3556 /* PR_GET_SECUREBITS is not privileged, while PR_SET_SECUREBITS is. So to suppress potential EPERMs
3557 * we'll try not to call PR_SET_SECUREBITS unless necessary. */
3558 if (prctl(PR_GET_SECUREBITS) != secure_bits)
3559 if (prctl(PR_SET_SECUREBITS, secure_bits) < 0) {
3560 *exit_status = EXIT_SECUREBITS;
3561 return log_unit_error_errno(unit, errno, "Failed to set process secure bits: %m");
3562 }
3563
3564 if (context_has_no_new_privileges(context))
3565 if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) < 0) {
3566 *exit_status = EXIT_NO_NEW_PRIVILEGES;
3567 return log_unit_error_errno(unit, errno, "Failed to disable new privileges: %m");
3568 }
3569
3570 #if HAVE_SECCOMP
3571 r = apply_address_families(unit, context);
3572 if (r < 0) {
3573 *exit_status = EXIT_ADDRESS_FAMILIES;
3574 return log_unit_error_errno(unit, r, "Failed to restrict address families: %m");
3575 }
3576
3577 r = apply_memory_deny_write_execute(unit, context);
3578 if (r < 0) {
3579 *exit_status = EXIT_SECCOMP;
3580 return log_unit_error_errno(unit, r, "Failed to disable writing to executable memory: %m");
3581 }
3582
3583 r = apply_restrict_realtime(unit, context);
3584 if (r < 0) {
3585 *exit_status = EXIT_SECCOMP;
3586 return log_unit_error_errno(unit, r, "Failed to apply realtime restrictions: %m");
3587 }
3588
3589 r = apply_restrict_suid_sgid(unit, context);
3590 if (r < 0) {
3591 *exit_status = EXIT_SECCOMP;
3592 return log_unit_error_errno(unit, r, "Failed to apply SUID/SGID restrictions: %m");
3593 }
3594
3595 r = apply_restrict_namespaces(unit, context);
3596 if (r < 0) {
3597 *exit_status = EXIT_SECCOMP;
3598 return log_unit_error_errno(unit, r, "Failed to apply namespace restrictions: %m");
3599 }
3600
3601 r = apply_protect_sysctl(unit, context);
3602 if (r < 0) {
3603 *exit_status = EXIT_SECCOMP;
3604 return log_unit_error_errno(unit, r, "Failed to apply sysctl restrictions: %m");
3605 }
3606
3607 r = apply_protect_kernel_modules(unit, context);
3608 if (r < 0) {
3609 *exit_status = EXIT_SECCOMP;
3610 return log_unit_error_errno(unit, r, "Failed to apply module loading restrictions: %m");
3611 }
3612
3613 r = apply_private_devices(unit, context);
3614 if (r < 0) {
3615 *exit_status = EXIT_SECCOMP;
3616 return log_unit_error_errno(unit, r, "Failed to set up private devices: %m");
3617 }
3618
3619 r = apply_syscall_archs(unit, context);
3620 if (r < 0) {
3621 *exit_status = EXIT_SECCOMP;
3622 return log_unit_error_errno(unit, r, "Failed to apply syscall architecture restrictions: %m");
3623 }
3624
3625 r = apply_lock_personality(unit, context);
3626 if (r < 0) {
3627 *exit_status = EXIT_SECCOMP;
3628 return log_unit_error_errno(unit, r, "Failed to lock personalities: %m");
3629 }
3630
3631 /* This really should remain the last step before the execve(), to make sure our own code is unaffected
3632 * by the filter as little as possible. */
3633 r = apply_syscall_filter(unit, context, needs_ambient_hack);
3634 if (r < 0) {
3635 *exit_status = EXIT_SECCOMP;
3636 return log_unit_error_errno(unit, r, "Failed to apply system call filters: %m");
3637 }
3638 #endif
3639 }
3640
3641 if (!strv_isempty(context->unset_environment)) {
3642 char **ee = NULL;
3643
3644 ee = strv_env_delete(accum_env, 1, context->unset_environment);
3645 if (!ee) {
3646 *exit_status = EXIT_MEMORY;
3647 return log_oom();
3648 }
3649
3650 strv_free_and_replace(accum_env, ee);
3651 }
3652
3653 if (!FLAGS_SET(command->flags, EXEC_COMMAND_NO_ENV_EXPAND)) {
3654 replaced_argv = replace_env_argv(command->argv, accum_env);
3655 if (!replaced_argv) {
3656 *exit_status = EXIT_MEMORY;
3657 return log_oom();
3658 }
3659 final_argv = replaced_argv;
3660 } else
3661 final_argv = command->argv;
3662
3663 if (DEBUG_LOGGING) {
3664 _cleanup_free_ char *line;
3665
3666 line = exec_command_line(final_argv);
3667 if (line)
3668 log_struct(LOG_DEBUG,
3669 "EXECUTABLE=%s", command->path,
3670 LOG_UNIT_MESSAGE(unit, "Executing: %s", line),
3671 LOG_UNIT_ID(unit),
3672 LOG_UNIT_INVOCATION_ID(unit));
3673 }
3674
3675 if (exec_fd >= 0) {
3676 uint8_t hot = 1;
3677
3678 /* We have finished with all our initializations. Let's now let the manager know that. From this point
3679 * on, if the manager sees POLLHUP on the exec_fd, then execve() was successful. */
3680
3681 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
3682 *exit_status = EXIT_EXEC;
3683 return log_unit_error_errno(unit, errno, "Failed to enable exec_fd: %m");
3684 }
3685 }
3686
3687 execve(command->path, final_argv, accum_env);
3688 r = -errno;
3689
3690 if (exec_fd >= 0) {
3691 uint8_t hot = 0;
3692
3693 /* The execve() failed. This means the exec_fd is still open. Which means we need to tell the manager
3694 * that POLLHUP on it no longer means execve() succeeded. */
3695
3696 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
3697 *exit_status = EXIT_EXEC;
3698 return log_unit_error_errno(unit, errno, "Failed to disable exec_fd: %m");
3699 }
3700 }
3701
3702 if (r == -ENOENT && (command->flags & EXEC_COMMAND_IGNORE_FAILURE)) {
3703 log_struct_errno(LOG_INFO, r,
3704 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
3705 LOG_UNIT_ID(unit),
3706 LOG_UNIT_INVOCATION_ID(unit),
3707 LOG_UNIT_MESSAGE(unit, "Executable %s missing, skipping: %m",
3708 command->path),
3709 "EXECUTABLE=%s", command->path);
3710 return 0;
3711 }
3712
3713 *exit_status = EXIT_EXEC;
3714 return log_unit_error_errno(unit, r, "Failed to execute command: %m");
3715 }
3716
3717 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l);
3718 static int exec_context_named_iofds(const ExecContext *c, const ExecParameters *p, int named_iofds[3]);
3719
3720 int exec_spawn(Unit *unit,
3721 ExecCommand *command,
3722 const ExecContext *context,
3723 const ExecParameters *params,
3724 ExecRuntime *runtime,
3725 DynamicCreds *dcreds,
3726 pid_t *ret) {
3727
3728 int socket_fd, r, named_iofds[3] = { -1, -1, -1 }, *fds = NULL;
3729 _cleanup_free_ char *subcgroup_path = NULL;
3730 _cleanup_strv_free_ char **files_env = NULL;
3731 size_t n_storage_fds = 0, n_socket_fds = 0;
3732 _cleanup_free_ char *line = NULL;
3733 pid_t pid;
3734
3735 assert(unit);
3736 assert(command);
3737 assert(context);
3738 assert(ret);
3739 assert(params);
3740 assert(params->fds || (params->n_socket_fds + params->n_storage_fds <= 0));
3741
3742 if (context->std_input == EXEC_INPUT_SOCKET ||
3743 context->std_output == EXEC_OUTPUT_SOCKET ||
3744 context->std_error == EXEC_OUTPUT_SOCKET) {
3745
3746 if (params->n_socket_fds > 1) {
3747 log_unit_error(unit, "Got more than one socket.");
3748 return -EINVAL;
3749 }
3750
3751 if (params->n_socket_fds == 0) {
3752 log_unit_error(unit, "Got no socket.");
3753 return -EINVAL;
3754 }
3755
3756 socket_fd = params->fds[0];
3757 } else {
3758 socket_fd = -1;
3759 fds = params->fds;
3760 n_socket_fds = params->n_socket_fds;
3761 n_storage_fds = params->n_storage_fds;
3762 }
3763
3764 r = exec_context_named_iofds(context, params, named_iofds);
3765 if (r < 0)
3766 return log_unit_error_errno(unit, r, "Failed to load a named file descriptor: %m");
3767
3768 r = exec_context_load_environment(unit, context, &files_env);
3769 if (r < 0)
3770 return log_unit_error_errno(unit, r, "Failed to load environment files: %m");
3771
3772 line = exec_command_line(command->argv);
3773 if (!line)
3774 return log_oom();
3775
3776 log_struct(LOG_DEBUG,
3777 LOG_UNIT_MESSAGE(unit, "About to execute: %s", line),
3778 "EXECUTABLE=%s", command->path,
3779 LOG_UNIT_ID(unit),
3780 LOG_UNIT_INVOCATION_ID(unit));
3781
3782 if (params->cgroup_path) {
3783 r = exec_parameters_get_cgroup_path(params, &subcgroup_path);
3784 if (r < 0)
3785 return log_unit_error_errno(unit, r, "Failed to acquire subcgroup path: %m");
3786 if (r > 0) { /* We are using a child cgroup */
3787 r = cg_create(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path);
3788 if (r < 0)
3789 return log_unit_error_errno(unit, r, "Failed to create control group '%s': %m", subcgroup_path);
3790 }
3791 }
3792
3793 pid = fork();
3794 if (pid < 0)
3795 return log_unit_error_errno(unit, errno, "Failed to fork: %m");
3796
3797 if (pid == 0) {
3798 int exit_status = EXIT_SUCCESS;
3799
3800 r = exec_child(unit,
3801 command,
3802 context,
3803 params,
3804 runtime,
3805 dcreds,
3806 socket_fd,
3807 named_iofds,
3808 fds,
3809 n_socket_fds,
3810 n_storage_fds,
3811 files_env,
3812 unit->manager->user_lookup_fds[1],
3813 &exit_status);
3814
3815 if (r < 0)
3816 log_struct_errno(LOG_ERR, r,
3817 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
3818 LOG_UNIT_ID(unit),
3819 LOG_UNIT_INVOCATION_ID(unit),
3820 LOG_UNIT_MESSAGE(unit, "Failed at step %s spawning %s: %m",
3821 exit_status_to_string(exit_status, EXIT_STATUS_SYSTEMD),
3822 command->path),
3823 "EXECUTABLE=%s", command->path);
3824
3825 _exit(exit_status);
3826 }
3827
3828 log_unit_debug(unit, "Forked %s as "PID_FMT, command->path, pid);
3829
3830 /* We add the new process to the cgroup both in the child (so that we can be sure that no user code is ever
3831 * executed outside of the cgroup) and in the parent (so that we can be sure that when we kill the cgroup the
3832 * process will be killed too). */
3833 if (subcgroup_path)
3834 (void) cg_attach(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path, pid);
3835
3836 exec_status_start(&command->exec_status, pid);
3837
3838 *ret = pid;
3839 return 0;
3840 }
3841
3842 void exec_context_init(ExecContext *c) {
3843 ExecDirectoryType i;
3844
3845 assert(c);
3846
3847 c->umask = 0022;
3848 c->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 0);
3849 c->cpu_sched_policy = SCHED_OTHER;
3850 c->syslog_priority = LOG_DAEMON|LOG_INFO;
3851 c->syslog_level_prefix = true;
3852 c->ignore_sigpipe = true;
3853 c->timer_slack_nsec = NSEC_INFINITY;
3854 c->personality = PERSONALITY_INVALID;
3855 for (i = 0; i < _EXEC_DIRECTORY_TYPE_MAX; i++)
3856 c->directories[i].mode = 0755;
3857 c->capability_bounding_set = CAP_ALL;
3858 assert_cc(NAMESPACE_FLAGS_INITIAL != NAMESPACE_FLAGS_ALL);
3859 c->restrict_namespaces = NAMESPACE_FLAGS_INITIAL;
3860 c->log_level_max = -1;
3861 }
3862
3863 void exec_context_done(ExecContext *c) {
3864 ExecDirectoryType i;
3865 size_t l;
3866
3867 assert(c);
3868
3869 c->environment = strv_free(c->environment);
3870 c->environment_files = strv_free(c->environment_files);
3871 c->pass_environment = strv_free(c->pass_environment);
3872 c->unset_environment = strv_free(c->unset_environment);
3873
3874 rlimit_free_all(c->rlimit);
3875
3876 for (l = 0; l < 3; l++) {
3877 c->stdio_fdname[l] = mfree(c->stdio_fdname[l]);
3878 c->stdio_file[l] = mfree(c->stdio_file[l]);
3879 }
3880
3881 c->working_directory = mfree(c->working_directory);
3882 c->root_directory = mfree(c->root_directory);
3883 c->root_image = mfree(c->root_image);
3884 c->tty_path = mfree(c->tty_path);
3885 c->syslog_identifier = mfree(c->syslog_identifier);
3886 c->user = mfree(c->user);
3887 c->group = mfree(c->group);
3888
3889 c->supplementary_groups = strv_free(c->supplementary_groups);
3890
3891 c->pam_name = mfree(c->pam_name);
3892
3893 c->read_only_paths = strv_free(c->read_only_paths);
3894 c->read_write_paths = strv_free(c->read_write_paths);
3895 c->inaccessible_paths = strv_free(c->inaccessible_paths);
3896
3897 bind_mount_free_many(c->bind_mounts, c->n_bind_mounts);
3898 c->bind_mounts = NULL;
3899 c->n_bind_mounts = 0;
3900 temporary_filesystem_free_many(c->temporary_filesystems, c->n_temporary_filesystems);
3901 c->temporary_filesystems = NULL;
3902 c->n_temporary_filesystems = 0;
3903
3904 c->cpuset = cpu_set_mfree(c->cpuset);
3905
3906 c->utmp_id = mfree(c->utmp_id);
3907 c->selinux_context = mfree(c->selinux_context);
3908 c->apparmor_profile = mfree(c->apparmor_profile);
3909 c->smack_process_label = mfree(c->smack_process_label);
3910
3911 c->syscall_filter = hashmap_free(c->syscall_filter);
3912 c->syscall_archs = set_free(c->syscall_archs);
3913 c->address_families = set_free(c->address_families);
3914
3915 for (i = 0; i < _EXEC_DIRECTORY_TYPE_MAX; i++)
3916 c->directories[i].paths = strv_free(c->directories[i].paths);
3917
3918 c->log_level_max = -1;
3919
3920 exec_context_free_log_extra_fields(c);
3921
3922 c->log_rate_limit_interval_usec = 0;
3923 c->log_rate_limit_burst = 0;
3924
3925 c->stdin_data = mfree(c->stdin_data);
3926 c->stdin_data_size = 0;
3927
3928 c->network_namespace_path = mfree(c->network_namespace_path);
3929 }
3930
3931 int exec_context_destroy_runtime_directory(const ExecContext *c, const char *runtime_prefix) {
3932 char **i;
3933
3934 assert(c);
3935
3936 if (!runtime_prefix)
3937 return 0;
3938
3939 STRV_FOREACH(i, c->directories[EXEC_DIRECTORY_RUNTIME].paths) {
3940 _cleanup_free_ char *p;
3941
3942 p = path_join(runtime_prefix, *i);
3943 if (!p)
3944 return -ENOMEM;
3945
3946 /* We execute this synchronously, since we need to be sure this is gone when we start the
3947 * service next. */
3948 (void) rm_rf(p, REMOVE_ROOT);
3949 }
3950
3951 return 0;
3952 }
3953
3954 static void exec_command_done(ExecCommand *c) {
3955 assert(c);
3956
3957 c->path = mfree(c->path);
3958 c->argv = strv_free(c->argv);
3959 }
3960
3961 void exec_command_done_array(ExecCommand *c, size_t n) {
3962 size_t i;
3963
3964 for (i = 0; i < n; i++)
3965 exec_command_done(c+i);
3966 }
3967
3968 ExecCommand* exec_command_free_list(ExecCommand *c) {
3969 ExecCommand *i;
3970
3971 while ((i = c)) {
3972 LIST_REMOVE(command, c, i);
3973 exec_command_done(i);
3974 free(i);
3975 }
3976
3977 return NULL;
3978 }
3979
3980 void exec_command_free_array(ExecCommand **c, size_t n) {
3981 size_t i;
3982
3983 for (i = 0; i < n; i++)
3984 c[i] = exec_command_free_list(c[i]);
3985 }
3986
3987 void exec_command_reset_status_array(ExecCommand *c, size_t n) {
3988 size_t i;
3989
3990 for (i = 0; i < n; i++)
3991 exec_status_reset(&c[i].exec_status);
3992 }
3993
3994 void exec_command_reset_status_list_array(ExecCommand **c, size_t n) {
3995 size_t i;
3996
3997 for (i = 0; i < n; i++) {
3998 ExecCommand *z;
3999
4000 LIST_FOREACH(command, z, c[i])
4001 exec_status_reset(&z->exec_status);
4002 }
4003 }
4004
4005 typedef struct InvalidEnvInfo {
4006 const Unit *unit;
4007 const char *path;
4008 } InvalidEnvInfo;
4009
4010 static void invalid_env(const char *p, void *userdata) {
4011 InvalidEnvInfo *info = userdata;
4012
4013 log_unit_error(info->unit, "Ignoring invalid environment assignment '%s': %s", p, info->path);
4014 }
4015
4016 const char* exec_context_fdname(const ExecContext *c, int fd_index) {
4017 assert(c);
4018
4019 switch (fd_index) {
4020
4021 case STDIN_FILENO:
4022 if (c->std_input != EXEC_INPUT_NAMED_FD)
4023 return NULL;
4024
4025 return c->stdio_fdname[STDIN_FILENO] ?: "stdin";
4026
4027 case STDOUT_FILENO:
4028 if (c->std_output != EXEC_OUTPUT_NAMED_FD)
4029 return NULL;
4030
4031 return c->stdio_fdname[STDOUT_FILENO] ?: "stdout";
4032
4033 case STDERR_FILENO:
4034 if (c->std_error != EXEC_OUTPUT_NAMED_FD)
4035 return NULL;
4036
4037 return c->stdio_fdname[STDERR_FILENO] ?: "stderr";
4038
4039 default:
4040 return NULL;
4041 }
4042 }
4043
4044 static int exec_context_named_iofds(const ExecContext *c, const ExecParameters *p, int named_iofds[static 3]) {
4045 size_t i, targets;
4046 const char* stdio_fdname[3];
4047 size_t n_fds;
4048
4049 assert(c);
4050 assert(p);
4051
4052 targets = (c->std_input == EXEC_INPUT_NAMED_FD) +
4053 (c->std_output == EXEC_OUTPUT_NAMED_FD) +
4054 (c->std_error == EXEC_OUTPUT_NAMED_FD);
4055
4056 for (i = 0; i < 3; i++)
4057 stdio_fdname[i] = exec_context_fdname(c, i);
4058
4059 n_fds = p->n_storage_fds + p->n_socket_fds;
4060
4061 for (i = 0; i < n_fds && targets > 0; i++)
4062 if (named_iofds[STDIN_FILENO] < 0 &&
4063 c->std_input == EXEC_INPUT_NAMED_FD &&
4064 stdio_fdname[STDIN_FILENO] &&
4065 streq(p->fd_names[i], stdio_fdname[STDIN_FILENO])) {
4066
4067 named_iofds[STDIN_FILENO] = p->fds[i];
4068 targets--;
4069
4070 } else if (named_iofds[STDOUT_FILENO] < 0 &&
4071 c->std_output == EXEC_OUTPUT_NAMED_FD &&
4072 stdio_fdname[STDOUT_FILENO] &&
4073 streq(p->fd_names[i], stdio_fdname[STDOUT_FILENO])) {
4074
4075 named_iofds[STDOUT_FILENO] = p->fds[i];
4076 targets--;
4077
4078 } else if (named_iofds[STDERR_FILENO] < 0 &&
4079 c->std_error == EXEC_OUTPUT_NAMED_FD &&
4080 stdio_fdname[STDERR_FILENO] &&
4081 streq(p->fd_names[i], stdio_fdname[STDERR_FILENO])) {
4082
4083 named_iofds[STDERR_FILENO] = p->fds[i];
4084 targets--;
4085 }
4086
4087 return targets == 0 ? 0 : -ENOENT;
4088 }
4089
4090 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l) {
4091 char **i, **r = NULL;
4092
4093 assert(c);
4094 assert(l);
4095
4096 STRV_FOREACH(i, c->environment_files) {
4097 char *fn;
4098 int k;
4099 unsigned n;
4100 bool ignore = false;
4101 char **p;
4102 _cleanup_globfree_ glob_t pglob = {};
4103
4104 fn = *i;
4105
4106 if (fn[0] == '-') {
4107 ignore = true;
4108 fn++;
4109 }
4110
4111 if (!path_is_absolute(fn)) {
4112 if (ignore)
4113 continue;
4114
4115 strv_free(r);
4116 return -EINVAL;
4117 }
4118
4119 /* Filename supports globbing, take all matching files */
4120 k = safe_glob(fn, 0, &pglob);
4121 if (k < 0) {
4122 if (ignore)
4123 continue;
4124
4125 strv_free(r);
4126 return k;
4127 }
4128
4129 /* When we don't match anything, -ENOENT should be returned */
4130 assert(pglob.gl_pathc > 0);
4131
4132 for (n = 0; n < pglob.gl_pathc; n++) {
4133 k = load_env_file(NULL, pglob.gl_pathv[n], &p);
4134 if (k < 0) {
4135 if (ignore)
4136 continue;
4137
4138 strv_free(r);
4139 return k;
4140 }
4141 /* Log invalid environment variables with filename */
4142 if (p) {
4143 InvalidEnvInfo info = {
4144 .unit = unit,
4145 .path = pglob.gl_pathv[n]
4146 };
4147
4148 p = strv_env_clean_with_callback(p, invalid_env, &info);
4149 }
4150
4151 if (!r)
4152 r = p;
4153 else {
4154 char **m;
4155
4156 m = strv_env_merge(2, r, p);
4157 strv_free(r);
4158 strv_free(p);
4159 if (!m)
4160 return -ENOMEM;
4161
4162 r = m;
4163 }
4164 }
4165 }
4166
4167 *l = r;
4168
4169 return 0;
4170 }
4171
4172 static bool tty_may_match_dev_console(const char *tty) {
4173 _cleanup_free_ char *resolved = NULL;
4174
4175 if (!tty)
4176 return true;
4177
4178 tty = skip_dev_prefix(tty);
4179
4180 /* trivial identity? */
4181 if (streq(tty, "console"))
4182 return true;
4183
4184 if (resolve_dev_console(&resolved) < 0)
4185 return true; /* if we could not resolve, assume it may */
4186
4187 /* "tty0" means the active VC, so it may be the same sometimes */
4188 return path_equal(resolved, tty) || (streq(resolved, "tty0") && tty_is_vc(tty));
4189 }
4190
4191 static bool exec_context_may_touch_tty(const ExecContext *ec) {
4192 assert(ec);
4193
4194 return ec->tty_reset ||
4195 ec->tty_vhangup ||
4196 ec->tty_vt_disallocate ||
4197 is_terminal_input(ec->std_input) ||
4198 is_terminal_output(ec->std_output) ||
4199 is_terminal_output(ec->std_error);
4200 }
4201
4202 bool exec_context_may_touch_console(const ExecContext *ec) {
4203
4204 return exec_context_may_touch_tty(ec) &&
4205 tty_may_match_dev_console(exec_context_tty_path(ec));
4206 }
4207
4208 static void strv_fprintf(FILE *f, char **l) {
4209 char **g;
4210
4211 assert(f);
4212
4213 STRV_FOREACH(g, l)
4214 fprintf(f, " %s", *g);
4215 }
4216
4217 void exec_context_dump(const ExecContext *c, FILE* f, const char *prefix) {
4218 ExecDirectoryType dt;
4219 char **e, **d;
4220 unsigned i;
4221 int r;
4222
4223 assert(c);
4224 assert(f);
4225
4226 prefix = strempty(prefix);
4227
4228 fprintf(f,
4229 "%sUMask: %04o\n"
4230 "%sWorkingDirectory: %s\n"
4231 "%sRootDirectory: %s\n"
4232 "%sNonBlocking: %s\n"
4233 "%sPrivateTmp: %s\n"
4234 "%sPrivateDevices: %s\n"
4235 "%sProtectKernelTunables: %s\n"
4236 "%sProtectKernelModules: %s\n"
4237 "%sProtectControlGroups: %s\n"
4238 "%sPrivateNetwork: %s\n"
4239 "%sPrivateUsers: %s\n"
4240 "%sProtectHome: %s\n"
4241 "%sProtectSystem: %s\n"
4242 "%sMountAPIVFS: %s\n"
4243 "%sIgnoreSIGPIPE: %s\n"
4244 "%sMemoryDenyWriteExecute: %s\n"
4245 "%sRestrictRealtime: %s\n"
4246 "%sRestrictSUIDSGID: %s\n"
4247 "%sKeyringMode: %s\n"
4248 "%sProtectHostname: %s\n",
4249 prefix, c->umask,
4250 prefix, c->working_directory ? c->working_directory : "/",
4251 prefix, c->root_directory ? c->root_directory : "/",
4252 prefix, yes_no(c->non_blocking),
4253 prefix, yes_no(c->private_tmp),
4254 prefix, yes_no(c->private_devices),
4255 prefix, yes_no(c->protect_kernel_tunables),
4256 prefix, yes_no(c->protect_kernel_modules),
4257 prefix, yes_no(c->protect_control_groups),
4258 prefix, yes_no(c->private_network),
4259 prefix, yes_no(c->private_users),
4260 prefix, protect_home_to_string(c->protect_home),
4261 prefix, protect_system_to_string(c->protect_system),
4262 prefix, yes_no(c->mount_apivfs),
4263 prefix, yes_no(c->ignore_sigpipe),
4264 prefix, yes_no(c->memory_deny_write_execute),
4265 prefix, yes_no(c->restrict_realtime),
4266 prefix, yes_no(c->restrict_suid_sgid),
4267 prefix, exec_keyring_mode_to_string(c->keyring_mode),
4268 prefix, yes_no(c->protect_hostname));
4269
4270 if (c->root_image)
4271 fprintf(f, "%sRootImage: %s\n", prefix, c->root_image);
4272
4273 STRV_FOREACH(e, c->environment)
4274 fprintf(f, "%sEnvironment: %s\n", prefix, *e);
4275
4276 STRV_FOREACH(e, c->environment_files)
4277 fprintf(f, "%sEnvironmentFile: %s\n", prefix, *e);
4278
4279 STRV_FOREACH(e, c->pass_environment)
4280 fprintf(f, "%sPassEnvironment: %s\n", prefix, *e);
4281
4282 STRV_FOREACH(e, c->unset_environment)
4283 fprintf(f, "%sUnsetEnvironment: %s\n", prefix, *e);
4284
4285 fprintf(f, "%sRuntimeDirectoryPreserve: %s\n", prefix, exec_preserve_mode_to_string(c->runtime_directory_preserve_mode));
4286
4287 for (dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
4288 fprintf(f, "%s%sMode: %04o\n", prefix, exec_directory_type_to_string(dt), c->directories[dt].mode);
4289
4290 STRV_FOREACH(d, c->directories[dt].paths)
4291 fprintf(f, "%s%s: %s\n", prefix, exec_directory_type_to_string(dt), *d);
4292 }
4293
4294 if (c->nice_set)
4295 fprintf(f,
4296 "%sNice: %i\n",
4297 prefix, c->nice);
4298
4299 if (c->oom_score_adjust_set)
4300 fprintf(f,
4301 "%sOOMScoreAdjust: %i\n",
4302 prefix, c->oom_score_adjust);
4303
4304 for (i = 0; i < RLIM_NLIMITS; i++)
4305 if (c->rlimit[i]) {
4306 fprintf(f, "%sLimit%s: " RLIM_FMT "\n",
4307 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_max);
4308 fprintf(f, "%sLimit%sSoft: " RLIM_FMT "\n",
4309 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_cur);
4310 }
4311
4312 if (c->ioprio_set) {
4313 _cleanup_free_ char *class_str = NULL;
4314
4315 r = ioprio_class_to_string_alloc(IOPRIO_PRIO_CLASS(c->ioprio), &class_str);
4316 if (r >= 0)
4317 fprintf(f, "%sIOSchedulingClass: %s\n", prefix, class_str);
4318
4319 fprintf(f, "%sIOPriority: %lu\n", prefix, IOPRIO_PRIO_DATA(c->ioprio));
4320 }
4321
4322 if (c->cpu_sched_set) {
4323 _cleanup_free_ char *policy_str = NULL;
4324
4325 r = sched_policy_to_string_alloc(c->cpu_sched_policy, &policy_str);
4326 if (r >= 0)
4327 fprintf(f, "%sCPUSchedulingPolicy: %s\n", prefix, policy_str);
4328
4329 fprintf(f,
4330 "%sCPUSchedulingPriority: %i\n"
4331 "%sCPUSchedulingResetOnFork: %s\n",
4332 prefix, c->cpu_sched_priority,
4333 prefix, yes_no(c->cpu_sched_reset_on_fork));
4334 }
4335
4336 if (c->cpuset) {
4337 fprintf(f, "%sCPUAffinity:", prefix);
4338 for (i = 0; i < c->cpuset_ncpus; i++)
4339 if (CPU_ISSET_S(i, CPU_ALLOC_SIZE(c->cpuset_ncpus), c->cpuset))
4340 fprintf(f, " %u", i);
4341 fputs("\n", f);
4342 }
4343
4344 if (c->timer_slack_nsec != NSEC_INFINITY)
4345 fprintf(f, "%sTimerSlackNSec: "NSEC_FMT "\n", prefix, c->timer_slack_nsec);
4346
4347 fprintf(f,
4348 "%sStandardInput: %s\n"
4349 "%sStandardOutput: %s\n"
4350 "%sStandardError: %s\n",
4351 prefix, exec_input_to_string(c->std_input),
4352 prefix, exec_output_to_string(c->std_output),
4353 prefix, exec_output_to_string(c->std_error));
4354
4355 if (c->std_input == EXEC_INPUT_NAMED_FD)
4356 fprintf(f, "%sStandardInputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDIN_FILENO]);
4357 if (c->std_output == EXEC_OUTPUT_NAMED_FD)
4358 fprintf(f, "%sStandardOutputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDOUT_FILENO]);
4359 if (c->std_error == EXEC_OUTPUT_NAMED_FD)
4360 fprintf(f, "%sStandardErrorFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDERR_FILENO]);
4361
4362 if (c->std_input == EXEC_INPUT_FILE)
4363 fprintf(f, "%sStandardInputFile: %s\n", prefix, c->stdio_file[STDIN_FILENO]);
4364 if (c->std_output == EXEC_OUTPUT_FILE)
4365 fprintf(f, "%sStandardOutputFile: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
4366 if (c->std_output == EXEC_OUTPUT_FILE_APPEND)
4367 fprintf(f, "%sStandardOutputFileToAppend: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
4368 if (c->std_error == EXEC_OUTPUT_FILE)
4369 fprintf(f, "%sStandardErrorFile: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
4370 if (c->std_error == EXEC_OUTPUT_FILE_APPEND)
4371 fprintf(f, "%sStandardErrorFileToAppend: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
4372
4373 if (c->tty_path)
4374 fprintf(f,
4375 "%sTTYPath: %s\n"
4376 "%sTTYReset: %s\n"
4377 "%sTTYVHangup: %s\n"
4378 "%sTTYVTDisallocate: %s\n",
4379 prefix, c->tty_path,
4380 prefix, yes_no(c->tty_reset),
4381 prefix, yes_no(c->tty_vhangup),
4382 prefix, yes_no(c->tty_vt_disallocate));
4383
4384 if (IN_SET(c->std_output,
4385 EXEC_OUTPUT_SYSLOG,
4386 EXEC_OUTPUT_KMSG,
4387 EXEC_OUTPUT_JOURNAL,
4388 EXEC_OUTPUT_SYSLOG_AND_CONSOLE,
4389 EXEC_OUTPUT_KMSG_AND_CONSOLE,
4390 EXEC_OUTPUT_JOURNAL_AND_CONSOLE) ||
4391 IN_SET(c->std_error,
4392 EXEC_OUTPUT_SYSLOG,
4393 EXEC_OUTPUT_KMSG,
4394 EXEC_OUTPUT_JOURNAL,
4395 EXEC_OUTPUT_SYSLOG_AND_CONSOLE,
4396 EXEC_OUTPUT_KMSG_AND_CONSOLE,
4397 EXEC_OUTPUT_JOURNAL_AND_CONSOLE)) {
4398
4399 _cleanup_free_ char *fac_str = NULL, *lvl_str = NULL;
4400
4401 r = log_facility_unshifted_to_string_alloc(c->syslog_priority >> 3, &fac_str);
4402 if (r >= 0)
4403 fprintf(f, "%sSyslogFacility: %s\n", prefix, fac_str);
4404
4405 r = log_level_to_string_alloc(LOG_PRI(c->syslog_priority), &lvl_str);
4406 if (r >= 0)
4407 fprintf(f, "%sSyslogLevel: %s\n", prefix, lvl_str);
4408 }
4409
4410 if (c->log_level_max >= 0) {
4411 _cleanup_free_ char *t = NULL;
4412
4413 (void) log_level_to_string_alloc(c->log_level_max, &t);
4414
4415 fprintf(f, "%sLogLevelMax: %s\n", prefix, strna(t));
4416 }
4417
4418 if (c->log_rate_limit_interval_usec > 0) {
4419 char buf_timespan[FORMAT_TIMESPAN_MAX];
4420
4421 fprintf(f,
4422 "%sLogRateLimitIntervalSec: %s\n",
4423 prefix, format_timespan(buf_timespan, sizeof(buf_timespan), c->log_rate_limit_interval_usec, USEC_PER_SEC));
4424 }
4425
4426 if (c->log_rate_limit_burst > 0)
4427 fprintf(f, "%sLogRateLimitBurst: %u\n", prefix, c->log_rate_limit_burst);
4428
4429 if (c->n_log_extra_fields > 0) {
4430 size_t j;
4431
4432 for (j = 0; j < c->n_log_extra_fields; j++) {
4433 fprintf(f, "%sLogExtraFields: ", prefix);
4434 fwrite(c->log_extra_fields[j].iov_base,
4435 1, c->log_extra_fields[j].iov_len,
4436 f);
4437 fputc('\n', f);
4438 }
4439 }
4440
4441 if (c->secure_bits) {
4442 _cleanup_free_ char *str = NULL;
4443
4444 r = secure_bits_to_string_alloc(c->secure_bits, &str);
4445 if (r >= 0)
4446 fprintf(f, "%sSecure Bits: %s\n", prefix, str);
4447 }
4448
4449 if (c->capability_bounding_set != CAP_ALL) {
4450 _cleanup_free_ char *str = NULL;
4451
4452 r = capability_set_to_string_alloc(c->capability_bounding_set, &str);
4453 if (r >= 0)
4454 fprintf(f, "%sCapabilityBoundingSet: %s\n", prefix, str);
4455 }
4456
4457 if (c->capability_ambient_set != 0) {
4458 _cleanup_free_ char *str = NULL;
4459
4460 r = capability_set_to_string_alloc(c->capability_ambient_set, &str);
4461 if (r >= 0)
4462 fprintf(f, "%sAmbientCapabilities: %s\n", prefix, str);
4463 }
4464
4465 if (c->user)
4466 fprintf(f, "%sUser: %s\n", prefix, c->user);
4467 if (c->group)
4468 fprintf(f, "%sGroup: %s\n", prefix, c->group);
4469
4470 fprintf(f, "%sDynamicUser: %s\n", prefix, yes_no(c->dynamic_user));
4471
4472 if (!strv_isempty(c->supplementary_groups)) {
4473 fprintf(f, "%sSupplementaryGroups:", prefix);
4474 strv_fprintf(f, c->supplementary_groups);
4475 fputs("\n", f);
4476 }
4477
4478 if (c->pam_name)
4479 fprintf(f, "%sPAMName: %s\n", prefix, c->pam_name);
4480
4481 if (!strv_isempty(c->read_write_paths)) {
4482 fprintf(f, "%sReadWritePaths:", prefix);
4483 strv_fprintf(f, c->read_write_paths);
4484 fputs("\n", f);
4485 }
4486
4487 if (!strv_isempty(c->read_only_paths)) {
4488 fprintf(f, "%sReadOnlyPaths:", prefix);
4489 strv_fprintf(f, c->read_only_paths);
4490 fputs("\n", f);
4491 }
4492
4493 if (!strv_isempty(c->inaccessible_paths)) {
4494 fprintf(f, "%sInaccessiblePaths:", prefix);
4495 strv_fprintf(f, c->inaccessible_paths);
4496 fputs("\n", f);
4497 }
4498
4499 if (c->n_bind_mounts > 0)
4500 for (i = 0; i < c->n_bind_mounts; i++)
4501 fprintf(f, "%s%s: %s%s:%s:%s\n", prefix,
4502 c->bind_mounts[i].read_only ? "BindReadOnlyPaths" : "BindPaths",
4503 c->bind_mounts[i].ignore_enoent ? "-": "",
4504 c->bind_mounts[i].source,
4505 c->bind_mounts[i].destination,
4506 c->bind_mounts[i].recursive ? "rbind" : "norbind");
4507
4508 if (c->n_temporary_filesystems > 0)
4509 for (i = 0; i < c->n_temporary_filesystems; i++) {
4510 TemporaryFileSystem *t = c->temporary_filesystems + i;
4511
4512 fprintf(f, "%sTemporaryFileSystem: %s%s%s\n", prefix,
4513 t->path,
4514 isempty(t->options) ? "" : ":",
4515 strempty(t->options));
4516 }
4517
4518 if (c->utmp_id)
4519 fprintf(f,
4520 "%sUtmpIdentifier: %s\n",
4521 prefix, c->utmp_id);
4522
4523 if (c->selinux_context)
4524 fprintf(f,
4525 "%sSELinuxContext: %s%s\n",
4526 prefix, c->selinux_context_ignore ? "-" : "", c->selinux_context);
4527
4528 if (c->apparmor_profile)
4529 fprintf(f,
4530 "%sAppArmorProfile: %s%s\n",
4531 prefix, c->apparmor_profile_ignore ? "-" : "", c->apparmor_profile);
4532
4533 if (c->smack_process_label)
4534 fprintf(f,
4535 "%sSmackProcessLabel: %s%s\n",
4536 prefix, c->smack_process_label_ignore ? "-" : "", c->smack_process_label);
4537
4538 if (c->personality != PERSONALITY_INVALID)
4539 fprintf(f,
4540 "%sPersonality: %s\n",
4541 prefix, strna(personality_to_string(c->personality)));
4542
4543 fprintf(f,
4544 "%sLockPersonality: %s\n",
4545 prefix, yes_no(c->lock_personality));
4546
4547 if (c->syscall_filter) {
4548 #if HAVE_SECCOMP
4549 Iterator j;
4550 void *id, *val;
4551 bool first = true;
4552 #endif
4553
4554 fprintf(f,
4555 "%sSystemCallFilter: ",
4556 prefix);
4557
4558 if (!c->syscall_whitelist)
4559 fputc('~', f);
4560
4561 #if HAVE_SECCOMP
4562 HASHMAP_FOREACH_KEY(val, id, c->syscall_filter, j) {
4563 _cleanup_free_ char *name = NULL;
4564 const char *errno_name = NULL;
4565 int num = PTR_TO_INT(val);
4566
4567 if (first)
4568 first = false;
4569 else
4570 fputc(' ', f);
4571
4572 name = seccomp_syscall_resolve_num_arch(SCMP_ARCH_NATIVE, PTR_TO_INT(id) - 1);
4573 fputs(strna(name), f);
4574
4575 if (num >= 0) {
4576 errno_name = errno_to_name(num);
4577 if (errno_name)
4578 fprintf(f, ":%s", errno_name);
4579 else
4580 fprintf(f, ":%d", num);
4581 }
4582 }
4583 #endif
4584
4585 fputc('\n', f);
4586 }
4587
4588 if (c->syscall_archs) {
4589 #if HAVE_SECCOMP
4590 Iterator j;
4591 void *id;
4592 #endif
4593
4594 fprintf(f,
4595 "%sSystemCallArchitectures:",
4596 prefix);
4597
4598 #if HAVE_SECCOMP
4599 SET_FOREACH(id, c->syscall_archs, j)
4600 fprintf(f, " %s", strna(seccomp_arch_to_string(PTR_TO_UINT32(id) - 1)));
4601 #endif
4602 fputc('\n', f);
4603 }
4604
4605 if (exec_context_restrict_namespaces_set(c)) {
4606 _cleanup_free_ char *s = NULL;
4607
4608 r = namespace_flags_to_string(c->restrict_namespaces, &s);
4609 if (r >= 0)
4610 fprintf(f, "%sRestrictNamespaces: %s\n",
4611 prefix, s);
4612 }
4613
4614 if (c->network_namespace_path)
4615 fprintf(f,
4616 "%sNetworkNamespacePath: %s\n",
4617 prefix, c->network_namespace_path);
4618
4619 if (c->syscall_errno > 0) {
4620 const char *errno_name;
4621
4622 fprintf(f, "%sSystemCallErrorNumber: ", prefix);
4623
4624 errno_name = errno_to_name(c->syscall_errno);
4625 if (errno_name)
4626 fprintf(f, "%s\n", errno_name);
4627 else
4628 fprintf(f, "%d\n", c->syscall_errno);
4629 }
4630 }
4631
4632 bool exec_context_maintains_privileges(const ExecContext *c) {
4633 assert(c);
4634
4635 /* Returns true if the process forked off would run under
4636 * an unchanged UID or as root. */
4637
4638 if (!c->user)
4639 return true;
4640
4641 if (streq(c->user, "root") || streq(c->user, "0"))
4642 return true;
4643
4644 return false;
4645 }
4646
4647 int exec_context_get_effective_ioprio(const ExecContext *c) {
4648 int p;
4649
4650 assert(c);
4651
4652 if (c->ioprio_set)
4653 return c->ioprio;
4654
4655 p = ioprio_get(IOPRIO_WHO_PROCESS, 0);
4656 if (p < 0)
4657 return IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 4);
4658
4659 return p;
4660 }
4661
4662 void exec_context_free_log_extra_fields(ExecContext *c) {
4663 size_t l;
4664
4665 assert(c);
4666
4667 for (l = 0; l < c->n_log_extra_fields; l++)
4668 free(c->log_extra_fields[l].iov_base);
4669 c->log_extra_fields = mfree(c->log_extra_fields);
4670 c->n_log_extra_fields = 0;
4671 }
4672
4673 void exec_context_revert_tty(ExecContext *c) {
4674 int r;
4675
4676 assert(c);
4677
4678 /* First, reset the TTY (possibly kicking everybody else from the TTY) */
4679 exec_context_tty_reset(c, NULL);
4680
4681 /* And then undo what chown_terminal() did earlier. Note that we only do this if we have a path
4682 * configured. If the TTY was passed to us as file descriptor we assume the TTY is opened and managed
4683 * by whoever passed it to us and thus knows better when and how to chmod()/chown() it back. */
4684
4685 if (exec_context_may_touch_tty(c)) {
4686 const char *path;
4687
4688 path = exec_context_tty_path(c);
4689 if (path) {
4690 r = chmod_and_chown(path, TTY_MODE, 0, TTY_GID);
4691 if (r < 0 && r != -ENOENT)
4692 log_warning_errno(r, "Failed to reset TTY ownership/access mode of %s, ignoring: %m", path);
4693 }
4694 }
4695 }
4696
4697 void exec_status_start(ExecStatus *s, pid_t pid) {
4698 assert(s);
4699
4700 *s = (ExecStatus) {
4701 .pid = pid,
4702 };
4703
4704 dual_timestamp_get(&s->start_timestamp);
4705 }
4706
4707 void exec_status_exit(ExecStatus *s, const ExecContext *context, pid_t pid, int code, int status) {
4708 assert(s);
4709
4710 if (s->pid != pid) {
4711 *s = (ExecStatus) {
4712 .pid = pid,
4713 };
4714 }
4715
4716 dual_timestamp_get(&s->exit_timestamp);
4717
4718 s->code = code;
4719 s->status = status;
4720
4721 if (context && context->utmp_id)
4722 (void) utmp_put_dead_process(context->utmp_id, pid, code, status);
4723 }
4724
4725 void exec_status_reset(ExecStatus *s) {
4726 assert(s);
4727
4728 *s = (ExecStatus) {};
4729 }
4730
4731 void exec_status_dump(const ExecStatus *s, FILE *f, const char *prefix) {
4732 char buf[FORMAT_TIMESTAMP_MAX];
4733
4734 assert(s);
4735 assert(f);
4736
4737 if (s->pid <= 0)
4738 return;
4739
4740 prefix = strempty(prefix);
4741
4742 fprintf(f,
4743 "%sPID: "PID_FMT"\n",
4744 prefix, s->pid);
4745
4746 if (dual_timestamp_is_set(&s->start_timestamp))
4747 fprintf(f,
4748 "%sStart Timestamp: %s\n",
4749 prefix, format_timestamp(buf, sizeof(buf), s->start_timestamp.realtime));
4750
4751 if (dual_timestamp_is_set(&s->exit_timestamp))
4752 fprintf(f,
4753 "%sExit Timestamp: %s\n"
4754 "%sExit Code: %s\n"
4755 "%sExit Status: %i\n",
4756 prefix, format_timestamp(buf, sizeof(buf), s->exit_timestamp.realtime),
4757 prefix, sigchld_code_to_string(s->code),
4758 prefix, s->status);
4759 }
4760
4761 static char *exec_command_line(char **argv) {
4762 size_t k;
4763 char *n, *p, **a;
4764 bool first = true;
4765
4766 assert(argv);
4767
4768 k = 1;
4769 STRV_FOREACH(a, argv)
4770 k += strlen(*a)+3;
4771
4772 n = new(char, k);
4773 if (!n)
4774 return NULL;
4775
4776 p = n;
4777 STRV_FOREACH(a, argv) {
4778
4779 if (!first)
4780 *(p++) = ' ';
4781 else
4782 first = false;
4783
4784 if (strpbrk(*a, WHITESPACE)) {
4785 *(p++) = '\'';
4786 p = stpcpy(p, *a);
4787 *(p++) = '\'';
4788 } else
4789 p = stpcpy(p, *a);
4790
4791 }
4792
4793 *p = 0;
4794
4795 /* FIXME: this doesn't really handle arguments that have
4796 * spaces and ticks in them */
4797
4798 return n;
4799 }
4800
4801 static void exec_command_dump(ExecCommand *c, FILE *f, const char *prefix) {
4802 _cleanup_free_ char *cmd = NULL;
4803 const char *prefix2;
4804
4805 assert(c);
4806 assert(f);
4807
4808 prefix = strempty(prefix);
4809 prefix2 = strjoina(prefix, "\t");
4810
4811 cmd = exec_command_line(c->argv);
4812 fprintf(f,
4813 "%sCommand Line: %s\n",
4814 prefix, cmd ? cmd : strerror(ENOMEM));
4815
4816 exec_status_dump(&c->exec_status, f, prefix2);
4817 }
4818
4819 void exec_command_dump_list(ExecCommand *c, FILE *f, const char *prefix) {
4820 assert(f);
4821
4822 prefix = strempty(prefix);
4823
4824 LIST_FOREACH(command, c, c)
4825 exec_command_dump(c, f, prefix);
4826 }
4827
4828 void exec_command_append_list(ExecCommand **l, ExecCommand *e) {
4829 ExecCommand *end;
4830
4831 assert(l);
4832 assert(e);
4833
4834 if (*l) {
4835 /* It's kind of important, that we keep the order here */
4836 LIST_FIND_TAIL(command, *l, end);
4837 LIST_INSERT_AFTER(command, *l, end, e);
4838 } else
4839 *l = e;
4840 }
4841
4842 int exec_command_set(ExecCommand *c, const char *path, ...) {
4843 va_list ap;
4844 char **l, *p;
4845
4846 assert(c);
4847 assert(path);
4848
4849 va_start(ap, path);
4850 l = strv_new_ap(path, ap);
4851 va_end(ap);
4852
4853 if (!l)
4854 return -ENOMEM;
4855
4856 p = strdup(path);
4857 if (!p) {
4858 strv_free(l);
4859 return -ENOMEM;
4860 }
4861
4862 free_and_replace(c->path, p);
4863
4864 return strv_free_and_replace(c->argv, l);
4865 }
4866
4867 int exec_command_append(ExecCommand *c, const char *path, ...) {
4868 _cleanup_strv_free_ char **l = NULL;
4869 va_list ap;
4870 int r;
4871
4872 assert(c);
4873 assert(path);
4874
4875 va_start(ap, path);
4876 l = strv_new_ap(path, ap);
4877 va_end(ap);
4878
4879 if (!l)
4880 return -ENOMEM;
4881
4882 r = strv_extend_strv(&c->argv, l, false);
4883 if (r < 0)
4884 return r;
4885
4886 return 0;
4887 }
4888
4889 static void *remove_tmpdir_thread(void *p) {
4890 _cleanup_free_ char *path = p;
4891
4892 (void) rm_rf(path, REMOVE_ROOT|REMOVE_PHYSICAL);
4893 return NULL;
4894 }
4895
4896 static ExecRuntime* exec_runtime_free(ExecRuntime *rt, bool destroy) {
4897 int r;
4898
4899 if (!rt)
4900 return NULL;
4901
4902 if (rt->manager)
4903 (void) hashmap_remove(rt->manager->exec_runtime_by_id, rt->id);
4904
4905 /* When destroy is true, then rm_rf tmp_dir and var_tmp_dir. */
4906 if (destroy && rt->tmp_dir) {
4907 log_debug("Spawning thread to nuke %s", rt->tmp_dir);
4908
4909 r = asynchronous_job(remove_tmpdir_thread, rt->tmp_dir);
4910 if (r < 0) {
4911 log_warning_errno(r, "Failed to nuke %s: %m", rt->tmp_dir);
4912 free(rt->tmp_dir);
4913 }
4914
4915 rt->tmp_dir = NULL;
4916 }
4917
4918 if (destroy && rt->var_tmp_dir) {
4919 log_debug("Spawning thread to nuke %s", rt->var_tmp_dir);
4920
4921 r = asynchronous_job(remove_tmpdir_thread, rt->var_tmp_dir);
4922 if (r < 0) {
4923 log_warning_errno(r, "Failed to nuke %s: %m", rt->var_tmp_dir);
4924 free(rt->var_tmp_dir);
4925 }
4926
4927 rt->var_tmp_dir = NULL;
4928 }
4929
4930 rt->id = mfree(rt->id);
4931 rt->tmp_dir = mfree(rt->tmp_dir);
4932 rt->var_tmp_dir = mfree(rt->var_tmp_dir);
4933 safe_close_pair(rt->netns_storage_socket);
4934 return mfree(rt);
4935 }
4936
4937 static void exec_runtime_freep(ExecRuntime **rt) {
4938 (void) exec_runtime_free(*rt, false);
4939 }
4940
4941 static int exec_runtime_allocate(ExecRuntime **ret) {
4942 ExecRuntime *n;
4943
4944 assert(ret);
4945
4946 n = new(ExecRuntime, 1);
4947 if (!n)
4948 return -ENOMEM;
4949
4950 *n = (ExecRuntime) {
4951 .netns_storage_socket = { -1, -1 },
4952 };
4953
4954 *ret = n;
4955 return 0;
4956 }
4957
4958 static int exec_runtime_add(
4959 Manager *m,
4960 const char *id,
4961 const char *tmp_dir,
4962 const char *var_tmp_dir,
4963 const int netns_storage_socket[2],
4964 ExecRuntime **ret) {
4965
4966 _cleanup_(exec_runtime_freep) ExecRuntime *rt = NULL;
4967 int r;
4968
4969 assert(m);
4970 assert(id);
4971
4972 r = hashmap_ensure_allocated(&m->exec_runtime_by_id, &string_hash_ops);
4973 if (r < 0)
4974 return r;
4975
4976 r = exec_runtime_allocate(&rt);
4977 if (r < 0)
4978 return r;
4979
4980 rt->id = strdup(id);
4981 if (!rt->id)
4982 return -ENOMEM;
4983
4984 if (tmp_dir) {
4985 rt->tmp_dir = strdup(tmp_dir);
4986 if (!rt->tmp_dir)
4987 return -ENOMEM;
4988
4989 /* When tmp_dir is set, then we require var_tmp_dir is also set. */
4990 assert(var_tmp_dir);
4991 rt->var_tmp_dir = strdup(var_tmp_dir);
4992 if (!rt->var_tmp_dir)
4993 return -ENOMEM;
4994 }
4995
4996 if (netns_storage_socket) {
4997 rt->netns_storage_socket[0] = netns_storage_socket[0];
4998 rt->netns_storage_socket[1] = netns_storage_socket[1];
4999 }
5000
5001 r = hashmap_put(m->exec_runtime_by_id, rt->id, rt);
5002 if (r < 0)
5003 return r;
5004
5005 rt->manager = m;
5006
5007 if (ret)
5008 *ret = rt;
5009
5010 /* do not remove created ExecRuntime object when the operation succeeds. */
5011 rt = NULL;
5012 return 0;
5013 }
5014
5015 static int exec_runtime_make(Manager *m, const ExecContext *c, const char *id, ExecRuntime **ret) {
5016 _cleanup_free_ char *tmp_dir = NULL, *var_tmp_dir = NULL;
5017 _cleanup_close_pair_ int netns_storage_socket[2] = { -1, -1 };
5018 int r;
5019
5020 assert(m);
5021 assert(c);
5022 assert(id);
5023
5024 /* It is not necessary to create ExecRuntime object. */
5025 if (!c->private_network && !c->private_tmp && !c->network_namespace_path)
5026 return 0;
5027
5028 if (c->private_tmp) {
5029 r = setup_tmp_dirs(id, &tmp_dir, &var_tmp_dir);
5030 if (r < 0)
5031 return r;
5032 }
5033
5034 if (c->private_network || c->network_namespace_path) {
5035 if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, netns_storage_socket) < 0)
5036 return -errno;
5037 }
5038
5039 r = exec_runtime_add(m, id, tmp_dir, var_tmp_dir, netns_storage_socket, ret);
5040 if (r < 0)
5041 return r;
5042
5043 /* Avoid cleanup */
5044 netns_storage_socket[0] = netns_storage_socket[1] = -1;
5045 return 1;
5046 }
5047
5048 int exec_runtime_acquire(Manager *m, const ExecContext *c, const char *id, bool create, ExecRuntime **ret) {
5049 ExecRuntime *rt;
5050 int r;
5051
5052 assert(m);
5053 assert(id);
5054 assert(ret);
5055
5056 rt = hashmap_get(m->exec_runtime_by_id, id);
5057 if (rt)
5058 /* We already have a ExecRuntime object, let's increase the ref count and reuse it */
5059 goto ref;
5060
5061 if (!create)
5062 return 0;
5063
5064 /* If not found, then create a new object. */
5065 r = exec_runtime_make(m, c, id, &rt);
5066 if (r <= 0)
5067 /* When r == 0, it is not necessary to create ExecRuntime object. */
5068 return r;
5069
5070 ref:
5071 /* increment reference counter. */
5072 rt->n_ref++;
5073 *ret = rt;
5074 return 1;
5075 }
5076
5077 ExecRuntime *exec_runtime_unref(ExecRuntime *rt, bool destroy) {
5078 if (!rt)
5079 return NULL;
5080
5081 assert(rt->n_ref > 0);
5082
5083 rt->n_ref--;
5084 if (rt->n_ref > 0)
5085 return NULL;
5086
5087 return exec_runtime_free(rt, destroy);
5088 }
5089
5090 int exec_runtime_serialize(const Manager *m, FILE *f, FDSet *fds) {
5091 ExecRuntime *rt;
5092 Iterator i;
5093
5094 assert(m);
5095 assert(f);
5096 assert(fds);
5097
5098 HASHMAP_FOREACH(rt, m->exec_runtime_by_id, i) {
5099 fprintf(f, "exec-runtime=%s", rt->id);
5100
5101 if (rt->tmp_dir)
5102 fprintf(f, " tmp-dir=%s", rt->tmp_dir);
5103
5104 if (rt->var_tmp_dir)
5105 fprintf(f, " var-tmp-dir=%s", rt->var_tmp_dir);
5106
5107 if (rt->netns_storage_socket[0] >= 0) {
5108 int copy;
5109
5110 copy = fdset_put_dup(fds, rt->netns_storage_socket[0]);
5111 if (copy < 0)
5112 return copy;
5113
5114 fprintf(f, " netns-socket-0=%i", copy);
5115 }
5116
5117 if (rt->netns_storage_socket[1] >= 0) {
5118 int copy;
5119
5120 copy = fdset_put_dup(fds, rt->netns_storage_socket[1]);
5121 if (copy < 0)
5122 return copy;
5123
5124 fprintf(f, " netns-socket-1=%i", copy);
5125 }
5126
5127 fputc('\n', f);
5128 }
5129
5130 return 0;
5131 }
5132
5133 int exec_runtime_deserialize_compat(Unit *u, const char *key, const char *value, FDSet *fds) {
5134 _cleanup_(exec_runtime_freep) ExecRuntime *rt_create = NULL;
5135 ExecRuntime *rt;
5136 int r;
5137
5138 /* This is for the migration from old (v237 or earlier) deserialization text.
5139 * Due to the bug #7790, this may not work with the units that use JoinsNamespaceOf=.
5140 * Even if the ExecRuntime object originally created by the other unit, we cannot judge
5141 * so or not from the serialized text, then we always creates a new object owned by this. */
5142
5143 assert(u);
5144 assert(key);
5145 assert(value);
5146
5147 /* Manager manages ExecRuntime objects by the unit id.
5148 * So, we omit the serialized text when the unit does not have id (yet?)... */
5149 if (isempty(u->id)) {
5150 log_unit_debug(u, "Invocation ID not found. Dropping runtime parameter.");
5151 return 0;
5152 }
5153
5154 r = hashmap_ensure_allocated(&u->manager->exec_runtime_by_id, &string_hash_ops);
5155 if (r < 0) {
5156 log_unit_debug_errno(u, r, "Failed to allocate storage for runtime parameter: %m");
5157 return 0;
5158 }
5159
5160 rt = hashmap_get(u->manager->exec_runtime_by_id, u->id);
5161 if (!rt) {
5162 r = exec_runtime_allocate(&rt_create);
5163 if (r < 0)
5164 return log_oom();
5165
5166 rt_create->id = strdup(u->id);
5167 if (!rt_create->id)
5168 return log_oom();
5169
5170 rt = rt_create;
5171 }
5172
5173 if (streq(key, "tmp-dir")) {
5174 char *copy;
5175
5176 copy = strdup(value);
5177 if (!copy)
5178 return log_oom();
5179
5180 free_and_replace(rt->tmp_dir, copy);
5181
5182 } else if (streq(key, "var-tmp-dir")) {
5183 char *copy;
5184
5185 copy = strdup(value);
5186 if (!copy)
5187 return log_oom();
5188
5189 free_and_replace(rt->var_tmp_dir, copy);
5190
5191 } else if (streq(key, "netns-socket-0")) {
5192 int fd;
5193
5194 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
5195 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
5196 return 0;
5197 }
5198
5199 safe_close(rt->netns_storage_socket[0]);
5200 rt->netns_storage_socket[0] = fdset_remove(fds, fd);
5201
5202 } else if (streq(key, "netns-socket-1")) {
5203 int fd;
5204
5205 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
5206 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
5207 return 0;
5208 }
5209
5210 safe_close(rt->netns_storage_socket[1]);
5211 rt->netns_storage_socket[1] = fdset_remove(fds, fd);
5212 } else
5213 return 0;
5214
5215 /* If the object is newly created, then put it to the hashmap which manages ExecRuntime objects. */
5216 if (rt_create) {
5217 r = hashmap_put(u->manager->exec_runtime_by_id, rt_create->id, rt_create);
5218 if (r < 0) {
5219 log_unit_debug_errno(u, r, "Failed to put runtime parameter to manager's storage: %m");
5220 return 0;
5221 }
5222
5223 rt_create->manager = u->manager;
5224
5225 /* Avoid cleanup */
5226 rt_create = NULL;
5227 }
5228
5229 return 1;
5230 }
5231
5232 void exec_runtime_deserialize_one(Manager *m, const char *value, FDSet *fds) {
5233 char *id = NULL, *tmp_dir = NULL, *var_tmp_dir = NULL;
5234 int r, fd0 = -1, fd1 = -1;
5235 const char *p, *v = value;
5236 size_t n;
5237
5238 assert(m);
5239 assert(value);
5240 assert(fds);
5241
5242 n = strcspn(v, " ");
5243 id = strndupa(v, n);
5244 if (v[n] != ' ')
5245 goto finalize;
5246 p = v + n + 1;
5247
5248 v = startswith(p, "tmp-dir=");
5249 if (v) {
5250 n = strcspn(v, " ");
5251 tmp_dir = strndupa(v, n);
5252 if (v[n] != ' ')
5253 goto finalize;
5254 p = v + n + 1;
5255 }
5256
5257 v = startswith(p, "var-tmp-dir=");
5258 if (v) {
5259 n = strcspn(v, " ");
5260 var_tmp_dir = strndupa(v, n);
5261 if (v[n] != ' ')
5262 goto finalize;
5263 p = v + n + 1;
5264 }
5265
5266 v = startswith(p, "netns-socket-0=");
5267 if (v) {
5268 char *buf;
5269
5270 n = strcspn(v, " ");
5271 buf = strndupa(v, n);
5272 if (safe_atoi(buf, &fd0) < 0 || !fdset_contains(fds, fd0)) {
5273 log_debug("Unable to process exec-runtime netns fd specification.");
5274 return;
5275 }
5276 fd0 = fdset_remove(fds, fd0);
5277 if (v[n] != ' ')
5278 goto finalize;
5279 p = v + n + 1;
5280 }
5281
5282 v = startswith(p, "netns-socket-1=");
5283 if (v) {
5284 char *buf;
5285
5286 n = strcspn(v, " ");
5287 buf = strndupa(v, n);
5288 if (safe_atoi(buf, &fd1) < 0 || !fdset_contains(fds, fd1)) {
5289 log_debug("Unable to process exec-runtime netns fd specification.");
5290 return;
5291 }
5292 fd1 = fdset_remove(fds, fd1);
5293 }
5294
5295 finalize:
5296
5297 r = exec_runtime_add(m, id, tmp_dir, var_tmp_dir, (int[]) { fd0, fd1 }, NULL);
5298 if (r < 0)
5299 log_debug_errno(r, "Failed to add exec-runtime: %m");
5300 }
5301
5302 void exec_runtime_vacuum(Manager *m) {
5303 ExecRuntime *rt;
5304 Iterator i;
5305
5306 assert(m);
5307
5308 /* Free unreferenced ExecRuntime objects. This is used after manager deserialization process. */
5309
5310 HASHMAP_FOREACH(rt, m->exec_runtime_by_id, i) {
5311 if (rt->n_ref > 0)
5312 continue;
5313
5314 (void) exec_runtime_free(rt, false);
5315 }
5316 }
5317
5318 void exec_params_clear(ExecParameters *p) {
5319 if (!p)
5320 return;
5321
5322 strv_free(p->environment);
5323 }
5324
5325 static const char* const exec_input_table[_EXEC_INPUT_MAX] = {
5326 [EXEC_INPUT_NULL] = "null",
5327 [EXEC_INPUT_TTY] = "tty",
5328 [EXEC_INPUT_TTY_FORCE] = "tty-force",
5329 [EXEC_INPUT_TTY_FAIL] = "tty-fail",
5330 [EXEC_INPUT_SOCKET] = "socket",
5331 [EXEC_INPUT_NAMED_FD] = "fd",
5332 [EXEC_INPUT_DATA] = "data",
5333 [EXEC_INPUT_FILE] = "file",
5334 };
5335
5336 DEFINE_STRING_TABLE_LOOKUP(exec_input, ExecInput);
5337
5338 static const char* const exec_output_table[_EXEC_OUTPUT_MAX] = {
5339 [EXEC_OUTPUT_INHERIT] = "inherit",
5340 [EXEC_OUTPUT_NULL] = "null",
5341 [EXEC_OUTPUT_TTY] = "tty",
5342 [EXEC_OUTPUT_SYSLOG] = "syslog",
5343 [EXEC_OUTPUT_SYSLOG_AND_CONSOLE] = "syslog+console",
5344 [EXEC_OUTPUT_KMSG] = "kmsg",
5345 [EXEC_OUTPUT_KMSG_AND_CONSOLE] = "kmsg+console",
5346 [EXEC_OUTPUT_JOURNAL] = "journal",
5347 [EXEC_OUTPUT_JOURNAL_AND_CONSOLE] = "journal+console",
5348 [EXEC_OUTPUT_SOCKET] = "socket",
5349 [EXEC_OUTPUT_NAMED_FD] = "fd",
5350 [EXEC_OUTPUT_FILE] = "file",
5351 [EXEC_OUTPUT_FILE_APPEND] = "append",
5352 };
5353
5354 DEFINE_STRING_TABLE_LOOKUP(exec_output, ExecOutput);
5355
5356 static const char* const exec_utmp_mode_table[_EXEC_UTMP_MODE_MAX] = {
5357 [EXEC_UTMP_INIT] = "init",
5358 [EXEC_UTMP_LOGIN] = "login",
5359 [EXEC_UTMP_USER] = "user",
5360 };
5361
5362 DEFINE_STRING_TABLE_LOOKUP(exec_utmp_mode, ExecUtmpMode);
5363
5364 static const char* const exec_preserve_mode_table[_EXEC_PRESERVE_MODE_MAX] = {
5365 [EXEC_PRESERVE_NO] = "no",
5366 [EXEC_PRESERVE_YES] = "yes",
5367 [EXEC_PRESERVE_RESTART] = "restart",
5368 };
5369
5370 DEFINE_STRING_TABLE_LOOKUP_WITH_BOOLEAN(exec_preserve_mode, ExecPreserveMode, EXEC_PRESERVE_YES);
5371
5372 static const char* const exec_directory_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
5373 [EXEC_DIRECTORY_RUNTIME] = "RuntimeDirectory",
5374 [EXEC_DIRECTORY_STATE] = "StateDirectory",
5375 [EXEC_DIRECTORY_CACHE] = "CacheDirectory",
5376 [EXEC_DIRECTORY_LOGS] = "LogsDirectory",
5377 [EXEC_DIRECTORY_CONFIGURATION] = "ConfigurationDirectory",
5378 };
5379
5380 DEFINE_STRING_TABLE_LOOKUP(exec_directory_type, ExecDirectoryType);
5381
5382 static const char* const exec_directory_env_name_table[_EXEC_DIRECTORY_TYPE_MAX] = {
5383 [EXEC_DIRECTORY_RUNTIME] = "RUNTIME_DIRECTORY",
5384 [EXEC_DIRECTORY_STATE] = "STATE_DIRECTORY",
5385 [EXEC_DIRECTORY_CACHE] = "CACHE_DIRECTORY",
5386 [EXEC_DIRECTORY_LOGS] = "LOGS_DIRECTORY",
5387 [EXEC_DIRECTORY_CONFIGURATION] = "CONFIGURATION_DIRECTORY",
5388 };
5389
5390 DEFINE_PRIVATE_STRING_TABLE_LOOKUP_TO_STRING(exec_directory_env_name, ExecDirectoryType);
5391
5392 static const char* const exec_keyring_mode_table[_EXEC_KEYRING_MODE_MAX] = {
5393 [EXEC_KEYRING_INHERIT] = "inherit",
5394 [EXEC_KEYRING_PRIVATE] = "private",
5395 [EXEC_KEYRING_SHARED] = "shared",
5396 };
5397
5398 DEFINE_STRING_TABLE_LOOKUP(exec_keyring_mode, ExecKeyringMode);